JP2021111987A - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
JP2021111987A
JP2021111987A JP2020000534A JP2020000534A JP2021111987A JP 2021111987 A JP2021111987 A JP 2021111987A JP 2020000534 A JP2020000534 A JP 2020000534A JP 2020000534 A JP2020000534 A JP 2020000534A JP 2021111987 A JP2021111987 A JP 2021111987A
Authority
JP
Japan
Prior art keywords
phase
voltage
power
arm
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020000534A
Other languages
Japanese (ja)
Other versions
JP7375553B2 (en
Inventor
孝明 田中
Takaaki Tanaka
孝明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020000534A priority Critical patent/JP7375553B2/en
Publication of JP2021111987A publication Critical patent/JP2021111987A/en
Application granted granted Critical
Publication of JP7375553B2 publication Critical patent/JP7375553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

To provide a power conversion apparatus capable of stably continuing operation even though a power system fails, and a system voltage results in three-phase unbalancing.SOLUTION: A power conversion apparatus 1 comprises a U-phase leg 31U, a V-phase leg 31V and a W-phase leg 31W; a lower side neutral point 32n where end portions of lower arms provided to the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W, respectively, are connected to each other; an upper side neutral point 32p where end portions of upper arms provided to the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W, respectively, are connected to each other; and a control device 5 for controlling the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W. The control device 5 comprises an inter-leg power equilibration control part 5a for controlling a first zero-phase power by adjusting the same voltage component included in each of a zero-phase power VZn of the lower side neutral point 32n, and another zero-phase power VZp of the upper side neutral point 32p.SELECTED DRAWING: Figure 1

Description

本発明は、有効電力及び無効電力の少なくとも一方を供給する電力変換装置に関する。 The present invention relates to a power conversion device that supplies at least one of active power and ineffective power.

電力系統の品質維持のため、無効電力を補償する電力変換装置が運用されている。このような電力変換装置の大容量化が望まれている。自己消弧形の半導体スイッチ素子を用いることによって小型化を図りつつ、大容量化を実現することができる電力変換方式として、モジュラーマルチレベルカスケード変換器の実用化が進められている(例えば、特許文献1及び2並びに非特許文献1及び2)。 In order to maintain the quality of the power system, a power conversion device that compensates for the ineffective power is in operation. It is desired to increase the capacity of such a power conversion device. A modular multi-level cascade converter is being put into practical use as a power conversion method that can realize a large capacity while reducing the size by using a self-extinguishing semiconductor switch element (for example, a patent). Documents 1 and 2 and Non-Patent Documents 1 and 2).

特開2012−44839号公報Japanese Unexamined Patent Publication No. 2012-44839 特開2017−143626号公報JP-A-2017-143626

H.アカギ(H.Akagi)著,「(Multilevel Converters: Fundamental Circuits and Systems)」,(米国),米国電気電子学会誌(Proceedings of the IEEE),pp2048−2065,Volume:105,Issue:11,Nov.2017H. Akagi (H. Akagi), "(Multilevel Vehicles: Fundamental Circuits and Systems)", (USA), Journal of the Institute of Electrical and Electronics Engineers of the United States (Proceedings of the IEEE), pp2048-2065, Volume: 105. 2017 T. タナカ(T. Tanaka)著,「(Asymmetrical Reactive Power Capability of Modular Multilevel Cascade Converter (MMCC) based STATCOMs for Offshore Wind Farm)」,(米国),米国電気電子学会誌(IEEE Transaction on Power Electronics),pp5147−5164,Volume:34,Number: 6,June.2019T. Tanaka (T. Tanaka), "(Asymmetrical Reactive Power Power Capability of Modular Multilevel Cascade Controller (MMCC) Based STATCOM E. 5164, Volume: 34, Number: 6, June. 2019

本発明の目的は、電力系統が故障し、系統電圧が三相不平衡に陥っても、安定して運転を継続することができる電力変換装置を提供することにある。 An object of the present invention is to provide a power conversion device capable of stably continuing operation even if a power system fails and the system voltage falls into a three-phase imbalance.

上記目的を達成するために、本発明の一態様による電力変換装置は、直列接続された第一アーム及び第二アームをそれぞれ有する複数のレグと、前記複数のレグのそれぞれに設けられた前記第一アームの両端部のうちの前記第二アームに接続されていない端部が互いに接続された第一接続部と、前記複数のレグのそれぞれに設けられた前記第二アームの両端部のうちの前記第一アームに接続されていない端部が互いに接続された第二接続部と、前記複数のレグを制御する制御装置とを備え、前記第一アームは、直列接続された2個の半導体スイッチ及び該2個の半導体スイッチに並列接続された蓄電素子を有する第一電力変換回路セルと、前記第一電力変換回路セルに直列に接続された第一コイルとを有し、前記第二アームは、直列接続された2個の半導体スイッチ及び該2個の半導体スイッチに並列接続された蓄電素子を有する第二電力変換回路セルと、前記第二電力変換回路セルに直列に接続された第二コイルとを有し、前記制御装置は、前記第一接続部の第一電圧及び前記第二接続部の第二電圧のそれぞれに含まれる同一の電圧成分を調整して前記複数のレグのそれぞれの間で流入出する第一電力を制御する電力制御部を有する。 In order to achieve the above object, the power conversion device according to one aspect of the present invention includes a plurality of legs each having a first arm and a second arm connected in series, and the first leg provided on each of the plurality of legs. Of the first connecting portion in which the ends of both ends of one arm that are not connected to the second arm are connected to each other, and the both ends of the second arm provided in each of the plurality of legs. A second connection portion in which ends not connected to the first arm are connected to each other and a control device for controlling the plurality of legs are provided, and the first arm is two semiconductor switches connected in series. The second arm has a first power conversion circuit cell having a power storage element connected in parallel to the two semiconductor switches, and a first coil connected in series with the first power conversion circuit cell. , A second power conversion circuit cell having two semiconductor switches connected in series and a power storage element connected in parallel to the two semiconductor switches, and a second coil connected in series to the second power conversion circuit cell. The control device adjusts the same voltage component contained in each of the first voltage of the first connection portion and the second voltage of the second connection portion, and between each of the plurality of legs. It has a power control unit that controls the first power flowing in and out.

本発明の一態様によれば、電力系統が故障し、系統電圧が三相不平衡に陥っても、安定して運転を継続することができる。 According to one aspect of the present invention, stable operation can be continued even if the power system fails and the system voltage falls into a three-phase imbalance.

本発明の第1実施形態による電力変換装置の概略構成を示す回路ブロック図である。It is a circuit block diagram which shows the schematic structure of the power conversion apparatus according to 1st Embodiment of this invention. 本発明の第1実施形態による電力変換装置に備えられた複数のレグのそれぞれに設けられた電力変換回路セルの概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the power conversion circuit cell provided in each of a plurality of legs provided in the power conversion apparatus according to 1st Embodiment of this invention. 本発明の第1実施形態による電力変換装置の概略構成を示す簡易ブロック図である。It is a simple block diagram which shows the schematic structure of the power conversion apparatus according to 1st Embodiment of this invention. 本発明の第1実施形態による電力変換装置に備えられた制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the control device provided in the power conversion device according to 1st Embodiment of this invention. 本発明の第1実施形態による電力変換装置に備えられた制御装置に設けられた電圧抑制部の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the voltage suppression part provided in the control device provided in the power conversion device by 1st Embodiment of this invention. 本発明の第1実施形態による電力変換装置に備えられた制御装置に設けられたアーム電圧指令値生成部の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the arm voltage command value generation part provided in the control device provided in the power conversion device by 1st Embodiment of this invention. 本発明の第2実施形態による電力変換装置に備えられた制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the control device provided in the power conversion device according to the 2nd Embodiment of this invention. 本発明の第2実施形態による電力変換装置に備えられた制御装置に設けられた電圧抑制部の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the voltage suppression part provided in the control device provided in the power conversion device by 2nd Embodiment of this invention. 本発明の第2実施形態による電力変換装置に備えられた制御装置に設けられたアーム電圧指令値生成部の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the arm voltage command value generation part provided in the control device provided in the power conversion device by 2nd Embodiment of this invention. 本発明の第1実施形態による電力変換装置の効果を説明する図であって、系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。It is a figure explaining the effect of the power conversion apparatus by 1st Embodiment of this invention, and is the graph which shows the simulation result of the maximum value of the ineffective power at the time of a system failure. 本発明の第2実施形態による電力変換装置の効果を説明する図であって、系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。It is a figure explaining the effect of the power conversion apparatus by 2nd Embodiment of this invention, and is the graph which shows the simulation result of the maximum value of the ineffective power at the time of a system failure. 参考例における系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the maximum value of the ineffective power at the time of a system failure in a reference example. 本発明の第3実施形態による電力変換装置に備えられた複数のレグのそれぞれに設けられた電力変換回路セルの概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the power conversion circuit cell provided in each of a plurality of legs provided in the power conversion apparatus according to the 3rd Embodiment of this invention.

〔第1実施形態〕
本発明の第1実施形態による電力変換装置について図1から図6を用いて説明する。本実施形態による電力変換装置について、電力系統向けの自励式静止形無効電力補償装置((Static Var Compensator:STATCOM)の用途を想定した場合の二重スターブリッジセル型(Double Star Bridge Cells:DSBC)の三相モジュラーマルチレベル変換器(以下、「モジュラーマルチレベル変換器」を「MMCC」と略記する場合がある)を例にとって説明する。
[First Embodiment]
The power conversion device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. Regarding the power converter according to the present embodiment, a double star bridge cell type (Double Star Bridge Cells: DSBC) assuming the use of a self-excited static varsator (STATCOM) for a power system. A three-phase modular multi-level converter (hereinafter, "modular multi-level converter" may be abbreviated as "MMCC") will be described as an example.

(電力制御システム)
本実施形態による電力変換装置が用いられる電力制御システムについて図1を用いて説明する。図1は、本実施形態による電力変換装置1が用いられる電力制御システムPSの概略構成を示す回路ブロック図である。
(Power control system)
The power control system in which the power conversion device according to the present embodiment is used will be described with reference to FIG. FIG. 1 is a circuit block diagram showing a schematic configuration of a power control system PS in which the power conversion device 1 according to the present embodiment is used.

図1に示すように、電力制御システムPSは、三相電力系統2と、三相電力系統2から供給される電力を電源として動作する負荷装置(不図示)と、三相電力系統2に連系する電力変換装置1とを備えている。三相電力系統2は、三相の交流電力を生成する三相交流電源21と、三相交流電源21で生成された電力が供給されるケーブル22とを有している。三相交流電源21は、U相の交流電力を供給するU相交流電源211と、V相交流電力を供給するV相交流電源212と、W相交流電力を供給するW相交流電源213とを有している。ケーブル22は、U相交流電源で生成されたU相の交流電力が供給されるU相ケーブル221と、V相交流電源212で生成されたV相の交流電力が供給されるV相ケーブル222と、W相交流電源213で生成されたW相の交流電力が供給されるW相ケーブル223とを有している。 As shown in FIG. 1, the power control system PS is connected to a three-phase power system 2, a load device (not shown) that operates using the power supplied from the three-phase power system 2 as a power source, and a three-phase power system 2. It is provided with a related power conversion device 1. The three-phase power system 2 has a three-phase AC power supply 21 that generates three-phase AC power, and a cable 22 to which the power generated by the three-phase AC power supply 21 is supplied. The three-phase AC power supply 21 includes a U-phase AC power supply 211 that supplies U-phase AC power, a V-phase AC power supply 212 that supplies V-phase AC power, and a W-phase AC power supply 213 that supplies W-phase AC power. Have. The cable 22 includes a U-phase cable 221 to which U-phase AC power generated by the U-phase AC power supply is supplied, and a V-phase cable 222 to which V-phase AC power generated by the V-phase AC power supply 212 is supplied. It has a W-phase cable 223 to which the W-phase AC power generated by the W-phase AC power supply 213 is supplied.

(電力変換装置)
次に、電力制御システムPSに設けられた電力変換装置の構成について図1を用いて説明する。
図1に示すように、本実施形態による電力変換装置1は、三相電力系統2に連系された主回路部3と、主回路部3に設けられたU相レグ31U、V相レグ31V及びW相レグ31W(複数のレグの一例)を制御する制御装置5(詳細は後述する)とを備えている。電力変換装置1に備えられた主回路部3は、直列接続された下アーム(第一アームの一例)31Un,31Vn,31Wn及び上アーム(第二アームの一例)31Up,31Vp,31Wpを有するU相レグ31U、V相レグ31V及びW相レグ31Wを備えている。このように、電力変換装置1は、U相レグ31U、V相レグ31V及びW相レグ31Wを用いた三相電圧形電力変換器である。
(Power converter)
Next, the configuration of the power conversion device provided in the power control system PS will be described with reference to FIG.
As shown in FIG. 1, in the power conversion device 1 according to the present embodiment, the main circuit unit 3 connected to the three-phase power system 2 and the U-phase leg 31U and V-phase leg 31V provided in the main circuit unit 3 are provided. It also includes a control device 5 (details will be described later) that controls a W-phase leg 31W (an example of a plurality of legs). The main circuit unit 3 provided in the power conversion device 1 has a lower arm (an example of a first arm) 31Un, 31Vn, 31Wn and an upper arm (an example of a second arm) 31Up, 31Vp, 31Wp connected in series. It includes a phase leg 31U, a V-phase leg 31V, and a W-phase leg 31W. As described above, the power converter 1 is a three-phase voltage type power converter using the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W.

主回路部3は、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられた下アーム31Un,31Vn,31Wnの両端部のうちの上アーム31Up,31Vp,31Wpに接続されていない端部が互いに接続された下側中性点(第一接続部の一例)32nを備えている。詳細は後述するが、下アーム31Un、下アーム31Vn及び下アーム31Wnは、スター結線(Y結線)されており、下アーム31Un,31Vn,31Wnのそれぞれの当該端部の接続部が当該スター結線の中性点になっている。 The main circuit unit 3 is connected to the upper arms 31Up, 31Vp, 31Wp of both ends of the lower arms 31Un, 31Vn, 31Wn provided on the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W, respectively. It has a lower neutral point (an example of a first connection) 32n with no ends connected to each other. Although the details will be described later, the lower arm 31Un, the lower arm 31Vn, and the lower arm 31Wn are star-connected (Y-connected), and the connection portions of the ends of the lower arms 31Un, 31Vn, and 31Wn are of the star connection. It is a neutral point.

主回路部3は、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられた上アーム31Up,31Vp,31Wpの両端部のうちの下アーム31Un,31Vn,31Wnに接続されていない端部が互いに接続された上側中性点(第二接続部の一例)32pを備えている。詳細は後述するが、上アーム31Up、上アーム31Vp及び上アーム31Wpは、スター結線(Y結線)されており、上アーム31Up,31Vp,31Wpのそれぞれの当該端部の接続部が当該スター結線の中性点になっている。 The main circuit unit 3 is connected to the lower arms 31Un, 31Vn, 31Wn of both ends of the upper arms 31Up, 31Vp, 31Wp provided on the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W, respectively. It has an upper neutral point (an example of a second connection) 32p with no ends connected to each other. Although the details will be described later, the upper arm 31Up, the upper arm 31Vp, and the upper arm 31Wp are star-connected (Y-connected), and the connection portions of the ends of the upper arms 31Up, 31Vp, and 31Wp are of the star connection. It is a neutral point.

U相レグ31Uは、下アーム31Un及び上アーム31Upを有している。V相レグ31Vは、下アーム31Vn及び上アーム31Vpを有している。W相レグ31Wは、下アーム31Wn及び上アーム31Wpを有している。U相レグ31Uは、下アーム31Unと上アームUpとの接続部に設けられた端子31Utを介して三相電力系統2のU相ケーブル221に接続されている。V相レグ31Vは、下アーム31Vnと上アームVpとの接続部に設けられた端子31Vtを介して三相電力系統2のV相ケーブル222に接続されている。W相レグ31Wは、下アーム31Wnと上アームWpとの接続部に設けられた端子31Wtを介して三相電力系統2のW相ケーブル223に接続されている。 The U-phase leg 31U has a lower arm 31Un and an upper arm 31Up. The V-phase leg 31V has a lower arm 31Vn and an upper arm 31Vp. The W-phase leg 31W has a lower arm 31Wn and an upper arm 31Wp. The U-phase leg 31U is connected to the U-phase cable 221 of the three-phase power system 2 via a terminal 31Ut provided at a connection portion between the lower arm 31Un and the upper arm Up. The V-phase leg 31V is connected to the V-phase cable 222 of the three-phase power system 2 via a terminal 31Vt provided at a connection portion between the lower arm 31Vn and the upper arm Vp. The W-phase leg 31W is connected to the W-phase cable 223 of the three-phase power system 2 via a terminal 31Wt provided at a connection portion between the lower arm 31Wn and the upper arm Wp.

図1に示すように、U相レグ31Uに設けられた下アーム31Unは、電力変換回路セル311Un1,・・・,311Unx(第一電力変換回路セルの一例)と、電力変換回路セル311Un1,・・・,311Unxに直列に接続された交流リアクトル312Un(第一コイルの一例)とを有している。ここで、xは、下アーム31Unに設けられた電力変換回路セルの個数を示している。U相レグ31Uに設けられた上アーム31Upは、電力変換回路セル311Up1,・・・,311Upx(第二電力変換回路セルの一例)と、電力変換回路セル311Up1,・・・,311Upxに直列に接続された及び交流リアクトル312Up(第二コイルの一例)とを有している。ここで、xは、上アーム31Upに設けられた電力変換回路セルの個数を示している。 As shown in FIG. 1, the lower arm 31Un provided on the U-phase leg 31U includes power conversion circuit cells 311Un1, ..., 311Unx (an example of the first power conversion circuit cell), and power conversion circuit cells 311Un1, ... It has an AC reactor 312Un (an example of the first coil) connected in series with 311Unx. Here, x indicates the number of power conversion circuit cells provided in the lower arm 31Un. The upper arm 31Up provided on the U-phase leg 31U is connected in series with the power conversion circuit cells 311Up1, ..., 311Upx (an example of the second power conversion circuit cell) and the power conversion circuit cells 311Up1, ..., 311Upx. It has a connected and AC reactor 312Up (an example of a second coil). Here, x indicates the number of power conversion circuit cells provided on the upper arm 31Up.

V相レグ31Vに設けられた下アーム31Vnは、電力変換回路セル311Vn1,・・・,311Vnx(第一電力変換回路セルの一例)と、電力変換回路セル311Vn1,・・・,311Vnxに直列に接続された交流リアクトル312Vn(第一コイルの一例)とを有している。ここで、xは、下アーム31Vnに設けられた電力変換回路セルの個数を示している。V相レグ31Vに設けられた上アーム31Vpは、電力変換回路セル311Vp1,・・・,311Vpx(第二電力変換回路セルの一例)と、電力変換回路セル311Vp1,・・・,311Vpxに直列に接続された交流リアクトル312Vp(第二コイルの一例)とを有している。ここで、xは、上アーム31Vpに設けられた電力変換回路セルの個数を示している。 The lower arm 31Vn provided on the V-phase leg 31V is connected in series with the power conversion circuit cells 311Vn1, ..., 311Vnx (an example of the first power conversion circuit cell) and the power conversion circuit cells 311Vn1, ..., 311Vnx. It has a connected AC reactor 312Vn (an example of the first coil). Here, x indicates the number of power conversion circuit cells provided in the lower arm 31Vn. The upper arm 31Vp provided on the V-phase leg 31V is connected in series with the power conversion circuit cells 311Vp1, ..., 311Vpx (an example of the second power conversion circuit cell) and the power conversion circuit cells 311Vp1, ..., 311Vpx. It has a connected AC reactor 312Vp (an example of a second coil). Here, x indicates the number of power conversion circuit cells provided on the upper arm 31Vp.

W相レグ31Wに設けられた下アーム31Wnは、電力変換回路セル311Wn1,・・・,311Wnx(第一電力変換回路セルの一例)と、電力変換回路セル311Wn1,・・・,311Wnx(第一電力変換回路セルの一例)に直列に接続された交流リアクトル312Wn(第一コイルの一例)とを有している。ここで、xは、下アーム31Wnに設けられた電力変換回路セルの個数を示している。W相レグ31Wに設けられた上アーム31Wpは、電力変換回路セル311Wp1,・・・,311Wpx(第二電力変換回路セルの一例)と、電力変換回路セル311Wp1,・・・,311Wpxに直列に接続された交流リアクトル312Wp(第二コイルの一例)とを有している。ここで、xは、上アーム31Wpに設けられた電力変換回路セルの個数を示している。 The lower arm 31Wn provided on the W-phase leg 31W includes power conversion circuit cells 311Wn1, ..., 311Wnx (an example of the first power conversion circuit cell) and power conversion circuit cells 311Wn1, ..., 311Wnx (first). It has an AC reactor 312Wn (an example of a first coil) connected in series with an example of a power conversion circuit cell). Here, x indicates the number of power conversion circuit cells provided in the lower arm 31Wn. The upper arm 31Wp provided on the W-phase leg 31W is connected in series with the power conversion circuit cells 311Wp1, ..., 311Wpx (an example of the second power conversion circuit cell) and the power conversion circuit cells 311Wp1, ..., 311Wpx. It has a connected AC reactor 312Wp (an example of a second coil). Here, x indicates the number of power conversion circuit cells provided on the upper arm 31 Wp.

図1に示すように、U相レグ31Uに設けられた下アーム31Unにおいて、直列接続された電力変換回路セル311Un1,・・・,311Unxのうちの電力変換回路セル311Un1が交流リアクトル312Unに接続されている。U相レグ31Uに設けられた上アーム31Upにおいて、直列接続された電力変換回路セル311Up1,・・・,311Upxのうちの電力変換回路セル311Upxが交流リアクトル312Upに接続されている。交流リアクトル312Un及び交流リアクトル312Upの接続部が端子31Utに接続されている。交流リアクトル312Un及び交流リアクトル312Upの接続部が端子31Utを介して三相電力系統2のU相ケーブル221に接続されている。 As shown in FIG. 1, in the lower arm 31Un provided on the U-phase leg 31U, the power conversion circuit cell 311Un1 of the power conversion circuit cells 311Un1, ..., 311Unx connected in series is connected to the AC reactor 312Un. ing. In the upper arm 31Up provided on the U-phase leg 31U, the power conversion circuit cell 311Upx of the power conversion circuit cells 311Up1, ..., 311Upx connected in series is connected to the AC reactor 312Up. The connection portion of the AC reactor 312Un and the AC reactor 312Up is connected to the terminal 31Ut. The connection portion of the AC reactor 312Un and the AC reactor 312Up is connected to the U-phase cable 221 of the three-phase power system 2 via the terminal 31Ut.

V相レグ31Vに設けられた下アーム31Vnにおいて、直列接続された電力変換回路セル311Vn1,・・・,311Vnxのうちの電力変換回路セル311Vn1が交流リアクトル312Vnに接続されている。V相レグ31Vに設けられた上アーム31Vpにおいて、直列接続された電力変換回路セル311Vp1,・・・,311Vpxのうちの電力変換回路セル311Vpxが交流リアクトル312Vpに接続されている。交流リアクトル312Vn及び交流リアクトル312Vpの接続部が端子31Vtに接続されている。交流リアクトル312Vn及び交流リアクトル312Vpの接続部が端子31Vtを介して三相電力系統2のV相ケーブル222に接続されている。 In the lower arm 31Vn provided on the V-phase leg 31V, the power conversion circuit cell 311Vn1 of the power conversion circuit cells 311Vn1, ..., 311Vnx connected in series is connected to the AC reactor 312Vn. In the upper arm 31Vp provided on the V-phase leg 31V, the power conversion circuit cell 311Vpx of the power conversion circuit cells 311Vp1, ..., 311Vpx connected in series is connected to the AC reactor 312Vp. The connection portion of the AC reactor 312Vn and the AC reactor 312Vp is connected to the terminal 31Vt. The connection portion of the AC reactor 312Vn and the AC reactor 312Vp is connected to the V-phase cable 222 of the three-phase power system 2 via the terminal 31Vt.

W相レグ31Wに設けられた下アーム31Wnにおいて、直列接続された電力変換回路セル311Wn1,・・・,311Wnxのうちの電力変換回路セル311Wn1が交流リアクトル312Wnに接続されている。W相レグ31Wに設けられた上アーム31Wpにおいて、直列接続された電力変換回路セル311Wp1,・・・,311Wpxのうちの電力変換回路セル311Wpxが交流リアクトル312Wpに接続されている。交流リアクトル312Wn及び交流リアクトル312Wpの接続部が端子31Wtに接続されている。交流リアクトル312Wn及び交流リアクトル312Wpの接続部が端子31Wtを介して三相電力系統2のW相ケーブル223に接続されている。 In the lower arm 31Wn provided on the W-phase leg 31W, the power conversion circuit cell 311Wn1 of the power conversion circuit cells 311Wn1, ..., 311Wnx connected in series is connected to the AC reactor 312Wn. In the upper arm 31Wp provided on the W-phase leg 31W, the power conversion circuit cell 311Wpx of the power conversion circuit cells 311Wp1, ..., 311Wpx connected in series is connected to the AC reactor 312Wp. The connection portion of the AC reactor 312Wn and the AC reactor 312Wp is connected to the terminal 31Wt. The connection portion of the AC reactor 312Wn and the AC reactor 312Wp is connected to the W-phase cable 223 of the three-phase power system 2 via the terminal 31Wt.

図1に示すように、下アーム31Unに設けられた電力変換回路セル311Unx及び上アーム31Upに設けられた電力変換回路セル311Up1がU相レグ31Uの両端に配置されている。下アーム31Vnに設けられた電力変換回路セル311Vnx及び上アーム31Vpに設けられた電力変換回路セル311Vp1がV相レグ31Vの両端に配置されている。下アーム31Wnに設けられた電力変換回路セル311Wnx及び上アーム31Wpに設けられた電力変換回路セル311Wp1がW相レグ31Wの両端に配置されている。 As shown in FIG. 1, the power conversion circuit cell 311Unx provided on the lower arm 31Un and the power conversion circuit cell 311Up1 provided on the upper arm 31Up are arranged at both ends of the U-phase leg 31U. The power conversion circuit cell 311Vnx provided on the lower arm 31Vn and the power conversion circuit cell 311Vp1 provided on the upper arm 31Vp are arranged at both ends of the V-phase leg 31V. The power conversion circuit cell 311Wnx provided on the lower arm 31Wn and the power conversion circuit cell 311Wp1 provided on the upper arm 31Wp are arranged at both ends of the W phase leg 31W.

電力変換回路セル311Unxの電力変換回路セル(不図示)と接続されていない側の端部と、電力変換回路セル311Vnxの電力変換回路セル(不図示)と接続されていない側の端部と、電力変換回路セル311Wnxの電力変換回路セル(不図示)と接続されていない側の端部とが互いに接続されて下側中性点32nが構成されている。電力変換回路セル311Up1の電力変換回路セル(不図示)と接続されていない側の端部と、電力変換回路セル311Vp1の電力変換回路セル(不図示)と接続されていない側の端部と、電力変換回路セル311Wp1の電力変換回路セル(不図示)と接続されていない側の端部とが互いに接続されて上側中性点32pが構成されている。 The end of the power conversion circuit cell 311Unx that is not connected to the power conversion circuit cell (not shown), the end of the power conversion circuit cell 311Vnx that is not connected to the power conversion circuit cell (not shown), and the end of the power conversion circuit cell 311Vnx. The power conversion circuit cell (not shown) of the power conversion circuit cell 311Wnx and the end portion on the side not connected are connected to each other to form a lower neutral point 32n. The end of the power conversion circuit cell 311Up1 that is not connected to the power conversion circuit cell (not shown), and the end of the power conversion circuit cell 311Vp1 that is not connected to the power conversion circuit cell (not shown). The power conversion circuit cell (not shown) of the power conversion circuit cell 311Wp1 and the end portion on the side not connected are connected to each other to form the upper neutral point 32p.

下アーム31Un、下アーム31Vn及び下アーム31Wnは、スター結線(Y結線)され、上アーム31Up、上アーム31Up及び上アーム31Wpは、スター結線(Y結線)されている。このため、主回路部3は、ダブルスター結線構造を有している。下側中性点32nは、下アーム31Un、下アーム31Vn及び下アーム31Wnが互いに結線された結線部に形成されている。上側中性点32pは、上アーム31Up、上アーム31Up及び上アーム31Wpが互いに結線された結線部に形成されている。下側中性点32n及び上側中性点32pは、電気的に絶縁されている。 The lower arm 31Un, the lower arm 31Vn, and the lower arm 31Wn are star-connected (Y-connected), and the upper arm 31Up, the upper arm 31Up, and the upper arm 31Wp are star-connected (Y-connected). Therefore, the main circuit unit 3 has a double star connection structure. The lower neutral point 32n is formed in a connection portion in which the lower arm 31Un, the lower arm 31Vn, and the lower arm 31Wn are connected to each other. The upper neutral point 32p is formed in a connection portion in which the upper arm 31Up, the upper arm 31Up, and the upper arm 31Wp are connected to each other. The lower neutral point 32n and the upper neutral point 32p are electrically insulated.

(電力変換回路セル)
次に、U相レグ31U、V相レグ31V及びW相レグ31Wにそれぞれ設けられた電力変換回路セルの具体的な構成について図1を参照しつつ図2を用いて説明する。U相レグ31Uの下アーム31Un及び上アーム31Up、V相レグ31Vの下アーム31Vn及び上アーム31Vp並びにW相レグ31Wの下アーム31Wn及び上アーム31Wpのそれぞれに設けられた電力変換回路セルは、互いに同様の構成を有している。そこで、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられた電力変換回路セルの具体的な構成について、下アーム31Un及び上アーム31Upに設けられた電力変換回路セルを例にとって説明する。
(Power conversion circuit cell)
Next, a specific configuration of the power conversion circuit cells provided in the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W will be described with reference to FIG. 1 with reference to FIG. The power conversion circuit cells provided in the lower arm 31Un and the upper arm 31Up of the U-phase leg 31U, the lower arm 31Vn and the upper arm 31Vp of the V-phase leg 31V, and the lower arm 31Wn and the upper arm 31Wp of the W-phase leg 31W are They have similar configurations to each other. Therefore, as for the specific configuration of the power conversion circuit cells provided in each of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W, an example of the power conversion circuit cells provided in the lower arm 31Un and the upper arm 31Up. Explain to.

図2は、U相レグ31Uの下アーム31Unに設けられた電力変換回路セル311Un1,・・・,311Unxのうちの電力変換回路セル311Uni(iは1〜xまでの自然数)及びU相レグ31Uの上アーム31Upに設けられた電力変換回路セル311Up1,・・・,311Upxのうちの電力変換回路セル311Upi(iは1〜xまでの自然数)の回路構成の一例を示す図である。 FIG. 2 shows the power conversion circuit cells 311Uni (i is a natural number from 1 to x) and the U-phase leg 31U among the power conversion circuit cells 311Un1, ..., 311Unx provided on the lower arm 31Un of the U-phase leg 31U. It is a figure which shows an example of the circuit structure of the power conversion circuit cell 311Upi (i is a natural number from 1 to x) among the power conversion circuit cells 311Up1, ..., 311Upx provided in the upper arm 31Up.

図2に示すように、電力変換回路セル311Uniは、直列に接続された複数(本実施形態では2個)の半導体モジュールMa及び半導体モジュールMbと、直列に接続された複数(本実施形態では2個)の半導体モジュールMc及び半導体モジュールMdを有している。半導体モジュールMa及び半導体モジュールMbと、半導体モジュールMc及び半導体モジュールMdとは、並列に接続されている。さらに、電力変換回路セル311Uniは、半導体モジュールMa,Mb及び半導体モジュールMc,Mdに並列に接続されたコンデンサC1を有している。本実施形態では、電力変換回路セル311Uniに設けられた蓄電素子は、コンデンサC1を有している。 As shown in FIG. 2, the power conversion circuit cell 311Uni is composed of a plurality of semiconductor modules Ma and semiconductor modules Mb connected in series (two in the present embodiment) and a plurality of semiconductor modules Mb connected in series (2 in the present embodiment). It has a semiconductor module Mc and a semiconductor module Md. The semiconductor module Ma and the semiconductor module Mb, and the semiconductor module Mc and the semiconductor module Md are connected in parallel. Further, the power conversion circuit cell 311Uni has a capacitor C1 connected in parallel to the semiconductor modules Ma and Mb and the semiconductor modules Mc and Md. In the present embodiment, the power storage element provided in the power conversion circuit cell 311Uni has a capacitor C1.

半導体モジュールMaは、半導体スイッチQaと、半導体スイッチQaに逆並列接続された還流用ダイオードDaとを有している。半導体モジュールMbは、半導体スイッチQbと、半導体スイッチQbに逆並列接続された還流用ダイオードDbとを有している。半導体モジュールMcは、半導体スイッチQcと、半導体スイッチQcに逆並列接続された還流用ダイオードDcとを有している。半導体モジュールMdは、半導体スイッチQdと、半導体スイッチQdに逆並列接続された還流用ダイオードDdとを有している。 The semiconductor module Ma has a semiconductor switch Qa and a reflux diode Da connected in antiparallel to the semiconductor switch Qa. The semiconductor module Mb has a semiconductor switch Qb and a reflux diode Db connected in antiparallel to the semiconductor switch Qb. The semiconductor module Mc has a semiconductor switch Qc and a freewheeling diode Dc connected in antiparallel to the semiconductor switch Qc. The semiconductor module Md has a semiconductor switch Qd and a reflux diode Dd connected in antiparallel to the semiconductor switch Qd.

したがって、電力変換回路セル311Uniは、直列接続された2個の半導体スイッチQa,Qbと、2個の半導体スイッチQa,Qbに並列接続されたコンデンサC1とを有している。さらに、電力変換回路セル311Uniは、直列接続された2個の半導体スイッチQc,Qdを有している。2個の半導体スイッチQc,Qdは、2個の半導体スイッチQa,Qb及びコンデンサC1に並列に接続されている。 Therefore, the power conversion circuit cell 311Uni has two semiconductor switches Qa and Qb connected in series and a capacitor C1 connected in parallel to the two semiconductor switches Qa and Qb. Further, the power conversion circuit cell 311Uni has two semiconductor switches Qc and Qd connected in series. The two semiconductor switches Qc and Qd are connected in parallel to the two semiconductor switches Qa and Qb and the capacitor C1.

本実施形態では、半導体スイッチQa,Qb,Qc,Qdは、例えば絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)で構成されている。半導体スイッチQaのコレクタ端子は、還流用ダイオードDaのカソード端子、半導体スイッチQcのコレクタ端子及び還流用ダイオードDcのカソード端子に接続されている。半導体スイッチQaのエミッタ端子は、還流用ダイオードDaのアノード端子、半導体スイッチQbのコレクタ端子及び還流用ダイオードDbのカソード端子に接続されている。半導体スイッチQaのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQaのゲート端子には制御装置5から出力されるゲートパルス信号SUni_aが入力され、半導体スイッチQaのオン/オフが制御される。 In the present embodiment, the semiconductor switches Qa, Qb, Qc, and Qd are composed of, for example, an insulated gate bipolar transistor (IGBT). The collector terminal of the semiconductor switch Qa is connected to the cathode terminal of the recirculation diode Da, the collector terminal of the semiconductor switch Qc, and the cathode terminal of the recirculation diode Dc. The emitter terminal of the semiconductor switch Qa is connected to the anode terminal of the freewheeling diode Da, the collector terminal of the semiconductor switch Qb, and the cathode terminal of the freewheeling diode Db. The gate terminal of the semiconductor switch Qa is connected to the control device 5. As a result, the gate pulse signal S Uni_a output from the control device 5 is input to the gate terminal of the semiconductor switch Qa, and the on / off of the semiconductor switch Qa is controlled.

半導体スイッチQbのエミッタ端子は、半導体スイッチQaのエミッタ端子及び還流用ダイオードDaのアノード端子に接続されている。半導体スイッチQbのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQbのゲート端子には制御装置5から出力されるゲートパルス信号SUni_bが入力され、半導体スイッチQbのオン/オフが制御される。 The emitter terminal of the semiconductor switch Qb is connected to the emitter terminal of the semiconductor switch Qa and the anode terminal of the reflux diode Da. The gate terminal of the semiconductor switch Qb is connected to the control device 5. As a result, the gate pulse signal S Uni_b output from the control device 5 is input to the gate terminal of the semiconductor switch Qb, and the on / off of the semiconductor switch Qb is controlled.

半導体スイッチQcのエミッタ端子は、還流用ダイオードDcのアノード端子、半導体スイッチQdのコレクタ端子及び還流用ダイオードDdのカソード端子に接続されている。半導体スイッチQcのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQbのゲート端子には制御装置5から出力されるゲートパルス信号SUni_cが入力され、半導体スイッチQcのオン/オフが制御される。 The emitter terminal of the semiconductor switch Qc is connected to the anode terminal of the freewheeling diode Dc, the collector terminal of the semiconductor switch Qd, and the cathode terminal of the freewheeling diode Dd. The gate terminal of the semiconductor switch Qc is connected to the control device 5. As a result, the gate pulse signal S Uni_c output from the control device 5 is input to the gate terminal of the semiconductor switch Qb, and the on / off of the semiconductor switch Qc is controlled.

半導体スイッチQdのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQdのゲート端子には制御装置5から出力されるゲートパルス信号SUni_dが入力され、半導体スイッチQdのオン/オフが制御される。 The gate terminal of the semiconductor switch Qd is connected to the control device 5. As a result, the gate pulse signal S Uni_d output from the control device 5 is input to the gate terminal of the semiconductor switch Qd, and the on / off of the semiconductor switch Qd is controlled.

コンデンサC1の一方の電極は、半導体スイッチQaのコレクタ端子、還流用ダイオードDaのカソード端子、半導体スイッチQcのコレクタ端子及び還流用ダイオードDcのカソード端子に接続されている。コンデンサC1の他方の電極は、半導体スイッチQbのエミッタ端子、還流用ダイオードDbのアノード端子、半導体スイッチQdのエミッタ端子及び還流用ダイオードDdのアノード端子に接続されている。 One electrode of the capacitor C1 is connected to the collector terminal of the semiconductor switch Qa, the cathode terminal of the recirculation diode Da, the collector terminal of the semiconductor switch Qc, and the cathode terminal of the recirculation diode Dc. The other electrode of the capacitor C1 is connected to the emitter terminal of the semiconductor switch Qb, the anode terminal of the recirculation diode Db, the emitter terminal of the semiconductor switch Qd, and the anode terminal of the recirculation diode Dd.

半導体モジュールMa及び半導体モジュールMbの接続部は、電力変換回路セル311Uniの端子T1に接続されている。半導体モジュールMc及び半導体モジュールMdの接続部は、電力変換回路セル311Uniの端子T2に接続されている。電力変換回路セル311Uni(i=2,3,・・・,x−1)の端子T1は、電力変換回路セル311Uni−1(i=2,3,・・・,x−1)の端子T2に接続されている。電力変換回路セル311Uni(i=1,2,・・・,x−1)の端子T2は、電力変換回路セル311Uni+1(i=1,2,・・・,x−1)の端子T1に接続されている。電力変換回路セル311Un1の端子T1は、交流リアクトル312Unの一端子に接続されている。電力変換回路セル311Unxの端子T2は、下側中性点32nに接続されている。電力変換回路セル311Unxの端子T2は、下側中性点32nを介してV相レグ31Vの下アーム31Vnに設けられた電力変換回路セル311Vnx(図1参照)の端子T2(不図示)及びW相レグ31Wの下アーム31Wnに設けられた電力変換回路セル311Wnx(図1参照)の端子T2(不図示)に接続されている。 The connection portion between the semiconductor module Ma and the semiconductor module Mb is connected to the terminal T1 of the power conversion circuit cell 311Uni. The connection portion between the semiconductor module Mc and the semiconductor module Md is connected to the terminal T2 of the power conversion circuit cell 311Uni. The terminal T1 of the power conversion circuit cell 311Uni (i = 2,3, ..., X-1) is the terminal T2 of the power conversion circuit cell 311Uni-1 (i = 2,3, ..., X-1). It is connected to the. The terminal T2 of the power conversion circuit cell 311Uni (i = 1, 2, ..., X-1) is connected to the terminal T1 of the power conversion circuit cell 311Uni + 1 (i = 1, 2, ..., X-1). Has been done. The terminal T1 of the power conversion circuit cell 311Un1 is connected to one terminal of the AC reactor 312Un. The terminal T2 of the power conversion circuit cell 311Unx is connected to the lower neutral point 32n. The terminal T2 of the power conversion circuit cell 311Unx is the terminal T2 (not shown) and W of the power conversion circuit cell 311Vnx (see FIG. 1) provided on the lower arm 31Vn of the V-phase leg 31V via the lower neutral point 32n. It is connected to the terminal T2 (not shown) of the power conversion circuit cell 311Wnx (see FIG. 1) provided on the lower arm 31Wn of the phase leg 31W.

端子T1及び端子T2の電位差である電圧vUniは、端子T1の電位の方が端子T2の電位よりも高い場合を正の電圧とし、端子T1の電位の方が端子T2の電位よりも低い場合を負の電圧とする。 The voltage v Uni, which is the potential difference between the terminal T1 and the terminal T2, is a positive voltage when the potential of the terminal T1 is higher than the potential of the terminal T2, and when the potential of the terminal T1 is lower than the potential of the terminal T2. Let be a negative voltage.

電力変換回路セル311Uniは、コンデンサC1の両電極間の電圧を検出する電圧検出部313を有している。電圧検出部313は、制御装置5に接続されている。電圧検出部313は、検出した電圧vc_Uniを制御装置5に出力するように構成されている。電圧vc_Uniは、半導体モジュールMa,Mcに接続された一方の電極の電位の方が半導体モジュールMb,Mdに接続された他方の電極の電位よりも高い場合を正の電圧とし、当該一方の電極の電位の方が当該他方の電極の電位よりも低い場合を負の電圧とする。 The power conversion circuit cell 311Uni has a voltage detection unit 313 that detects a voltage between both electrodes of the capacitor C1. The voltage detection unit 313 is connected to the control device 5. The voltage detection unit 313 is configured to output the detected voltage v c_Uni to the control device 5. The voltage v c_Uni is defined as a positive voltage when the potential of one electrode connected to the semiconductor modules Ma and Mc is higher than the potential of the other electrode connected to the semiconductor modules Mb and Md. The case where the potential of is lower than the potential of the other electrode is defined as a negative voltage.

図2に示すように、電力変換回路セル311Upiは、電力変換回路セル311Uniと同様の構成を有している。このため、電力変換回路セル311Upiに関し、電力変換回路セル311Uniと同様の作用・機能を有する構成要素には、同一の符号を付して説明を省略する。 As shown in FIG. 2, the power conversion circuit cell 311Upi has the same configuration as the power conversion circuit cell 311Uni. Therefore, with respect to the power conversion circuit cell 311Upi, the components having the same functions and functions as the power conversion circuit cell 311Uni are designated by the same reference numerals and the description thereof will be omitted.

電力変換回路セル311Upiは、直列接続された2個の半導体スイッチQa,Qbと、2個の半導体スイッチQa,Qbに並列接続されたコンデンサC1とを有している。さらに、電力変換回路セル311Upiは、直列接続された2個の半導体スイッチQc,Qdを有している。2個の半導体スイッチQc,Qdは、2個の半導体スイッチQa,Qb及びコンデンサC1に並列に接続されている。本実施形態では、電力変換回路セル311Upiに設けられた蓄電素子は、コンデンサC1を有している。 The power conversion circuit cell 311Upi has two semiconductor switches Qa and Qb connected in series and a capacitor C1 connected in parallel to the two semiconductor switches Qa and Qb. Further, the power conversion circuit cell 311Upi has two semiconductor switches Qc and Qd connected in series. The two semiconductor switches Qc and Qd are connected in parallel to the two semiconductor switches Qa and Qb and the capacitor C1. In the present embodiment, the power storage element provided in the power conversion circuit cell 311Upi has a capacitor C1.

半導体スイッチQaのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQaのゲート端子には制御装置5から出力されるゲートパルス信号SUpi_aが入力され、半導体スイッチQaのオン/オフが制御される。半導体スイッチQbのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQbのゲート端子には制御装置5から出力されるゲートパルス信号SUpi_bが入力され、半導体スイッチQbのオン/オフが制御される。半導体スイッチQcのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQcのゲート端子には制御装置5から出力されるゲートパルス信号SUpi_cが入力され、半導体スイッチQcのオン/オフが制御される。半導体スイッチQdのゲート端子は、制御装置5に接続されている。これにより、半導体スイッチQdのゲート端子には制御装置5から出力されるゲートパルス信号SUpi_dが入力され、半導体スイッチQdのオン/オフが制御される。 The gate terminal of the semiconductor switch Qa is connected to the control device 5. As a result, the gate pulse signal SUpi_a output from the control device 5 is input to the gate terminal of the semiconductor switch Qa, and the on / off of the semiconductor switch Qa is controlled. The gate terminal of the semiconductor switch Qb is connected to the control device 5. As a result, the gate pulse signal SUpi_b output from the control device 5 is input to the gate terminal of the semiconductor switch Qb, and the on / off of the semiconductor switch Qb is controlled. The gate terminal of the semiconductor switch Qc is connected to the control device 5. As a result, the gate pulse signal SUpi_c output from the control device 5 is input to the gate terminal of the semiconductor switch Qc, and the on / off of the semiconductor switch Qc is controlled. The gate terminal of the semiconductor switch Qd is connected to the control device 5. As a result, the gate pulse signal SUpi_d output from the control device 5 is input to the gate terminal of the semiconductor switch Qd, and the on / off of the semiconductor switch Qd is controlled.

電力変換回路セル311Upiに設けられた半導体モジュールMa及び半導体モジュールMbの接続部は、電力変換回路セル311Upiの端子T1に接続されている。電力変換回路セル311Upiに設けられた半導体モジュールMc及び半導体モジュールMdの接続部は、電力変換回路セル311Upiの端子T2に接続されている。電力変換回路セル311Upi(i=2,3,・・・,x−1)の端子T1は、電力変換回路セル311Upi−1(i=2,3,・・・,x−1)の端子T2に接続されている。電力変換回路セル311Upi(i=1,2,・・・,x−1)の端子T2は、電力変換回路セル311Upi+1(i=1,2,・・・,x−1)の端子T1に接続されている。電力変換回路セル311Upxの端子T2は、交流リアクトル312Upの他端子に接続されている。なお、交流リアクトル312Upの一端子は、交流リアクトル312Unの他端子に接続されている。電力変換回路セル311Up1の端子T1は、上側中性点32pに接続されている。電力変換回路セル311Up1の端子T1は、上側中性点32pを介してV相レグ31Vの上アーム31Vpに設けられた電力変換回路セル311Vp1(図1参照)の端子T1(不図示)及びW相レグ31Wの上アーム31Wpに設けられた電力変換回路セル311Wp1(図1参照)の端子T1(不図示)に接続されている。 The connection portion between the semiconductor module Ma and the semiconductor module Mb provided in the power conversion circuit cell 311Upi is connected to the terminal T1 of the power conversion circuit cell 311Upi. The connection portion between the semiconductor module Mc and the semiconductor module Md provided in the power conversion circuit cell 311Upi is connected to the terminal T2 of the power conversion circuit cell 311Upi. The terminal T1 of the power conversion circuit cell 311Upi (i = 2,3, ..., X-1) is the terminal T2 of the power conversion circuit cell 311Upi-1 (i = 2,3, ..., X-1). It is connected to the. The terminal T2 of the power conversion circuit cell 311Upi (i = 1,2, ..., X-1) is connected to the terminal T1 of the power conversion circuit cell 311Upi + 1 (i = 1,2, ..., X-1). Has been done. The terminal T2 of the power conversion circuit cell 311Upx is connected to another terminal of the AC reactor 312Up. One terminal of the AC reactor 312Up is connected to another terminal of the AC reactor 312Un. The terminal T1 of the power conversion circuit cell 311Up1 is connected to the upper neutral point 32p. The terminal T1 of the power conversion circuit cell 311Up1 is the terminal T1 (not shown) and the W phase of the power conversion circuit cell 311Vp1 (see FIG. 1) provided on the upper arm 31Vp of the V phase leg 31V via the upper neutral point 32p. It is connected to the terminal T1 (not shown) of the power conversion circuit cell 311Wp1 (see FIG. 1) provided on the upper arm 31Wp of the leg 31W.

電力変換回路セル311Upiの端子T1及び端子T2の電位差である電圧vUpiは、端子T1の電位の方が端子T2の電位よりも高い場合を正の電圧とし、端子T1の電位の方が端子T2の電位よりも低い場合を負の電圧とする。 The voltage v Upi, which is the potential difference between the terminals T1 and T2 of the power conversion circuit cell 311Upi, is a positive voltage when the potential of the terminal T1 is higher than the potential of the terminal T2, and the potential of the terminal T1 is the terminal T2. The voltage lower than the potential of is defined as a negative voltage.

電力変換回路セル311Upiに設けられた電圧検出部313は、検出した電圧vc_Upiを制御装置5に出力するように構成されている。電圧vc_Upiは、半導体モジュールMa,Mcに接続された一方の電極の電位の方が半導体モジュールMb,Mdに接続された他方の電極の電位よりも高い場合を正の電圧とし、当該一方の電極の電位の方が当該他方の電極の電位よりも低い場合を負の電圧とする。 The voltage detection unit 313 provided in the power conversion circuit cell 311Upi is configured to output the detected voltage vc_Upi to the control device 5. The voltage v c_Upi is defined as a positive voltage when the potential of one electrode connected to the semiconductor modules Ma and Mc is higher than the potential of the other electrode connected to the semiconductor modules Mb and Md. The case where the potential of is lower than the potential of the other electrode is defined as a negative voltage.

本実施形態において、各アームに設けられる電力変換回路セルの直列数は、電力変換装置1の装置仕様の1つである最大出力電圧に応じて決定される。したがって、電力変換装置1は、アームごとに電力変換回路セルを1個又は複数個(2個以上)有していてもよい。また、本実施形態では、電力変換回路セルは、2レベル型のフルブリッジ変換器セルの回路構成を有しているが、両極性の電圧を出力可能であれば他の型(例えば中性点クランプ3レベル型のフルブリッジ変換器セル等)でもよい。 In the present embodiment, the number of power conversion circuit cells provided in each arm in series is determined according to the maximum output voltage, which is one of the device specifications of the power conversion device 1. Therefore, the power conversion device 1 may have one or a plurality (two or more) of power conversion circuit cells for each arm. Further, in the present embodiment, the power conversion circuit cell has a circuit configuration of a two-level type full-bridge converter cell, but if a voltage of both polarities can be output, another type (for example, a neutral point). It may be a clamp 3-level type full bridge converter cell or the like).

(制御装置)
次に、電力変換装置1に備えられて半導体スイッチQa,Qb,Qc,Qdを制御する制御装置(制御部の一例)5について、図1及び図2を参照しつつ図3から図6を用いて説明する。制御装置5を説明するに当たって、電力変換装置1の各部の電圧及び電流を定義する。図3は、電力変換装置1に備えられた主回路部3が簡易等価回路で図示されるとともに、各部の電圧及び電流を示している。また、図3では、制御装置5の図示が省略されている。以下の説明では、簡単化のため、半導体スイッチQa,Qb,Qc,Qdを制御するゲートパルス信号を生成するためのパルス幅変調(Pulse Width Modulation:PWM)によって発生する高調波の影響は無視する。また、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられた下アーム31Un,31Vn,31Wn及び上アーム31Up,31Vp,31Wpは、指令値どおりの電圧成分及び電流成分のみを出力すると仮定する。
(Control device)
Next, with respect to the control device (an example of the control unit) 5 provided in the power conversion device 1 and controlling the semiconductor switches Qa, Qb, Qc, and Qd, FIGS. 3 to 6 are used with reference to FIGS. 1 and 2. Will be explained. In explaining the control device 5, the voltage and current of each part of the power conversion device 1 are defined. FIG. 3 shows the main circuit unit 3 provided in the power conversion device 1 as a simple equivalent circuit, and shows the voltage and current of each unit. Further, in FIG. 3, the illustration of the control device 5 is omitted. In the following description, for the sake of simplicity, the influence of harmonics generated by pulse width modulation (PWM) for generating a gate pulse signal for controlling semiconductor switches Qa, Qb, Qc, and Qd is ignored. .. Further, the lower arms 31Un, 31Vn, 31Wn and the upper arms 31Up, 31Vp, 31Wp provided in each of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W have only the voltage component and the current component as commanded values. Suppose you want to output.

図3に示すように、三相電力系統2に関する系統電圧及び系統電流を以下のとおりとする。各相の系統電流の極性は、三相電力系統2から電力変換装置1に向かって流れる電流を正とし、電力変換装置1から三相電力系統2に向かって流れる電流を負とする。
:U相交流電源211が出力する系統電圧
:V相交流電源212が出力する系統電圧
:W相交流電源213が出力する系統電圧
:U相交流電源211からU相レグ31Uに流入する系統電流
:V相交流電源212からV相レグ31Vに流入する系統電流
:W相交流電源213からW相レグ31Wに流入する系統電流
As shown in FIG. 3, the system voltage and system current related to the three-phase power system 2 are as follows. As for the polarity of the system current of each phase, the current flowing from the three-phase power system 2 toward the power conversion device 1 is positive, and the current flowing from the power conversion device 1 toward the three-phase power system 2 is negative.
v u : System voltage output by U-phase AC power supply 211 v v : System voltage output by V-phase AC power supply 212 v w : System voltage output by W-phase AC power supply 213 i u : U-phase AC power supply 211 to U-phase the system current i v flows into the leg 31U: the system current flows from the V-phase AC power supply 212 to the V-phase leg 31V i w: the system current that flows from the W-phase AC power supply 213 to the W-phase leg 31W

U相レグ31Uに設けられた下アーム(以下、「U相の下アーム」と称する場合がある)31Un及び上アーム(以下、「U相の上アーム」と称する場合がある)31Upのそれぞれの両端電圧(出力電圧)を以下のとおりとする。また、V相レグ31Vに設けられた下アーム(以下、「V相の下アーム」と称する場合がある)31Vn及び上アーム(以下、「V相の上アーム」と称する場合がある)31Vpのそれぞれの両端電圧(出力電圧)を以下のとおりとする。さらに、W相レグ31Wに設けられた下アーム(以下、「W相の下アーム」と称する場合がある)31Wn及び上アーム(以下、「W相の上アーム」と称する場合がある)31Wpのそれぞれの両端電圧(出力電圧)を以下のとおりとする。
Un:U相の下アーム31Unの両端電圧
Up:U相の上アーム31Upの両端電圧
Vn:V相の下アーム31Vnの両端電圧
Vp:V相の上アーム31Vpの両端電圧
Wn:W相の下アーム31Wnの両端電圧
Wp:W相の上アーム31Wpの両端電圧
Each of the lower arm (hereinafter, may be referred to as "U-phase lower arm") 31Un and the upper arm (hereinafter, may be referred to as "U-phase upper arm") 31Up provided on the U-phase leg 31U. The voltage across the ends (output voltage) is as follows. Further, the lower arm (hereinafter, may be referred to as "V-phase lower arm") 31Vn and the upper arm (hereinafter, may be referred to as "V-phase upper arm") 31Vp provided on the V-phase leg 31V. The voltage across each (output voltage) is as follows. Further, the lower arm (hereinafter, may be referred to as "W-phase lower arm") 31Wn and the upper arm (hereinafter, may be referred to as "W-phase upper arm") 31Wp provided on the W-phase leg 31W. The voltage across each (output voltage) is as follows.
v Un : Voltage across U-phase lower arm 31Un v Up : Voltage across U-phase upper arm 31Up v Vn : Voltage across V-phase lower arm 31Vn v Vp : Voltage across V-phase upper arm 31Vp v Wn : Voltage across W phase lower arm 31 Wn v Wp : Voltage across W phase upper arm 31 Wp

U相の下アーム31Un、U相の上アーム31Up、V相の下アーム31Vn、V相の上アーム31Vp、W相の下アーム31Wn及びW相の上アーム31Wpのそれぞれの一端子から他端子に流れる出力電流を以下のとおりとする。各アームの出力電流の極性は、電力変換回路セルの端子T1から端子T2(図2参照)に向かって流れる電流を正とし、端子T2から端子T1に向かって流れる電流を負とする。
Un:U相の下アーム31Unの出力電流
Up:U相の上アーム31Upの出力電流
Vn:V相の下アーム31Vnの出力電流
Vp:V相の上アーム31Vpの出力電流
Wn:W相の下アーム31Wnの出力電流
Wp:W相の上アーム31Wpの出力電流
From one terminal of each of the U-phase lower arm 31Un, the U-phase upper arm 31Up, the V-phase lower arm 31Vn, the V-phase upper arm 31Vp, the W-phase lower arm 31Wn, and the W-phase upper arm 31Wp to the other terminal. The output current that flows is as follows. The polarity of the output current of each arm is such that the current flowing from the terminal T1 to the terminal T2 (see FIG. 2) of the power conversion circuit cell is positive, and the current flowing from the terminal T2 toward the terminal T1 is negative.
i Un : Output current of U-phase lower arm 31 Un i Up : Output current of U-phase upper arm 31 Up i Vn : Output current of V-phase lower arm 31 Vn i Vp : Output current of V-phase upper arm 31 Vp i Wn : Output current of W-phase lower arm 31Wn i Wp : Output current of W-phase upper arm 31Wp

U相レグ31U、V相レグ31V、W相レグ31Wのそれぞれを循環する循環電流を以下のとおりとする。各レグにおける循環電流の極性は、上アームから下アームに向かって流れる電流を正とし、下アームから上アームに向かって流れる電流を負とする。
cir_u:U相レグ31Uを循環する循環電流
cir_v:V相レグ31Vを循環する循環電流
cir_w:W相レグ31Wを循環する循環電流
The circulating current circulating in each of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W is as follows. The polarity of the circulating current in each leg is such that the current flowing from the upper arm to the lower arm is positive and the current flowing from the lower arm to the upper arm is negative.
i ir_u : Circulating current circulating in the U-phase leg 31U i ir_v : Circulating current circulating in the V-phase leg 31V i ir_w : Circulating current circulating in the W-phase leg 31W

下側中性点32nの電位と接地電位との電位差である零相電圧と、上側中性点32pの電位と接地電位との電位差である零相電圧とを以下のとおりとする。
Zn:下側中性点32nの零相電圧
Zp:上側中性点32pの零相電圧
The zero-phase voltage, which is the potential difference between the potential of the lower neutral point 32n and the ground potential, and the zero-phase voltage, which is the potential difference between the potential of the upper neutral point 32p and the ground potential, are as follows.
v Zn : Zero-phase voltage at the lower neutral point 32n v Zp : Zero-phase voltage at the upper neutral point 32p

U相の下アーム31Unに設けられた交流リアクトル312Un、U相の上アーム31Upに設けられた交流リアクトル312Up、V相の下アーム31Vnに設けられた交流リアクトル312Vn、V相の上アーム31Vpに設けられた交流リアクトル312Vp、W相の下アーム31Wnに設けられた交流リアクトル312Wn及びW相の上アーム31Wpに設けられた交流リアクトル312Wpのそれぞれで発生する誘起電圧を以下のとおりとする。
L_Un:交流リアクトル312Unの誘起電圧
L_Up:交流リアクトル312Upの誘起電圧
L_Vn:交流リアクトル312Vnの誘起電圧
L_Vp:交流リアクトル312Vpの誘起電圧
L_Wn:交流リアクトル312Wnの誘起電圧
L_Wp:交流リアクトル312Wpの誘起電圧
AC reactor 312Un provided on the U-phase lower arm 31Un, AC reactor 312Up provided on the U-phase upper arm 31Up, AC reactor 312Vn provided on the V-phase lower arm 31Vn, and AC reactor 312Vn provided on the V-phase upper arm 31Vp. The induced voltages generated by the AC reactor 312Vp provided, the AC reactor 312Wn provided on the lower arm 31Wn of the W phase, and the AC reactor 312Wp provided on the upper arm 31Wp of the W phase are as follows.
v L_Un: AC reactor 312Un of the induced voltage v L_Up: AC reactor 312Up of the induced voltage v L_Vn: AC reactor 312Vn of the induced voltage v L_Vp: AC reactor 312Vp of the induced voltage v L_Wn: the induced voltage of the AC reactor 312Wn v L_Wp: AC reactor Induced voltage of 312 Wp

各アームの電力変換回路セルに設けられたコンデンサC1の電圧平均値は、以下のとおりとする。
C_Un:U相レグ31Uの下アーム31Unにおけるコンデンサの電圧平均値
C_Up:U相レグ31Uの上アーム31Upにおけるコンデンサの電圧平均値
C_Vn:V相レグ31Vの下アーム31Vnにおけるコンデンサの電圧平均値
C_Vp:V相レグ31Vの上アーム31Vpにおけるコンデンサの電圧平均値
C_Wn:W相レグ31Wの下アーム31Wnにおけるコンデンサの電圧平均値
C_Wp:W相レグ31Wの上アーム31Wpにおけるコンデンサの電圧平均値
The voltage average value of the capacitor C1 provided in the power conversion circuit cell of each arm is as follows.
v C_Un: average voltage of the capacitor in the lower arm 31Un the U-phase leg 31U v C_Up: average voltage of the capacitor in the arm 31Up of the U-phase leg 31U v C_Vn: average voltage of the capacitor in the lower arm 31Vn the V-phase leg 31V Value v C_Vp : Voltage average value of the capacitor in the upper arm 31Vp of the V-phase leg 31V v C_Wn : Voltage average value of the capacitor in the lower arm 31Wn of the W-phase leg 31W v C_Wp : Voltage of the capacitor in the upper arm 31Wp of the W-phase leg 31W Average value

図1に示すように、これらの電圧及び電流のうち、系統電圧v,v,vは電圧検出部(不図示)、系統電流i,i,i及び出力電流iUn,iUp,iVn,iVp,iWn,iWpは電流検出部(不図示)で検出されて制御装置5に入力されるようになっている。さらに、電力変換回路セル311Uni,311Upi,311Vni,311Vpi,311Wni,311Wpiのそれぞれに設けられたコンデンサC1の電圧VC_Uni,VC_Upi,VC_Vni,VC_Vpi,VC_Wni,VC_Wpiは、電圧検出部313(図2参照)で検出されて制御装置5に入力されるようになっている。
系統電圧v,v,vを検出する電圧検出部、出力電流iUn,iUp,iVn,iVp,iWn,iWpを検出する電流検出部及び電圧検出部313は、蓄電素子の蓄積エネルギー又は当該蓄積エネルギーに準ずる量を検出する検出部に相当する。詳細は後述するが、本実施形態では、電圧検出部313は、例えば蓄積エネルギーに準ずる量としてコンデンサC1の電圧VC_Uni,VC_Unp,VC_Vni,VC_Vnp,VC_Wni,VC_Wpiを検出する。制御装置5は、主回路部3から入力されるこれらの電流及び電圧に基づいてアーム間の電力が平衡になるように半導体スイッチQa,Qb,Qc,Qdを制御するように構成されている。
As shown in FIG. 1, among these voltages and currents, the system voltages v u , v v , v w are voltage detectors (not shown), system currents i u , iv , i w, and output currents i Un , i Up , i Vn , i Vp , i Wn , and i Wp are detected by the current detection unit (not shown) and input to the control device 5. Furthermore, the power conversion circuit cell 311Uni, 311Upi, 311Vni, 311Vpi, 311Wni, voltage V C_Uni of the capacitor C1 provided in each 311Wpi, V C_Upi, V C_Vni, V C_Vpi, V C_Wni, V C_Wpi the voltage detection unit 313 (See FIG. 2) is detected and input to the control device 5.
The voltage detection unit that detects the system voltage v u , v v , v w , the current detection unit that detects the output currents i Un , i Up , i Vn , i Vp , i Wn , and i Wp , and the voltage detection unit 313 store electricity. It corresponds to the detection unit that detects the stored energy of the element or the amount equivalent to the stored energy. Although details will be described later, in the present embodiment, the voltage detection unit 313, for example, a voltage V C_Uni of the capacitor C1 as the amount equivalent to the accumulated energy, V C_Unp, V C_Vni, V C_Vnp, V C_Wni, detects the V C_Wpi. The control device 5 is configured to control the semiconductor switches Qa, Qb, Qc, and Qd so that the electric power between the arms is balanced based on these currents and voltages input from the main circuit unit 3.

具体的には、図4に示すように、制御装置5は、下側中性点32nの零相電圧vZn(第一電圧の一例)及び上側中性点32pの零相電圧vZp(第二電圧の一例)のそれぞれに含まれる同一の電圧成分を調整してU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれの間で流入出する第一零相電力(第一電力の一例)を制御するレグ間電力平衡化制御部(電力制御部の一例)5aを有している。第一零相電力は、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれと三相電力系統2との間に流れる系統電流(電流の一例)及び当該電圧成分によって発生する電力である。 Specifically, as shown in FIG. 4, the control device 5 has a zero-phase voltage v Zn (an example of the first voltage) at the lower neutral point 32n and a zero-phase voltage v Zp (an example of the first voltage) at the upper neutral point 32p. The first zero-phase power (of the first power) that flows in and out between each of the U-phase leg 31U, V-phase leg 31V, and W-phase leg 31W by adjusting the same voltage component contained in each of the two voltages. It has an inter-leg power balancing control unit (an example of a power control unit) 5a that controls an example). The first zero-phase power is the system current (an example of current) flowing between each of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W and the three-phase power system 2, and the power generated by the voltage component. be.

また、制御装置5は、U相レグ31Uの下アーム31Un及び上アーム31Upの両端電圧のアーム電圧指令値vu_acr_ref、V相レグ31Vの下アーム31Vn及び上アーム31Vpの両端電圧のアーム電圧指令値vv_acr_ref、並びにW相レグ31Wの下アーム31Wn及び上アーム31Wpの両端電圧のアーム電圧指令値vw_acr_ref、を生成する電流調整部5bを有している。また、制御装置5は、ゲートパルス信号を生成するゲートパルス信号生成部5cを有している。また、制御装置5は、キャリア波を生成するキャリア波生成部5dを有している。 Further, the control device 5 has an arm voltage command value v u_acr_ref of the voltage across the lower arm 31Un and the upper arm 31Up of the U-phase leg 31U, and an arm voltage command value of the voltage across the lower arm 31Vn and the upper arm 31Vp of the V-phase leg 31V. v v_acr_ref, and has a current adjusting section 5b for generating an arm voltage command value v w_acr_ref, the voltage across the lower arm 31Wn and the upper arm 31Wp the W-phase leg 31W. Further, the control device 5 has a gate pulse signal generation unit 5c that generates a gate pulse signal. Further, the control device 5 has a carrier wave generation unit 5d that generates a carrier wave.

レグ間電力平衡化制御部5aは、U相レグ31Uに設けられたコンデンサC1の電圧の平均値並びにU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられたコンデンサC1の電圧の平均値の差分と、V相レグ31Vに設けられたコンデンサC1の電圧の平均値並びにU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられたコンデンサC1の電圧の平均値の差分と、W相レグ31Wに設けられたコンデンサC1の電圧の平均値並びにU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられたコンデンサC1の電圧の平均値の差分との平衡(バランス)が維持されるように制御するコンデンサ電圧平衡化制御部51を有している。 The inter-leg power balancing control unit 5a has the average value of the voltage of the capacitor C1 provided on the U-phase leg 31U and the voltage of the capacitor C1 provided on each of the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W. And the average value of the voltage of the capacitor C1 provided on the V-phase leg 31V and the average value of the voltage of the capacitor C1 provided on each of the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W. And the difference between the average value of the voltage of the capacitor C1 provided on the W-phase leg 31W and the difference between the average value of the voltage of the capacitor C1 provided on each of the U-phase leg 31U, the V-phase leg 31V and the W-phase leg 31W. It has a capacitor voltage balancing control unit 51 that controls so that the balance of the above is maintained.

レグ間電力平衡化制御部5aは、U相レグ31Uの下アームUnの両端電圧vUn及び上アーム31Upの両端電圧vUp、V相レグ31Vの下アームVnの両端電圧vVn及び上アーム31Vpの両端電圧vVp、並びにW相レグ31Wの下アームWnの両端電圧vWn及び上アーム31Wpの両端電圧vWpのそれぞれの指令値を生成するアーム電圧指令値生成部52を有している。 Leg between the power balancing control unit 5a, U-phase leg voltage across the lower arm Un of 31U v Un and the voltage across the upper arm 31Up v Up, the voltage across the lower arm Vn of V-phase leg 31V v Vn and the upper arm 31Vp It has an arm voltage command value generation unit 52 that generates command values for the voltage across v Vp across the voltage v Vp, and the voltage v Wn across the lower arm Wn of the W phase leg 31 W and the voltage v Wp across the upper arm 31 Wp.

コンデンサ電圧平衡化制御部51は、U相レグ31Uの下アームUnに設けられたコンデンサC1の電圧の平均値(電圧平均値)及び上アーム31Upに設けられたコンデンサC1の電圧平均値の平均値と、主回路部3に設けられた全てのコンデンサC1の電圧平均値との差分であるコンデンサ電圧平均差分値を検出するコンデンサ電圧平均差分検出部511を有している。主回路部3に設けられた全てのコンデンサC1の電圧平均値は、U相レグ31Uの下アームUnに設けられたコンデンサC1の電圧平均値、U相レグ31Uの上アーム31Upに設けられたコンデンサC1の電圧平均値、V相レグ31Vの下アームVnに設けられたコンデンサC1の電圧平均値、V相レグ31Vの上アーム31Vpに設けられたコンデンサC1の電圧平均値、W相レグ31Wの下アームWnに設けられたコンデンサC1の電圧平均値及びW相レグ31Wの上アーム31Wpに設けられたコンデンサC1の電圧平均値の平均値である。 The capacitor voltage balancing control unit 51 is the average value of the voltage of the capacitor C1 provided on the lower arm Un of the U-phase leg 31U (voltage average value) and the average value of the voltage average value of the capacitor C1 provided on the upper arm 31Up. It also has a capacitor voltage average difference detection unit 511 that detects a capacitor voltage average difference value which is a difference from the voltage average values of all the capacitors C1 provided in the main circuit unit 3. The voltage average values of all the capacitors C1 provided in the main circuit unit 3 are the voltage average values of the capacitors C1 provided in the lower arm Un of the U-phase leg 31U and the capacitors provided in the upper arm 31Up of the U-phase leg 31U. The voltage average value of C1, the voltage average value of the capacitor C1 provided on the lower arm Vn of the V-phase leg 31V, the voltage average value of the capacitor C1 provided on the upper arm 31Vp of the V-phase leg 31V, and below the W-phase leg 31W. It is the average value of the voltage average value of the capacitor C1 provided in the arm Wn and the average value of the voltage average value of the capacitor C1 provided in the upper arm 31Wp of the W phase leg 31W.

コンデンサ電圧平均差分検出部511は、V相レグ31Vの下アームVnに設けられたコンデンサC1の電圧平均値及び上アーム31Vpに設けられたコンデンサC1の電圧平均値の平均値と、主回路部3に設けられた全てのコンデンサC1の電圧平均値との差分も検出するように構成されている。さらに、コンデンサ電圧平均差分検出部511は、W相レグ31Wの下アームWnに設けられたコンデンサC1の電圧平均値及び上アーム31Wpに設けられたコンデンサC1の電圧平均値の平均値と、主回路部3に設けられた全てのコンデンサC1の電圧平均値との差分も検出するように構成されている。 The capacitor voltage average difference detection unit 511 includes the average value of the voltage average value of the capacitor C1 provided on the lower arm Vn of the V-phase leg 31V and the voltage average value of the capacitor C1 provided on the upper arm 31Vp, and the main circuit unit 3. It is configured to detect the difference from the voltage average value of all the capacitors C1 provided in. Further, the capacitor voltage average difference detection unit 511 includes an average value of the voltage average value of the capacitor C1 provided on the lower arm Wn of the W phase leg 31W and the average value of the voltage average value of the capacitor C1 provided on the upper arm 31Wp, and a main circuit. It is configured to detect the difference from the voltage average value of all the capacitors C1 provided in the unit 3.

また、コンデンサ電圧平衡化制御部51は、下側中性点32nの零相電圧vZn及び上側中性点32pの零相電圧vZpのそれぞれに含まれる同一の電圧成分を調整してコンデンサ電圧平均差分検出部511で検出されたコンデンサ電圧平均差分値を抑制する電圧抑制部512を有している。 Further, the capacitor voltage balancing control unit 51 adjusts the same voltage component contained in each of the zero-phase voltage v Zn at the lower neutral point 32n and the zero-phase voltage v Zp at the upper neutral point 32p to adjust the capacitor voltage. It has a voltage suppression unit 512 that suppresses the capacitor voltage average difference value detected by the average difference detection unit 511.

レグ間電力平衡化制御部5a、電流調整部5b、ゲートパルス信号生成部5c及びキャリア波生成部5dなどの詳細については後述する。 Details of the inter-leg power balancing control unit 5a, the current adjustment unit 5b, the gate pulse signal generation unit 5c, the carrier wave generation unit 5d, and the like will be described later.

次に、制御装置5に設けられたレグ間電力平衡化制御部5aの機能について、まず、数式によって説明し、次いで当該機能が発揮される構成についてブロック図を用いて説明する。 Next, the function of the inter-leg power balancing control unit 5a provided in the control device 5 will be described first by a mathematical formula, and then the configuration in which the function is exhibited will be described by using a block diagram.

ここで、一例としてU相の下アーム31Unに着目する。U相の下アーム31Unの両端電圧vUnは、交流リアクトル312Unの両端電圧をvL_Unとすると、以下の式(1)によって定義することができる。 Here, as an example, focus on the lower arm 31Un of the U phase. The voltage across the lower arm 31Un of the U phase v Un can be defined by the following equation (1), where v L_Un is the voltage across the AC reactor 312Un.

Figure 2021111987
Figure 2021111987

また、U相の下アームのコンデンサC1の電圧平均値vc_Upは、以下の式(2)によって定義することができる。 Further, the voltage average value v c_Up of the capacitor C1 of the lower arm of the U phase can be defined by the following equation (2).

Figure 2021111987
Figure 2021111987

式(1)及び式(2)中の「i」は自然数である。また、U相の上アーム31Up、V相の下アーム31Vn及び上アーム31Vp並びにW相の下アーム31Wn及び上アーム31Wpの両端電圧vUp,vVn,vVp,vWn,vWpは、式(1)と同様に定義できる。また、U相の上アーム31Up、V相の下アーム31Vn及び上アーム31Vp並びにW相の下アーム31Wn及び上アーム31WpのコンデンサC1の電圧平均値vC_Up,vC_Vn,vC_Vp,vC_Wn,vC_Wpは、式(1)と同様に定義できる。 “I” in equations (1) and (2) is a natural number. Further, the voltages across the U-phase upper arm 31Up, the V-phase lower arm 31Vn and the upper arm 31Vp, and the W-phase lower arm 31Wn and the upper arm 31Wp are expressed by the formulas v Up , v Vn , v Vp , v Wn , v Wp . It can be defined in the same way as (1). Further, the voltage average values of the capacitors C1 of the U-phase upper arm 31Up, the V-phase lower arm 31Vn and the upper arm 31Vp, and the W-phase lower arm 31Wn and the upper arm 31Wp v C_Up , v C_Vn , v C_Vp , v C_Wn , v. C_Wp can be defined in the same manner as in Eq. (1).

U相レグ31Uを循環する循環電流icir_u、V相レグ31Vを循環する循環電流icir_v及びW相レグ31Wを循環する循環電流icir_wには、以下の式(3)に示す制約がある。 Circulating current i Cir_u circulating U-phase leg 31U, the circulating current i Cir_w circulating the circulating current i Cir_v and W-phase leg 31W circulating V-phase leg 31V, is limited as shown in formula (3).

Figure 2021111987
Figure 2021111987

U相レグ31UにおけるコンデンサC1の電圧平均値及び主回路部3の全体におけるコンデンサC1の電圧平均値の差分であるコンデンサ電圧平均差分値vC_Uは、以下の式(4)によって定義することができる。また、V相レグ31VにおけるコンデンサC1の電圧平均値及び主回路部3の全体におけるコンデンサC1の電圧平均値の差分であるコンデンサ電圧平均差分値ΔvC_Vは、以下の式(5)によって定義することができる。さらに、W相レグ31WにおけるコンデンサC1の電圧平均値及び主回路部3の全体におけるコンデンサC1の電圧平均値の差分であるコンデンサ電圧平均差分値ΔvC_Wは、以下の式(6)によって定義することができる。 The capacitor voltage average difference value v C_U, which is the difference between the voltage average value of the capacitor C1 in the U-phase leg 31U and the voltage average value of the capacitor C1 in the entire main circuit unit 3, can be defined by the following equation (4). .. Further, the capacitor voltage average difference value Δv C_V, which is the difference between the voltage average value of the capacitor C1 in the V-phase leg 31V and the voltage average value of the capacitor C1 in the entire main circuit unit 3, is defined by the following equation (5). Can be done. Further, the capacitor voltage average difference value Δv C_W, which is the difference between the voltage average value of the capacitor C1 in the W phase leg 31W and the voltage average value of the capacitor C1 in the entire main circuit unit 3, is defined by the following equation (6). Can be done.

Figure 2021111987
Figure 2021111987

式(4)から式(6)において、右辺の第1項は、各レグにおけるコンデンサC1の電圧平均値、すなわち上アーム及び下アームのそれぞれのコンデンサC1の電圧平均値の平均値を示している。また、式(4)から式(6)において、右辺の第2項は、主回路部3の全体におけるコンデンサC1の電圧平均値、すなわち、主回路部3に設けられた全ての上アーム及び下アームのそれぞれのコンデンサC1の電圧平均値の平均値を示している。 In equations (4) to (6), the first term on the right side indicates the average voltage value of the capacitor C1 in each leg, that is, the average value of the voltage average values of the capacitors C1 of the upper arm and the lower arm. .. Further, in the equations (4) to (6), the second term on the right side is the voltage average value of the capacitor C1 in the entire main circuit unit 3, that is, all the upper arms and the lower arm provided in the main circuit unit 3. The average value of the voltage average value of each capacitor C1 of the arm is shown.

式(4)から式(6)に示す各レグにおけるコンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wは、3相2相座標変換をすることによって、便宜的に式(7)に示すように、コンデンサ電圧平均差分値ΔvC_α,ΔvC_β,ΔvC_0と表記することができる。 The capacitor voltage average difference values Δv C_U , Δv C_V , and Δv C_W in each leg represented by the equations (4) to (6) are conveniently shown in the equation (7) by performing a three-phase two-phase coordinate conversion. Can be expressed as capacitor voltage average difference values Δv C_α , Δv C_β , and Δv C_0.

Figure 2021111987
Figure 2021111987

電力変換装置1では、三相平衡電力を出力している条件かつ電力変換装置1を構成する使用部品の特性にばらつきがない理想条件では、各レグにおけるコンデンサ電圧平均差分値ΔvC_α,ΔvC_β,ΔvC_0はゼロとなる。しかしながら、例えば三相電力系統2が故障し、系統電圧v,v,vが三相不平衡になっている条件で、電力変換装置1の運転を継続する場合、電力変換装置1は三相不平衡電力を出力することになる。系統電圧v,v,vが三相不平衡になっている条件では、U相レグ31U、V相レグ31V及びW相レグ31Wの間でコンデンサC1の両電極間の電圧vc_Uni,vc_Upi,vc_Vni,vc_Vpi,vc_Wni,vc_Wpiが不平衡状態になる(アンバランスしてしまう)。したがって、各レグにおけるコンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wを電力変換装置1の仕様で規定された範囲内に抑える必要がある。本実施形態による電力変換装置1は、三相不平衡電力を出力する条件であっても、U相レグ31U、V相レグ31V及びW相レグ31Wにおけるコンデンサ電圧平均差分値ΔvC_α,ΔvC_βを所定の範囲内に抑えることが可能であり、安定して運転を継続することができる。当該所定の範囲内は例えば、コンデンサC1の両電極間の電圧vc_Uni,vc_Upi,vc_Vni,vc_Vpi,vc_Wni,vc_Wpiの絶対最大定格の1%から2%の範囲内である。 Under the ideal condition that the power conversion device 1 outputs three-phase balanced power and the characteristics of the parts used constituting the power conversion device 1 do not vary, the average difference values of the capacitor voltages in each leg Δv C_α , Δv C_β , Δv C_0 becomes zero. However, for example, when the operation of the power conversion device 1 is continued under the condition that the three-phase power system 2 fails and the system voltages v u , v v , v w are three-phase unbalanced, the power conversion device 1 is used. Three-phase unbalanced power will be output. Under the condition that the system voltage v u , v v , v w are three-phase unbalanced, the voltage v c_Uni , between both electrodes of the capacitor C1 between the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. v c_Upi , v c_Vni , v c_Vpi , v c_Wni , v c_Wpi become unbalanced (unbalanced). Therefore, it is necessary to keep the capacitor voltage average difference values Δv C_U , Δv C_V , and Δv C_W in each leg within the range specified in the specifications of the power conversion device 1. The power conversion device 1 according to the present embodiment obtains capacitor voltage average difference values Δv C_α and Δv C_β in the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W even under the condition of outputting the three-phase unbalanced power. It is possible to keep it within a predetermined range, and stable operation can be continued. The predetermined range is, for example, 1% to 2% of the absolute maximum ratings of the voltages v c_Uni , v c_Upi , v c_Vni , v c_Vpi , v c_Wni , and v c_Wpi between both electrodes of the capacitor C1.

そこで、本実施形態による電力変換装置1は、下側中性点32nの零相電圧vZn及び上側中性点32pの零相電圧vZpのそれぞれに含まれる同一の電圧成分を活用するように構成されている。これにより、電力変換装置1は、三相電力系統2が故障し、系統電圧v,v,vが三相不平衡に陥っても、安定して運転を継続することができる。 Therefore, the power conversion device 1 according to the present embodiment utilizes the same voltage component contained in each of the zero-phase voltage v Zn at the lower neutral point 32n and the zero-phase voltage v Zp at the upper neutral point 32p. It is configured. As a result, the power conversion device 1 can continue to operate stably even if the three-phase power system 2 fails and the system voltages v u , v v , and v w fall into a three-phase imbalance.

表1は、U相の下アーム31Un及び上アーム31Up、V相の下アーム31Vn及び上アーム31Vp並びにW相の下アーム31Wn及び上アーム31Wpが出力可能な両端電圧(出力電圧)、出力電流及び出力電力を示す一覧表である。 Table 1 shows the voltage (output voltage), output current, and output voltage across the U-phase lower arm 31Un and upper arm 31Up, the V-phase lower arm 31Vn and upper arm 31Vp, and the W-phase lower arm 31Wn and upper arm 31Wp. It is a list showing the output power.

Figure 2021111987
Figure 2021111987

表1において、各アームが出力可能な出力電力は、以下のとおりとする。
Un:U相の下アーム31Unの出力電力
Up:U相の上アーム31Upの出力電力
Vn:V相の下アーム31Vnの出力電力
Vp:V相の上アーム31Vpの出力電力
Wn:W相の下アーム31Wnの出力電力
Wp:V相の上アーム31Vpの出力電力
In Table 1, the output power that can be output by each arm is as follows.
p Un: Output power of the lower arm 31 Un of the U phase p Up: Output power of the upper arm 31 Up of the U phase p Vn: Output power of the lower arm 31 Vn of the V phase p Vp: Output power of the upper arm 31 Vp of the V phase p Wn : Output power of W-phase lower arm 31Wn p Wp : Output power of V-phase upper arm 31Vp

U相レグ31Uから三相電力系統2に流入する流入電力をΔp_Uとし、V相レグ31Vから三相電力系統2に流入する流入電力をΔp_Vとし、W相レグ31Wから三相電力系統2に流入する流入電力をΔp_Wとすると、それぞれの流入電力Δp_U,Δp_V,Δp_Wは、以下の式(8)のように定義できる。 The inflow power flowing from the U-phase leg 31U to a three-phase power system 2 and Delta] p _U, V-phase leg inflow power flowing into the three-phase power system 2 and Delta] p _V from 31V, W three-phase from phase leg 31W power system 2 the inflow power flowing When Delta] p _W, the respective inflow power Δp _U, Δp _V, Δp _W can be defined as the following equation (8).

Figure 2021111987
Figure 2021111987

ここで、式(8)の右辺の第1項は、電力変換装置1と三相電力系統2との間で流入出する電力である。式(8)の右辺の第1項のそれぞれは、電力変換装置1が正相無効電力を出力している条件では、系統周波数の2倍の脈動があるものの、時間累積を行うとゼロとなる。しかしながら、三相電力系統2の故障時に電力変換装置1が運転を継続して逆相無効電力を出力している条件では、式(8)の右辺の第一項のそれぞれは、時間累積を行うと有限の値を持つ。この有限の値は、単位がジュール(J)であり、エネルギー値である。すなわち、三相電力系統2の故障時に電力変換装置1が運転を継続すると、U相レグ31U、V相レグ31V及びW相レグ31Wの間で、コンデンサC1の電圧が不平衡状態(アンバランス)になる。そこで、式(8)の右辺の第2項の零相電圧vZp,vZn及び式(8)の右辺の第3項の循環電流icir_u,icir_v,icir_wの値を調整することによって第2項及び第3項の値を調整し、流入電力Δp_U,Δp_V,Δp_Wの不平衡状態を抑制することができる。本実施形態による電力変換装置1は、式(8)の右辺の第2項の値を調整して、U相レグ31U、V相レグ31V及びW相レグ31Wの間のコンデンサ電圧(レグ間コンデンサ電圧)の不平衡状態(すなわち流入電力Δp_U,Δp_V,Δp_Wの不平衡状態)を制御する点に特徴を有している。 Here, the first term on the right side of the equation (8) is the power flowing in and out between the power conversion device 1 and the three-phase power system 2. Each of the first terms on the right side of the equation (8) has a pulsation twice the system frequency under the condition that the power conversion device 1 outputs positive phase invalid power, but becomes zero when the time is accumulated. .. However, under the condition that the power conversion device 1 continues to operate and outputs the reverse-phase invalid power when the three-phase power system 2 fails, each of the first terms on the right side of the equation (8) accumulates time. And has a finite value. This finite value has a unit of joule (J) and is an energy value. That is, when the power conversion device 1 continues to operate when the three-phase power system 2 fails, the voltage of the capacitor C1 becomes unbalanced between the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. become. Therefore, by adjusting the values of the zero-phase voltages v Zp , v Zn of the second term on the right side of the equation (8) and the circulating currents i ir_u , i ir_v , i ir_w of the third term on the right side of the equation (8). to adjust the value of the second and third terms, the inflow power Delta] p _U, Delta] p _V, the unbalanced state of Delta] p _W can be suppressed. The power conversion device 1 according to the present embodiment adjusts the value of the second term on the right side of the equation (8) to adjust the capacitor voltage between the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W (capacitor between legs). voltage) of the unbalanced state (i.e. inflow power Δp _U, Δp _V, is characterized in that for controlling the unbalanced) of Delta] p _W.

U相レグ31Uの流入電力をΔp_U、V相レグ31Vの流入電力をΔp_V及びW相レグ31Wの流入電力をΔp_Wは、3相2相座標変換することにより、便宜的に式(9)のよう表記することができる。 U-phase leg 31U inflow power Delta] p _U, Delta] p _W inflow power of inflow power Delta] p _V and W-phase leg 31W of V-phase leg 31V, by converting three-phase to two-phase coordinate, conveniently formula (9 ) Can be written.

Figure 2021111987
Figure 2021111987

本実施形態では、式(8)の右辺の第2項、すなわち下側中性点32nの零相電圧vZn及び上側中性点32pの零相電圧vZp並びに三相電力系統2からU相レグ31U、V相レグ31V及びW相レグ31Wに流入する系統電流i,i,iによって発生する第一零相電力によって、各レグにおけるコンデンサ電圧平均差分値ΔvC_α,ΔvC_β,ΔvC_0が平衡化(バランス)される。電力変換装置1は、制御装置5のレグ間電力平衡化制御部5aに設けられたコンデンサ電圧平衡化制御部51において、各レグにおけるコンデンサ電圧平均差分値ΔvC_α,ΔvC_β,ΔvC_0を平衡(バランス)するようになっている。電力変換装置1は、各レグにおけるコンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wを所定の範囲内に抑えることによって、レグ間の電力バランスを制御することができる。 In the present embodiment, the second term on the right side of the equation (8), that is, the zero-phase voltage v Zn at the lower neutral point 32n, the zero-phase voltage v Zp at the upper neutral point 32p, and the three-phase power system 2 to U phase leg 31U, system current i u flowing to the V-phase leg 31V and W-phase leg 31W, i v, by the first zero-phase power generated by i w, capacitor voltage average difference value Delta] v C_arufa in each leg, Δv C_β, Δv C_0 is balanced. The power conversion device 1 balances the capacitor voltage average difference values Δv C_α , Δv C_β , and Δv C_0 in each leg in the capacitor voltage balancing control unit 51 provided in the inter-leg power balancing control unit 5a of the control device 5. It is designed to be balanced). The power conversion device 1 can control the power balance between the legs by suppressing the capacitor voltage average difference values Δv C_U , Δv C_V , and Δv C_W in each leg within a predetermined range.

具体的には、系統電圧v,v,vの角周波数をω、正相成分の実効値をVS_p、逆相成分の実効値をVS_n及び逆相成分の位相差をΦvnとおくと、系統電圧v,v,vは、以下の式(10)として定義することができる。 Specifically, the system voltage v u, v v, v the angular frequency of w omega S, the effective value V S_p the positive phase component, a phase difference of the effective value of the reverse-phase component V S_n and reverse phase component Φ Assuming vn , the system voltages v u , v v , v w can be defined as the following equation (10).

Figure 2021111987
Figure 2021111987

三相電力系統2に故障が発生していない条件では、系統電圧v,v,vの逆相成分の実効値VS_nはゼロである。しかしながら、単相地絡や二相短絡といった三相不平衡になる系統故障が三相電力系統2に発生すると、系統電圧v,v,vの逆相成分の実効値VS_nは有限値を持つことになる。 Under the condition that no failure has occurred in the three-phase power system 2, the effective value VS_n of the opposite-phase components of the system voltages v u , v v , and v w is zero. However, when a system failure that causes a three-phase imbalance such as a single-phase ground fault or a two-phase short circuit occurs in the three-phase power system 2, the effective value VS_n of the opposite-phase components of the system voltages v u , v v , v w is finite. Will have a value.

系統電流i,i,iの実効値をI、系統電圧v,v,vの位相に対する位相差をΦpfとおくと、電力変換装置1に流入する系統電流i,i,iは、以下の式(11)として定義することができる。本実施形態による電力変換装置1が無効電力補償装置として動作させることを想定されている場合には、系統電流i,i,iの位相差Φpfは、±π/2のどちらかをとることになる。 System current i u, i v, i the effective value I S of w, the system voltage v u, v v, v Placing the phase difference [Phi pf for w phase, the system current i u flowing into the power conversion apparatus 1 , i v, i w can be defined as the following equation (11). When the power conversion device 1 according to the present embodiment is assumed to operate as a static power compensator, the phase difference Φ pf of the system currents i u , iv , i w is either ± π / 2. Will be taken.

Figure 2021111987
Figure 2021111987

電力変換装置1に注入する上側中性点32pの零相電圧vZp及び下側中性点32nの零相電圧vZnそれぞれの系統電圧vに対する位相差をΦとおき、実効値をVとおくと、零相電圧vZp及び零相電圧vZnは、以下の式(12)として定義することができる。実効値Vは、零相電圧vZp,vZnのそれぞれに含まれる同一の電圧成分に相当する。 The phase difference between the zero-phase voltage v Zp of the upper neutral point 32p and the zero-phase voltage v Zn of the lower neutral point 32n to be injected into the power converter 1 with respect to the system voltage v u is set as Φ z , and the effective value is V. Assuming z , the zero-phase voltage v Zp and the zero-phase voltage v Zn can be defined by the following equation (12). The effective value V z corresponds to the same voltage component contained in each of the zero-phase voltages v Zp and v Zn.

Figure 2021111987
Figure 2021111987

式(10)、式(11)及び式(12)を式(9)に代入すると、流入電力Δp_αの直流成分ΔP_α及び流入電力Δp_βの直流成分ΔP_βは、以下の式(13)のように定まる。 Equation (10), equation (11) and formula when the (12) into equation (9), the DC component [Delta] P _Beta DC component [Delta] P _Arufa and inflow power Delta] p _Beta inflow power Delta] p _Arufa has the following formula (13) It is decided like.

Figure 2021111987
Figure 2021111987

式(13)に示すように、本実施形態による電力変換装置1は、零相電圧vZp,vZnの実効値Vを調整し、無効電力を制御して系統電圧v,v,vの正相成分の実効値VS_pを調整することによって、レグ間の流入電力Δp_α,p_βの差、すなわちレグ間のコンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wを所定の範囲内に抑えることができる。 As shown in the equation (13), the power conversion device 1 according to the present embodiment adjusts the effective values V z of the zero-phase voltages v Zp and v Zn , controls the ineffective power, and controls the system voltages v u , v v , v by adjusting the effective value V S_p the positive phase component of w, the inflow power Delta] p _Arufa between legs, the difference in p _Beta, i.e. capacitor voltage average differential value Delta] v C_U between legs, Delta] v C_V, a Delta] v C_W predetermined It can be suppressed within the range.

次に、本実施形態による電力変換装置1に備えられた制御装置5の制御ブロックについて、図4から図6を用いて説明する。 Next, the control block of the control device 5 provided in the power conversion device 1 according to the present embodiment will be described with reference to FIGS. 4 to 6.

図4に示すように、レグ間電力平衡化制御部5aのコンデンサ電圧平衡化制御部51に設けられたコンデンサ電圧平均差分検出部511には、U相の下アーム31Unの電力変換回路セル311Uni(iは1〜xまでの自然数)のそれぞれに設けられた電圧検出部313(図2参照)で検出された電圧vc_Uniが入力される。また、コンデンサ電圧平均差分検出部511には、U相の上アーム31Upの電力変換回路セル311Upi(iは1〜xまでの自然数)のそれぞれに設けられた電圧検出部313(図2参照)で検出された電圧vc_Upiが入力される。また、コンデンサ電圧平均差分検出部511には、V相の下アーム31Vnの電力変換回路セル311Vni及び上アーム31Vpに設けられた電力変換回路セル311Vpi(iは1〜xまでの自然数)のそれぞれに設けられた電圧検出部313で検出された電圧vc_Vni,vc_Vpiが入力される。さらに、コンデンサ電圧平均差分検出部511には、W相の下アーム31Wnの電力変換回路セル311Wni及び上アーム31Wpに設けられた電力変換回路セル311Wpi(iは1〜xまでの自然数)のそれぞれに設けられた電圧検出部313で検出された電圧vc_Wni,vc_Wpiが入力される。 As shown in FIG. 4, the capacitor voltage average difference detecting unit 511 provided in the capacitor voltage balancing control unit 51 of the inter-leg power balancing control unit 5a is provided with a power conversion circuit cell 311Uni of the U-phase lower arm 31Un. The voltage v c_Uni detected by the voltage detection unit 313 (see FIG. 2) provided in each of i is a natural number from 1 to x) is input. Further, the capacitor voltage average difference detection unit 511 is provided with voltage detection units 313 (see FIG. 2) provided in each of the power conversion circuit cells 311Upi (i is a natural number from 1 to x) of the U-phase upper arm 31Up. The detected voltage v c_Upi is input. Further, in the capacitor voltage average difference detection unit 511, the power conversion circuit cell 311Vni of the lower arm 31Vn of the V phase and the power conversion circuit cell 311Vpi (i is a natural number from 1 to x) provided in the upper arm 31Vp are respectively used. The voltages v c_Vni and v c_Vpi detected by the provided voltage detection unit 313 are input. Further, in the capacitor voltage average difference detection unit 511, the power conversion circuit cell 311Wni of the lower arm 31Wn of the W phase and the power conversion circuit cell 311Wpi (i is a natural number from 1 to x) provided in the upper arm 31Wp are respectively used. The voltages v c_Wni and v c_Wpi detected by the provided voltage detection unit 313 are input.

コンデンサ電圧平均差分検出部511は、電圧検出部313から入力される電圧vc_Uni及び電圧vc_Upiを用いて、式(2)に基づく演算を実行し、下アーム31Unに設けられたコンデンサC1の電圧vc_Uniの平均値と、上アーム31Upに設けられたコンデンサC1の電圧vc_Upiの平均値とを算出する。また、コンデンサ電圧平均差分検出部511は、電圧検出部313から入力される電圧vc_Vni及び電圧vc_Vpiを用いて、式(2)に基づく演算を実行し、下アーム31Vnに設けられたコンデンサC1の電圧vc_Vniの平均値と、上アーム31Vpに設けられたコンデンサC1の電圧vc_Vpiの平均値とを算出する。また、コンデンサ電圧平均差分検出部511は、電圧検出部313から入力される電圧vc_Wni及び電圧vc_Wpiを用いて、式(2)に基づく演算を実行し、下アーム31Wnに設けられたコンデンサC1の電圧vc_Wniの平均値と、上アーム31Wpに設けられたコンデンサC1の電圧vc_Wpiの平均値とを算出する。さらに、コンデンサ電圧平均差分検出部511は、電圧検出部313から入力される電圧vc_Uni,vc_Upi,vc_Vni,vc_Vpi,vc_Wni,vc_Wpiを用いて、主回路部3に設けられた全てのコンデンサC1の電圧平均値を算出する。 The capacitor voltage average difference detection unit 511 executes the calculation based on the equation (2) using the voltage v c_Uni and the voltage v c_Upi input from the voltage detection unit 313, and the voltage of the capacitor C1 provided on the lower arm 31 Un. The average value of v c_Uni and the average value of the voltage v c_Upi of the capacitor C1 provided on the upper arm 31Up are calculated. Further, the capacitor voltage average difference detection unit 511 executes the calculation based on the equation (2) using the voltage v c_Vni and the voltage v c_Vpi input from the voltage detection unit 313, and the capacitor C1 provided on the lower arm 31Vn. calculating the average value of the voltage v c_Vni, the average value of the voltage v C_Vpi of the capacitor C1 provided in the upper arm 31Vp. Further, the capacitor voltage average difference detection unit 511 executes the calculation based on the equation (2) using the voltage v c_Wni and the voltage v c_Wpi input from the voltage detection unit 313, and the capacitor C1 provided on the lower arm 31 Wn. calculating the average value of the voltage v c_Wni, the average value of the voltage v C_Wpi of the capacitor C1 provided in the upper arm 31Wp. Further, the capacitor voltage average difference detection unit 511 uses the voltages v c_Uni , v c_Upi , v c_Vni , v c_Vpi , v c_Wni , v c_Wpi input from the voltage detection unit 313, and is provided in the main circuit unit 3. Calculate the voltage average value of the capacitor C1 of.

コンデンサ電圧平均差分検出部511は、算出したこれらの平均値を用いて、式(4)から式(6)に基づく演算を実行し、コンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wを算出する。さらに、コンデンサ電圧平均差分検出部511は、算出したこれらの平均値を用いて、式(7)に基づく演算を実行し、3相2相座標変換されたコンデンサ電圧平均差分値ΔvC_α,ΔvC_β,ΔvC_0を算出する。コンデンサ電圧平均差分検出部511は、算出したコンデンサ電圧平均差分値ΔvC_α,ΔvC_βを電圧抑制部512に出力する。このように、コンデンサ電圧平均差分検出部511は、電圧検出部313から入力される電圧vc_Uni,vc_Upi,vc_Vni,vc_Vpi,vc_Wni,vc_Wpiを用いてコンデンサ電圧平均差分値ΔvC_α,ΔvC_βを検出し、検出したコンデンサ電圧平均差分値ΔvC_α,ΔvC_βを電圧抑制部512に出力するように構成されている。 The capacitor voltage average difference detection unit 511 executes calculations based on the equations (4) to (6) using these calculated average values, and calculates the capacitor voltage average difference values Δv C_U , Δv C_V , and Δv C_W . do. Further, the capacitor voltage average difference detection unit 511 executes an operation based on the equation (7) using these calculated average values, and the capacitor voltage average difference values Δv C_α and Δv C_β converted into three-phase and two-phase coordinates. , Δv C_0 is calculated. The capacitor voltage average difference detection unit 511 outputs the calculated capacitor voltage average difference values Δv C_α and Δv C_β to the voltage suppression unit 512. As described above, the capacitor voltage average difference detection unit 511 uses the voltages v c_Uni , v c_Upi , v c_Vni , v c_Vpi , v c_Wni , v c_Wpi input from the voltage detection unit 313, and the capacitor voltage average difference value Δv C_α , It is configured to detect Δv C_β and output the detected capacitor voltage average difference values Δv C_α and Δv C_β to the voltage suppression unit 512.

図5に示すように、コンデンサ電圧平衡化制御部51に設けられた電圧抑制部512は、フィードバック部512FBと、フィードフォワード部512FFとを有している。フィードバック部512FBは、コンデンサ電圧平均差分検出部511から入力されるコンデンサ電圧平均差分値ΔvC_α,ΔvC_βに基づいて、上側中性点32pの零相電圧vZp及び下側中性点32nの零相電圧vZnの指令値を生成するように構成されている。フィードフォワード部512FFは、逆相電圧成分によって発生するレグ間の出力電力の不平衡状態を、レグ間のコンデンサ電圧が不平衡状態(アンバランス)になる前に補正するように構成されている。 As shown in FIG. 5, the voltage suppression unit 512 provided in the capacitor voltage balancing control unit 51 includes a feedback unit 512FB and a feedforward unit 512FF. The feedback unit 512FB has a zero-phase voltage v Zp at the upper neutral point 32p and zero at the lower neutral point 32n based on the capacitor voltage average difference values Δv C_α and Δv C_β input from the capacitor voltage average difference detecting unit 511. It is configured to generate a command value for the phase voltage v Zn. The feedforward unit 512FF is configured to correct the unbalanced state of the output power between the legs generated by the reverse phase voltage component before the capacitor voltage between the legs becomes unbalanced.

図5に示すように、電圧抑制部512に設けられたフィードバック部512FBは、コンデンサ電圧平均差分検出部511(図4参照)から出力されたコンデンサ電圧平均差分値ΔvC_αが入力される低域通過フィルタ(Low Pass Filter:LPF)512FBaを有している。また、フィードバック部512FBは、コンデンサ電圧平均差分検出部511から出力されたコンデンサ電圧平均差分値ΔvC_αが入力される低域通過フィルタ512FBfを有している。電圧検出部313が検出する電圧vc_Uni,vc_Upi,vc_Vni,vc_Vpi,vc_Wni,vc_Wpiには、U相交流電源211、V相交流電源212及びW相交流電源213(図1参照)からそれぞれ出力される交流電源の周波数の2倍成分の脈動が重畳されている。このため、電力変換装置1は、当該脈動が上下アームのコンデンサ電圧の平衡化制御に影響を与えないように、当該脈動を減衰させる目的で低域通過フィルタ512FBa,512FBfが設けられている。 As shown in FIG. 5, the feedback unit 512FB provided in the voltage suppression unit 512 passes through a low-pass filter to which the capacitor voltage average difference value Δv C_α output from the capacitor voltage average difference detection unit 511 (see FIG. 4) is input. It has a filter (Low Pass Filter: LPF) 512FBa. Further, the feedback unit 512FB has a low-pass filter 512FBf to which the capacitor voltage average difference value Δv C_α output from the capacitor voltage average difference detection unit 511 is input. The voltages v c_Uni , v c_Upi , v c_Vni , v c_Vpi , v c_Wni , and v c_Wpi detected by the voltage detection unit 313 include the U-phase AC power supply 211, the V-phase AC power supply 212, and the W-phase AC power supply 213 (see FIG. 1). The pulsation of the component twice the frequency of the AC power supply output from each is superimposed. Therefore, the power conversion device 1 is provided with low-pass filters 512FBa and 512FBf for the purpose of attenuating the pulsation so that the pulsation does not affect the balancing control of the capacitor voltage of the upper and lower arms.

フィードバック部512FBは、低域通過フィルタ512FBaを通過してコンデンサ電圧平均差分値ΔvC_αから高周波の脈動が除去されたコンデンサ電圧平均差分値ΔVC_αの極性を反転させた信号が入力される加算部512FBbを有している。加算部512FBbには、0ボルトの電圧(例えばグランドと同電位の電圧)も入力されるように構成されている。加算部512FBbは、0ボルトの直流信号と極性反転されたコンデンサ電圧平均差分値ΔVC_αの信号とを加算、すなわち0ボルトの直流信号からコンデンサ電圧平均差分値ΔVC_αの信号を減算した信号を出力するように構成されている。 The feedback unit 512FB passes through the low-pass filter 512FBa and inputs a signal in which the polarity of the capacitor voltage average difference value ΔV C_α in which the high frequency pulsation is removed from the capacitor voltage average difference value Δv C_α is input. have. A voltage of 0 volts (for example, a voltage having the same potential as ground) is also input to the adder 512FBb. The adder 512FBb adds a 0 volt DC signal and a polarity-inverted capacitor voltage average difference value ΔV C_α signal, that is, outputs a signal obtained by subtracting the capacitor voltage average difference value ΔV C_α signal from the 0 volt DC signal. It is configured to do.

フィードバック部512FBは、加算部512FBbに接続されたPI制御部512FBcを有している。PI制御部512FBcは、加算部512FBbから入力される信号に比例積分制御を施すように構成されている。PI制御部512FBcにおいて施される比例演算には、加算部512FBbでの加算結果の単位を電圧から電力に変換するパラメータが含まれている。これにより、PI制御部512FBcは、流入電力Δp_αの直流成分ΔP_αの指令値である直流成分指令値Pα_refを出力することができる。直流成分指令値Pα_refは、コンデンサ電圧平均差分値ΔVC_αをゼロに近づけるための指令値である。 The feedback unit 512FB has a PI control unit 512FBc connected to the addition unit 512FBb. The PI control unit 512FBc is configured to perform proportional integration control on the signal input from the addition unit 512FBb. The proportional calculation performed by the PI control unit 512FBc includes a parameter for converting the unit of the addition result in the addition unit 512FBb from voltage to electric power. As a result, the PI control unit 512FBc can output the DC component command value P α_ref , which is the command value of the DC component ΔP of the inflow power Δp _α. The DC component command value P α_ref is a command value for bringing the capacitor voltage average difference value ΔV C_α close to zero.

フィードバック部512FBは、低域通過フィルタ512FBfを通過してコンデンサ電圧平均差分値ΔvC_βから高周波の脈動が除去されたコンデンサ電圧平均差分値ΔVC_βの極性を反転させた信号が入力される加算部512FBgを有している。加算部512FBgには、0ボルトの電圧(例えばグランドと同電位の電圧)も入力されるように構成されている。加算部512FBgは、0ボルトの直流信号と極性反転されたコンデンサ電圧平均差分値ΔVC_βの信号とを加算、すなわち0ボルトの直流信号からコンデンサ電圧平均差分値ΔVC_βの信号を減算した信号を出力するように構成されている。 The feedback unit 512FB passes through the low-pass filter 512FBf, and a signal in which the polarity of the capacitor voltage average difference value ΔV C_β in which the high frequency pulsation is removed from the capacitor voltage average difference value Δv C_β is input is input. have. A voltage of 0 volts (for example, a voltage having the same potential as ground) is also input to the adder 512FBg. The adder 512FBg outputs a signal obtained by adding a 0 volt DC signal and a polarity-inverted capacitor voltage average difference value ΔV C_β signal, that is, subtracting a capacitor voltage average difference value ΔV C_β signal from a 0 volt DC signal. It is configured to do.

フィードバック部512FBは、加算部512FBgに接続されたPI制御部512FBhを有している。PI制御部512FBhは、加算部512FBgから入力される信号に比例積分制御を施すように構成されている。PI制御部512FBhにおいて施される比例演算には、加算部512FBgでの加算結果の単位を電圧から電力に変換するパラメータが含まれている。これにより、PI制御部512FBhは、流入電力Δp_βの直流成分ΔP_βの指令値である直流成分指令値Pβ_refを出力することができる。直流成分指令値Pβ_refは、コンデンサ電圧平均差分値ΔVC_βをゼロに近づけるための指令値である。 The feedback unit 512FB has a PI control unit 512FBh connected to the addition unit 512FBg. The PI control unit 512FBh is configured to perform proportional integration control on the signal input from the addition unit 512FBg. The proportional calculation performed by the PI control unit 512FBh includes a parameter for converting the unit of the addition result by the addition unit 512FBg from voltage to electric power. As a result, the PI control unit 512FBh can output the DC component command value P β_ref , which is the command value of the DC component ΔP of the inflow power Δp _β. The DC component command value P β_ref is a command value for bringing the capacitor voltage average difference value ΔV C_β close to zero.

図5に示すように、フィードバック部512FBは、PI制御部512FBcから出力される直流成分指令値Pα_refと、PI制御部512FBhから出力される直流成分指令値Pβ_refとが入力されて第一零相電力の振幅を演算する振幅演算部512FBdを有している。振幅演算部512FBdは、直流成分指令値Pα_refの自乗と直流成分指令値Pβ_refの自乗との和の平方根によって第一零相電力の振幅を算出する。 As shown in FIG. 5, in the feedback unit 512FB, the DC component command value P α_ref output from the PI control unit 512FBc and the DC component command value P β_ref output from the PI control unit 512FBh are input to the first zero. It has an amplitude calculation unit 512FBd that calculates the amplitude of the phase power. The amplitude calculation unit 512FBd calculates the amplitude of the first zero-phase power by the square root of the sum of the square of the DC component command value P α_ref and the square of the DC component command value P β_ref.

フィードバック部512FBは、振幅演算部512FBdから出力された第一零相電力の振幅の信号を系統電流i,i,iの実効値Iの極性を反転させた信号で除算する除算部512FBeを有している。除算部512FBeは、振幅演算部512FBdから出力された第一零相電力の振幅の信号を系統電流i,i,iの実効値Iの極性を反転させた信号(負極性の信号)で除算することによって、零相電圧vZp,vZnの実効値Vの信号の極性を反転させた信号(負極性の信号)を算出することができる。電圧抑制部512は、振幅演算部512FBd及び除算部512FBeによって、零相電圧vZp,vZnのそれぞれに含まれる同一の電圧成分に相当する零相電圧vZp,vZnの実効値Vを抽出することができる。 Feedback unit 512FB is division unit for dividing the first zero-phase power amplitude of the signal system current i u of, i v, i w polarity signal obtained by inverting the effective value I S for output from the amplitude calculating unit 512FBd It has 512 FBe. Divider 512FBe the first zero-phase power amplitude of the signal system current i u of output from the amplitude calculating unit 512FBd, i v, i w rms I polarity signal obtained by inverting the S (negative polarity signal ), It is possible to calculate a signal (negative signal) in which the polarity of the signal having the effective value V z of the zero-phase voltages v Zp and v Zn is inverted. The voltage suppression unit 512 uses the amplitude calculation unit 512FBd and the division unit 512FBe to obtain the effective values V z of the zero-phase voltages v Zp and v Zn corresponding to the same voltage components contained in the zero-phase voltages v Zp and v Zn, respectively. Can be extracted.

フィードバック部512FBは、低域通過フィルタ512FBaから出力されるコンデンサ電圧平均差分値ΔVC_αと、低域通過フィルタ512FBfから出力されるコンデンサ電圧平均差分値ΔVC_βとが入力されて流入電力Δp_α,Δp_βの直流成分指令値Pα_ref,Pβ_refの位相差を演算する位相差演算部512FBiを有している。ここで、流入電力Δp_α,p_βの直流成分指令値Pα_ref,Pβ_refの位相差は、U相の系統電圧vの位相に対する流入電力Δp_α,p_βの直流成分指令値Pα_ref,Pβ_refの位相の差である。位相差演算部512FBiは、コンデンサ電圧平均差分値ΔVC_αに対するコンデンサ電圧平均差分値ΔVC_βの比を演算する演算部512FBi−1を有している。位相差演算部512FBiは、演算部512FBi−1から入力される演算結果の正接(タンジェント)の逆関数(アークタンジェント)を演算して第一零相電力の位相の指令値を算出する算出部512FBi−2を有している。零相電圧vZp,vZnは、コンデンサ電圧平均差分値ΔVC_α,ΔVC_βと同位相である。このため、第一零相電力の位相の指令値は、コンデンサ電圧平均差分値ΔVC_α,ΔVC_βを用いて算出することができる。 The feedback unit 512FB receives input of the capacitor voltage average difference value ΔV C_α output from the low-pass filter 512FBa and the capacitor voltage average difference value ΔV C_β output from the low-pass filter 512FBf, and the inflow power Δp_α , Δp. It has a phase difference calculation unit 512FBi that calculates the phase difference between the DC component command values P α_ref and P β_ref of _β. Here, the inflow power Delta] p _Arufa, DC component command value P Arufa_ref of p _Beta, the phase difference between the P Beta_ref is flowing power Delta] p _Arufa respect to the phase of the system voltage v u of U-phase, p _Beta DC component command value P Arufa_ref, It is the phase difference of P β_ref. The phase difference calculation unit 512FBi has a calculation unit 512FBi-1 for calculating the ratio of the capacitor voltage average difference value ΔV C_β to the capacitor voltage average difference value ΔV C_α. The phase difference calculation unit 512FBi calculates the inverse function (arc tangent) of the tangent of the calculation result input from the calculation unit 512FBi-1, and calculates the command value of the phase of the first zero-phase power. Has -2. The zero-phase voltages v Zp and v Zn are in phase with the capacitor voltage average difference values ΔV C_α and ΔV C_β . Therefore, the command value of the phase of the first zero-phase power can be calculated by using the capacitor voltage average difference values ΔV C_α and ΔV C_β.

フィードバック部512FBは、位相差演算部512FBiから入力される第一零相電力の位相の指令値の信号の極性を反転させた信号(負極性の信号)と、系統電流i,i,iの位相差Φpfの信号とを加算する加算部512FBjを有している。すなわち、加算部512FBjは、系統電流i,i,iの位相差Φpfから第一零相電力の位相を減算するのと等価の演算を実行する。これにより、加算部512FBjは、系統電流i,i,iに対する第一零相電力の位相差、すなわち系統電圧vに対する零相電圧vZp,vZnの位相差Φを算出する。 The feedback unit 512FB includes a signal (negative electrode signal) in which the polarity of the signal of the phase command value of the first zero-phase power input from the phase difference calculation unit 512FBi is inverted, and the system currents i u , iv , i. It has an addition unit 512FBj that adds a signal having a phase difference Φ pf of w. That is, the addition unit 512FBj the system current i u, i v, and performing the calculation of the equivalent to subtracting the phase from the phase difference [Phi pf the first zero-phase power i w. Thus, the addition unit 512FBj calculates the line current i u, i v, first zero-phase power phase difference with respect to i w, i.e. the system voltage v zero-phase voltage with respect to u v Zp, v Zn phase difference [Phi z ..

フィードバック部512FBは、除算部512FBeから出力される零相電圧の実効値Vの極性を反転させた信号(負極性の信号)と、加算部512FBjから出力される零相電圧vZp,vZnの位相差Φの信号とが入力される零相電圧演算部512FBkを有している。零相電圧演算部512FBkは、式(12)で表される演算を実行して零相電圧vZp,vZnの指令値を出力するように構成されている。零相電圧演算部512FBkに入力される値は、コンデンサ電圧平均差分値に基づいている。このため、零相電圧演算部512FBkが出力する零相電圧vZp,vZnの指令値は、現在のコンデンサ電圧平均差分値が小さくなるように補正するための補正値になる。 Feedback unit 512FB is, division section an inverted signal (signal of negative polarity) the polarity of the effective value V z of the zero-phase voltage outputted from 512FBe, zero-phase voltage v Zp output from the addition unit 512FBj, v Zn It has a zero-phase voltage calculation unit 512FBk to which a signal having a phase difference of Φ z is input. The zero-phase voltage calculation unit 512FBk is configured to execute the calculation represented by the equation (12) and output the command values of the zero-phase voltages v Zp and v Zn. The value input to the zero-phase voltage calculation unit 512FBk is based on the average difference value of the capacitor voltage. Therefore, the command values of the zero-phase voltages v Zp and v Zn output by the zero-phase voltage calculation unit 512FBk are correction values for correcting the current capacitor voltage average difference value so as to be small.

図5に示すように、電圧抑制部512に設けられたフィードフォワード部512FFは、系統電圧v,v,vの逆相成分の実効値VS_n及び系統電流i,i,iの実効値Iを乗算した値を√3で除算し且つ−1を乗算した値の信号を系統電流i,i,iの実効値Iの信号の極性を反転させた信号(負極性の信号)で除算する除算部512FFaを有している。U相レグ31U、V相レグ31V及びW相レグ31Wに設けられたコンデンサC1の電圧の不平衡状態に対して逆方向に電力を制御(例えば、コンデンサC1の電圧が高い場合にはコンデンサC1を放電する方向に電力を制御)するために、除算部512FFaの一方に−1を乗算した値が入力される。除算部512FFaは、入力される2つの信号を演算して、零相電圧vZp,vZnの実効値Vを出力する。 As shown in FIG. 5, the feed forward unit 512FF provided in the voltage suppression unit 512 has an effective value VS_n and a system current i u , i v , i of the opposite phase components of the system voltages v u , v v , v w. w rms I S signals the system current i u calculated by multiplying the division by and -1 multiplication value √3, i v, i w effective value I S of the signal polarity signal obtained by inverting the of It has a dividing unit 512FFa that divides by (negative signal). Power is controlled in the opposite direction to the unbalanced state of the voltage of the capacitor C1 provided on the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W (for example, when the voltage of the capacitor C1 is high, the capacitor C1 is controlled. In order to control the power in the discharging direction), a value obtained by multiplying one of the dividing units 512FFa by -1 is input. The division unit 512FFa calculates the two input signals and outputs the effective values V z of the zero-phase voltages v Zp and v Zn.

フィードフォワード部512FFは、除算部512FFaから入力される零相電圧vZp,vZnの実効値Vの信号と、零相電圧vZp,vZnの位相差Φの信号とが入力される零相電圧演算部512FFbを有している。零相電圧演算部512FFbに入力される零相電圧vZp,vZnの位相差Φの信号は、式(11)の右辺の第1項、すなわち、逆相電圧の影響により発生する電力の不平衡(アンバランス)を打ち消す値に設定されている。すなわち、零相電圧vZp,vZnの位相差Φは、式(13)の右辺の第2項が式(13)の右辺の第1項と180度反転した値であり、「Φ=2×Φpf−Φvn」となる。ここで、Φvnは、U相レグ31Uの正相電圧の位相を基準にした場合の逆相電圧の位相差である。零相電圧演算部512FFbは、零相電圧vZp,vZnの実効値Vの信号及び零相電圧vZpの位相差Φの信号を用いて、式(12)で表される演算を実行するように構成されている。 In the feed forward unit 512FF, a signal having an effective value V z of the zero-phase voltages v Zp and v Zn input from the dividing unit 512FFa and a signal having a phase difference Φ z of the zero-phase voltages v Zp and v Zn are input. It has a zero-phase voltage calculation unit 512FFb. Zero-phase voltage is inputted to the zero-phase voltage calculation unit 512FFb v Zp, v signal of the phase difference [Phi z of Zn, the first term of the right side of the expression (11), i.e., the power generated by the influence of a reverse-phase voltage It is set to a value that cancels the imbalance. That is, the phase difference Φ z of the zero-phase voltages v Zp and v Zn is a value obtained by inverting the second term on the right side of the equation (13) by 180 degrees with the first term on the right side of the equation (13), and is “Φ z”. = 2 × Φ pf −Φ vn ”. Here, Φ vn is the phase difference of the negative phase voltage when the phase of the positive phase voltage of the U phase leg 31U is used as a reference. The zero-phase voltage calculation unit 512FFb uses a signal of the effective value V z of the zero-phase voltage v Zp , v Zn and a signal of the phase difference Φ z of the zero-phase voltage v Zp to perform the calculation represented by the equation (12). It is configured to run.

電力変換装置1では、系統電圧v,v,vの逆相成分の実効値VS_nが判ると、レグ間に生じるコンデンサC1の電圧の不平衡状態の程度が予測できる。系統電圧v,v,vの逆相成分の実効値VS_n、系統電流i,i,iの実効値I、系統電流iの位相差Φpf、上側中性点32p及び下側中性点32nに流入出する循環電流icir_nの位相差Φcir_nなどのフィードフォワード部512FFに入力される信号は、電力変換装置1に設けられた電圧検出部で検出された系統電圧v,v,vや電流検出部で検出された系統電流i,i,iなどの検出値から得られる。このため、フィードフォワード部512FFは、検出値から予測されるコンデンサC1の電圧の不平衡状態に基づく零相電圧vZp,vZnの指令値を零相電圧演算部512FFbから出力する。 In the power conversion device 1, if the effective value VS_n of the anti-phase components of the system voltages v u , v v , and v w is known, the degree of voltage imbalance of the capacitor C1 generated between the legs can be predicted. System voltage v u, v v, v reverse phase component of the effective value V S_n of w, the system current i u, i v, the effective value I S for i w, the phase difference [Phi pf of the system current i u, the upper neutral point circulating current i Cir_n signal input to the feedforward portion 512FF such phase difference [Phi Cir_n of the output flowing into 32p and the lower neutral point 32n is detected by the voltage detecting section provided in the power converter 1 line It is obtained from the detected values such as the voltage v u , v v , v w and the system current i u , i v , i w detected by the current detector. Therefore, the feedforward unit 512FF outputs the command values of the zero-phase voltages v Zp and v Zn based on the unbalanced state of the voltage of the capacitor C1 predicted from the detected values from the zero-phase voltage calculation unit 512FFb.

図5に示すように、電圧抑制部512は、零相電圧演算部512FBkから入力される零相電圧vZp,vZnの指令値と、零相電圧演算部512FFbから入力される零相電圧vZp,vZnの指令値とを加算する加算部512Fを有している。零相電圧演算部512FBkから入力される零相電圧vZp,vZnの指令値の信号は、負極性の信号であり、零相電圧演算部512FFbから入力される零相電圧vZpの指令値の信号は、正極性の信号である。このため、加算部512Fは、零相電圧演算部512FFbから入力される零相電圧vZp,vZnの指令値の信号から零相電圧演算部512FBkから入力される零相電圧vZp,vZnの指令値の信号を減算するのと等価の演算を実行する。これにより、加算部512Fは、検出値に基づく零相電圧vZp,vZnの指令値の信号を現在のコンデンサ電圧平均差分値が小さくなるように補正するための補正値としての零相電圧vZp,vZnの指令値で補正して、零相電圧指令値vZp_refを出力する。これにより、電圧抑制部512から出力される零相電圧指令値vZp_refは、コンデンサ電圧平均差分値を抑制させるための指令値となる。零相電圧指令値vZp_refは、零相電圧vZp及び零相電圧vZnの両方の指令値として用いられる。 As shown in FIG. 5, the voltage suppression unit 512 has a command value of the zero-phase voltage v Zp , v Zn input from the zero-phase voltage calculation unit 512FBk and a zero-phase voltage v input from the zero-phase voltage calculation unit 512FFb. It has an addition unit 512F that adds the command values of Zp and v Zn. The signal of the command value of the zero-phase voltage v Zp , v Zn input from the zero-phase voltage calculation unit 512FBk is a negative signal, and the command value of the zero-phase voltage v Zp input from the zero-phase voltage calculation unit 512FFb. The signal of is a positive signal. Therefore, the addition unit 512F receives the zero-phase voltage v Zp , v Zn input from the zero-phase voltage calculation unit 512FBk from the signal of the command value of the zero-phase voltage v Zp , v Zn input from the zero-phase voltage calculation unit 512FFb. Performs an operation equivalent to subtracting the signal of the command value of. As a result, the addition unit 512F corrects the signal of the command value of the zero-phase voltage v Zp , v Zn based on the detected value so that the current capacitor voltage average difference value becomes small, and the zero-phase voltage v as a correction value. Corrected by the command values of Zp and v Zn , the zero-phase voltage command value v Zp_ref is output. As a result, the zero-phase voltage command value v Zp_ref output from the voltage suppression unit 512 becomes a command value for suppressing the average difference value of the capacitor voltage. The zero-phase voltage command value v Zp_ref is used as a command value for both the zero-phase voltage v Zp and the zero-phase voltage v Zn.

このように、電力変換装置1は、蓄電素子としてのコンデンサC1の蓄積エネルギー又は当該蓄積エネルギーに準ずる量を検出する電圧検出部313を備え、電力変換装置1に備えられたレグ間電力平衡化制御部5aは、電圧検出部313で検出された検出値に応じて零相電圧vZpの実効値V(電圧成分の一例)を調整する電圧抑制部(調整部の一例)512を有している。本実施形態では、電圧検出部313は、蓄電素子の蓄積エネルギーに準ずる量としてコンデンサC1の両電極間の電圧を検出する。電圧抑制部512は、電圧検出部313が検出するコンデンサC1の電圧に基づくコンデンサ電圧平均差分値を用いて、零相電圧vZpの実効値Vを調整するための零相電圧指令値vZp_refを生成するように構成されている。 As described above, the power conversion device 1 includes a voltage detection unit 313 that detects the stored energy of the capacitor C1 as a power storage element or an amount equivalent to the stored energy, and the inter-leg power balancing control provided in the power conversion device 1. parts 5a may have a 512 (an example of an adjustment unit) voltage suppression unit for adjusting the effective value V z of the zero-phase voltage v Zp in response to the detection value detected by the voltage detection unit 313 (an example of a voltage component) There is. In the present embodiment, the voltage detection unit 313 detects the voltage between both electrodes of the capacitor C1 as an amount equivalent to the stored energy of the power storage element. The voltage suppression unit 512 uses the capacitor voltage average difference value based on the voltage of the capacitor C1 detected by the voltage detection unit 313 to adjust the effective value V z of the zero phase voltage v Zp , and the zero phase voltage command value v Zp_ref. Is configured to generate.

図6は、レグ間電力平衡化制御部5aに設けられたアーム電圧指令値生成部52の概略構成の一例を示すブロック図である。図6では、理解を容易にするため、アーム電圧指令値生成部52に接続されたコンデンサ電圧平衡化制御部51、電流調整部5b及びゲートパルス信号生成部5c並びにゲートパルス信号生成部5cに接続されたキャリア波生成部5dが併せて図示されている。 FIG. 6 is a block diagram showing an example of a schematic configuration of an arm voltage command value generation unit 52 provided in the inter-leg power balancing control unit 5a. In FIG. 6, for easy understanding, the capacitor voltage balancing control unit 51, the current adjustment unit 5b, the gate pulse signal generation unit 5c, and the gate pulse signal generation unit 5c connected to the arm voltage command value generation unit 52 are connected. The carrier wave generation unit 5d is also shown in the figure.

図6に示すように、アーム電圧指令値生成部52は、電流検出部(不図示)で検出されたU相の下アーム31Unの出力電流iUn及びU相の上アーム31Upの出力電流iUpのそれぞれの電流信号を加算する加算部521uを有している。また、アーム電圧指令値生成部52は、加算部521uから出力される加算信号を2分の1に減算する減算部522uを有している。アーム電圧指令値生成部52は、加算部521u及び減算部522uによって、現時点でU相レグ31Uを循環する循環電流icir_uを算出することができる。加算部521u及び減算部522uは、U相の下アーム31Unに流れる出力電流iUnとU相の上アーム31Upに流れる出力電流iUpとを用いて循環電流icir_uを算出する算出部の一例に相当する。本実施形態では、循環電流icir_uの電流値は、U相の下アーム31Unに流れる出力電流iUn及び上アーム31Upに流れる出力電流iUpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 6, the arm voltage command value generating unit 52, the output current i Up arm 31Up on the output current i Un and U-phase lower arm 31Un of the detected U-phase by the current detection unit (not shown) It has an addition unit 521u that adds the current signals of the above. Further, the arm voltage command value generation unit 52 has a subtraction unit 522u that subtracts the addition signal output from the addition unit 521u by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_u circulating in the U-phase leg 31U at present by the addition unit 521u and the subtraction unit 522u. The addition unit 521u and the subtraction unit 522u are examples of a calculation unit that calculates the circulating current i cil_u using the output current i Un flowing through the lower arm 31 Un of the U phase and the output current i Up flowing through the upper arm 31 Up of the U phase. Equivalent to. In the present embodiment, the current value of the circulating current i ir_u is half the sum of the current values of the output current i Un flowing in the lower arm 31 Un of the U phase and the output current i Up flowing in the upper arm 31 Up.

アーム電圧指令値生成部52は、減算部522uに接続されたP制御部524uを有している。P制御部524uは、減算部522uから入力される循環電流icir_uの信号に比例制御を施すように構成されている。P制御部524uにおいて施される比例演算には、電流から電圧に変換するパラメータが含まれている。これにより、P制御部524uは、電流調整部5bで生成されるアーム電圧指令値vu_acr_refを補正するためのアーム電圧指令補正値vu_cir_refを生成することができる。アーム電圧指令値vu_acr_refは、三相電力系統2のU相交流電源211とU相レグ31Uとの間で入流出させる無効電圧の指令値である。 The arm voltage command value generation unit 52 has a P control unit 524u connected to the subtraction unit 522u. The P control unit 524u is configured to perform proportional control on the signal of the circulating current i cil_u input from the subtraction unit 522u. The proportional calculation performed by the P control unit 524u includes a parameter for converting a current into a voltage. Thus, P control unit 524u can generate an arm voltage command correction value v U_cir_ref for correcting the arm voltage command value v U_acr_ref generated by the current controller 5b. The arm voltage command value v u_acr_ref is a command value of an invalid voltage that flows in and out between the U-phase AC power supply 211 and the U-phase leg 31U of the three-phase power system 2.

図6に示すように、アーム電圧指令値生成部52に接続された電流調整部5bは、例えばACR(Auto Current Regulator)で構成されている。電流調整部5bには、電力変換装置1に設けられた電圧検出部(不図示)で検出された系統電圧v,v,vが入力される。また、電流調整部5bには、電力変換装置1に設けられた電流検出部(不図示)で検出された三相電力系統2から主回路部3に流入する系統電流i,i,iが入力される。さらに、電流調整部5bには、系統電流i,i,iの指令値である系統電流指令値iu_ref,iv_ref,iw_refが入力される。電流調整部5bは、入力される系統電圧v,v,v、系統電流i,i,i及び系統電流指令値iu_ref,iv_ref,iw_refに基づいて、アーム電圧指令値vu_acr_ref,vv_acr_ref,vw_acr_refを生成するように構成されている。アーム電圧指令値vv_acr_refは、三相電力系統2のV相交流電源212とV相レグ31Vとの間で入流出させる無効電圧の指令値である。アーム電圧指令値vw_acr_refは、三相電力系統2のW相交流電源213とW相レグ31Wとの間で入流出させる無効電圧の指令値である。 As shown in FIG. 6, the current adjusting unit 5b connected to the arm voltage command value generating unit 52 is composed of, for example, an ACR (Auto Current Regulator). The system voltages v u , v v , v w detected by the voltage detection unit (not shown) provided in the power conversion device 1 are input to the current adjustment unit 5b. Moreover, the current adjustment section 5b, system current i u flowing current detection unit provided in the electric power converter 1 by a three-phase power system 2 detected by the (not shown) to the main circuit unit 3, i v, i w is input. Furthermore, the current controller 5b, the system current i u, i v, the command value a is the system current command value i U_ref of i w, i v_ref, i w_ref is input. The current adjusting unit 5b commands arm voltage based on the input system voltage v u , v v , v w , system current i u , i v , i w, and system current command values i u_ref , i v_ref , i w_ref. It is configured to generate the values v u_acr_ref , v v_acr_ref , v w_acr_ref. The arm voltage command value v v_acr_ref is a command value of an invalid voltage that flows in and out between the V-phase AC power supply 212 of the three-phase power system 2 and the V-phase leg 31V. The arm voltage command value v w_acr_ref is a command value of an invalid voltage that flows in and out between the W-phase AC power supply 213 of the three-phase power system 2 and the W-phase leg 31W.

図6に示すように、アーム電圧指令値生成部52は、P制御部524uから出力されるアーム電圧指令補正値vu_cir_refが入力される第一加算部525u及び第二加算部526uを有している。第一加算部525uには、電流調整部5bから出力されるU相レグ31Uのアーム電圧指令値vu_acr_refの極性を反転させた信号も入力される。第二加算部526uには、電流調整部5bから出力されるU相レグ31Uのアーム電圧指令値vu_acr_refの極性を反転させない信号も入力される。 As shown in FIG. 6, the arm voltage command value generation unit 52 has a first addition unit 525u and a second addition unit 526u to which the arm voltage command correction value vu_cil_ref output from the P control unit 524u is input. There is. The first adding unit 525U, the signal obtained by inverting the polarity of the arm voltage command value v U_acr_ref the U-phase leg 31U output from the current adjuster 5b is also input. The second addition unit 526U, not to reverse the polarity of the arm voltage command value v U_acr_ref the U-phase leg 31U output from the current adjuster 5b signal is also inputted.

第一加算部525uは、U相レグ31Uのアーム電圧指令値vu_acr_refの極性を反転させた信号にアーム電圧指令補正値vu_cir_refの信号を加算する。これにより、第一加算部525uは、アーム電圧指令値vu_acr_refの極性を反転させた信号をアーム電圧指令補正値vu_cir_ref分だけ正側に電圧シフトした、U相の上アーム31Upのアーム電圧予備指令値vup_pre_refを生成する。第二加算部526uは、U相レグ31Uのアーム電圧指令値vu_acr_refの信号にアーム電圧指令補正値vu_cir_refの信号を加算する。これにより、第二加算部526uは、アーム電圧指令値vu_acr_refの信号をアーム電圧指令補正値vu_cir_ref分だけ正側に電圧シフトした、U相の下アーム31Unのアーム電圧予備指令値vun_pre_refを生成する。 The first addition unit 525u adds the signal of the arm voltage command correction value v u_cil_ref to the signal in which the polarity of the arm voltage command value v u_acr_ref of the U-phase leg 31U is inverted. Thus, the first adder unit 525u is a signal obtained by inverting the polarity of the arm voltage command value v U_acr_ref and voltage shifted to the positive side by the arm voltage command correction value v U_cir_ref min, arm-voltage pre-arm 31Up of the U-phase The command value v up_pre_ref is generated. The second addition unit 526u adds the signal of the arm voltage command correction value v u_cil_ref to the signal of the arm voltage command value v u_acr_ref of the U-phase leg 31U. As a result, the second addition unit 526u shifts the signal of the arm voltage command value v u_acr_ref to the positive side by the arm voltage command correction value v u_cil_ref, and sets the arm voltage preliminary command value v un_pre_ref of the lower arm 31 Un of the U phase. Generate.

図6に示すように、アーム電圧指令値生成部52は、第一加算部525uで生成されたアーム電圧予備指令値vup_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第一演算部527uを有している。また、アーム電圧指令値生成部52は、第二加算部526uで生成されたアーム電圧予備指令値vun_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第二演算部528uを有している。 As shown in FIG. 6, the arm voltage command value generation unit 52 has the arm voltage preliminary command value v up_pre_ref generated by the first addition unit 525u and the zero-phase voltage command value v output from the capacitor voltage balancing control unit 51. It has a first calculation unit 527u to which Zp_ref is input. Further, the arm voltage command value generation unit 52 inputs the arm voltage preliminary command value v un_pre_ref generated by the second addition unit 526u and the zero-phase voltage command value v Zp_ref output from the capacitor voltage balancing control unit 51. It has a second calculation unit 528u.

第一演算部527uは、アーム電圧予備指令値vup_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第一演算部527uは、第一加算部525uで生成されたアーム電圧予備指令値vup_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第一演算部527uは、アーム電圧予備指令値vup_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vUp_refを生成する。また、第二演算部528uは、アーム電圧予備指令値vun_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第二演算部528uは、第二加算部526uで生成されたアーム電圧予備指令値vun_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第二演算部528uは、アーム電圧予備指令値vun_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vUn_refを生成する。第一演算部527uで生成されたアーム電圧指令値vUp_ref及び第二演算部528uで生成されたアーム電圧指令値vUn_refは、ゲートパルス信号生成部5cに入力される。 The first calculation unit 527u is configured to execute an addition process for adding a signal of the arm voltage preliminary command value v up_pre_ref and a signal of the zero-phase voltage command value v Zp_ref. The first calculation unit 527u applies a signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v up_pre_ref generated by the first addition unit 525u. Thus, the first calculation unit 527u generates the arm voltage command value v Up_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Up_pre_ref is consideration. Further, the second calculation unit 528u is configured to execute an addition process for adding the signal of the arm voltage preliminary command value v un_pre_ref and the signal of the zero-phase voltage command value v Zp_ref. The second calculation unit 528u applies a signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v un_pre_ref generated by the second addition unit 526u. Thereby, the second calculation unit 528u generates the arm voltage command value v Un_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Un_pre_ref is consideration. Arm voltage command value v Un_ref generated by the first calculation unit arm voltage command value generated by the 527u v Up_ref and second arithmetic unit 528u is input to the gate pulse signal generation unit 5c.

図6に示すように、アーム電圧指令値生成部52は、電流検出部(不図示)で検出されたV相の下アーム31Vnの出力電流iVn及びV相の上アーム31Vpの出力電流iVpのそれぞれの電流信号を加算する加算部521vを有している。また、アーム電圧指令値生成部52は、加算部521vから出力される加算信号を2分の1に減算する減算部522vを有している。アーム電圧指令値生成部52は、加算部521v及び減算部522vによって、現時点でV相レグ31Vを循環する循環電流icir_vを算出することができる。加算部521v及び減算部522vは、V相の下アーム31Vnに流れる出力電流iVnとV相の上アーム31Vpに流れる出力電流iVpとを用いて循環電流icir_vを算出する算出部の一例に相当する。本実施形態では、循環電流icir_vの電流値は、V相の下アーム31Vnに流れる出力電流iVn及びV相の上アーム31Vpに流れる出力電流iVpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 6, the arm voltage command value generating unit 52, the output current of the arm 31Vp on the output current i Vn and V-phase lower arm 31Vn current detection part (not shown) detected by the V-phase i Vp It has an addition unit 521v that adds the current signals of the above. Further, the arm voltage command value generation unit 52 has a subtraction unit 522v that subtracts the addition signal output from the addition unit 521v by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_v circulating in the V-phase leg 31V at present by the addition unit 521v and the subtraction unit 522v. The addition unit 521v and the subtraction unit 522v are examples of a calculation unit that calculates the circulating current i ir_v using the output current i Vn flowing through the lower arm 31 Vn of the V phase and the output current i Vp flowing through the upper arm 31 Vp of the V phase. Equivalent to. In the present embodiment, the current value of the circulating current i ir_v is half the sum of the current values of the output current i Vn flowing through the lower arm 31 Vn of the V phase and the output current i Vp flowing through the upper arm 31 Vp of the V phase. become.

アーム電圧指令値生成部52は、減算部522vに接続されたP制御部524vを有している。P制御部524vは、減算部522vから入力される循環電流icir_vの信号に比例制御を施すように構成されている。P制御部524vにおいて施される比例演算には、電流から電圧に変換するパラメータが含まれている。これにより、P制御部524vは、電流調整部5bで生成されるアーム電圧指令値vv_acr_refを補正するためのアーム電圧指令補正値vv_cir_refを生成することができる。 The arm voltage command value generation unit 52 has a P control unit 524v connected to the subtraction unit 522v. The P control unit 524v is configured to perform proportional control on the signal of the circulating current i cil_v input from the subtraction unit 522v. The proportional calculation performed by the P control unit 524v includes a parameter for converting a current into a voltage. Thus, P control unit 524v may generate an arm voltage command correction value v V_cir_ref for correcting the arm voltage command value v V_acr_ref generated by the current controller 5b.

図6に示すように、アーム電圧指令値生成部52は、P制御部524vから出力されるアーム電圧指令補正値vv_cir_refが入力される第一加算部525v及び第二加算部526vを有している。第一加算部525vには、電流調整部5bから出力されるV相レグ31Vのアーム電圧指令値vv_acr_refの極性を反転させた信号も入力される。第二加算部526vには、電流調整部5bから出力されるV相レグ31Vのアーム電圧指令値vv_acr_refの極性を反転させない信号も入力される。 As shown in FIG. 6, the arm voltage command value generation unit 52 has a first addition unit 525v and a second addition unit 526v into which the arm voltage command correction value v v_cil_ref output from the P control unit 524v is input. There is. A signal in which the polarity of the arm voltage command value vv_acr_ref of the V-phase leg 31V output from the current adjusting unit 5b is inverted is also input to the first adding unit 525v. A signal that does not invert the polarity of the arm voltage command value vv_acr_ref of the V-phase leg 31V output from the current adjusting unit 5b is also input to the second adding unit 526v.

第一加算部525vは、V相レグ31Vのアーム電圧指令値vv_acr_refの極性を反転させた信号にアーム電圧指令補正値vv_cir_refの信号を加算する。これにより、第一加算部525vは、アーム電圧指令値vv_acr_refの極性を反転させた信号をアーム電圧指令補正値vv_cir_ref分だけ正側に電圧シフトした、V相の上アーム31Vpのアーム電圧予備指令値vvp_pre_refを生成する。第二加算部526vは、V相レグ31Vのアーム電圧指令値vv_acr_refの信号にアーム電圧指令補正値vv_cir_refの信号を加算する。これにより、第二加算部526vは、アーム電圧指令値vv_acr_refの信号をアーム電圧指令補正値vv_cir_ref分だけ正側に電圧シフトした、V相の下アーム31Vnのアーム電圧予備指令値vvn_pre_refを生成する。 The first addition unit 525v adds the signal of the arm voltage command correction value v v_cil_ref to the signal in which the polarity of the arm voltage command value v v_acr_ref of the V-phase leg 31V is inverted. Thus, the first adder unit 525v is a signal obtained by inverting the polarity of the arm voltage command value v V_acr_ref and voltage shifted to the positive side by the arm voltage command correction value v V_cir_ref min, arm-voltage pre-arm 31Vp on the V-phase The command value v vp_pre_ref is generated. The second addition unit 526v adds the signal of the arm voltage command correction value v v_cil_ref to the signal of the arm voltage command value v v_acr_ref of the V phase leg 31V. As a result, the second addition unit 526v shifts the signal of the arm voltage command value v v_acr_ref to the positive side by the arm voltage command correction value v v_cil_ref, and sets the arm voltage preliminary command value v vn_pre_ref of the lower arm 31Vn of the V phase. Generate.

図6に示すように、アーム電圧指令値生成部52は、第一加算部525vで生成されたアーム電圧予備指令値vvp_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第一演算部527vを有している。また、アーム電圧指令値生成部52は、第二加算部526vで生成されたアーム電圧予備指令値vvn_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第二演算部528vを有している。 As shown in FIG. 6, the arm voltage command value generation unit 52 has the arm voltage preliminary command value v vp_pre_ref generated by the first addition unit 525v and the zero-phase voltage command value v output from the capacitor voltage balancing control unit 51. It has a first calculation unit 527v into which Zp_ref is input. Further, the arm voltage command value generation unit 52 inputs the arm voltage preliminary command value v vn_pre_ref generated by the second addition unit 526v and the zero-phase voltage command value v Zp_ref output from the capacitor voltage balancing control unit 51. It has a second calculation unit 528v.

第一演算部527vは、アーム電圧予備指令値vvp_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第一演算部527vは、第一加算部525vで生成されたアーム電圧予備指令値vvp_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第一演算部527vは、アーム電圧予備指令値vvp_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vVp_refを生成する。また、第二演算部528vは、アーム電圧予備指令値vvn_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第二演算部528vは、第二加算部526vで生成されたアーム電圧予備指令値vvn_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第二演算部528vは、アーム電圧予備指令値vvn_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vVn_refを生成する。第一演算部527vで生成されたアーム電圧指令値vVp_ref及び第二演算部528vで生成されたアーム電圧指令値vVn_refは、ゲートパルス信号生成部5cに入力される。 The first calculation unit 527v is configured to execute an addition process for adding a signal of the arm voltage preliminary command value v vp_pre_ref and a signal of the zero-phase voltage command value v Zp_ref. The first calculation unit 527v applies the signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v vp_pre_ref generated by the first addition unit 525v. Thus, the first calculation unit 527v generates the arm voltage command value v Vp_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Vp_pre_ref is consideration. Further, the second calculation unit 528v is configured to execute an addition process for adding the signal of the arm voltage preliminary command value v vn_pre_ref and the signal of the zero-phase voltage command value v Zp_ref. The second calculation unit 528v applies the signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v vn_pre_ref generated by the second addition unit 526v. Thus, the second arithmetic unit 528v generates the arm voltage command value v Vn_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Vn_pre_ref is consideration. Arm voltage command value v Vn_ref generated by the first calculation unit arm voltage command value generated by the 527v v Vp_ref and second arithmetic unit 528v is input to the gate pulse signal generation unit 5c.

図6に示すように、アーム電圧指令値生成部52は、電流検出部(不図示)で検出されたW相の下アーム31Wnの出力電流iWn及びW相の上アーム31Wpの出力電流iWpのそれぞれの電流信号を加算する加算部521wを有している。また、アーム電圧指令値生成部52は、加算部521wから出力される加算信号を2分の1に減算する減算部522wを有している。アーム電圧指令値生成部52は、加算部521w及び減算部522wによって、現時点でW相レグ31Wを循環する循環電流icir_wを算出することができる。加算部521w及び減算部522wは、W相の下アーム31Wnに流れる出力電流iWnとW相の上アーム31Wpに流れる出力電流iWpとを用いて循環電流icir_wを算出する算出部の一例に相当する。本実施形態では、循環電流icir_wの電流値は、W相の下アーム31Wnに流れる出力電流iWn及びW相の上アーム31Wpに流れる出力電流iWpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 6, the arm voltage command value generation unit 52 has an output current i Wn of the lower arm 31 Wn of the W phase and an output current i Wp of the upper arm 31 Wp of the W phase detected by the current detection unit (not shown). It has an addition unit 521w that adds the current signals of the above. Further, the arm voltage command value generation unit 52 has a subtraction unit 522w that subtracts the addition signal output from the addition unit 521w by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_w circulating in the W phase leg 31W at present by the addition unit 521w and the subtraction unit 522w. The addition unit 521w and the subtraction unit 522w are examples of a calculation unit that calculates the circulating current i ir_w using the output current i Wn flowing through the lower arm 31 Wn of the W phase and the output current i Wp flowing through the upper arm 31 Wp of the W phase. Equivalent to. In the present embodiment, the current value of the circulating current i ir_w is half the sum of the current values of the output current i Wn flowing through the lower arm 31 Wn of the W phase and the output current i Wp flowing through the upper arm 31 Wp of the W phase. become.

アーム電圧指令値生成部52は、減算部522wに接続されたP制御部524wを有している。P制御部524wは、減算部522wから入力される信号に比例制御を施すように構成されている。P制御部524wにおいて施される比例演算には、電流から電圧に変換するパラメータが含まれている。これにより、P制御部524wは、電流調整部5bで生成されるアーム電圧指令値vw_acr_refを補正するためのアーム電圧指令補正値vw_cir_refを生成することができる。 The arm voltage command value generation unit 52 has a P control unit 524w connected to the subtraction unit 522w. The P control unit 524w is configured to perform proportional control on the signal input from the subtraction unit 522w. The proportional calculation performed by the P control unit 524w includes a parameter for converting a current into a voltage. Thus, P control unit 524w may generate an arm voltage command correction value v W_cir_ref for correcting the arm voltage command value v W_acr_ref generated by the current controller 5b.

図6に示すように、アーム電圧指令値生成部52は、P制御部524wから出力されるアーム電圧指令補正値vw_cir_refが入力される第一加算部525w及び第二加算部526wを有している。第一加算部525wには、電流調整部5bから出力されるW相レグ31Wのアーム電圧指令値vw_acr_refの極性を反転させた信号も入力される。第二加算部526wには、電流調整部5bから出力されるW相レグ31Wのアーム電圧指令値vw_acr_refの極性を反転させない信号も入力される。 As shown in FIG. 6, the arm voltage command value generation unit 52 has a first addition unit 525w and a second addition unit 526w into which the arm voltage command correction value v w_cil_ref output from the P control unit 524w is input. There is. A signal in which the polarity of the arm voltage command value v w_acr_ref of the W phase leg 31W output from the current adjusting unit 5b is inverted is also input to the first adding unit 525w. A signal that does not invert the polarity of the arm voltage command value v w_acr_ref of the W phase leg 31W output from the current adjusting unit 5b is also input to the second adding unit 526w.

第一加算部525wは、W相レグ31Wのアーム電圧指令値vw_acr_refの極性を反転させた信号にアーム電圧指令補正値vw_cir_refの信号を加算する。これにより、第一加算部525wは、アーム電圧指令値vw_acr_refの極性を反転させた信号をアーム電圧指令補正値vw_cir_ref分だけ正側に電圧シフトした、W相の上アーム31Wpのアーム電圧予備指令値vwp_pre_refを生成する。第二加算部526wは、W相レグ31Wのアーム電圧指令値vw_acr_refの信号にアーム電圧指令補正値vw_cir_refの信号を加算する。これにより、第二加算部526wは、アーム電圧指令値vw_acr_refの信号をアーム電圧指令補正値vw_cir_ref分だけ正側に電圧シフトした、W相の下アーム31Wnのアーム電圧予備指令値vwn_pre_refを生成する。 The first addition unit 525w adds the signal of the arm voltage command correction value v w_cil_ref to the signal in which the polarity of the arm voltage command value v w_acr_ref of the W phase leg 31W is inverted. Thus, the first adder unit 525w is a signal obtained by inverting the polarity of the arm voltage command value v W_acr_ref and voltage shifted to the positive side by the arm voltage command correction value v W_cir_ref min, arm-voltage pre-arm 31Wp on the W-phase The command value v wp_pre_ref is generated. The second addition unit 526w adds the signal of the arm voltage command correction value v w_cil_ref to the signal of the arm voltage command value v w_acr_ref of the W phase leg 31W. As a result, the second addition unit 526w shifts the signal of the arm voltage command value v w_acr_ref to the positive side by the arm voltage command correction value v w_cil_ref, and sets the arm voltage preliminary command value v wn_pre_ref of the lower arm 31 Wn of the W phase. Generate.

図6に示すように、アーム電圧指令値生成部52は、第一加算部525wで生成されたアーム電圧予備指令値vwp_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第一演算部527wを有している。また、アーム電圧指令値生成部52は、第二加算部526wで生成されたアーム電圧予備指令値vwn_pre_ref及びコンデンサ電圧平衡化制御部51から出力された零相電圧指令値vZp_refが入力される第二演算部528wを有している。 As shown in FIG. 6, the arm voltage command value generation unit 52 has the arm voltage preliminary command value v pp_pre_ref generated by the first addition unit 525w and the zero-phase voltage command value v output from the capacitor voltage balancing control unit 51. It has a first calculation unit 527w into which Zp_ref is input. Further, the arm voltage command value generation unit 52 inputs the arm voltage preliminary command value v wn_pre_ref generated by the second addition unit 526w and the zero-phase voltage command value v Zp_ref output from the capacitor voltage balancing control unit 51. It has a second calculation unit 528w.

第一演算部527wは、アーム電圧予備指令値vwp_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第一演算部527wは、第一加算部525wで生成されたアーム電圧予備指令値vwp_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第一演算部527wは、アーム電圧予備指令値vwp_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vWp_refを生成する。また、第二演算部528wは、アーム電圧予備指令値vwn_pre_refの信号及び零相電圧指令値vZp_refの信号を加算する加算処理を実行するように構成されている。第二演算部528wは、第二加算部526wで生成されたアーム電圧予備指令値vwn_pre_refの信号に零相電圧指令値vZp_refの信号を印加する。これにより、第二演算部528wは、アーム電圧予備指令値vwn_pre_refの信号にコンデンサC1の不平衡状態を抑制させる信号成分が加味されたアーム電圧指令値vWn_refを生成する。第一演算部527wで生成されたアーム電圧指令値vWp_ref及び第二加算部526wで生成されたアーム電圧指令値vWn_refは、ゲートパルス信号生成部5cに入力される。 The first calculation unit 527w is configured to execute an addition process for adding a signal of the arm voltage preliminary command value v pp_pre_ref and a signal of the zero-phase voltage command value v Zp_ref. The first calculation unit 527w applies a signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v pp_pre_ref generated by the first addition unit 525w. Thus, the first calculation unit 527w generates the arm voltage command value v Wp_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Wp_pre_ref is consideration. Further, the second calculation unit 528w is configured to execute an addition process for adding the signal of the arm voltage preliminary command value v wn_pre_ref and the signal of the zero-phase voltage command value v Zp_ref. The second calculation unit 528w applies a signal of the zero-phase voltage command value v Zp_ref to the signal of the arm voltage preliminary command value v wen_pre_ref generated by the second addition unit 526w. Thus, the second arithmetic unit 528w generates the arm voltage command value v Wn_ref signal components to suppress the unbalanced state of the capacitor C1 to the signal of the arm-voltage pre-command value v Wn_pre_ref is consideration. Arm voltage command value v Wn_ref generated by the first calculation unit arm voltage command value generated by 527w v Wp_ref and second adding unit 526w is input to the gate pulse signal generation unit 5c.

図6に示すように、アーム電圧指令値生成部52は、キャリア波生成部5dを有している。キャリア波生成部5dは、U相レグ31Uのためのキャリア波SCui、V相レグ31Vのためのキャリア波SCvi及びW相レグ31Wようのキャリア波SCwiを生成してゲートパルス信号生成部5cに出力する。キャリア波SCui、キャリア波SCvi及びキャリア波SCwiは、相間においては同位相であり、相内では位相が1/(x+1)度ずつずらされている。 As shown in FIG. 6, the arm voltage command value generation unit 52 has a carrier wave generation unit 5d. The carrier wave generation unit 5d generates a carrier wave SCui for the U-phase leg 31U, a carrier wave SCvi for the V-phase leg 31V, and a carrier wave SCwi for the W-phase leg 31W, and outputs the carrier wave SCwi to the gate pulse signal generation unit 5c. do. The carrier wave SCui, the carrier wave SCvi, and the carrier wave SCwi are in phase with each other, and the phases are shifted by 1 / (x + 1) degrees within the phase.

ゲートパルス信号生成部5cは、第一演算部527uから入力されるアーム電圧指令値vUp_ref及びキャリア波生成部5dから入力されるキャリア波SCuiに基づいて、U相レグ31Uの上アーム31Upに設けられた電力変換回路セル311Upi(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SUpi_a、半導体スイッチQbを制御するためのゲートパルス信号SUpi_b、半導体スイッチQcを制御するためのゲートパルス信号SUpi_c及び半導体スイッチQdを制御するためのゲートパルス信号SUpi_dを生成する。 The gate pulse signal generation unit 5c is provided on the upper arm 31Up of the U-phase leg 31U based on the arm voltage command value vUp_ref input from the first calculation unit 527u and the carrier wave SCui input from the carrier wave generation unit 5d. was power conversion circuit cell 311Upi (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Upi_a, the gate pulse signal S Upi_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Upi_d for controlling the gate pulse signal S Upi_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

ゲートパルス信号生成部5cは、第二演算部528uから入力されるアーム電圧指令値vun_ref及びキャリア波生成部5dから入力されるキャリア波SCuiに基づいて、U相レグ31Uの下アーム31Unに設けられた電力変換回路セル311Uni(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SUni_a、半導体スイッチQbを制御するためのゲートパルス信号SUni_b、半導体スイッチQcを制御するためのゲートパルス信号SUni_c及び半導体スイッチQdを制御するためのゲートパルス信号SUni_dを生成する。 The gate pulse signal generation unit 5c is provided on the lower arm 31Un of the U-phase leg 31U based on the arm voltage command value vun_ref input from the second calculation unit 528u and the carrier wave SCui input from the carrier wave generation unit 5d. was power conversion circuit cell 311Uni (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Uni_a, the gate pulse signal S Uni_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Uni_d for controlling the gate pulse signal S Uni_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

ゲートパルス信号生成部5cは、第一演算部527vから入力されるアーム電圧指令値vvp_ref及びキャリア波生成部5dから入力されるキャリア波SCviに基づいて、V相レグ31Vの上アーム31Vpに設けられた電力変換回路セル311Vpi(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SVpi_a、半導体スイッチQbを制御するためのゲートパルス信号SVpi_b、半導体スイッチQcを制御するためのゲートパルス信号SVpi_c及び半導体スイッチQdを制御するためのゲートパルス信号SVpi_dを生成する。 The gate pulse signal generation unit 5c is provided on the upper arm 31Vp of the V-phase leg 31V based on the arm voltage command value vv_ref input from the first calculation unit 527v and the carrier wave SCvi input from the carrier wave generation unit 5d. was power conversion circuit cell 311Vpi (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Vpi_a, the gate pulse signal S Vpi_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Vpi_d for controlling the gate pulse signal S Vpi_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

ゲートパルス信号生成部5cは、第二演算部528vから入力されるアーム電圧指令値vvn_ref及びキャリア波生成部5dから入力されるキャリア波SCviに基づいて、V相レグ31Vの下アーム31Vnに設けられた電力変換回路セル311Vni(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SVni_a、半導体スイッチQbを制御するためのゲートパルス信号SVni_b、半導体スイッチQcを制御するためのゲートパルス信号SVni_c及び半導体スイッチQdを制御するためのゲートパルス信号SVni_dを生成する。 The gate pulse signal generation unit 5c is provided on the lower arm 31Vn of the V-phase leg 31V based on the arm voltage command value vvn_ref input from the second calculation unit 528v and the carrier wave SCvi input from the carrier wave generation unit 5d. was power conversion circuit cell 311Vni (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Vni_a, the gate pulse signal S Vni_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Vni_d for controlling the gate pulse signal S Vni_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

ゲートパルス信号生成部5cは、第一演算部527wから入力されるアーム電圧指令値vwp_ref及びキャリア波生成部5dから入力されるキャリア波SCwiに基づいて、W相レグ31Wの上アーム31Wpに設けられた電力変換回路セル311Wpi(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SWpi_a、半導体スイッチQbを制御するためのゲートパルス信号SWpi_b、半導体スイッチQcを制御するためのゲートパルス信号SWpi_c及び半導体スイッチQdを制御するためのゲートパルス信号SWpi_dを生成する。 The gate pulse signal generation unit 5c is provided on the upper arm 31Wp of the W phase leg 31W based on the arm voltage command value vwp_ref input from the first calculation unit 527w and the carrier wave SCwi input from the carrier wave generation unit 5d. was power conversion circuit cell 311Wpi (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Wpi_a, the gate pulse signal S Wpi_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Wpi_d for controlling the gate pulse signal S Wpi_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

ゲートパルス信号生成部5cは、第二演算部528wから入力されるアーム電圧指令値vWn_ref及びキャリア波生成部5dから入力されるキャリア波SCwiに基づいて、W相レグ31Wの下アーム31Wnに設けられた電力変換回路セル311Wni(iは1からxまでの自然数)のそれぞれに設けられた半導体スイッチQaを制御するためのゲートパルス信号SWni_a、半導体スイッチQbを制御するためのゲートパルス信号SWni_b、半導体スイッチQcを制御するためのゲートパルス信号SWni_c及び半導体スイッチQdを制御するためのゲートパルス信号SWni_dを生成する。 The gate pulse signal generation unit 5c is provided on the lower arm 31Wn of the W phase leg 31W based on the arm voltage command value v Wn_ref input from the second calculation unit 528w and the carrier wave SCwi input from the carrier wave generation unit 5d. was power conversion circuit cell 311Wni (i is a natural number from 1 to x) gate pulse signal for controlling the semiconductor switches Qa provided in each S Wni_a, the gate pulse signal S Wni_b for controlling the semiconductor switch Qb , it generates a gate pulse signal S Wni_d for controlling the gate pulse signal S Wni_c and semiconductor switch Qd for controlling the semiconductor switch Qc.

このように、ゲートパルス信号SUni_a〜SUni_d,SUpi_a〜SUpi_d,SVni_a〜SVni_d,SVpi_a〜SVpi_d,SWni_a〜SWni_d,SWpi_a〜SWpi_dは、レグ間の出力電力差(すなわちレグ間のコンデンサ電圧平均差分値)を抑制するためのアーム電圧指令値vUn_ref,vUp_ref,vVn_ref,vVp_ref,vWn_ref,vWp_refに基づいて生成されている。このため、U相の下アーム31Un及び上アーム31Up、V相の下アーム31Vn及び上アームVp並びにW相の下アーム31Wu及び上アームWpのそれぞれに設けられた半導体スイッチQa,Qb,Qc,Qdがゲートパルス信号SUni_a〜SUni_d,SUpi_a〜SUpi_d,SVni_a〜SVni_d,SVpi_a〜SVpi_d,SWni_a〜SWni_d,SWpi_a〜SWpi_dによってオン/オフ動作することにより、レグ間の出力電力差(すなわちレグ間のコンデンサ電圧平均差分値)が抑制される。 Thus, the gate pulse signal S Uni_a ~SU ni_d, S Upi_a ~S Upi_d, S Vni_a ~S Vni_d, S Vpi_a ~S Vpi_d, S Wni_a ~S Wni_d, S Wpi_a ~S Wpi_d the output power difference between the legs It is generated based on the arm voltage command values v Un_ref , v Up_ref , v Vn_ref , v Vp_ref , v Wn_ref , v Wp_ref for suppressing (that is, the average difference value of the capacitor voltage between the legs). Therefore, the semiconductor switches Qa, Qb, Qc, and Qd provided on the lower arm 31Un and the upper arm 31Up of the U phase, the lower arm 31Vn and the upper arm Vp of the V phase, and the lower arm 31Wu and the upper arm Wp of the W phase, respectively. There gate pulse signal S Uni_a ~SU ni_d, S Upi_a ~S Upi_d, S Vni_a ~S Vni_d, S Vpi_a ~S Vpi_d, S Wni_a ~S Wni_d, by operating on / off by S Wpi_a ~S Wpi_d, between legs Output power difference (that is, capacitor voltage average difference value between legs) is suppressed.

つまり、レグ間電力平衡化制御部5aは、アーム電圧指令値生成部52で生成されたアーム電圧指令値vUn_ref〜vWp_refに基づくゲートパルス信号SUni_a〜SWpi_dによってU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれに設けられた半導体スイッチQa,Qb,Qc,Qdを制御することにより、U相レグ31U、V相レグ31V及びW相レグ31Wの第一零相電力の電力差を抑制する。すなわち、レグ間電力平衡化制御部5aは、U相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれの間の電力の不平衡状態を抑制するように、蓄電エネルギーに準ずる量として検出されたU相レグ31U、V相レグ31V及びW相レグ31Wの第一零相電力の電力差を調整する。その結果、電力変換装置1は、系統電圧が三相不平衡に陥っても、安定して運転を継続することができる。 In other words, leg between the power balancing controller 5a, the arms voltage command value generated by the arm voltage command value generating unit 52 v Un_ref ~v gate pulse signal based on Wp_ref S Uni_a ~S Wpi_d by U-phase leg 31U, V-phase By controlling the semiconductor switches Qa, Qb, Qc, and Qd provided on the leg 31V and the W-phase leg 31W, respectively, the power of the first zero-phase power of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. Suppress the difference. That is, the inter-leg power balancing control unit 5a is detected as an amount equivalent to the stored energy so as to suppress the power imbalance state between the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. The power difference between the first zero-phase power of the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W is adjusted. As a result, the power conversion device 1 can continue to operate stably even if the system voltage falls into a three-phase imbalance.

以上説明したように、本実施形態による電力変換装置1は、直列接続された下アーム31Un及び上アーム31Upを有するU相レグ31U、直列接続された下アーム31Vn及び上アーム31Vpを有するV相レグ31V及び直列接続された下アーム31Wn及び上アーム31Wpを有するW相レグ31Wを備えている。また、電力変換装置1は、U相レグ31U、V相レグ31V及びW相レグ31Wに設けられた下アーム31Un,31Vn,31Wnの両端部のうちの上アーム31Up,31Vp,31Wpに接続されていない端部が互いに接続された下側中性点32nと、U相レグ31U、V相レグ31V及びW相レグ31Wに設けられた上アーム31Up,31Vp,31Wpの両端部のうちの下アーム31Un,31Vn,31Wnに接続されていない端部が互いに接続された上側中性点32pとを備えている。さらに、電力変換装置1は、U相レグ31U、V相レグ31V及びW相レグ31Wを制御する制御装置5を備えている。 As described above, the power conversion device 1 according to the present embodiment has a U-phase leg 31U having a lower arm 31Un and an upper arm 31Up connected in series, and a V-phase leg having a lower arm 31Vn and an upper arm 31Vp connected in series. It has a W-phase leg 31W with 31V and a lower arm 31Wn and an upper arm 31Wp connected in series. Further, the power conversion device 1 is connected to the upper arms 31Up, 31Vp, 31Wp of both ends of the lower arms 31Un, 31Vn, 31Wn provided on the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. The lower neutral point 32n whose ends are connected to each other, and the lower arm 31Un of both ends of the upper arms 31Up, 31Vp, 31Wp provided on the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W. , 31Vn, 31Wn with upper neutral points 32p whose ends not connected to each other are connected to each other. Further, the power conversion device 1 includes a control device 5 for controlling the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W.

下アーム31Un,31Vn,31Wnは、直列接続された半導体スイッチQa,Qb及び半導体スイッチQa,Qbに並列接続されたコンデンサC1を有する電力変換回路セル311Un1,・・・,311Unxと、電力変換回路セル311Un1,・・・,311Unxに直列に接続された交流リアクトル312Unとを有している。
上アーム31Up,31Vp,31Wpは、半導体スイッチQa,Qbに並列接続されたコンデンサC1を有する電力変換回路セル311Up1,・・・,311Upxと、電力変換回路セル311Up1,・・・,311Upxに直列に接続された交流リアクトル312Upとを有している。
制御装置5は、下側中性点32nの零相電圧vZn及び上側中性点32pの零相電圧vZpのそれぞれに含まれる同一の電圧成分に相当する実効値Vを調整してU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれの間で流入出する第一零相電力を調整するレグ間電力平衡化制御部5aを有している。
The lower arms 31Un, 31Vn, 31Wn are a power conversion circuit cell 311Un1, ..., 311Unx having a semiconductor switch Qa, Qb connected in series and a capacitor C1 connected in parallel to the semiconductor switches Qa, Qb, and a power conversion circuit cell. It has an AC reactor 312Un connected in series with 311Un1, ..., 311Unx.
The upper arms 31Up, 31Vp, 31Wp are connected in series with the power conversion circuit cells 311Up1, ..., 311Upx having the capacitors C1 connected in parallel to the semiconductor switches Qa and Qb, and the power conversion circuit cells 311Up1, ..., 311Upx. It has a connected AC reactor 312Up.
The control device 5 adjusts the effective value V z corresponding to the same voltage component contained in each of the zero-phase voltage v Zn at the lower neutral point 32n and the zero-phase voltage v Zp at the upper neutral point 32p to U. It has an inter-leg power balancing control unit 5a that adjusts the first zero-phase power flowing in and out between each of the phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W.

このような構成を備える電力変換装置は、系統電圧が三相不平衡に陥っても、安定して運転を継続することができる。 A power conversion device having such a configuration can continue to operate stably even if the system voltage falls into a three-phase imbalance.

〔第2実施形態〕
本発明の第2実施形態による電力変換装置について図7から図9を用いて説明する。本実施形態による電力変換装置は、上記第1実施形態による電力変換装置1と異なり、零相電圧、系統電流及び循環電流によって発生する電力によってレグ間の電力を平衡化(バランス)させる点に特徴を有している。以下、本実施形態による電力変換装置の説明において、図1から図3を参照するとともに、上記第1実施形態による電力変換装置1と同様の作用・機能を奏する構成要素には同一の符号を付してその説明は省略する。
[Second Embodiment]
The power conversion device according to the second embodiment of the present invention will be described with reference to FIGS. 7 to 9. The power conversion device according to the present embodiment is different from the power conversion device 1 according to the first embodiment, and is characterized in that the power between the legs is balanced by the power generated by the zero-phase voltage, the system current, and the circulating current. have. Hereinafter, in the description of the power conversion device according to the present embodiment, FIGS. 1 to 3 are referred to, and the components having the same functions and functions as those of the power conversion device 1 according to the first embodiment are designated by the same reference numerals. The description thereof will be omitted.

本実施形態では一例として、レグ間のコンデンサ電圧を平衡化する方法として、コンデンサ電圧平均差分値ΔvC_α,ΔvC_βを、式(8)の右辺の第2項及び第3項を併用して、すなわち零相電圧vZp,vZn、系統電流i,i,i及び循環電流icir_u,icir_v,icir_wによって発生する電力によってレグ間の電力を平衡化する方法について説明する。ここでは、式(8)の右辺の第3項の具体例として、直流の循環電流と、零相電圧の直流の電圧成分(零相電圧v_Zp及び零相電圧v_Znの差分)とを用いる方法について説明する。直流の循環電流icir_u,icir_v,icir_wの振幅をIcirとおき、位相をΦcirとおくと、循環電流icir_u,icir_v,icir_wは、以下の式(14)として定義することができる。位相Φcirは、系統電流に対する循環電流の位相差である。ここで、循環電流icir_u,icir_v,icir_wは、便宜的に位相Φcirを用いて定義されている。位相Φcirは、U相レグ31U、V相レグ31V及びW相レグ31Wのレグ間(相間)の電流分担を決定するパラメータに相当する。 In this embodiment, as an example, as a method of balancing the capacitor voltage between the legs, the capacitor voltage average difference values Δv C_α and Δv C_β are used in combination with the second and third terms on the right side of the equation (8). That is, a method of balancing the power between the legs by the power generated by the zero-phase voltages v Zp , v Zn , the system currents i u , i v , i w and the circulating currents i ir_u , i ir_v , i ir_ w will be described. Here, as a specific example of the third term on the right side of the equation (8), a DC circulating current and a DC voltage component of the zero-phase voltage ( difference between the zero-phase voltage v _Zp and the zero-phase voltage v _Zn ) are used. The method will be described. DC circulating current i cir_u, i cir_v, the amplitude of the i cir_w I cir Distant, placing the phase [Phi cir, circulating current i cir_u, i cir_v, i cir_w shall be defined as the following equation (14) Can be done. The phase Φ ir is the phase difference of the circulating current with respect to the system current. Here, the circulating current i cir_u, i cir_v, i cir_w is defined using convenience phase [Phi cir. Phase [Phi cir corresponds to a parameter which determines the U-phase leg 31U, between legs of the V-phase leg 31V and W-phase leg 31W the current sharing (interphase).

Figure 2021111987
Figure 2021111987

本実施形態による電力変換装置1に注入する上側中性点32pの零相電圧vZpの直流の電圧成分及び下側中性点32nの零相電圧vZnの直流の電圧成分の差分の振幅Vzpnは、以下の式(15)として定義する。以下、零相電圧vZpの直流の電圧成分及び零相電圧vZnの直流の電圧成分の差分を「零相電圧vZp,vZnの直流電圧成分の差分」と略記する場合がある。 The amplitude V of the difference between the zero-phase voltage of the upper neutral point 32p v Zp DC voltage component and the lower neutral point 32n zero-phase voltage v Zn DC voltage component injected into the power conversion device 1 according to the present embodiment. zpn is defined as the following equation (15). Hereinafter, the difference between the DC voltage component of the zero-phase voltage v Zp and the DC voltage component of the zero-phase voltage v Zn may be abbreviated as “difference between the DC voltage components of the zero-phase voltage v Zp and v Zn”.

Figure 2021111987
Figure 2021111987

式(10)、式(14)及び式(15)を式(9)に代入し、式(13)の導出結果と組み合わせると、流入電力Δp_αの直流成分ΔP_α及び流入電力Δp_βの直流成分ΔP_βは、式(16)のように定まる。 Equation (10), the equation (14) and (15) into equation (9), combined with derivation result of the expression (13), a direct current DC component [Delta] P _Arufa and inflow power Delta] p _Beta inflow power Delta] p _Arufa The component ΔP_β is determined by the equation (16).

Figure 2021111987
Figure 2021111987

式(16)の右辺の第1項は、式(8)の右辺の第1項に対応し、三相電力系統2の系統電圧v,v,v及び系統電流i,i,iに基づく電力である。式(16)の右辺の第2項は、式(8)の右辺の第2項に対応し、零相電圧vZp,vZn及び系統電流i,i,iに基づく電力、すなわち第一零相電力である。式(16)の右辺の第3項は、式(8)の右辺の第3項に対応し、零相電圧vZpと零相電圧vZnとの電圧差及び循環電流iu_cir,iv_cir,iw_cirに基づく電力(第二零相電力)である。 The first term of the right side of the expression (16) corresponds to the first term on the right hand side of (8), three-phase power system 2 of the system voltage v u, v v, v w and the system current i u, i v , Iw- based power. The second term on the right side of the equation (16) corresponds to the second term on the right side of the equation (8), and the power based on the zero-phase voltages v Zp , v Zn and the system currents i u , iv , i w , that is, It is the first zero-phase power. The third term of the right side of the expression (16) corresponds to the third term of the right side of the expression (8), the voltage difference between the zero-phase voltage v Zp and the zero-phase voltage v Zn and circulating current i u_cir, i v_cir, It is electric power based on i w_cil (second zero-phase electric power).

このように、本実施形態による電力変換装置1に設けられたレグ間電力平衡化制御部5aは、下側中性点32nの零相電圧vZn(第一電圧の一例)及び上側中性点32pの零相電圧vZp(第二電圧の一例)のそれぞれに含まれる同一の電圧成分を調整してU相レグ31U、V相レグ31V及びW相レグ31Wのそれぞれの間で流入出する第一零相電力(第一電力の一例)を制御するように構成されている。さらに、レグ間電力平衡化制御部5aは、下側中性点32nの零相電圧vZnと上側中性点32pの零相電圧vZpとの電圧差並びにU相レグ31Uに流れる循環電流iu_cir、V相レグ31Vに流れる循環電流iv_cir及びW相レグ31Wに流れる循環電流iw_cirの少なくとも一方を調整して第二零相電力(第二電力の一例)を制御するように構成されている。本実施形態におけるレグ間電力平衡化制御部5aは、第一零相電力及び第二零相電力を制御して、流入電力Δp_U,Δp_V,Δp_Wの平衡(バランス)を制御する。 As described above, the inter-leg power balancing control unit 5a provided in the power conversion device 1 according to the present embodiment has a zero-phase voltage v Zn (an example of the first voltage) at the lower neutral point 32n and an upper neutral point. The same voltage component contained in each of the 32p zero-phase voltage v Zp (an example of the second voltage) is adjusted to flow in and out between the U-phase leg 31U, the V-phase leg 31V, and the W-phase leg 31W, respectively. It is configured to control one-zero phase power (an example of first power). Further, the inter-leg power balancing control unit 5a determines the voltage difference between the zero-phase voltage v Zn at the lower neutral point 32n and the zero-phase voltage v Zp at the upper neutral point 32p, and the circulating current i flowing through the U-phase leg 31U. It is configured to control the second zero-phase power (an example of the second power) by adjusting at least one of u_cil , the circulating current i v_cil flowing through the V-phase leg 31V, and the circulating current i w_cil flowing through the W-phase leg 31W. There is. Leg between the power balancing controller 5a in the present embodiment, by controlling the first zero-phase power and a second zero-phase power, the inflow power Delta] p _U, Delta] p _V, controls the equilibrium (balance) of Delta] p _W.

次に、本実施形態による電力変換装置1に備えられた制御装置5の制御ブロックについて、図7から図9を用いて説明する。本実施形態における制御装置5について、上記第1実施形態における制御装置5と異なる構成を中心に説明し、同一の構成については必要に応じて適宜説明する。本実施形態における制御装置5は、零相電圧vZp,vZnの実効値Vを用いたレグ間のコンデンサ電圧バランス制御と、零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnを用いたレグ間のコンデンサ電圧バランス制御とが組み合わせた機能を発揮するように構成されている。 Next, the control block of the control device 5 provided in the power conversion device 1 according to the present embodiment will be described with reference to FIGS. 7 to 9. The control device 5 in the present embodiment will be mainly described with a configuration different from that of the control device 5 in the first embodiment, and the same configuration will be described as appropriate as necessary. Control device 5 in this embodiment, the zero-phase voltage v Zp, v and capacitor voltage balance control between leg using the effective value V z of Zn, zero-phase voltage v Zp, v amplitude of the difference between the DC voltage component of the Zn It is configured to exert a function combined with the capacitor voltage balance control between the legs using V zpn.

本実施形態による電力変換装置1は、上記第1実施形態による電力変換装置1に設けられた電圧抑制部512(図4参照)に代えて、電圧電流抑制部513を有している。 The power conversion device 1 according to the present embodiment has a voltage / current suppression unit 513 instead of the voltage suppression unit 512 (see FIG. 4) provided in the power conversion device 1 according to the first embodiment.

図7に示すように、制御装置5のレグ間電力平衡化制御部5aに設けられたコンデンサ電圧平衡化制御部51は、コンデンサ電圧平均差分検出部511と、電圧電流抑制部513とを有している。本実施形態におけるコンデンサ電圧平均差分検出部511は、上記第1実施形態におけるコンデンサ電圧平均差分検出部511と同一の構成を有し、同一の機能を発揮するようになっている。 As shown in FIG. 7, the capacitor voltage balancing control unit 51 provided in the inter-leg power balancing control unit 5a of the control device 5 includes a capacitor voltage average difference detection unit 511 and a voltage / current suppression unit 513. ing. The capacitor voltage average difference detection unit 511 in the present embodiment has the same configuration as the capacitor voltage average difference detection unit 511 in the first embodiment, and exhibits the same function.

ここで、電圧電流抑制部513の具体的な構成の一例について図8を用いて説明する。
図8に示すように、電圧電流抑制部513は、フィードバック部513FBと、フィードフォワード部513FFとを有している。フィードバック部513FBは、コンデンサ電圧平均差分検出部511から入力されるコンデンサ電圧平均差分値ΔvC_α,ΔvC_βに基づいて、直流の循環電流の指令値を生成するように構成されている。フィードフォワード部513FFは、上記第1実施形態と同様に、逆相電圧成分によって発生するレグ間の出力電力の不平衡状態を、レグ間のコンデンサ電圧が不平衡状態(アンバランス)になる前に補正するように構成されている。
Here, an example of a specific configuration of the voltage / current suppression unit 513 will be described with reference to FIG.
As shown in FIG. 8, the voltage / current suppression unit 513 has a feedback unit 513FB and a feedforward unit 513FF. The feedback unit 513FB is configured to generate a command value of a DC circulating current based on the capacitor voltage average difference values Δv C_α and Δv C_β input from the capacitor voltage average difference detection unit 511. Similar to the first embodiment, the feedforward unit 513FF sets the unbalanced state of the output power between the legs generated by the reverse phase voltage component before the capacitor voltage between the legs becomes unbalanced (unbalanced). It is configured to correct.

図8に示すように、フィードバック部513FBは、振幅演算部512FBdから出力された第一零相電力の振幅の信号を零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnの信号で除算する除算部513FBeを有している。除算部513FBeは、振幅演算部512FBdから出力された第一零相電力の振幅の信号を零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnの信号で除算することによって、直流の循環電流の振幅の指令値である振幅指令値Icir_FBを算出することができる。 As shown in FIG. 8, the feedback unit 513FB uses a signal of the amplitude of the first zero-phase power output from the amplitude calculation unit 512FBd as a signal of the amplitude V zpn of the difference between the DC voltage components of the zero-phase voltages v Zp and v Zn. It has a division unit 513FBe that divides by. The division unit 513FBe divides the signal of the amplitude of the first zero-phase power output from the amplitude calculation unit 512FBd by the signal of the amplitude V zpn of the difference between the DC voltage components of the zero-phase voltages v Zp and v Zn. The amplitude command value I ir_FB , which is the command value of the amplitude of the circulating current of the above, can be calculated.

フィードバック部512FBは、低域通過フィルタ512FBaから出力されるコンデンサ電圧平均差分値ΔVC_αと、低域通過フィルタ512FBfから出力されるコンデンサ電圧平均差分値ΔVC_βとが入力されて直流の循環電流の位相差の指令値である位相差指令値Φcir_FBを演算する位相差演算部513FBiを有している。位相差演算部513FBiは、コンデンサ電圧平均差分値ΔVC_αに対するコンデンサ電圧平均差分値ΔVC_βの比を演算する演算部513FBi−1を有している。位相差演算部513FBiは、演算部513FBi−1から入力される演算結果の正接(タンジェント)の逆関数(アークタンジェント)を演算して直流の循環電流の位相差指令値Φcir_FBを算出する算出部513FBi−2を有している。直流の循環電流は、コンデンサ電圧平均差分値ΔVC_α,ΔVC_βと同位相である。このため、直流の循環電流の位相差指令値Φcir_FBは、コンデンサ電圧平均差分値ΔVC_α,ΔVC_βを用いて算出することができる。 The feedback unit 512FB is input with the capacitor voltage average difference value ΔV C_α output from the low-pass filter 512FBa and the capacitor voltage average difference value ΔV C_β output from the low-pass filter 512FBf, and is the order of the DC circulating current. It has a phase difference calculation unit 513FBi that calculates a phase difference command value Φ cil_FB , which is a phase difference command value. The phase difference calculation unit 513FBi has a calculation unit 513FBi-1 that calculates the ratio of the capacitor voltage average difference value ΔV C_β to the capacitor voltage average difference value ΔV C_α. The phase difference calculation unit 513FBi is a calculation unit that calculates the phase difference command value Φ cil_FB of the DC circulating current by calculating the inverse function (arc tangent) of the tangent of the calculation result input from the calculation unit 513FBi-1. It has 513 FBi-2. The DC circulating current has the same phase as the capacitor voltage average difference values ΔV C_α and ΔV C_β. Therefore, the phase difference command value Φ ir_FB of the DC circulating current can be calculated by using the capacitor voltage average difference values ΔV C_α and ΔV C_β.

フィードバック部513FBは、除算部513FBeから入力される直流の循環電流の振幅指令値Icir_FBの信号と、位相差演算部512FBiから入力される直流の循環電流の位相差指令値Φcir_FBの信号とが入力される循環電流演算部513FBkを有している。循環電流演算部513FBkは、式(14)で表される演算を実行して循環電流icir_u,icir_v,icir_wの循環電流第一指令値icir_u_FB,icir_v_FB,icir_w_FBを出力するように構成されている。循環電流演算部513FBkに入力される値は、コンデンサ電圧平均差分値に基づいている。このため、循環電流演算部513FBkが出力する循環電流第一指令値icir_u_FB,icir_v_FB,icir_w_FBは、現在のコンデンサ電圧平均差分値が小さくなるように補正するための補正値になる。 The feedback unit 513FB has a signal of the direct current circulating current amplitude command value I cil_FB input from the dividing unit 513FBe and a signal of the DC circulating current phase difference command value Φ cil_FB input from the phase difference calculation unit 512FBi. It has an input circulating current calculation unit 513FBk. Circulating current calculation unit 513FBk the formula (14) performs an operation represented by the by the circulating current i cir_u, i cir_v, circulating current i Cir_w first command value i cir_u_FB, i cir_v_FB, to output i Cir_w_FB It is configured. The value input to the circulating current calculation unit 513FBk is based on the capacitor voltage average difference value. Therefore, the circulating current first command values i ir_u_FB , i ir_v_FB , and i ir_w_FB output by the circulating current calculation unit 513FBk are correction values for correcting so that the current capacitor voltage average difference value becomes smaller.

図8に示すように、電圧電流抑制部513に設けられたフィードフォワード部513FFは、上記第1実施形態における除算部512FFaと同一の構成を有する除算部512FFaから出力される零相電圧vZp,vZnの予備実効値Vzzの信号が入力される上限制限部513FFbを有している。上限制限部513FFbは、入力される予備実効値Vzzが上限値βVmaxよりも大きい場合に、値を上限値βVmaxに制限した、零相電圧vZp,vZnの実効値Vを出力するように構成されている。一方、上限制限部513FFbは、入力される予備実効値Vzzが上限値βVmax以下の場合には、予備実効値Vzzを零相電圧vZp,vZnの実効値Vとして出力するように構成されている。 As shown in FIG. 8, the feed forward unit 513FF provided in the voltage / current suppression unit 513 has a zero-phase voltage v Zp , which is output from the division unit 512FFa having the same configuration as the division unit 512FFa in the first embodiment. v signal pre effective value V zz of Zn has an upper limit portion 513FFb inputted. The upper limit limiting unit 513FFb, when pre effective value V zz inputted is larger than the upper limit value BetaVmax, have limited value to the upper limit value BetaVmax, to output the effective value V z of the zero-phase voltage v Zp, v Zn It is configured in. On the other hand, the upper limit limiting unit 513FFb, when pre effective value V zz to be input is less than the upper limit βVmax is to output a pre-rms V zz zero-phase voltage v Zp, as the effective value V z of v Zn It is configured.

ここで、上限値βVmaxのうちの「Vmax」は、U相の下アーム31Un及び上アーム31Up、V相の下アーム31Vn及び上アーム31Vp並びにW相の下アーム31Wn及び上アーム31Wpが出力可能な残電圧であり、例えば系統電圧v,v,vの15%程度の値になる。上限値βVmaxのうちの「β」は、零相電圧vZp,vZnの同一の電圧成分に相当する実効値Vに基づく第一零相電力と、零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnに基づく第二零相電力の注入比である。本実施形態による電力変換装置1では例えば、初期状態において第二零相電力よりも第一零相電力に重きを置いて注入比βの初期値が例えば0.7に設定される。注入比βの詳細については後述する。 Here, "Vmax" of the upper limit value βVmax can be output from the lower arm 31Un and the upper arm 31Up of the U phase, the lower arm 31Vn and the upper arm 31Vp of the V phase, and the lower arm 31Wn and the upper arm 31Wp of the W phase. It is the residual voltage, and is, for example, a value of about 15% of the system voltage v u , v v , v w. Of the upper limit value βVmax "β" is the zero-phase voltage v Zp, v a first zero-phase electric power based on the effective value V z which corresponds to the same voltage component of Zn, zero-phase voltage v Zp, v Zn DC It is the injection ratio of the second zero-phase power based on the amplitude V zpn of the difference of the voltage components. In the power conversion device 1 according to the present embodiment, for example, the initial value of the injection ratio β is set to, for example, 0.7 by placing more emphasis on the first zero-phase power than the second zero-phase power in the initial state. The details of the injection ratio β will be described later.

図8に示すように、フィードフォワード部513FFに設けられた零相電圧演算部512FFbは、上限制限部513FFbから入力される零相電圧vZp,vZnの実効値Vの信号と、フィードフォワード部513FFの外部から入力される零相電圧vZp,vZnの位相差Φの信号を用いて、式(12)で表される演算を実行するように構成されている。 As shown in FIG. 8, the zero-phase voltage calculation unit 512FFb provided in the feed-forward unit 513FF includes a signal of the effective values V z of the zero-phase voltages v Zp and v Zn input from the upper limit limiting unit 513FFb and a feed forward. The operation represented by the equation (12) is executed by using the signal of the phase difference Φ z of the zero-phase voltages v Zp and v Zn input from the outside of the unit 513FF.

図8に示すように、フィードフォワード部513FFは、残電圧Vmaxの信号と、注入比βの信号とが入力される振幅演算部513FFdを有している。振幅演算部513FFdは、例えば「(1−β)×Vmax」で表される演算を実行し、零相電圧vZp,vZnの振幅Vzpn/2を算出する。零相電圧vZp,vZnの振幅Vzpn/2は、零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnの1/2に相当する。 As shown in FIG. 8, the feedforward unit 513FF has an amplitude calculation unit 513FFd in which a signal of the residual voltage Vmax and a signal of the injection ratio β are input. The amplitude calculation unit 513FFd executes, for example, an operation represented by “(1-β) × Vmax” to calculate the amplitude V zpn / 2 of the zero-phase voltages v Zp and v Zn. Zero-phase voltage v Zp, v amplitude V ZPN / 2 of Zn is zero-phase voltage v Zp, corresponds to half the difference between the amplitude V ZPN of the DC voltage component of v Zn.

フィードフォワード部513FFは、振幅演算部513FFdから入力される零相電圧vZp,vZnの振幅Vzpn/2の信号を2倍に増幅する増幅部513FFeを有している。増幅部513FFeは、零相電圧vZp,vZnの振幅Vzpn/2を2倍に増幅して零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnの信号を出力する。 The feed-forward unit 513FF has an amplification unit 513FFe that doubles the signal of the amplitude V zpn / 2 of the zero-phase voltages v Zp and v Zn input from the amplitude calculation unit 513FFd. Amplifying section 513FFe the zero-phase voltage v Zp, v Zn amplitude V ZPN / 2 the zero-phase voltage is amplified twice v Zp, v and outputs a differential signal of amplitude V ZPN of the DC voltage component of Zn.

フィードフォワード部513FFは、増幅部513FFeから出力された零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpnの信号の極性を反転させた信号(負極性の信号)と、レグ間の電力を平衡化するために必要な残りの電力(以下、「必要残電力」と略記する場合がある)の信号とが入力される除算部513FFfを有している。必要残電力は、系統電圧v,v,vの逆相成分の実効値VS_n及び系統電流i,i,iの実効値Iを乗算した値を√3で除算した値から当該値を零相電圧vZp,vZnの予備実効値Vzzに対する零相電圧vZp,vZnの実効値Vとの比率を積算した値を減算して得られる。除算部513FFfは、必要残電力の信号を零相電圧vZp,vZnの振幅Vzpn/2の信号で除算して直流の循環電流の振幅の指令値である振幅指令値Icir_FFを算出する。 The feed-forward unit 513FF is used between the leg and the signal (negative signal) in which the polarity of the signal of the difference between the DC voltage components of the zero-phase voltages v Zp and v Zn output from the amplification unit 513FFe and the amplitude V zpn is reversed. It has a division unit 513FFf to which a signal of the remaining power required for balancing the power of the above (hereinafter, may be abbreviated as "required residual power") is input. Need remaining power system voltage v u, v v, v effective value V of the reverse phase component of the w S_n and system current i u, i v, a value obtained by multiplying the effective value I S for i w divided by √3 zero-phase voltage the value from the value v Zp, v zero-phase voltage to the pre effective value V zz of Zn v Zp, v is obtained by subtracting a value obtained by integrating the ratio between the effective value V z of Zn. The division unit 513FFf divides the signal of the required residual power by the signal of the amplitude V zpn / 2 of the zero-phase voltage v Zp and v Zn to calculate the amplitude command value I cil_FF which is the command value of the amplitude of the DC circulating current. ..

フィードフォワード部513FFは、除算部513FFfから入力される直流の循環電流の振幅指令値Icir_FFの信号と、直流の循環電流の位相差Φcir_FFの信号とが入力される循環電流演算部513FFgを有している。循環電流演算部513FFgに入力される直流の循環電流の位相差Φcir_FFは、系統電圧v,v,vの位相に対する系統電流iの位相差Φpfを系統電圧v,v,vの逆相成分の位相差Φvnから減算して得られる。循環電流演算部513FFgは、直流の循環電流の振幅指令値Icir_FFの信号と、直流の循環電流の位相差Φcir_FFの信号とを用いて、式(14)で表される演算を実行し、循環電流icir_u,icir_v,icir_wの循環電流第二指令値icir_u_FF,icir_v_FF,icir_w_FFを出力するように構成されている。 The feed forward unit 513FF has a circulation current calculation unit 513FFg in which the signal of the amplitude command value I ir_FF of the DC circulating current input from the division unit 513FFf and the signal of the phase difference Φ cil_FF of the DC circulation current are input. is doing. The phase difference Φ cil_FF of the direct current circulating current input to the circulating current calculation unit 513FFg sets the phase difference Φ pf of the system current i u with respect to the phases of the system voltages v u , v v , v w to the system voltages v u , v v. , V w It is obtained by subtracting from the phase difference Φ vn of the opposite phase component. The circulating current calculation unit 513FFg executes the calculation represented by the equation (14) by using the signal of the amplitude command value I ir_FF of the direct current circulating current and the signal of the phase difference Φ chill_FF of the direct current circulating current. circulating current i cir_u, i cir_v, circulating current second command value i Cir_u_FF of i cir_w, i cir_v_FF, and is configured to output a i cir_w_FF.

本実施形態による電力変換装置1では、上記第1実施形態による電力変換装置1と同様に、系統電圧v,v,vの逆相成分の実効値VS_nが判ると、レグ間に生じるコンデンサC1の電圧の不平衡状態の程度が予測できる。このため、フィードフォワード部513FFは、検出値から予測されるコンデンサC1の電圧の不平衡状態に基づく循環電流icir_u,icir_v,icir_wの循環電流第二指令値icir_u_FF,icir_v_FF,icir_w_FFを循環電流演算部513FFgから出力する。 In the power conversion device 1 according to the present embodiment, similarly to the power conversion device 1 according to the first embodiment, when the effective values VS_n of the opposite phase components of the system voltages v u , v v , v w are known, between the legs. The degree of voltage imbalance of the resulting capacitor C1 can be predicted. Thus, feedforward module 513FF is circulating current i Cir_u based on unbalanced state of the voltage of the capacitor C1 which is predicted from the detected value, i cir_v, i cir_w circulating current second command value i cir_u_FF, i cir_v_FF, i cir_w_FF Is output from the circulating current calculation unit 513FFg.

図8に示すように、電圧電流抑制部513は、循環電流演算部513FBkから入力される循環電流第一指令値icir_u_FB,icir_v_FB,icir_w_FBの信号と、循環電流演算部513FFgから入力される循環電流第二指令値icir_u_FF,icir_v_FF,icir_w_FFの信号とを加算する加算部513Faを有している。加算部513Faは、検出値に基づく循環電流第二指令値icir_u_FF,icir_v_FF,icir_w_FFの信号を、現在のコンデンサ電圧平均差分値が小さく補正するための補正値としての循環電流第一指令値icir_u_FB,icir_v_FB,icir_w_FBで補正して、循環電流指令値icir_u_ref,icir_v_ref,icir_w_refを出力する。これにより、電圧電流抑制部513から出力される循環電流指令値icir_u_ref,icir_v_ref,icir_w_refは、コンデンサ電圧平均差分値を抑制させるための指令値となる。循環電流指令値icir_u_refは、循環電流icir_uの指令値であり、循環電流指令値icir_v_refは、循環電流icir_vの指令値であり、循環電流指令値icir_w_refは、循環電流icir_wの指令値である。 As shown in FIG. 8, the voltage / current suppression unit 513 is input from the signals of the circulation current first command values i ir_u_FB , i ir_v_FB , and i cil_w_FB input from the circulation current calculation unit 513FBk, and the circulation current calculation unit 513FFg. It has an adder 513Fa that adds the signals of the second command value of the circulating current, i cil_u_FF , i cil_v_FF , and i cil_w_FF. The adder 513Fa is a circulating current first command value as a correction value for correcting the signals of the circulating current second command values i ir_u_FF , i ir_v_FF , and i ir_w_FF based on the detected values so that the current capacitor voltage average difference value is small. i cir_u_FB, i cir_v_FB, corrected by i cir_w_FB, and outputs the circulating current command value i cir_u_ref, i cir_v_ref, the i cir_w_ref. As a result, the circulating current command values i ir_u_ref , i ir_v_ref , and i ir_w_ref output from the voltage / current suppression unit 513 become command values for suppressing the average difference value of the capacitor voltage. The circulating current command value i ir_u_ref is the command value of the circulating current i ir_u , the circulating current command value i ir_v_ref is the command value of the circulating current i ir_v , and the circulating current command value i ir_w_ref is the command of the circulating current i ir_w. The value.

図8に示すように、電圧電流抑制部513は、振幅演算部513FFdから入力される零相電圧vZp,vZnの振幅Vzpn/2の信号と、零相電圧演算部512FFbから入力される零相電圧vZp,vZnの指令値の信号とを加算する加算部513Fbを有している。加算部513Fbは、零相電圧vZp,vZnの振幅Vzpn/2の信号と、零相電圧vZp,vZnの指令値の信号とを加算して零相電圧vZpの電圧指令値vZp_refを出力する。 As shown in FIG. 8, the voltage / current suppression unit 513 is input from the zero-phase voltage v Zp , v Zn amplitude V zpn / 2 signal input from the amplitude calculation unit 513FFd and the zero-phase voltage calculation unit 512FFb. It has an adder 513Fb that adds signals with command values of zero-phase voltages v Zp and v Zn. The adder 513Fb adds the signal of the zero-phase voltage v Zp , v Zn amplitude V zpn / 2 and the signal of the zero-phase voltage v Zp , v Zn command value, and adds the zero-phase voltage v Zp voltage command value. v Zp_ref is output.

図8に示すように、電圧電流抑制部513は、振幅演算部513FFdから入力される零相電圧vZp,vZnの振幅Vzpn/2の信号の極性を反転させた信号(負極性の信号)と、零相電圧演算部512FFbから入力される零相電圧vZp,vZnの指令値の信号とを加算する加算部513Fcを有している。加算部513Fcは、零相電圧vZp,vZnの指令値の信号から零相電圧vZp,vZnの振幅Vzpn/2の信号を減算するのと等価の演算を実行して零相電圧vZnの電圧指令値vZn_refを出力する。 As shown in FIG. 8, the voltage / current suppression unit 513 is a signal (negative signal) in which the polarity of the signal of the zero-phase voltage v Zp , v Zn amplitude V zpn / 2 input from the amplitude calculation unit 513FFd is inverted. ) And the signal of the command value of the zero-phase voltage v Zp , v Zn input from the zero-phase voltage calculation unit 512FFb, and has an addition unit 513Fc. Adding section 513Fc the zero-phase voltage v Zp, v zero-phase voltage from the signal of the command value of Zn v Zp, v Zn amplitude V ZPN / 2 of the execution to the zero-phase voltage calculation equivalent to subtracting the signal v The voltage command value of Zn v Zn_ref is output.

ところで、系統条件によっては、式(16)の右辺の第1項の値が大きくなりすぎて、注入比βが初期値(例えば0.7)では、レグ間の電力平衡化の制御が追いつかなくなる場合がある。ここで、レグ間の電力平衡化の制御が追いつかなくなる場合とは、後述する欠損故障の深刻度合いが0.5[p.u.]よりも小さくなる、深刻な系統故障条件の場合である。厳密な値は、STATCOMとしての電力変換装置の設計仕様や系統故障の種類、系統故障地点からSTATCOMとしての電力変換装置の間に設置されている変圧器の巻き線の種類などに依存する。その場合には、電力変換装置1は、レグ間の電力の平衡化制御能力が最大となるように、最適な注入比βを計算し直して再設定するように構成されている。ここで、最適な注入比βの計算方法について説明する。 By the way, depending on the system conditions, the value of the first term on the right side of the equation (16) becomes too large, and when the injection ratio β is the initial value (for example, 0.7), the control of the power equilibrium between the legs cannot catch up. In some cases. Here, when the control of the power equilibrium between the legs cannot keep up, the seriousness of the defect failure described later is 0.5 [p. u. ], Which is a serious system failure condition. The exact value depends on the design specifications of the power conversion device as STATCOM, the type of system failure, the type of transformer winding installed between the system failure point and the power conversion device as STATCOM, and the like. In that case, the power conversion device 1 is configured to recalculate and reset the optimum injection ratio β so that the power balancing control capability between the legs is maximized. Here, a method for calculating the optimum injection ratio β will be described.

電力変換装置1に設けられた制御装置5は、循環電流icir_u,icir_v,icir_wの少なくとも1つが主回路部3を構成する部品の発熱上限値やピーク電流上限値から決定される最大値Imaxに達した時点で、注入比βを最適値に更新する。式(17)に示すように、式(16)において左辺がゼロになるように、右辺の第2項及び第3項を調整することにより、三相不平衡系統条件によって発生するレグ間の電力不平衡状態を相殺できる。 In the control device 5 provided in the power conversion device 1, at least one of the circulating currents i ir_u , i ir_v , and i ir_w is a maximum value determined from the heat generation upper limit value and the peak current upper limit value of the components constituting the main circuit unit 3. When Imax is reached, the injection ratio β is updated to the optimum value. As shown in equation (17), by adjusting the second and third terms on the right side so that the left side becomes zero in equation (16), the power between the legs generated by the three-phase unbalanced system condition The imbalance can be offset.

Figure 2021111987
Figure 2021111987

循環電流icir_u,icir_v,icir_wが最大値Imaxに達した時点では、式(17)は、式(18)のように表すことができる。式(18)を満たす注入比βが最適値である。 When the circulating currents i ir_u , i ir_v , and i ir_w reach the maximum value Imax, the equation (17) can be expressed as the equation (18). The injection ratio β satisfying the equation (18) is the optimum value.

Figure 2021111987
Figure 2021111987

このように、制御装置5は、下側中性点32nの零相電圧vZn及び上側中性点32pの零相電圧vZpのそれぞれの電圧成分の調整に基づいて制御する第一零相電力と、循環電流icir_u,icir_v,icir_wの調整に基づく第二零相電力との注入比βを、下アーム31Un,31Vn,31Wn及び上アーム31Up,31Vp,31Wpが出力可能な最大電圧に基づく値(すなわち残電圧Vmax)と、交流リアクトル312Un,312Vn,312Wn(第一コイルの一例)及び交流リアクトル312Up,312Vp,312Wp(第二コイルの一例)の接続部の電圧(すなわち系統電圧v,v,v)に基づく値と、当該電圧成分と、零相電圧vZn及び零相電圧vZpの電圧差とに基づいて調整するように構成されている。下アーム31Un,31Vn,31Wn及び上アーム31Up,31Vp,31Wpが出力可能な最大電圧に基づく値は、式(17)及び式(18)の右辺に示す残電圧Vmaxに相当する。交流リアクトル312Un,312Vn,312Wn及び交流リアクトル312Up,312Vp,312Wpの接続部の電圧に基づく値は、式(17)及び式(18)の右辺中の第1項で表される電力に相当する。零相電圧vZnZpの電圧成分は、式(17)及び式(18)の右辺中に示す零相電圧vZnZpの実効値Vに相当する。零相電圧vZnと零相電圧vZpとの電圧差は、零相電圧vZp,vZnの直流電圧成分の差分の振幅Vzpn、すなわち式(17)及び式(18)の右辺中に示す「(1−β)Vmax」に相当する。 In this way, the control device 5 controls the first zero-phase power based on the adjustment of the respective voltage components of the zero-phase voltage v Zn at the lower neutral point 32n and the zero-phase voltage v Zp at the upper neutral point 32p. And the injection ratio β with the second zero phase power based on the adjustment of the circulating currents i ir_u , i ir_v , i ir_w to the maximum voltage that the lower arm 31Un, 31Vn, 31Wn and the upper arm 31Up, 31Vp, 31Wp can output. and based value (i.e. residual voltage Vmax), AC reactor 312Un, 312Vn, 312Wn (first example of a coil) and AC reactors 312Up, 312Vp, 312Wp voltage (i.e. grid voltage at the connection of (an example of a second coil) v u , V v , v w ), the voltage component, and the voltage difference between the zero-phase voltage v Zn and the zero-phase voltage v Zp. The value based on the maximum voltage that can be output by the lower arms 31Un, 31Vn, 31Wn and the upper arms 31Up, 31Vp, 31Wp corresponds to the residual voltage Vmax shown on the right side of the equations (17) and (18). The values based on the voltages of the AC reactors 312Un, 312Vn, 312Wn and the AC reactors 312Up, 312Vp, 312Wp correspond to the electric power represented by the first term in the right side of the equations (17) and (18). Zero-phase voltage v Zn, voltage component of Zp of the formula (17) and the zero-phase voltage shown in the right side of the equation (18) v Zn, corresponding to the effective value V z in Zp. The voltage difference between the zero-phase voltage v Zn and the zero-phase voltage v Zp is the amplitude V zpn of the difference between the DC voltage components of the zero-phase voltage v Zp and v Zn , that is, in the right side of equations (17) and (18). It corresponds to the indicated "(1-β) Vmax".

図9は、レグ間電力平衡化制御部5aに設けられたアーム電圧指令値生成部52の概略構成の一例を示すブロック図である。図9では、理解を容易にするため、アーム電圧指令値生成部52に接続されたコンデンサ電圧平衡化制御部51、電流調整部5b及びゲートパルス信号生成部5c並びにゲートパルス信号生成部5cに接続されたキャリア波生成部5dが併せて図示されている。 FIG. 9 is a block diagram showing an example of a schematic configuration of an arm voltage command value generation unit 52 provided in the inter-leg power balancing control unit 5a. In FIG. 9, for easy understanding, the capacitor voltage balancing control unit 51, the current adjustment unit 5b, the gate pulse signal generation unit 5c, and the gate pulse signal generation unit 5c connected to the arm voltage command value generation unit 52 are connected. The carrier wave generation unit 5d is also shown in the figure.

図9に示すように、アーム電圧指令値生成部52は、コンデンサ電圧平衡化制御部51から入力されるU相の下アーム31Unの出力電流iUn及びU相の上アーム31Upの出力電流iUpのそれぞれの電流信号を加算する加算部521uを有している。また、アーム電圧指令値生成部52は、加算部521uから出力される加算信号を2分の1に減算する減算部522uを有している。アーム電圧指令値生成部52は、加算部521u及び減算部522uによって、現時点でU相レグ31Uを循環する循環電流icir_uを算出することができる。加算部521u及び減算部522uは、U相の下アーム31Unに流れる出力電流iUnとU相の上アーム31Upに流れる出力電流iUpとを用いて循環電流icir_uを算出する算出部の一例に相当する。本実施形態では、循環電流icir_uの電流値は、U相の下アーム31Unに流れる出力電流iUn及びU相の上アーム31Upに流れる出力電流iUpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 9, the arm voltage command value generation unit 52 receives an output current i Un of the U-phase lower arm 31 Un and an output current i of the U-phase upper arm 31 Up input from the capacitor voltage balancing control unit 51. It has an addition unit 521u that adds each current signal of Up. Further, the arm voltage command value generation unit 52 has a subtraction unit 522u that subtracts the addition signal output from the addition unit 521u by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_u circulating in the U-phase leg 31U at present by the addition unit 521u and the subtraction unit 522u. The addition unit 521u and the subtraction unit 522u are examples of a calculation unit that calculates the circulating current i cil_u using the output current i Un flowing through the lower arm 31 Un of the U phase and the output current i Up flowing through the upper arm 31 Up of the U phase. Equivalent to. In the present embodiment, the current value of the circulating current i ir_u is half the sum of the current values of the output current i Un flowing through the lower arm 31 Un of the U phase and the output current i Up flowing through the upper arm 31 Up of the U phase. become.

アーム電圧指令値生成部52は、減算部522uから出力される循環電流icir_uと、コンデンサ電圧平衡化制御部51の電圧電流抑制部513に設けられた加算部513Fa(図8参照)から入力される循環電流指令値icir_u_refの極性を反転させた信号とが入力される加算部523uを有している。加算部523uは、循環電流icir_uの電流信号と極性を反転させた循環電流指令値icir_u_refの信号を加算、すなわち循環電流icir_uの電流信号から循環電流指令値icir_u_refの信号を減算する。 The arm voltage command value generation unit 52 is input from the circulating current i cil_u output from the subtraction unit 522u and the addition unit 513Fa (see FIG. 8) provided in the voltage current suppression unit 513 of the capacitor voltage balancing control unit 51. It has an adder 523u to which a signal obtained by reversing the polarity of the circulating current command value i cil_u_ref is input. Addition unit 523u is a signal of the circulating current command value i Cir_u_ref the current signal and a polarity obtained by inverting the circulating current icir_u addition, that subtracts the signal of the circulating current command value i Cir_u_ref from the current signal of the circulating current i cir_u.

アーム電圧指令値生成部52は、加算部523uに接続されたP制御部524uを有している。P制御部524uは、加算部523uから入力される信号に比例制御を施すように構成されている。P制御部524uにおいて施される比例演算には、加算部523uでの加算結果の単位を電流から電圧に変換するパラメータが含まれている。これにより、P制御部524uは、電流調整部5bで生成されるアーム電圧指令値vu_acr_refを補正するためのアーム電圧指令補正値vu_cir_refを生成することができる。アーム電圧指令値vu_acr_refは、三相電力系統2のU相交流電源211とU相レグ31Uとの間で入流出させる無効電圧の指令値である。 The arm voltage command value generation unit 52 has a P control unit 524u connected to the addition unit 523u. The P control unit 524u is configured to perform proportional control on the signal input from the addition unit 523u. The proportional calculation performed by the P control unit 524u includes a parameter for converting the unit of the addition result in the addition unit 523u from current to voltage. Thus, P control unit 524u can generate an arm voltage command correction value v U_cir_ref for correcting the arm voltage command value v U_acr_ref generated by the current controller 5b. The arm voltage command value v u_acr_ref is a command value of an invalid voltage that flows in and out between the U-phase AC power supply 211 and the U-phase leg 31U of the three-phase power system 2.

本実施形態におけるアーム電圧指令値生成部52のP制御部524u以降の構成は、上記第1実施形態によるアーム電圧指令値生成部52のP制御部524u以降の構成と同様であるため、説明は省略する。 The configuration of the arm voltage command value generation unit 52 after the P control unit 524u in the present embodiment is the same as the configuration of the arm voltage command value generation unit 52 after the P control unit 524u according to the first embodiment. Omit.

図9に示すように、アーム電圧指令値生成部52は、コンデンサ電圧平衡化制御部51から入力されるV相の下アーム31Vnの出力電流iVn及びV相の上アーム31Vpの出力電流iUpのそれぞれの電流信号を加算する加算部521vを有している。また、アーム電圧指令値生成部52は、加算部521vから出力される加算信号を2分の1に減算する減算部522vを有している。アーム電圧指令値生成部52は、加算部521v及び減算部522vによって、現時点でV相レグ31Vを循環する循環電流icir_vを算出することができる。加算部521v及び減算部522vは、V相レグ31Vの下アーム31Vnに流れる出力電流iVnとV相レグ31Vの上アーム31Vpに流れる出力電流iVpとを用いて循環電流icir_vを算出する算出部の一例に相当する。本実施形態では、循環電流icir_vの電流値は、V相レグ31Vの下アーム31Vnに流れる出力電流iVn及びV相レグ31Vの上アーム31Vpに流れる出力電流iVpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 9, the arm voltage command value generating unit 52, the output current i Up arm 31Vp on the output current i Vn and V-phase lower arm 31Vn the V-phase input from the capacitor voltage balancing controller 51 It has an addition unit 521v that adds the current signals of the above. Further, the arm voltage command value generation unit 52 has a subtraction unit 522v that subtracts the addition signal output from the addition unit 521v by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_v circulating in the V-phase leg 31V at present by the addition unit 521v and the subtraction unit 522v. Calculating adder unit 521v and subtraction portion 522v is to calculate the circulating current i Cir_v by using the output current i Vp flowing to the upper arm 31Vp output current i Vn and V-phase leg 31V flowing through the lower arm 31Vn the V-phase leg 31V Corresponds to an example of the part. In the present embodiment, the current value of the circulating current i cil_v is the sum of the current values of the output current i Vn flowing through the lower arm 31 Vn of the V phase leg 31 V and the output current i Vp flowing through the upper arm 31 Vp of the V phase leg 31 V. It becomes half the value of.

アーム電圧指令値生成部52は、減算部522vから出力される循環電流icir_vと、コンデンサ電圧平衡化制御部51の電圧電流抑制部513に設けられた加算部513Fa(図8参照)から入力される循環電流指令値icir_v_refの極性を反転させた信号とが入力される加算部523vを有している。加算部523vは、循環電流icir_vの電流信号と極性を反転させた循環電流指令値icir_v_refの信号を加算、すなわち循環電流icir_vの電流信号から循環電流指令値icir_v_refの信号を減算する。 The arm voltage command value generation unit 52 is input from the circulating current i cil_v output from the subtraction unit 522v and the addition unit 513Fa (see FIG. 8) provided in the voltage current suppression unit 513 of the capacitor voltage balancing control unit 51. It has an adder 523v to which a signal obtained by reversing the polarity of the circulating current command value i cil_v_ref is input. Adding section 523v is circulating current i adds the signal of the current signal and the polarity circulating current command value i Cir_v_ref obtained by inverting the Cir_v, i.e. subtracts the signal of the circulating current command value i Cir_v_ref from the current signal of the circulating current i Cir_v.

アーム電圧指令値生成部52は、加算部523vに接続されたP制御部524vを有している。P制御部524vは、加算部523vから入力される信号に比例制御を施すように構成されている。P制御部524vにおいて施される比例演算には、加算部523vでの加算結果の単位を電流から電圧に変換するパラメータが含まれている。これにより、P制御部524vは、電流調整部5bで生成されるアーム電圧指令値vV_acr_refを補正するためのアーム電圧指令補正値vv_cir_refを生成することができる。アーム電圧指令値vv_acr_refは、三相電力系統2のV相交流電源212とV相レグ31Vとの間で入流出させる無効電圧の指令値である。 The arm voltage command value generation unit 52 has a P control unit 524v connected to the addition unit 523v. The P control unit 524v is configured to perform proportional control on the signal input from the addition unit 523v. The proportional calculation performed by the P control unit 524v includes a parameter for converting the unit of the addition result in the addition unit 523v from current to voltage. Thus, P control unit 524v may generate an arm voltage command correction value v V_cir_ref for correcting the arm voltage command value v V_acr_ref generated by the current controller 5b. The arm voltage command value v v_acr_ref is a command value of an invalid voltage that flows in and out between the V-phase AC power supply 212 of the three-phase power system 2 and the V-phase leg 31V.

本実施形態におけるアーム電圧指令値生成部52のP制御部524v以降の構成は、上記第1実施形態によるアーム電圧指令値生成部52のP制御部524v以降の構成と同様であるため、説明は省略する。 The configuration of the arm voltage command value generation unit 52 after the P control unit 524v in the present embodiment is the same as the configuration of the arm voltage command value generation unit 52 after the P control unit 524v according to the first embodiment. Omit.

図9に示すように、アーム電圧指令値生成部52は、コンデンサ電圧平衡化制御部51から入力されるW相の下アーム31Wnの出力電流iWn及びW相の上アーム31Wpの出力電流iWpのそれぞれの電流信号を加算する加算部521wを有している。また、アーム電圧指令値生成部52は、加算部521wから出力される加算信号を2分の1に減算する減算部522wを有している。アーム電圧指令値生成部52は、加算部521w及び減算部522wによって、現時点でW相レグ31Wを循環する循環電流icir_wを算出することができる。加算部521w及び減算部522wは、W相の下アーム31Wnに流れる出力電流iWnとW相の上アーム31Wpに流れる出力電流iWpとを用いて循環電流icir_wを算出する算出部の一例に相当する。本実施形態では、循環電流icir_wの電流値は、W相の下アーム31Wnに流れる出力電流iWn及びW相の上アーム31Wpに流れる出力電流iWpのそれぞれの電流値の和の半分の値になる。 As shown in FIG. 9, the arm voltage command value generation unit 52 has an output current i Wn of the lower arm 31 Wn of the W phase and an output current i Wp of the upper arm 31 Wp of the W phase input from the capacitor voltage balancing control unit 51. It has an addition unit 521w that adds the current signals of the above. Further, the arm voltage command value generation unit 52 has a subtraction unit 522w that subtracts the addition signal output from the addition unit 521w by half. The arm voltage command value generation unit 52 can calculate the circulating current i cil_w circulating in the W phase leg 31W at present by the addition unit 521w and the subtraction unit 522w. The addition unit 521w and the subtraction unit 522w are examples of a calculation unit that calculates the circulating current i ir_w using the output current i Wn flowing through the lower arm 31 Wn of the W phase and the output current i Wp flowing through the upper arm 31 Wp of the W phase. Equivalent to. In the present embodiment, the current value of the circulating current i ir_w is half the sum of the current values of the output current i Wn flowing through the lower arm 31 Wn of the W phase and the output current i Wp flowing through the upper arm 31 Wp of the W phase. become.

アーム電圧指令値生成部52は、減算部522wから出力される循環電流icir_wと、コンデンサ電圧平衡化制御部51の電圧電流抑制部513に設けられた加算部513Fa(図8参照)から入力される循環電流指令値icir_w_refの極性を反転させた信号とが入力される加算部523wを有している。加算部523wは、循環電流icir_wの電流信号と極性を反転させた循環電流指令値icir_w_refの信号を加算、すなわち循環電流icir_wの電流信号から循環電流指令値icir_w_refの信号を減算する。 The arm voltage command value generation unit 52 is input from the circulating current i cil_w output from the subtraction unit 522w and the addition unit 513Fa (see FIG. 8) provided in the voltage current suppression unit 513 of the capacitor voltage balancing control unit 51. It has an adder 523w to which a signal obtained by reversing the polarity of the circulating current command value i cil_w_ref is input. Addition unit 523w is a signal of the circulating current command value i Cir_w_ref the current signal and a polarity obtained by inverting the circulating current icir_w addition, that subtracts the signal of the circulating current command value i Cir_w_ref from the current signal of the circulating current i cir_w.

アーム電圧指令値生成部52は、加算部523wに接続されたP制御部524wを有している。P制御部524wは、加算部523wから入力される信号に比例制御を施すように構成されている。P制御部524wにおいて施される比例演算には、加算部523wでの加算結果の単位を電流から電圧に変換するパラメータが含まれている。これにより、P制御部524wは、電流調整部5bで生成されるアーム電圧指令値vw_acr_refを補正するためのアーム電圧指令補正値vw_cir_refを生成することができる。アーム電圧指令値vw_acr_refは、三相電力系統2のW相交流電源213とW相レグ31Wとの間で入流出させる無効電圧の指令値である。 The arm voltage command value generation unit 52 has a P control unit 524w connected to the addition unit 523w. The P control unit 524w is configured to perform proportional control on the signal input from the addition unit 523w. The proportional calculation performed by the P control unit 524w includes a parameter for converting the unit of the addition result in the addition unit 523w from current to voltage. Thus, P control unit 524w may generate an arm voltage command correction value v W_cir_ref for correcting the arm voltage command value v W_acr_ref generated by the current controller 5b. The arm voltage command value v w_acr_ref is a command value of an invalid voltage that flows in and out between the W-phase AC power supply 213 of the three-phase power system 2 and the W-phase leg 31W.

本実施形態におけるアーム電圧指令値生成部52のP制御部524w以降の構成は、上記第1実施形態によるアーム電圧指令値生成部52のP制御部524w以降の構成と同様であるため、説明は省略する。 The configuration of the arm voltage command value generation unit 52 after the P control unit 524w in the present embodiment is the same as the configuration of the arm voltage command value generation unit 52 after the P control unit 524w according to the first embodiment. Omit.

このように、本実施形態におけるアーム電圧指令値生成部52は、循環電流指令値icir_u_ref,icir_v_ref,icir_w_ref及び電圧指令値vZp_ref,vZn_refに基づいて、アーム電圧指令値vUn_refVn_refWn_refを生成するように構成されている。これにより、アーム電圧指令値生成部52は、循環電流icir_u,icir_v,icir_w及び零相電圧vZp,vZnを調整してコンデンサC1の不平衡状態を抑制させ、流入電力Δp_U,Δp_V,Δp_Wの平衡(バランス)を制御することができる。 As described above, the arm voltage command value generation unit 52 in the present embodiment is based on the circulating current command values i ir_u_ref , i ir_v_ref , i ir_w_ref and the voltage command values v Zp_ref , v Zn_ref , and the arm voltage command values v Un_ref , Vn_ref. , Wn_ref is configured to generate. As a result, the arm voltage command value generation unit 52 adjusts the circulating currents i ir_u, i ir_v , i ir_w and the zero-phase voltages v Zp , v Zn to suppress the unbalanced state of the capacitor C1, and the inflow power Δp _U , The equilibrium of Δp _V and Δp _W can be controlled.

以上説明したように、本実施形態による電力変換装置1は、上記第1実施形態による電力変換装置1の構成に加えて、下側中性点32nの零相電圧vZnと上側中性点32pの零相電圧vZpとの電圧差並びにU相レグ31Uに流れる循環電流iu_cir、V相レグ31Vに流れる循環電流iv_cir及びW相レグ31Wに流れる循環電流iw_cirの少なくとも一方を調整して第二零相電力(第二電力の一例)を制御することが可能なレグ間電力平衡化制御部5aを備えている。 As described above, in the power conversion device 1 according to the present embodiment, in addition to the configuration of the power conversion device 1 according to the first embodiment, the zero-phase voltage v Zn at the lower neutral point 32n and the upper neutral point 32p the voltage difference and the circulating current i U_cir flowing through the U-phase leg 31U, by adjusting at least one of the circulating current i W_cir flowing through the circulating current i V_cir and W-phase leg 31W flowing through the V-phase leg 31V of the zero-phase voltage v Zp The inter-leg power balancing control unit 5a capable of controlling the second zero-phase power (an example of the second power) is provided.

これにより、本実施形態による電力変換装置1は、上記第1実施形態による電力変換装置1と同様の効果が得られる。さらに、本実施形態による電力変換装置1は、流入電力Δp_U,Δp_V,Δp_Wの平衡(バランス)を制御するために、循環電流icir_u,icir_v,icir_wも用いることができる。 As a result, the power conversion device 1 according to the present embodiment has the same effect as the power conversion device 1 according to the first embodiment. Furthermore, the power conversion apparatus 1 according to the present embodiment, the inflow power Delta] p _U, Delta] p _V, in order to control the equilibrium (balance) of Delta] p _W, the circulating current i cir_u, i cir_v, i cir_w can also be used.

(第1実施形態及び第2実施形態による電力変換装置の効果)
次に、上記第1実施形態及び上記第2実施形態による電力変換装置の効果について図10から図12を用いて説明する。図10は、上記第1実施形態による電力変換装置と同様の方法、すなわち零相電圧に基づく注入電力を注入してレグ間の電力の不平衡状態を制御した場合の、系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。図11は、上記第2実施形態による電力変換装置と同様の方法、すなわち零相電圧に基づく注入電力並びに循環電流及び零相電圧の電圧差に基づく注入電力を注入してレグ間の電力の不平衡状態を制御した場合の、系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。図12は、参考例として循環電流及び零相電圧の電圧差に基づく注入電力を注入してレグ間の電力の不平衡状態を制御した場合の、系統故障時の無効電力最大値のシミュレーション結果を示すグラフである。
(Effect of power conversion device according to the first embodiment and the second embodiment)
Next, the effects of the power conversion device according to the first embodiment and the second embodiment will be described with reference to FIGS. 10 to 12. FIG. 10 shows a method similar to that of the power conversion device according to the first embodiment, that is, an ineffective power at the time of a system failure when an injection power based on a zero-phase voltage is injected to control an unbalanced state of power between legs. It is a graph which shows the simulation result of the maximum value. FIG. 11 shows a method similar to that of the power conversion device according to the second embodiment, that is, injection power based on the zero-phase voltage and injection power based on the voltage difference between the circulating current and the zero-phase voltage are injected to prevent power between the legs. It is a graph which shows the simulation result of the maximum value of the ineffective power at the time of a system failure when the equilibrium state is controlled. As a reference example, FIG. 12 shows a simulation result of the maximum value of ineffective power at the time of system failure when injection power based on the voltage difference between the circulating current and the zero-phase voltage is injected to control the unbalanced state of the power between the legs. It is a graph which shows.

図10から図12中に示すグラフの横軸は、系統故障の深刻度合い(Voltage Dip Severity)[p.u.]を表し、当該グラフの縦軸は、無効電流[p.u.]を表している。系統故障の深刻度合いは、「1」に近づくほど系統短絡故障に伴う系統電圧降下が小さく、「0」に近づくほど系統電圧降下が大きいことを示す。図10中に示す三角印を結ぶ曲線L1は、1相地絡の系統故障時の無効電力最大値の特性を表している。図10中に示す丸印を結ぶ直線L2は、2相短絡の系統故障時の無効電力最大値の特性を表している。図10中に示すバツ印を結ぶ直線L3は、2相地絡の系統故障時の無効電力最大値の特性を表している。図11中に示す三角印を結ぶ曲線L4は、1相地絡の系統故障時の無効電力最大値の特性を表している。図11中に示す丸印を結ぶ直線L5は、2相短絡の系統故障時の無効電力最大値の特性を表している。図11中に示すバツ印を結ぶ直線L6は、2相地絡の系統故障時の無効電力最大値の特性を表している。図12中に示す三角印を結ぶ曲線L7は、1相地絡の系統故障時の無効電力最大値の特性を表している。図12中に示す丸印を結ぶ曲線L8は、2相短絡の系統故障時の無効電力最大値の特性を表している。図12中に示すバツ印を結ぶ曲線L9は、2相地絡の系統故障時の無効電力最大値の特性を表している。 The horizontal axis of the graph shown in FIGS. 10 to 12 is the severity of the system failure (Voltage Dip Severity) [p. u. ], And the vertical axis of the graph is the reactive current [p. u. ] Is represented. The severity of the system failure indicates that the closer to "1", the smaller the system voltage drop due to the system short-circuit failure, and the closer to "0", the larger the system voltage drop. The curve L1 connecting the triangular marks shown in FIG. 10 represents the characteristic of the maximum value of the ineffective power at the time of system failure of the one-phase ground fault. The straight line L2 connecting the circles shown in FIG. 10 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase short circuit. The straight line L3 connecting the cross marks shown in FIG. 10 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase ground fault. The curve L4 connecting the triangular marks shown in FIG. 11 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the one-phase ground fault. The straight line L5 connecting the circles shown in FIG. 11 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase short circuit. The straight line L6 connecting the cross marks shown in FIG. 11 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase ground fault. The curve L7 connecting the triangular marks shown in FIG. 12 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the one-phase ground fault. The curve L8 connecting the circles shown in FIG. 12 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase short circuit. The curve L9 connecting the cross marks shown in FIG. 12 represents the characteristics of the maximum value of the ineffective power at the time of system failure of the two-phase ground fault.

図10から図12では、縦軸が無効電流[p.u.]で表されているが、無効電力は無効電流に比例するため、当該縦軸は、無効電力を表していることと等価である。また、図10から図12に示すグラフは、大規模洋上発電所向けの定格80MVarのSTATCOMを想定したシミュレーション結果である。 In FIGS. 10 to 12, the vertical axis is the reactive current [p. u. ], But since the reactive power is proportional to the reactive current, the vertical axis is equivalent to representing the reactive power. The graphs shown in FIGS. 10 to 12 are simulation results assuming a STATCOM rated at 80 Mvar for a large-scale offshore power plant.

図10に示すように、上記第1実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式を適用すると、2相短絡(直線L2参照)及び2相地絡(直線L3参照)のそれぞれ条件では、系統故障の深刻度合いによらず、無効電力は最大値となるため、定格無効電力を出力することができる。しかしながら、上記第1実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式を適用すると、1相地絡(直線L1参照)の条件において、系統故障の深刻度合いが0.4よりも小さい範囲で、無効電流が急峻に低下するので、出力可能な無効電力も急峻に低下する。したがって、上記第1実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式は、1相地絡よりも2相短絡及び2相地絡に対して有効な方式である。 As shown in FIG. 10, when the capacitor equilibrium state control (balance control) method in the power conversion device according to the first embodiment is applied, a two-phase short circuit (see straight line L2) and a two-phase ground fault (see straight line L3) are applied, respectively. Under the conditions, the rated power can be output because the power is the maximum value regardless of the severity of the system failure. However, when the capacitor equilibrium state control (balance control) method in the power conversion device according to the first embodiment is applied, the seriousness of the system failure is less than 0.4 under the condition of one-phase ground fault (see straight line L1). Since the reactive current drops sharply in the range, the reactive power that can be output also drops sharply. Therefore, the capacitor equilibrium state control (balance control) method in the power conversion device according to the first embodiment is more effective for a two-phase short circuit and a two-phase ground fault than a one-phase ground fault.

図11に示すように、上記第2実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式を適用すると、2相短絡(直線L5参照)及び2相地絡(直線L6参照)のそれぞれ条件では、零相電圧に基づく注入電力を主に使用するため、系統故障の深刻度合いによらず、無効電力は最大値となって定格無効電力を出力することができる。また、上記第2実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式を適用すると、1相地絡(直線L4参照)の条件では、循環電流及び零相電圧の電圧差に基づく注入電力も併用して注入可能である。このため、当該方式を適用すると、系統故障の深刻度合いが0.4よりも小さい範囲で無効電流が急峻に低下しないので、出力可能な無効電力も急峻に低下しない。その結果、当該方式を適用すると、系統故障の深刻度合い最も高い場合であっても、定格無効電流の70%程度の無効電力の出力を維持できる。 As shown in FIG. 11, when the capacitor equilibrium state control (balance control) method in the power conversion device according to the second embodiment is applied, a two-phase short circuit (see straight line L5) and a two-phase ground fault (see straight line L6) are applied, respectively. Under the conditions, the injected power based on the zero-phase voltage is mainly used, so that the rated power can be output with the maximum value of the disabled power regardless of the seriousness of the system failure. Further, when the capacitor equilibrium state control (balance control) method in the power conversion device according to the second embodiment is applied, injection based on the voltage difference between the circulating current and the zero-phase voltage under the condition of one-phase ground fault (see straight line L4). Electric power can also be injected. Therefore, when this method is applied, the reactive current does not sharply decrease in the range where the seriousness of the system failure is less than 0.4, so that the reactive power that can be output does not sharply decrease. As a result, when this method is applied, the output of reactive power of about 70% of the rated reactive current can be maintained even when the seriousness of the system failure is the highest.

参考例によるコンデンサ平衡状態制御(バランス制御)方式を適用すると、1相地絡(曲線L7参照)、2相短絡(曲線L8参照)及び2相地絡(曲線L9参照)のいずれの条件であっても、系統故障の深刻度合いが所定値よりも小さい範囲で無効電流が低下するので、出力可能な無効電力も低下する。したがって、参考例による平衡状態制御(バランス制御)方式は、いずれの系統故障に対しても定格無効電力を維持することができないという問題がある。さらに、参考例によるコンデンサ平衡状態制御(バランス制御)方式は、循環電流を用いるため、コンデンサ平衡状態を制御する際に循環電流による損失が発生するという問題もある。 When the capacitor equilibrium state control (balance control) method according to the reference example is applied, any of the conditions of 1-phase ground fault (see curve L7), 2-phase short circuit (see curve L8) and 2-phase ground fault (see curve L9) is satisfied. However, since the reactive current decreases in the range where the severity of the system failure is smaller than the predetermined value, the reactive power that can be output also decreases. Therefore, the equilibrium state control (balance control) method according to the reference example has a problem that the rated ineffective power cannot be maintained in case of any system failure. Further, since the capacitor equilibrium state control (balance control) method according to the reference example uses a circulating current, there is also a problem that a loss due to the circulating current occurs when controlling the capacitor equilibrium state.

上記第1実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式は、2相短絡及び2相地絡の系統故障に対して定格無効電力を維持できる。このため、上記第1実施形態による方式は、2相短絡及び2相地絡の系統故障に対して参考例による方式よりも優れている。 The capacitor equilibrium state control (balance control) method in the power conversion device according to the first embodiment can maintain the rated ineffective power against a system failure of a two-phase short circuit and a two-phase ground fault. Therefore, the method according to the first embodiment is superior to the method according to the reference example for a system failure of a two-phase short circuit and a two-phase ground fault.

上記第1実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式は、2相短絡及び2相地絡の系統故障に対して定格無効電力を維持できる。さらに、上記第2実施形態による電力変換装置におけるコンデンサ平衡状態制御(バランス制御)方式は、1相地絡の系統故障の場合は注入比βを再設定することにより、定格無効電力の低下を抑制できる。このため、第2実施形態による方式は、系統故障に対して参考例による方式よりも優れている。 The capacitor equilibrium state control (balance control) method in the power conversion device according to the first embodiment can maintain the rated ineffective power against a system failure of a two-phase short circuit and a two-phase ground fault. Further, in the capacitor equilibrium state control (balance control) method in the power conversion device according to the second embodiment, in the case of a system failure of a one-phase ground fault, the injection ratio β is reset to suppress a decrease in the rated invalid power. can. Therefore, the method according to the second embodiment is superior to the method according to the reference example for system failure.

〔第3実施形態〕
本発明の第3実施形態による電力変換装置について図13を用いて説明する。本実施形態による電力変換装置は、蓄電素子として設けられた二次電池の残容量を制御して上下アーム間の出力電力差を所定の範囲内に抑える点に特徴を有している。本実施形態による電力変換装置は、電力変換回路セルの構成が異なる点を除いて、上記第1実施形態による電力変換装置と同様の概略構成を有している。以下、本実施形態による電力変換装置の説明において、図1を参照するとともに、上記第1実施形態による電力変換装置1と同様の作用・機能を奏する構成要素には同一の符号を付してその説明は省略する。
[Third Embodiment]
The power conversion device according to the third embodiment of the present invention will be described with reference to FIG. The power conversion device according to the present embodiment is characterized in that the remaining capacity of the secondary battery provided as the power storage element is controlled to suppress the output power difference between the upper and lower arms within a predetermined range. The power conversion device according to the present embodiment has the same schematic configuration as the power conversion device according to the first embodiment, except that the configuration of the power conversion circuit cell is different. Hereinafter, in the description of the power conversion device according to the present embodiment, FIG. 1 is referred to, and the components having the same functions and functions as those of the power conversion device 1 according to the first embodiment are designated by the same reference numerals. The description is omitted.

図13に示すように、U相レグ31Uの下アーム31Unの電力変換回路セル311Uni(iは1〜xまでの自然数)に設けられた蓄電素子は、コンデンサC2と、コンデンサC2に並列に接続された二次電池314とを有している。また、電力変換回路セル311Uniは、二次電池314の残容量(State−Of−Charge:SOC)を検出する電池管理システム(Battery Management System:BMS)315を有している。電池管理システム315は、制御装置5に接続されている。電池管理システム315が検出する二次電池314の残容量の情報は、制御装置5に送信される。 As shown in FIG. 13, the power storage element provided in the power conversion circuit cell 311Uni (i is a natural number from 1 to x) of the lower arm 31Un of the U-phase leg 31U is connected in parallel to the capacitor C2 and the capacitor C2. It also has a secondary battery 314. Further, the power conversion circuit cell 311Uni has a battery management system (Battery Management System: BMS) 315 that detects the remaining capacity (State-Of-Charge: SOC) of the secondary battery 314. The battery management system 315 is connected to the control device 5. Information on the remaining capacity of the secondary battery 314 detected by the battery management system 315 is transmitted to the control device 5.

同様に、U相レグ31Uの上アーム31Upの電力変換回路セル311Upi(iは1〜xまでの自然数)に設けられた蓄電素子は、コンデンサC2と、2個の半導体スイッチQa,Qbに並列に接続された二次電池314とを有している。また、電力変換回路セル311Upiは、二次電池314の残容量を検出する電池管理システム315を有している。電池管理システム315は、制御装置5に接続されている。電池管理システム315が検出する二次電池314の残容量の情報は、制御装置5に送信される。 Similarly, the power storage element provided in the power conversion circuit cell 311Upi (i is a natural number from 1 to x) of the upper arm 31Up of the U-phase leg 31U is parallel to the capacitor C2 and the two semiconductor switches Qa and Qb. It has a connected secondary battery 314. Further, the power conversion circuit cell 311Upi has a battery management system 315 that detects the remaining capacity of the secondary battery 314. The battery management system 315 is connected to the control device 5. Information on the remaining capacity of the secondary battery 314 detected by the battery management system 315 is transmitted to the control device 5.

図示は省略するが、V相レグ31Vの下アーム31Vn及び上アーム31Vp並びにW相レグ31Wの下アーム31Wn及び上アーム31Wpのそれぞれに設けられた電力変換回路セルも同様に、コンデンサC2、2個の半導体スイッチQa,Qbに並列に接続された二次電池314及び二次電池314の残容量を検出する電池管理システム315を有している。 Although not shown, the power conversion circuit cells provided in the lower arm 31Vn and the upper arm 31Vp of the V-phase leg 31V and the lower arm 31Wn and the upper arm 31Wp of the W-phase leg 31W are also similarly provided with two capacitors C2. It has a battery management system 315 that detects the remaining capacity of the secondary battery 314 and the secondary battery 314 connected in parallel to the semiconductor switches Qa and Qb.

コンデンサC2の両電極間の電圧は、二次電池314の両端電圧により定まる。このため、本実施形態による電力変換装置は、コンデンサC2の両電極間の直流電圧を制御装置5に出力する必要はない。本実施形態による電力変換装置は、コンデンサC2の両電極間の直流電圧の代わりに、電池管理システム315が検出する二次電池314の残容量の情報を制御装置5に送信するように構成されている。制御装置5は、電池管理システム315から入力される電力変換回路セルの二次電池314の残容量の差分を抑制することができるように構成されている。 The voltage between both electrodes of the capacitor C2 is determined by the voltage across the secondary battery 314. Therefore, the power conversion device according to the present embodiment does not need to output the DC voltage between both electrodes of the capacitor C2 to the control device 5. The power conversion device according to the present embodiment is configured to transmit information on the remaining capacity of the secondary battery 314 detected by the battery management system 315 to the control device 5 instead of the DC voltage between both electrodes of the capacitor C2. There is. The control device 5 is configured to be able to suppress the difference in the remaining capacity of the secondary battery 314 of the power conversion circuit cell input from the battery management system 315.

制御装置5に設けられたレグ間電力平衡化制御部(電力制御部の一例)は、U相の下アーム31Uniに設けられた二次電池314の残容量及びU相の上アーム31Upiに設けられた二次電池314の残容量の差分を検出するように構成されている。また、当該レグ間電力平衡化制御部は、V相の下アーム31Vniに設けられた二次電池314の残容量及びV相の上アーム31Vpiに設けられた二次電池314の残容量の差分を検出するように構成されている。さらに、当該レグ間電力平衡化制御部は、W相の下アーム31Wniに設けられた二次電池314の残容量及びW相の上アーム31Wpiに設けられた二次電池314の残容量の差分を検出するように構成されている。 The inter-leg power balancing control unit (an example of the power control unit) provided in the control device 5 is provided in the remaining capacity of the secondary battery 314 provided in the lower arm 31Uni of the U phase and in the upper arm 31Upi of the U phase. It is configured to detect the difference in the remaining capacity of the secondary battery 314. Further, the inter-leg power balancing control unit determines the difference between the remaining capacity of the secondary battery 314 provided in the lower arm 31Vni of the V phase and the remaining capacity of the secondary battery 314 provided in the upper arm 31Vpi of the V phase. It is configured to detect. Further, the inter-leg power balancing control unit determines the difference between the remaining capacity of the secondary battery 314 provided in the lower arm 31Wni of the W phase and the remaining capacity of the secondary battery 314 provided in the upper arm 31Wpi of the W phase. It is configured to detect.

当該レグ間電力平衡化制御部は、検出する二次電池314の残容量を電圧に変換することが可能に構成されている。当該レグ間電力平衡化制御部は、変換した電圧を用いて、上記第1実施形態及び第2実施形態による電力変換装置に設けられたレグ間電力平衡化制御部5aと同様の動作が可能になる。これにより、本実施形態による電力変換装置は、上記第1実施形態及び第2実施形態による電力変換装置のいずれかと同様の動作により、レグ間のコンデンサ電圧平均差分値ΔvC_U,ΔvC_V,ΔvC_Wを所定の範囲内に抑えることができる。 The inter-leg power balancing control unit is configured to be able to convert the remaining capacity of the detected secondary battery 314 into a voltage. The inter-leg power balancing control unit can operate in the same manner as the inter-leg power balancing control unit 5a provided in the power conversion device according to the first embodiment and the second embodiment by using the converted voltage. Become. As a result, the power conversion device according to the present embodiment operates in the same manner as any of the power conversion devices according to the first embodiment and the second embodiment, and the capacitor voltage average difference values between the legs are Δv C_U , Δv C_V , Δv C_W. Can be suppressed within a predetermined range.

その結果、本実施形態による電力変換装置は、上記第1実施形態及び第2実施形態による電力変換装置と同様の効果が得られる。さらに、本実施形態による電力変換装置は、コンデンサC2と並列に二次電池314を有することにより、サージ電圧をコンデンサC2で抑制するとともに、より長時間にわたって有効電力を補償することが可能である。 As a result, the power conversion device according to the present embodiment has the same effect as the power conversion device according to the first embodiment and the second embodiment. Further, the power conversion device according to the present embodiment has the secondary battery 314 in parallel with the capacitor C2, so that the surge voltage can be suppressed by the capacitor C2 and the active power can be compensated for a longer period of time.

本発明は、上記実施形態に限らず種々の変形が可能である。
上記第1実施形態から上記第3実施形態による電力変換装置1は、蓄電エネルギーに準ずる量としてコンデンサC1の電圧を検出するように構成されているが、本発明はこれに限られない。例えば、電力変換装置1は、コンデンサC1に蓄電された蓄電エネルギーを検出し、検出された蓄電エネルギーが平衡(バランス)するように制御しても、上記第1実施形態から上記第3実施形態による電力変換装置1と同様の効果が得られる。
The present invention is not limited to the above embodiment and can be modified in various ways.
The power conversion device 1 according to the first to third embodiments is configured to detect the voltage of the capacitor C1 as an amount equivalent to the stored energy, but the present invention is not limited to this. For example, even if the power conversion device 1 detects the stored energy stored in the capacitor C1 and controls so that the detected stored energy is balanced, the above-mentioned first embodiment to the above-mentioned third embodiment are applied. The same effect as that of the power conversion device 1 can be obtained.

上記第1実施形態から上記第3実施形態による電力変換装置1は、4個の半導体スイッチを有する複数の電力変換回路セルを備えているが、本発明はこれに限られない。例えば、電力変換装置は、直列接続された2個の半導体スイッチを有する複数の電力変換回路セルを有していても同様の効果が得られる。 The power conversion device 1 according to the first to third embodiments includes a plurality of power conversion circuit cells having four semiconductor switches, but the present invention is not limited to this. For example, the same effect can be obtained even if the power conversion device has a plurality of power conversion circuit cells having two semiconductor switches connected in series.

上記第1実施形態から上記第3実施形態による電力変換装置1は、IGBTで構成された半導体スイッチQa,Qb,Qc,Qdを有しているが、本発明はこれに限られない。電力変換装置1は、例えば、ゲートターンオフサイリスタ(Gate Turn−Off thyristor:GTO)、集積化ゲート転流型サイリスタ(Integrated Gate Commutated Turn−off thyristor:GCT)、又はMOS型電界効果トランジスタ(Metal−Oxide−Semiconductor Field−Effect Transistor)などで構成された半導体スイッチを有していてもよい。 The power conversion device 1 according to the first to third embodiments has semiconductor switches Qa, Qb, Qc, and Qd composed of IGBTs, but the present invention is not limited to this. The power conversion device 1 includes, for example, a gate turn-off thyristor (GTO), an integrated gate commutated turn-off thyristor (GCT), or a MOS field effect transistor (Metal-Oxide). It may have a semiconductor switch configured by (Semiconductor Field-Effective Transistor) or the like.

上記第1実施形態及び上記第2実施形態による電力変換装置は、コンデンサC1の容量を、上下アーム間の電力を平衡化するために必要な容量よりも大きく設計してもよい。この場合、電力変換装置は、例えば、電力系統が瞬間的に停電した場合でも、電力系統の負荷に短時間、有効電力を供給することができる。 The power conversion device according to the first embodiment and the second embodiment may be designed so that the capacitance of the capacitor C1 is larger than the capacitance required for balancing the electric power between the upper and lower arms. In this case, the power conversion device can supply active power to the load of the power system for a short time even when the power system has a momentary power failure, for example.

本発明の技術的範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の技術的範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 The technical scope of the present invention is not limited to the exemplary embodiments illustrated and described, but also includes all embodiments that provide an effect equal to that intended by the present invention. Further, the technical scope of the present invention is not limited to the combination of the features of the invention defined by the claims, but is defined by any desired combination of the specific features of all the disclosed features. sell.

1 電力変換装置
2 三相電力系統
3 主回路部
5 制御装置
5a レグ間電力平衡化制御部
5b 電流調整部
5c ゲートパルス信号生成部
5d キャリア波生成部
21 三相交流電源
22 ケーブル
31U U相レグ
31Un,31Vn,31Wn 下アーム
31Up,31Vp,31Wp 上アーム
31Ut,31Vt,31Wt,T1,T2 端子
31V V相レグ
31W W相レグ
32n 下側中性点
32p 上側中性点
51 コンデンサ電圧平衡化制御部
52 アーム電圧指令値生成部
211 U相交流電源
212 V相交流電源
213 W相交流電源
221 U相ケーブル
222 V相ケーブル
223 W相ケーブル
311Un1,311Uni,311Uni−1,311Unx,311Up,311Up1,311Upi,311Upi−1,311Upx,311Vn1,311Vni,311Vnx,311Vp,311Vp1,311Vpi,311Wn1,311Wni,311Wnx,311Wp,311Wp1,311Wpi 電力変換回路セル
312Un,312Up,312Vn,312Vp,312Wn,312Wp 交流リアクトル
313 電圧検出部
314 二次電池
315 電池管理システム
511 コンデンサ電圧平均差分検出部
512 電圧抑制部
513 電圧電流抑制部
512F,512FBb,512FBg,512FBj,513Fa,513Fb,513Fc,521u,521v,521w,523u,523v,523w 加算部
512FB,513FB フィードバック部
512FBa,512FBf 低域通過フィルタ
512FBc,512FBh PI制御部
512FBd,513FFd 振幅演算部
512FBe,512FFa,513FBe,513FFf 除算部
512FBi,513FBi 位相差演算部
512FBi−1,513FBi−1 演算部
512FBi−2,513FBi−2 算出部
512FBk,512FFb 零相電圧演算部
512FF,513FF フィードフォワード部
513 電圧電流抑制部
513FBk,513FFg 循環電流演算部
513FFb 上限制限部
513FFe 増幅部
522u,522v,522w 減算部
524u,524v,524w P制御部
525u,525v,525w 第一加算部
526u,526v,526w 第二加算部
527u,527v,527w 第一演算部
528u,528v,528w 第二演算部
C1,C2 コンデンサ
Da,Db,Dc,Dd 還流用ダイオード
Ma,Mb,Mc,Md 半導体モジュール
PS 電力制御システム
Qa,Qb,Qc,Qd 半導体スイッチ
1 Power conversion device 2 Three-phase power system 3 Main circuit unit 5 Control device 5a Leg-to-leg power balancing control unit 5b Current adjustment unit 5c Gate pulse signal generation unit 5d Carrier wave generation unit 21 Three-phase AC power supply 22 Cable 31U U-phase leg 31Un, 31Vn, 31Wn Lower arm 31Up, 31Vp, 31Wp Upper arm 31Ut, 31Vt, 31Wt, T1, T2 terminal 31V V-phase leg 31W W-phase leg 32n Lower neutral point 32p Upper neutral point 51 Condenser voltage balancing control unit 52 Arm voltage command value generator 211 U-phase AC power supply 212 V-phase AC power supply 213 W-phase AC power supply 221 U-phase cable 222 V-phase cable 223 W-phase cable 311Un1,311Uni, 311Uni-1,311Unx, 311Up, 311Up1,311Upi, 311Upi-1,311Upx, 311Vn1,311Vni, 311Vnx, 311Vp, 311Vp1,311Vpi, 311Wn1,311Wni, 311Wnx, 311Wp, 311Wp1,311Wpi Power conversion circuit cell 312Un, 312Wpi 314 Secondary battery 315 Battery management system 511 Condenser voltage average difference detection unit 512 Voltage suppression unit 513 Voltage current suppression unit 512F, 512FBb, 512FBg, 512FBj, 513Fa, 513Fb, 513Fc, 521u, 521v, 521w, 523u, 523v, 523w Part 512FB, 513FB Feedback part 512FBa, 512FBf Low frequency pass filter 512FBc, 512FBh PI control part 512FBd, 513FFd Fluctuation calculation part 512FBe, 512FFa, 513FBe, 513FFf Dividing part 512FBi, 513FBi 512FBi-2, 513FBi-2 Calculation unit 512FBk, 512FFb Zero-phase voltage calculation unit 512FF, 513FF Feed forward unit 513 Voltage current suppression unit 513FBk, 513FFg Circulation current calculation unit 513FFb Upper limit limit unit 513FFe Amplification unit 522u, 522v, 522w , 524v, 524w P control unit 525u, 525v, 525w First addition unit 526u, 526v, 526w Second addition unit 527u, 527v, 527w First calculation unit 528u, 5 28v, 528w Second calculation unit C1, C2 Capacitors Da, Db, Dc, Dd Refluxing diodes Ma, Mb, Mc, Md Semiconductor module PS Power control system Qa, Qb, Qc, Qd Semiconductor switch

Claims (10)

直列接続された第一アーム及び第二アームをそれぞれ有する複数のレグと、
前記複数のレグのそれぞれに設けられた前記第一アームの両端部のうちの前記第二アームに接続されていない端部が互いに接続された第一接続部と、
前記複数のレグのそれぞれに設けられた前記第二アームの両端部のうちの前記第一アームに接続されていない端部が互いに接続された第二接続部と、
前記複数のレグを制御する制御装置と
を備え、
前記第一アームは、直列接続された2個の半導体スイッチ及び該2個の半導体スイッチに並列接続された蓄電素子を有する第一電力変換回路セルと、前記第一電力変換回路セルに直列に接続された第一コイルとを有し、
前記第二アームは、直列接続された2個の半導体スイッチ及び該2個の半導体スイッチに並列接続された蓄電素子を有する第二電力変換回路セルと、前記第二電力変換回路セルに直列に接続された第二コイルとを有し、
前記制御装置は、前記第一接続部の第一電圧及び前記第二接続部の第二電圧のそれぞれに含まれる同一の電圧成分を調整して前記複数のレグのそれぞれの間で流入出する第一電力を制御する電力制御部を有する
電力変換装置。
Multiple legs each with a first arm and a second arm connected in series,
A first connection portion in which ends of both ends of the first arm provided on each of the plurality of legs, which are not connected to the second arm, are connected to each other.
A second connecting portion in which the ends of both ends of the second arm provided on each of the plurality of legs, which are not connected to the first arm, are connected to each other.
It is equipped with a control device that controls the plurality of legs.
The first arm is connected in series to the first power conversion circuit cell having two semiconductor switches connected in series and a power storage element connected in parallel to the two semiconductor switches, and the first power conversion circuit cell. With the first coil
The second arm is connected in series to the second power conversion circuit cell having two semiconductor switches connected in series and a power storage element connected in parallel to the two semiconductor switches, and the second power conversion circuit cell. Has a second coil and
The control device adjusts the same voltage component contained in each of the first voltage of the first connection portion and the second voltage of the second connection portion, and flows in and out between each of the plurality of legs. (I) A power conversion device having a power control unit that controls electric power.
前記第一電力は、前記複数のレグのそれぞれと前記電力系統との間に流れる電流及び前記電圧成分によって発生する電力である
請求項1に記載の電力変換装置。
The power conversion device according to claim 1, wherein the first electric power is electric power generated by a current flowing between each of the plurality of legs and the electric power system and the voltage component.
前記蓄電素子の蓄積エネルギー又は前記蓄積エネルギーに準ずる量を検出する検出部を備え、
前記電力制御部は、前記検出部で検出された検出値に応じて前記電圧成分を調整する調整部を有する
請求項1又は2に記載の電力変換装置。
A detection unit for detecting the stored energy of the power storage element or an amount equivalent to the stored energy is provided.
The power conversion device according to claim 1 or 2, wherein the power control unit includes an adjustment unit that adjusts the voltage component according to a detected value detected by the detection unit.
前記蓄電素子は、コンデンサを有する
請求項3に記載の電力変換装置。
The power conversion device according to claim 3, wherein the power storage element has a capacitor.
前記検出部は、前記コンデンサの電圧を前記準ずる量として検出する
請求項4に記載の電力変換装置。
The power conversion device according to claim 4, wherein the detection unit detects the voltage of the capacitor as the equivalent amount.
前記電力制御部は、前記複数のレグのそれぞれの間の電力の不平衡状態を抑制するように、前記複数のレグの前記第一電力を調整する
請求項4又は5に記載の電力変換装置。
The power conversion device according to claim 4 or 5, wherein the power control unit adjusts the first power of the plurality of legs so as to suppress an unbalanced state of power between the plurality of legs.
前記電力制御部は、前記第一電圧と前記第二電圧との電圧差及び前記複数のレグのそれぞれに流れる循環電流の少なくとも一方を調整して第二電力を制御する
請求項3から6までのいずれか一項に記載の電力変換装置。
The power control unit controls the second power by adjusting at least one of the voltage difference between the first voltage and the second voltage and the circulating current flowing through each of the plurality of legs. The power conversion device according to any one item.
前記電力制御部は、前記第一アームに流れる電流と前記第二アームに流れる電流とを用いて前記循環電流を算出する算出部を有する
請求項7に記載の電力変換装置。
The power conversion device according to claim 7, wherein the power control unit includes a calculation unit that calculates the circulating current using the current flowing through the first arm and the current flowing through the second arm.
前記制御装置は、前記電圧成分の調整に基づいて制御する前記第一電力と、前記循環電流の調整に基づく前記第二電力との注入比を、前記第一アーム及び前記第二アームが出力可能な最大電圧に基づく値と、前記第一コイル及び前記第二コイルの接続部の電圧に基づく値と、前記電圧成分と、前記電圧差とに基づいて調整する
請求項7又は8に記載の電力変換装置。
The control device can output the injection ratio of the first power controlled based on the adjustment of the voltage component and the second power based on the adjustment of the circulating current to the first arm and the second arm. The power according to claim 7 or 8, which is adjusted based on a value based on the maximum voltage, a value based on the voltage of the connection portion of the first coil and the second coil, the voltage component, and the voltage difference. Conversion device.
前記蓄電素子は、前記2個の半導体スイッチに並列に接続された二次電池を有し、
前記電力制御部は、前記第一アームに設けられた前記二次電池の残容量及び前記第二アームに設けられた前記二次電池の残容量の差分を検出する
請求項1から9までのいずれか一項に記載の電力変換装置。
The power storage element has a secondary battery connected in parallel to the two semiconductor switches.
The power control unit is any of claims 1 to 9 that detects the difference between the remaining capacity of the secondary battery provided in the first arm and the remaining capacity of the secondary battery provided in the second arm. The power conversion device according to one item.
JP2020000534A 2020-01-06 2020-01-06 power converter Active JP7375553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000534A JP7375553B2 (en) 2020-01-06 2020-01-06 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000534A JP7375553B2 (en) 2020-01-06 2020-01-06 power converter

Publications (2)

Publication Number Publication Date
JP2021111987A true JP2021111987A (en) 2021-08-02
JP7375553B2 JP7375553B2 (en) 2023-11-08

Family

ID=77060372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000534A Active JP7375553B2 (en) 2020-01-06 2020-01-06 power converter

Country Status (1)

Country Link
JP (1) JP7375553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409471B1 (en) 2022-11-29 2024-01-09 株式会社明電舎 cell multiplex inverter
JP7409470B1 (en) 2022-11-29 2024-01-09 株式会社明電舎 cell multiplex inverter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524425A (en) * 2007-04-16 2010-07-15 シーメンス アクチエンゲゼルシヤフト Active filter with multi-level connection configuration
JP2011223734A (en) * 2010-04-09 2011-11-04 Hitachi Ltd Power conversion device
JP2012044839A (en) * 2010-08-23 2012-03-01 Tokyo Institute Of Technology Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524425A (en) * 2007-04-16 2010-07-15 シーメンス アクチエンゲゼルシヤフト Active filter with multi-level connection configuration
JP2011223734A (en) * 2010-04-09 2011-11-04 Hitachi Ltd Power conversion device
JP2012044839A (en) * 2010-08-23 2012-03-01 Tokyo Institute Of Technology Power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409471B1 (en) 2022-11-29 2024-01-09 株式会社明電舎 cell multiplex inverter
JP7409470B1 (en) 2022-11-29 2024-01-09 株式会社明電舎 cell multiplex inverter
WO2024116504A1 (en) * 2022-11-29 2024-06-06 株式会社明電舎 Cell multiplexing inverter
WO2024116505A1 (en) * 2022-11-29 2024-06-06 株式会社明電舎 Cell multiplex inverter

Also Published As

Publication number Publication date
JP7375553B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP6207730B2 (en) DC transmission power conversion apparatus and DC transmission power conversion method
US8441820B2 (en) DC-link voltage balancing system and method for multilevel converters
JP5800154B2 (en) Power converter and control method thereof
US8207712B2 (en) Arrangement for exchanging power
US20200161960A1 (en) Power conversion apparatus
JP6180641B2 (en) Power converter
US20120092906A1 (en) Arrangement for exchanging power
JP6178433B2 (en) Power converter
Nieves et al. Enhanced control strategy for MMC-based STATCOM for unbalanced load compensation
US20230170822A1 (en) Power conversion device
US20160164399A1 (en) Multilevel converter for power factor correction and associated operating method
JP6538544B2 (en) Self-excited reactive power compensator
JP2018129963A (en) Controller of power converter
JP7375553B2 (en) power converter
US20230163694A1 (en) Power conversion device
JP2017118635A (en) Self-excited reactive power compensator
Zaimeddine et al. Direct power control strategies of a grid-connected three-level voltage source converter VSI-NPC
Dekka et al. Modular multilevel converters
Mortezaei et al. 5-level Cascaded H-Bridge Multilevel microgrid Inverter applicable to multiple DG resources with power quality enhancement capability
JP6771707B1 (en) Power converter
Shah et al. LVRT capabilities of solar energy conversion system enabling power quality improvement
JP7383989B2 (en) power converter
Yong et al. A virtual RC active damping method in weak grid for three-level three-phase grid-connected inverters
Elnady et al. Multilevel inverter operated by voltage orientation control
WO2022085101A1 (en) Reactive power supplementing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150