JP2021109957A - Method for preparing light resistant aqueous polyurethane coating agent and adhesive for carbon nanotube modification - Google Patents

Method for preparing light resistant aqueous polyurethane coating agent and adhesive for carbon nanotube modification Download PDF

Info

Publication number
JP2021109957A
JP2021109957A JP2020186827A JP2020186827A JP2021109957A JP 2021109957 A JP2021109957 A JP 2021109957A JP 2020186827 A JP2020186827 A JP 2020186827A JP 2020186827 A JP2020186827 A JP 2020186827A JP 2021109957 A JP2021109957 A JP 2021109957A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
adhesive
hours
preparing
polyurethane coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020186827A
Other languages
Japanese (ja)
Other versions
JP6859003B1 (en
Inventor
宝栄 段
Baorong Duan
宝栄 段
涵 于
Han Yu
涵 于
宇 谷
Takashi Tani
宇 谷
志海 唐
Chihai Tang
志海 唐
▲ち▼研 王
Qiyan Wang
▲ち▼研 王
路路 古
Lulu Gu
路路 古
全杰 王
Quanjie Wang
全杰 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANTAI UNIV
Yantai University
Original Assignee
YANTAI UNIV
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANTAI UNIV, Yantai University filed Critical YANTAI UNIV
Application granted granted Critical
Publication of JP6859003B1 publication Critical patent/JP6859003B1/en
Publication of JP2021109957A publication Critical patent/JP2021109957A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a method for preparing a light resistant aqueous polyurethane coating agent and an adhesive for carbon nanotube modification, in which the prepared aqueous polyurethane coating agent and adhesive have better stability, light resistance, mechanical properties and flame retardancy.SOLUTION: Component A, an isocyanate, dibutyltin dilaurate are reacted at a mass ratio of (2.5 to 3.0):1:0.02, and 0.1 to 0.4 times of a modifier, 0.25 to 0.34 times of a polyol-based chain extender, 0.02 to 0.05 times of a filler polymer chain and 1.2 times of water are added to continue the reaction, and further 0.01 times of methyl methacrylate, 0.005 times of ammonium persulfate, and 0.1 times of water are added and reacted and further 0.01 times of glyoxime and 0.005 times of 3,4,5-trimethoxy benzoic acid are added and reacted to obtain a light resistant aqueous polyurethane coating agent and an adhesive for carbon nanotube modification.SELECTED DRAWING: None

Description

本発明は、機能性高分子材料の分野に関し、特に、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法に関する。 The present invention relates to the field of functional polymeric materials, and in particular to methods of preparing light-resistant aqueous polyurethane coatings and adhesives for modifying carbon nanotubes.

MDIタイプのポリウレタン(MDI−PU)は、広く使用されている高分子材料であり、フォーム、エラストマー、ファイバー、接着剤およびコーティング剤等の分野で多くの用途がある。他のタイプのPUと比較して、その性能は優れており、価格が比較的低く、かつMDIの毒性が低く、PUを調製する過程で人体や環境に対する害が少ないで。ただし、分子構造にベンゼン環が存在するため、MDI−PUは日光の紫外線(UV)の作用下で劣化や分解を起こしやすくなり、材料の物理的および機械的特性が低下し、黄色く変色することがあり、屋外分野での用途に大きな影響を与える。また、MDIは世界の化学産業における中国の支配的な分野であり、MDIの黄変の問題はポリウレタンコーティング剤や接着剤をMDIに応用する場合に困難であったため、MDI−PUの耐紫外線性を向上させることは、MDI産業とPU産業の継続的な発展を促進するために解決すべき課題となっている。 MDI type polyurethane (MDI-PU) is a widely used polymeric material and has many uses in the fields of foams, elastomers, fibers, adhesives and coatings. Compared to other types of PU, its performance is excellent, its price is relatively low, its toxicity of MDI is low, and it is less harmful to human body and environment in the process of preparing PU. However, due to the presence of a benzene ring in the molecular structure, MDI-PU is prone to deterioration and decomposition under the action of ultraviolet rays (UV) from sunlight, which deteriorates the physical and mechanical properties of the material and causes it to turn yellow. Has a great impact on applications in the outdoor field. In addition, MDI is China's dominant field in the world chemical industry, and the problem of yellowing of MDI was difficult when applying polyurethane coating agents and adhesives to MDI, so the UV resistance of MDI-PU. Is an issue to be solved in order to promote the continuous development of the MDI industry and the PU industry.

非特許文献1では、多種の有機劣化防止用助剤と無機ナノ亜鉛酸化物を使用してMDI−PUをブレンド改質し、色差、機械的特性試験、光減量試験、減衰全反射フーリエ変換赤外分光法(ATR−FT−IR)、熱分析(DSC)などの試験、特性評価方法を用い、人工加速劣化試験によりその紫外線劣化防止能力を評価した後、最良の改質スキームを得ている。3つのカテゴリ(紫外線吸収剤、光安定剤、抗酸化剤)の5種の劣化防止助剤(UV−531、UV−P、HS−770、HS−944、Irganox1010)を使用して、MDI−PUを複合化・改質した。結果は、劣化防止剤HS−770+UV−Pを組み合わせて使用すると、MDI−PUの光分解反応と架橋反応を効果的に抑制でき、材料の色安定性と機械的特性の保持率を向上させ、光分解生成物を減少させ、ガラス転移温度(Tg)の変化レベルを低下できることを示している。使用量が1.5%の場合、PUフィルムに強い劣化防止効果があるだけでなく、材料に高い機械的特性と機械的特性の保持率を維持させることができる。該調製法では、ナノ材料で紫外線を分散・吸収するため、ポリウレタン中でナノ材料が凝集し安定性が低下し、同時にナノ材料を添加するとポリウレタンフィルムの機械的特性が低下してしまう。 In Non-Patent Document 1, MDI-PU is blended and modified using various organic deterioration prevention aids and inorganic nanozinc oxide, and color difference, mechanical property test, photoweight loss test, and attenuated total reflection Fourier transform red. After evaluating its UV deterioration prevention ability by artificial accelerated deterioration test using tests such as external spectroscopy (ATR-FT-IR) and thermal analysis (DSC) and characteristic evaluation methods, the best modification scheme is obtained. .. MDI- using 5 types of anti-deterioration aids (UV-531, UV-P, HS-770, HS-944, Irganox1010) in 3 categories (UV absorbers, light stabilizers, antioxidants) PU was compounded and modified. As a result, when the deterioration inhibitor HS-770 + UV-P is used in combination, the photodecomposition reaction and the cross-linking reaction of MDI-PU can be effectively suppressed, and the color stability of the material and the retention rate of mechanical properties are improved. It is shown that the photolysis products can be reduced and the change level of the glass transition temperature (Tg) can be lowered. When the amount used is 1.5%, not only the PU film has a strong anti-deterioration effect, but also the material can maintain high mechanical properties and retention rate of mechanical properties. In this preparation method, since the nanomaterial disperses and absorbs ultraviolet rays, the nanomaterial aggregates in the polyurethane and the stability is lowered, and at the same time, when the nanomaterial is added, the mechanical properties of the polyurethane film are deteriorated.

非特許文献2では、まずポリテトラメチレンエーテルグリコール(PTMG、分子量1000)、イソホロンジイソシアネート(IPDI)、ジメチロールプロピオン酸(DMPA)を主原料として、2−[(2−アミノエチル)アミノ]エタンスルホン酸ナトリウム(A95)およびヒドラジン一水和物を後期鎖延長剤として使用して、水性ポリウレタン防眩性樹脂を調製し、WPU防眩性樹脂のプレポリマーの合成工程に対するWPU調製の反応温度と時間の影響を検討し、プレ重合反応は、まず60℃で1時間、次に80℃で2時間反応させた後、50℃で15分中和し、最後に35℃以下で30分乳化することを決定した。FTIRはWPUプレポリマーとフィルムの構造を分析し、TGは一連のフィルムの耐熱性を特性評価し、SEM特性評価はコーティングの表面にナノスケールのミクロスフェアが形成されていることを証明した。このミクロスフェア構造により、コーティングは低い光沢度と高い光透過性能の特徴を兼ね備え、またWPUの防眩性と耐水性に対するDMPAとA95の使用量の影響も研究した。その結果、DMPAの使用量が2.6〜3.0%、A95の使用量が48〜58%の範囲の場合、コーティングは防眩の要件を満たしているが、吸水率は60%に達し、耐水性が劣っていることを示している。次に、「コアシェル型」アクリル酸エステル改質の水性ポリウレタン防眩性樹脂を研究した。FTIR分析は、WPUAエマルションの調製に首尾よく成功したことを示し、TEMは、コアポリウレタンのシェルとしてアクリル酸エステルを使用した「コアシェル型」ミクロスフェア構造が形成されたことを証明した。単一因子分析法を用いて、フィルムの表面形態および防眩性に対するR値、DMPA使用量、HEA/NCOおよびMMA使用量の影響を検討した。IPDIの使用は、優れた耐黄変性を有し、コアシェル型アクリル酸エステル樹脂による改質工程が複雑で、イソシアナートの中で最も黄変するMDIはこの方法では研究されていなかった。また、アクリル酸エステル樹脂の調製は複雑で製造コストも高いため、この技術を最適化する必要がある。 In Non-Patent Document 2, first, polytetramethylene ether glycol (PTMG, molecular weight 1000), isophorone diisocyanate (IPDI), and dimethylol propionic acid (DMPA) are used as main raw materials, and 2-[(2-aminoethyl) amino] ethanesulfone is used. Using sodium acid (A95) and hydrazine monohydrate as late chain extenders to prepare an aqueous polyurethane antiglare resin, the reaction temperature and time of WPU preparation to the prepolymer synthesis step of the WPU antiglare resin. The prepolymerization reaction is carried out by first reacting at 60 ° C. for 1 hour, then at 80 ° C. for 2 hours, then neutralizing at 50 ° C. for 15 minutes, and finally emulsifying at 35 ° C. or lower for 30 minutes. It was determined. FTIR analyzed the structure of WPU prepolymers and films, TG characterized the heat resistance of a series of films, and SEM characterization proved that nanoscale microspheres were formed on the surface of the coating. Due to this microsphere structure, the coating combines the characteristics of low gloss and high light transmission performance, and the effect of the amount of DMPA and A95 used on the antiglare and water resistance of WPU was also studied. As a result, when the amount of DMPA used is in the range of 2.6 to 3.0% and the amount of A95 used is in the range of 48 to 58%, the coating meets the antiglare requirement, but the water absorption rate reaches 60%. , Indicates that the water resistance is inferior. Next, we studied "core-shell type" acrylic acid ester-modified water-based polyurethane antiglare resins. FTIR analysis showed successful preparation of the WPUA emulsion, and TEM demonstrated that a "core-shell" microsphere structure was formed using acrylic ester as the shell of the core polyurethane. The effects of R-value, DMPA usage, HEA / NCO and MMA usage on the surface morphology and antiglare of the film were investigated using a single factor analysis method. The use of IPDI has excellent yellowing resistance, the modification process with core-shell acrylic ester resin is complicated, and the most yellowing MDI among isocyanates has not been studied by this method. In addition, the preparation of acrylic ester resin is complicated and the manufacturing cost is high, so it is necessary to optimize this technique.

中国特許出願第201510699445.8号Chinese Patent Application No. 201510699445.8 中国特許出願第201410263358.3号Chinese Patent Application No. 2014102633358.3 中国特許出願第201910643179.5号Chinese Patent Application No. 201910643179.5

牟宗波氏(修士論文、題名「MDIポリウレタンの耐光性の向上に関する研究」陝西科技大学、2013年)Mr. Munenami (Master's thesis, title "Study on improvement of light resistance of MDI polyurethane" Shaanxi University of Science and Technology, 2013) 朱嘉▲ち▼ら(修士論文、題名「新しい水性ポリウレタン防眩性樹脂の調製と応用」、華南理工大学、2018年)Zhu Jia ▲ Chi ▼ et al. (Master's thesis, title "Preparation and application of new water-based polyurethane antiglare resin", South China University of Technology, 2018) 王芳、党高潮、王麗琴のいくつかの有機文物保護ポリマーコーティング剤の光分解[J]、西北大学学報,、2005、35(5):56〜58)Photodecomposition of some organic cultural heritage protection polymer coatings by Ohho, Party Storm Surge, and Wang Reikoto [J], Northwest University Academic Bulletin ,, 2005, 35 (5): 56-58) GB/T5455−1997《繊維製品の燃焼性試験の垂直取付け方法》GB / T5455-1997 << Vertical mounting method for combustibility test of textile products >>

したがって、本発明は、調製された水性ポリウレタンコーティング剤および接着剤が、より良好な安定性、耐光性、機械的特性および難燃性を有するカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法を提供することを、技術的課題とするものである。 Therefore, in the present invention, the prepared water-based polyurethane coating agent and adhesive have better stability, light resistance, mechanical properties and flame retardancy, and the carbon nanotube-modified light-resistant water-resistant polyurethane coating agent and adhesive. It is a technical subject to provide a method for preparing the above.

本発明では、上記の目的を達成するために、次の技術的手段を採用する。
カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法であって、以下の工程(1)〜(3)を含むことを特徴とする。
(1)室温で質量比が1:(2〜5):(1〜3):(1.0〜1.3)のカップリング剤、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、30〜40分間加水分解して、加水分解物Aを得る。得られた加水分解物Aを80〜90℃の高速ミキサーに加え、30〜40分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得る改質用熱伝導性フィラーの調製工程。
(2)ポリマーポリオールと改質用熱伝導性フィラーを質量比(2〜3):1で最初に超音波により1〜2.5時間分散させ、次に100〜110℃で1〜2時間、減圧下で脱水して、成分Aを得る成分Aの調製工程。
(3)50〜70℃で成分A、イソシアナート、ジブチルスズジラウレートを質量比(2.5〜3.0):1:0.02で60〜80r/minの回転数で60〜90分間反応させ、次に75〜85℃に昇温し1〜3時間反応を継続し、0.1〜0.4倍の改質剤、0.25〜0.34倍のポリオール系鎖延長剤、0.02〜0.05倍のフィラーポリマー鎖および1.2倍の水を加え、80〜90℃で1〜2時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、70〜80℃で1〜2時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、70〜80℃で1〜2時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得るカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製工程。
加えられた改質剤、ポリオール系鎖延長剤、水、メタクリル酸メチル、過硫酸アンモニウム、フィラーポリマー鎖の倍数は、いずれもイソシアナートの質量を基準とし、加えられたグリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とする。
In the present invention, the following technical means are adopted in order to achieve the above object.
A method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes, which comprises the following steps (1) to (3).
(1) A coupling agent having a mass ratio of 1: (2 to 5): (1 to 3): (1.0 to 1.3) at room temperature, deionized water, tannic acid, and a boron nitride nanosheet are mixed. Hydrolyze for 30-40 minutes to give hydrolyzed product A. The obtained hydrolyzate A is added to a high-speed mixer at 80 to 90 ° C., mixing is continued for 30 to 40 minutes, cooled and taken out, and vacuum dried to obtain a heat conductive filler for reforming. The process of preparing the conductive filler.
(2) The polymer polyol and the thermally conductive filler for modification were first dispersed by ultrasonic waves at a mass ratio (2 to 3): 1 for 1 to 2.5 hours, and then at 100 to 110 ° C. for 1 to 2 hours. A step of preparing component A, which is dehydrated under reduced pressure to obtain component A.
(3) Ingredient A, isocyanate, and dibutyltin dilaurate are reacted at 50 to 70 ° C. at a mass ratio (2.5 to 3.0): 1: 0.02 at a rotation speed of 60 to 80 r / min for 60 to 90 minutes. Then, the temperature was raised to 75 to 85 ° C., and the reaction was continued for 1 to 3 hours. 02 to 0.05 times the filler polymer chain and 1.2 times the water were added, the reaction was continued at 80 to 90 ° C. for 1 to 2 hours, and 0.01 times the methyl methacrylate and 0.005 times the excess. Add ammonium sulfate and 0.1 times water and react at 70-80 ° C. for 1-2 hours, then add 0.01 times glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid, 70- A step of preparing a carbon nanotube-modified light-resistant aqueous polyurethane coating and an adhesive by reacting at 80 ° C. for 1 to 2 hours to obtain a carbon nanotube-modified light-resistant aqueous polyurethane coating and an adhesive.
The added modifier, polyol chain extender, water, methyl methacrylate, ammonium persulfate, and multiples of the filler polymer chain are all based on the mass of isocyanate, and the added glyoxime and 3,4,5- All multiples of trimethoxybenzoic acid are based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、25〜35gのポリビニルアルコール、4g〜22gのカテキンを70〜80gの水に加え、60〜70℃で1〜2時間撹拌して反応させ、次に5gのアセトンを加え、40〜50℃で1〜2時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得る。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 25 to 35 g of polyvinyl alcohol, 4 g to 22 g of catechin are added to 70 to 80 g of water, and the mixture is stirred at 60 to 70 ° C. for 1 to 2 hours. Then, 5 g of acetone is added, and the mixture is stirred and reacted at 40 to 50 ° C. for 1 to 2 hours, and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.1〜1.5gのカーボンナノチューブと320〜350mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は75〜95℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で2〜5時間凝縮・還流する。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄する。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得る。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブである。
The method for preparing the hydroxylated carbon nanotubes is as follows.
1.1 to 1.5 g of carbon nanotubes and 320 to 350 mL of mixed acid (volume ratio of concentrated sulfuric acid to concentrated nitric acid is 3: 1) are placed in a 500 mL flask, the reaction temperature is 75 to 95 ° C., and the ultrasonic output is 200 W. Condensate and reflux for 2 to 5 hours in an ultrasonic cleaner with an ultrasonic frequency of 40 KHz. Then, the mixture is transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration are dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It is an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)9〜12gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、30〜50℃で10〜30分間超音波分散させて溶液Aを得る工程、
(2)12〜22gのジフェニルメタンジイソシアネートと12〜22gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:50−60の比率で50〜60℃で1〜2時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、50〜70℃で2〜3時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) 9 to 12 g of nanosilicon carbide is vacuum dried at 105 ° C., nanosilicon carbide is dispersed in 30 g of N, N-dimethylformamide, and ultrasonically dispersed at 30 to 50 ° C. for 10 to 30 minutes to solve solution A. The process of getting
(2) A step of dissolving 12 to 22 g of diphenylmethane diisocyanate and 12 to 22 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:50-60 at 50-60 ° C. for 1 to 2 hours to obtain a solution C (the weight of the nanosilver is nanosilicon). 1/100 of the carbide weight),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 50 to 70 ° C. for 2 to 3 hours to obtain a filler polymer chain.

前記カップリング剤は、3−アミノプロピルトリエトキシシランとモノアルコキシチタネートカップリング剤の1種または2種である。 The coupling agent is one or two of 3-aminopropyltriethoxysilane and a monoalkoxy titanate coupling agent.

前記ポリマーポリオールは、ポリテトラメチレンエーテルグリコール、ポリカーボネートジオールのいずれかである。 The polymer polyol is either polytetramethylene ether glycol or polycarbonate diol.

前記ポリオール系鎖延長剤は、ジヒドロキシメチル酪酸、ジメチロールプロピオン酸のいずれかである。 The polyol chain extender is either dihydroxymethylbutyric acid or dimethylolpropionic acid.

前記イソシアナートは、MDI型イソシアナートである。 The isocyanate is an MDI type isocyanate.

従来技術と比較して、本発明は以下の有利な効果を有する。
(1)本発明は、ポリマーポリオールおよびイソシアナートを使用して重合反応を起こしてポリウレタンを生成し、その後、ポリビニルアルコールおよびカテキンによってポリウレタンを改質する。カテキンの表面のフェノール性ヒドロキシ基とポリビニルアルコール主鎖中のヒドロキシ基が水素結合を形成することで、最初の物理的架橋ネットワークを形成し、ポリビニルアルコールセグメントのヒドロキシ基は水素結合の作用により微結晶領域を形成し、2番目の物理的架橋ネットワークを形成する。カテキンとポリビニルアルコールとの間の架橋ネットワークとポリウレタンは同時に互いに絡み合って3番目の物理的架橋ネットワークを形成する。これに基づいて調製されたポリウレタンコーティング剤と感圧接着剤は、より優れた安定性およびより高い引張強度、靭性、耐引裂性を有し、同時にヒドロキシ化したカーボンナノ、ポリビニルアルコール、カテキンが水素結合を形成し、ポリウレタンの機械的特性と難燃性を向上させる。
Compared with the prior art, the present invention has the following advantageous effects.
(1) In the present invention, a polymerization reaction is carried out using a polymer polyol and an isocyanate to produce a polyurethane, and then the polyurethane is modified with polyvinyl alcohol and catechin. The phenolic hydroxy group on the surface of the catechin and the hydroxy group in the polyvinyl alcohol main chain form a hydrogen bond to form the first physical cross-linking network, and the hydroxy group of the polyvinyl alcohol segment is microcrystallized by the action of the hydrogen bond. It forms a region and forms a second physical bridging network. The cross-linked network between catechin and polyvinyl alcohol and polyurethane are simultaneously intertwined with each other to form a third physical cross-linked network. Polyurethane coatings and pressure-sensitive adhesives prepared on this basis have better stability and higher tensile strength, toughness and tear resistance, while at the same time hydroxyated carbon nano, polyvinyl alcohol and catechins are hydrogen. It forms a bond and improves the mechanical properties and flame retardancy of polyurethane.

(2)本発明のフィラーポリマー鎖は、ジフェニルメタンジイソシアネートおよびナノシリコン窒化物で調製される。ジフェニルメタンジイソシアネートを高い熱伝導性を有するナノシリコン窒化物で充填することにより、すなわち、可撓性構造を有するジフェニルメタンジイソシアネートでナノシリコンカーバイドを直列に接続することにより、ジフェニルメタンジイソシアネートの熱伝導性が向上するだけでなく、含有量が少ないシリコンカーバイドをジフェニルメタンジイソシアネート中に充填し、連続的な熱伝導経路を形成する。フィラーポリマー鎖の導入は、熱伝導性を効果的に改善し、熱伝導性フィラーの添加量を減らすだけでなく、その機械的特性をよりよく保持することもできる。ポリ乳酸はフィラーの通気性を高めることで、ポリウレタン表面の通気性を高め、ポリウレタン表面の細孔からの熱放散を容易にし、ポリウレタンが光を吸収した後の色の変化を減らす。ナノシルバーは1,5-ナフタレンジスルホン酸の改質下でガスを放出して完全燃焼させることができ、煙の濃度を低下できる。 (2) The filler polymer chain of the present invention is prepared with diphenylmethane diisocyanate and nanosilicon nitride. By filling diphenylmethane diisocyanate with nanosilicon nitride having high thermal conductivity, that is, by connecting nanosilicon carbides in series with diphenylmethane diisocyanate having a flexible structure, the thermal conductivity of diphenylmethane diisocyanate is improved. Not only that, silicon carbide with a low content is filled in diphenylmethane diisocyanate to form a continuous heat conduction path. The introduction of the filler polymer chain can not only effectively improve the thermal conductivity and reduce the amount of the thermally conductive filler added, but also better retain its mechanical properties. Polylactic acid increases the breathability of the filler, increasing the breathability of the polyurethane surface, facilitating heat dissipation from the pores of the polyurethane surface, and reducing the color change after the polyurethane absorbs light. Nanosilver can release gas and burn completely under the modification of 1,5-naphthalenedisulfonic acid, and can reduce the concentration of smoke.

(3)本発明は、機械的特性および熱伝導性に優れた炭素ベースの材料を充填することにより、接着剤の熱伝導性を効果的に高める。充填型熱伝導性ポリベース接着剤の熱伝導メカニズムは、以下のとおりである。接着剤内部の熱が熱伝導性フィラー間、熱伝導性フィラーとポリウレタンとの間の相互接触、および熱伝導性フィラーとポリウレタンとの間の相互作用によって実現される。熱伝導性が悪いポリウレタンマトリックスに熱伝導性フィラーを充填した後、互いに接触する熱伝導性フィラーおよび熱伝導性フィラーとポリウレタンマトリックスとの間の相互作用により、接着剤の内部に熱伝導ネットワーク構造が形成される。これは熱伝導ネットワークチェーンと呼ばれる。熱は熱伝導ネットワークチェーンから効果的に伝達される。 (3) The present invention effectively enhances the thermal conductivity of an adhesive by filling it with a carbon-based material having excellent mechanical properties and thermal conductivity. The heat conduction mechanism of the filled heat conductive polybase adhesive is as follows. The heat inside the adhesive is achieved by the interaction between the thermally conductive fillers, between the thermally conductive fillers and the polyurethane, and between the thermally conductive fillers and the polyurethane. After filling a polyurethane matrix with poor thermal conductivity with a thermally conductive filler, the thermally conductive filler that comes into contact with each other and the interaction between the thermally conductive filler and the polyurethane matrix create a thermally conductive network structure inside the adhesive. It is formed. This is called a heat conductive network chain. Heat is effectively transferred from the heat transfer network chain.

(4)熱伝導性フィラー自体は、粒子が小さく、比表面積が大きいため、ポリウレタン充填工程で凝集しやすい。そこで本発明では、カップリング剤を用いて熱伝導性フィラーを処理し、凝集した熱伝導性フィラーにより接着剤の使用特性に影響を与えるのを回避する。同時に、本発明のポリウレタンとカテチンおよびポリビニルアルコールとの間は、複数の物理的架橋ネットワークおよびフィラーポリマー鎖を形成するため、熱伝導性フィラーがネットワーク構造に充填され、熱伝導性フィラーを均一に分布できるだけではなく、ポリウレタンの機械的特性を十分に維持できる。 (4) Since the thermally conductive filler itself has small particles and a large specific surface area, it easily aggregates in the polyurethane filling step. Therefore, in the present invention, the heat conductive filler is treated with a coupling agent to prevent the aggregated heat conductive filler from affecting the usage characteristics of the adhesive. At the same time, in order to form a plurality of physically crosslinked networks and filler polymer chains between the polyurethane of the present invention and catetin and polyvinyl alcohol, the thermally conductive filler is filled in the network structure and the thermally conductive filler is uniformly distributed. Not only is it possible, but the mechanical properties of polyurethane can be sufficiently maintained.

(5)本発明により調製されたポリウレタンコーティング剤および接着剤は、熱伝導性フィラーを用いて太陽の直射日光による熱を分散させ、ポリウレタンの表面粗さを増加させてグレアを低減するが、光散乱効果の増加は常に光透過性を伴い、表面粗さを増加するとポリウレタンフィルムの表面平滑性を低下させるため、メタクリル酸メチルのポリマーを用いてポリウレタンの粗い空隙を埋める。同時に、メタクリル酸ポリメチルフィルムの光透過性はポリウレタンの乱反射に影響を与えず、グリオキシムと3,4,5−トリメトキシ安息香酸を用いてポリウレタンの粗い空隙へのポリメチルメタクリレートの充填を促進する。 (5) The polyurethane coating agent and adhesive prepared according to the present invention use a heat conductive filler to disperse heat from the direct sunlight of the sun, increase the surface roughness of polyurethane and reduce glare, but light. Since an increase in the scattering effect is always accompanied by light transmission and an increase in surface roughness reduces the surface smoothness of the polyurethane film, a polymer of methyl methacrylate is used to fill the coarse voids of the polyurethane. At the same time, the light transmittance of the polymethyl methacrylate film does not affect the diffuse reflection of the polyurethane, and glycim and 3,4,5-trimethoxybenzoic acid are used to promote the filling of the coarse voids of the polyurethane with polymethyl methacrylate.

以下、実施例を挙げて、本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

(1)改質用熱伝導性フィラーの調製:室温で質量比が1:2:1:1の3−アミノプロピルトリエトキシシラン、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、30分間加水分解して、加水分解物Aを得た。得られた加水分解物Aを80℃の高速ミキサーに加え、30分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得た。
(2)成分Aの調製:ポリテトラメチレンエーテルグリコールと改質用熱伝導性フィラーを質量比2:1で最初に超音波により1時間分散させ、次に100℃で1時間、減圧下で脱水して、成分Aを得た。
(3)カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製:50℃で成分A、MDI型イソシアナート、ジブチルスズジラウレートを質量比2.5:1:0.02で60r/minの回転数で60分間反応させ、次に75℃に昇温し1時間反応を継続し、0.1倍の改質剤、0.25倍のジヒドロキシメチル酪酸、0.02倍のフィラーポリマー鎖および1.2倍の水を加え、80℃で1時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、70℃で1時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、70℃で1時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得た。前記メタクリル酸メチル、改質剤、ジメチル酪酸剤ポリオール系鎖延長剤(以下同じ)、過硫酸アンモニウム、フィラーポリマー鎖、水の倍数は、イソシアナートの質量を基準とし、グリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とした。
(1) Preparation of thermally conductive filler for modification: Mix 3-aminopropyltriethoxysilane, deionized water, tannic acid, and boron nitride nanosheet having a mass ratio of 1: 2: 1: 1 at room temperature for 30 minutes. Hydrolysis was performed to obtain hydrolyzate A. The obtained hydrolyzate A was added to a high-speed mixer at 80 ° C., mixing was continued for 30 minutes, cooled and taken out, and vacuum dried to obtain a thermally conductive filler for modification.
(2) Preparation of component A: Polytetramethylene ether glycol and a heat conductive filler for modification are first dispersed by ultrasonic waves at a mass ratio of 2: 1 for 1 hour, and then dehydrated at 100 ° C. for 1 hour under reduced pressure. Then, the component A was obtained.
(3) Preparation of light-resistant aqueous polyurethane coating agent and adhesive for modifying carbon nanotubes: Component A, MDI-type isocyanate, and dibutyltin dilaurate at 50 ° C. at a mass ratio of 2.5: 1: 0.02 at 60 r / min. The reaction was carried out at rotation speed for 60 minutes, then the temperature was raised to 75 ° C. and the reaction was continued for 1 hour, with 0.1 times the modifier, 0.25 times the dihydroxymethylbutyric acid, 0.02 times the filler polymer chain and Add 1.2 times water and continue the reaction at 80 ° C. for 1 hour, then add 0.01 times methyl methacrylate, 0.005 times ammonium persulfate and 0.1 times water and 1 at 70 ° C. After time reaction, 0.01 times more glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid were added, and the mixture was reacted at 70 ° C. for 1 hour to modify a carbon nanotube-modified light-resistant aqueous polyurethane coating agent and adhere. I got the agent. The methyl methacrylate, modifier, dimethylbutyric acid polyol-based chain extender (same below), ammonium persulfate, filler polymer chain, and multiples of water are based on the mass of isocyanate, and glyoxime and 3,4,5- All multiples of trimethoxybenzoic acid were based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、25gのポリビニルアルコール、4gのカテキンを70gの水に加え、60℃で1時間撹拌して反応させ、次に5gのアセトンを加え、40℃で1時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得た。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 25 g of polyvinyl alcohol, and 4 g of catechin are added to 70 g of water, and the mixture is stirred and reacted at 60 ° C. for 1 hour, and then 5 g of acetone. Was added, and the mixture was stirred at 40 ° C. for 1 hour to react and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.1gのカーボンナノチューブと320mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は75℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で2時間凝縮・還流した。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄した。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得た。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブであった。
The method for preparing the hydroxylated carbon nanotubes is as follows.
Take 1.1 g of carbon nanotubes and 320 mL of mixed acid (volume ratio of concentrated sulfuric acid and concentrated nitric acid is 3: 1) in a 500 mL flask, and ultrasonically clean at a reaction temperature of 75 ° C., ultrasonic output of 200 W, and ultrasonic frequency of 40 KHz. Condensed and refluxed in the vessel for 2 hours. Then, it was transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration were dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It was an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)9gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、30℃で10分間超音波分散させて溶液Aを得る工程、
(2)12gのジフェニルメタンジイソシアネートと12gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:50の比率で50℃で1時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、50℃で2時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) A step of vacuum-drying 9 g of nanosilicon carbide at 105 ° C., dispersing the nanosilicon carbide in 30 g of N, N-dimethylformamide, and ultrasonically dispersing the nanosilicon carbide at 30 ° C. for 10 minutes to obtain a solution A.
(2) A step of dissolving 12 g of diphenylmethane diisocyanate and 12 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:50 at 50 ° C. for 1 hour to obtain a solution C (the weight of the nanosilver is 1/100 of the weight of the nanosilicon carbide. ),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 50 ° C. for 2 hours to obtain a filler polymer chain.

(1)改質用熱伝導性フィラーの調製:室温で質量比が1:5:3:1.3のモノアルコキシチタネートカップリング剤(モノアルコキシ脂肪酸チタン酸エステルカップリング剤、南京全希化工有限会社製)、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、40分間加水分解して、加水分解物Aを得た。得られた加水分解物Aを90℃の高速ミキサーに加え、40分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得た。
(2)成分Aの調製:ポリカーボネートジオールと改質用熱伝導性フィラーを質量比3:1で最初に超音波により2.5時間分散させ、次に110℃で2時間、減圧下で脱水して、成分Aを得た。
(3)カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製:70℃で成分A、MDI型イソシアナート、ジブチルスズジラウレートを質量比3.0:1:0.02で80r/minの回転数で90分間反応させ、次に85℃に昇温し3時間反応を継続し、0.4倍の改質剤、0.34倍のジメチロールプロピオン酸、0.05倍のフィラーポリマー鎖および1.2倍の水を加え、90℃で2時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、80℃で2時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、80℃で2時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得た。前記メタクリル酸メチル、改質剤、ポリオール系鎖延長剤、過硫酸アンモニウム、フィラーポリマー鎖、水の倍数は、イソシアナートの質量を基準とし、グリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とした。
(1) Preparation of thermally conductive filler for modification: Monoalkoxy titanate coupling agent having a mass ratio of 1: 5: 3: 1.3 at room temperature (monoalkoxy fatty acid titanate ester coupling agent, Nanjing Zenkaku Kogyo Co., Ltd.) (Manufactured by the company), deionized water, tannic acid, and boron nitride nanosheet were mixed and hydrolyzed for 40 minutes to obtain a hydrolyzate A. The obtained hydrolyzate A was added to a high-speed mixer at 90 ° C., mixing was continued for 40 minutes, cooled and taken out, and vacuum dried to obtain a thermally conductive filler for modification.
(2) Preparation of component A: Polycarbonate diol and thermally conductive filler for modification were first dispersed by ultrasonic waves at a mass ratio of 3: 1 for 2.5 hours, and then dehydrated at 110 ° C. for 2 hours under reduced pressure. To obtain component A.
(3) Preparation of light-resistant aqueous polyurethane coating agent and adhesive for modifying carbon nanotubes: Component A, MDI-type isocyanate, and dibutyltin dilaurate at 70 ° C. at a mass ratio of 3.0: 1: 0.02 at 80 r / min. The reaction was carried out at a rotation speed of 90 minutes, then the temperature was raised to 85 ° C. and the reaction was continued for 3 hours. And 1.2 times water was added and the reaction was continued at 90 ° C. for 2 hours, and 0.01 times methyl methacrylate, 0.005 times ammonium persulfate and 0.1 times water were further added and at 80 ° C. After reacting for 2 hours, 0.01 times more glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid were added, and the mixture was reacted at 80 ° C. for 2 hours to modify a carbon nanotube-modified light-resistant aqueous polyurethane coating agent. I got the adhesive. The multiples of methyl methacrylate, modifier, polyol chain extender, ammonium persulfate, filler polymer chain, and water are based on the mass of isocyanate, and any multiple of glyoxime and 3,4,5-trimethoxybenzoic acid. Was also based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、35gのポリビニルアルコール、22gのカテキンを80gの水に加え、70℃で2時間撹拌して反応させ、次に5gのアセトンを加え、50℃で2時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得た。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 35 g of polyvinyl alcohol, and 22 g of catechin are added to 80 g of water, and the mixture is stirred at 70 ° C. for 2 hours to react, and then 5 g of acetone. Was added, and the mixture was stirred at 50 ° C. for 2 hours to react and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.5gのカーボンナノチューブと350mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は95℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で5時間凝縮・還流した。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄した。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得た。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブであった。
The method for preparing the hydroxylated carbon nanotubes is as follows.
Take 1.5 g of carbon nanotubes and 350 mL of mixed acid (volume ratio of concentrated sulfuric acid and concentrated nitric acid is 3: 1) in a 500 mL flask, and ultrasonically clean at a reaction temperature of 95 ° C., ultrasonic output of 200 W, and ultrasonic frequency of 40 KHz. Condensed and refluxed in the vessel for 5 hours. Then, it was transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration were dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It was an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)12gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、50℃で30分間超音波分散させて溶液Aを得る工程、
(2)22gのジフェニルメタンジイソシアネートと22gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:60の比率で60℃で2時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、70℃で3時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) A step of vacuum-drying 12 g of nanosilicon carbide at 105 ° C., dispersing the nanosilicon carbide in 30 g of N, N-dimethylformamide, and ultrasonically dispersing the nanosilicon carbide at 50 ° C. for 30 minutes to obtain a solution A.
(2) A step of dissolving 22 g of diphenylmethane diisocyanate and 22 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:60 at 60 ° C. for 2 hours to obtain a solution C (the weight of the nanosilver is 1/100 of the weight of the nanosilicon carbide. ),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 70 ° C. for 3 hours to obtain a filler polymer chain.

(1)改質用熱伝導性フィラーの調製:室温で質量比が1:3.5:2:1.15の3−アミノプロピルトリエトキシシラン、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、35分間加水分解して、加水分解物Aを得た。得られた加水分解物Aを85℃の高速ミキサーに加え、35分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得た。
(2)成分Aの調製:ポリテトラメチレンエーテルグリコールと改質用熱伝導性フィラーを質量比2.5:1で最初に超音波により1.5時間分散させ、次に105℃で1.5時間、減圧下で脱水して、成分Aを得た。
(3)カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製:60℃で成分A、MDI型イソシアナート、ジブチルスズジラウレートを質量比2.75:1:0.02で70r/minの回転数で75分間反応させ、次に80℃に昇温し2時間反応を継続し、0.25倍の改質剤、0.3倍のジヒドロキシメチル酪酸、0.035倍のフィラーポリマー鎖および1.2倍の水を加え、85℃で1.5時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、75℃で1.5時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、75℃で1.5時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得た。前記メタクリル酸メチル、改質剤、ポリオール系鎖延長剤、フィラーポリマー鎖、過硫酸アンモニウム、水の倍数は、イソシアナートの質量を基準とし、グリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とした。
(1) Preparation of thermally conductive filler for modification: 3-aminopropyltriethoxysilane having a mass ratio of 1: 3.5: 2: 1.15 at room temperature, deionized water, tannic acid, and boron nitride nanosheets are mixed. Then, it was hydrolyzed for 35 minutes to obtain hydrolyzate A. The obtained hydrolyzate A was added to a high-speed mixer at 85 ° C., mixing was continued for 35 minutes, cooled and taken out, and vacuum dried to obtain a thermally conductive filler for modification.
(2) Preparation of component A: Polytetramethylene ether glycol and a heat conductive filler for modification are first dispersed by ultrasonic waves at a mass ratio of 2.5: 1 for 1.5 hours, and then 1.5 at 105 ° C. Dehydration under reduced pressure for hours gave component A.
(3) Preparation of light-resistant aqueous polyurethane coating agent and adhesive for modifying carbon nanotubes: Component A, MDI-type isocyanate, and dibutyltin dilaurate at 60 ° C. at a mass ratio of 2.75: 1: 0.02 at 70 r / min. The reaction was carried out at rotation speed for 75 minutes, then the temperature was raised to 80 ° C. and the reaction was continued for 2 hours, with 0.25 times the modifier, 0.3 times the dihydroxymethylbutyric acid, 0.035 times the filler polymer chain and Add 1.2 times water and continue the reaction at 85 ° C. for 1.5 hours, then add 0.01 times methyl methacrylate, 0.005 times ammonium persulfate and 0.1 times water to 75 ° C. For 1.5 hours, 0.01 times more glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid were added, and the mixture was reacted at 75 ° C. for 1.5 hours to modify the light resistance of carbon nanotubes. Aqueous polyurethane coatings and adhesives were obtained. The multiples of methyl methacrylate, modifier, polyol chain extender, filler polymer chain, ammonium persulfate, and water are based on the mass of isocyanate, and the multiples of glyoxime and 3,4,5-trimethoxybenzoic acid are any. Was also based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、30gのポリビニルアルコール、13gのカテキンを75gの水に加え、65℃で1.5時間撹拌して反応させ、次に5gのアセトンを加え、45℃で1.5時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得た。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 30 g of polyvinyl alcohol, and 13 g of catechin are added to 75 g of water, and the mixture is stirred at 65 ° C. for 1.5 hours to react, and then 5 g. Acetone was added, and the mixture was stirred at 45 ° C. for 1.5 hours to react and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.3gのカーボンナノチューブと335mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は85℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で3.5時間凝縮・還流した。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄した。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得た。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブであった。
The method for preparing the hydroxylated carbon nanotubes is as follows.
Take 1.3 g of carbon nanotubes and 335 mL of mixed acid (volume ratio of concentrated sulfuric acid and concentrated nitric acid is 3: 1) in a 500 mL flask, and ultrasonically clean at a reaction temperature of 85 ° C., ultrasonic output of 200 W, and ultrasonic frequency of 40 KHz. Condensed and refluxed in the vessel for 3.5 hours. Then, it was transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration were dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It was an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)10.5gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、40℃で20分間超音波分散させて溶液Aを得る工程、
(2)17gのジフェニルメタンジイソシアネートと17gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:55の比率で55℃で1.5時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、60℃で2.5時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) A step of vacuum-drying 10.5 g of nanosilicon carbide at 105 ° C., dispersing the nanosilicon carbide in 30 g of N, N-dimethylformamide, and ultrasonically dispersing the nanosilicon carbide at 40 ° C. for 20 minutes to obtain a solution A.
(2) A step of dissolving 17 g of diphenylmethane diisocyanate and 17 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:55 at 55 ° C. for 1.5 hours to obtain a solution C (the weight of the nanosilver is 1 of the weight of the nanosilicon carbide. / 100),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 60 ° C. for 2.5 hours to obtain a filler polymer chain.

(1)改質用熱伝導性フィラーの調製:室温で質量比が1:3.5:2:1.15のモノアルコキシチタネートカップリング剤(モノアルコキシ脂肪酸チタン酸エステルカップリング剤、南京全希化工有限会社製)、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、30分間加水分解して、加水分解物Aを得た。得られた加水分解物Aを90℃の高速ミキサーに加え、40分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得た。
(2)成分Aの調製:ポリカーボネートジオールと改質用熱伝導性フィラーを質量比2.2:1で最初に超音波により1時間分散させ、次に110℃で2時間、減圧下で脱水して、成分Aを得た。
(3)カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製:55℃で成分A、MDI型イソシアナート、ジブチルスズジラウレートを質量比2.8:1:0.02で80r/minの回転数で90分間反応させ、次に85℃に昇温し1.5時間反応を継続し、0.3倍の改質剤、0.25倍のジメチロールプロピオン酸、0.02倍のフィラーポリマー鎖および1.2倍の水を加え、90℃で2時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、80℃で2時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、80℃で2時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得た。前記メタクリル酸メチル、改質剤、ポリオール系鎖延長剤、フィラーポリマー鎖、過硫酸アンモニウム、水の倍数は、イソシアナートの質量を基準とし、グリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とした。
(1) Preparation of thermally conductive filler for modification: Monoalkoxy titanate coupling agent having a mass ratio of 1: 3.5: 2: 1.15 at room temperature (monoalkoxy fatty acid titanate ester coupling agent, Nanjing Zenki (Manufactured by Kako Co., Ltd.), deionized water, tannic acid, and boron nitride nanosheet were mixed and hydrolyzed for 30 minutes to obtain a hydrolyzate A. The obtained hydrolyzate A was added to a high-speed mixer at 90 ° C., mixing was continued for 40 minutes, cooled and taken out, and vacuum dried to obtain a thermally conductive filler for modification.
(2) Preparation of component A: Polycarbonate diol and thermally conductive filler for modification were first dispersed by ultrasonic waves at a mass ratio of 2.2: 1 for 1 hour, and then dehydrated at 110 ° C. for 2 hours under reduced pressure. To obtain component A.
(3) Preparation of light-resistant aqueous polyurethane coating agent and adhesive for modifying carbon nanotubes: Ingredient A, MDI-type isocyanate, and dibutyltin dilaurate at 55 ° C. at a mass ratio of 2.8: 1: 0.02 at 80 r / min. The reaction was carried out at a rotation speed of 90 minutes, then the temperature was raised to 85 ° C. and the reaction was continued for 1.5 hours. Add the polymer chain and 1.2 times water, continue the reaction at 90 ° C. for 2 hours, then add 0.01 times methyl methacrylate, 0.005 times ammonium persulfate and 0.1 times water, 80. After reacting at ° C for 2 hours, 0.01 times more glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid were added, and the reaction was carried out at 80 ° C. for 2 hours to modify a carbon nanotube-modified light-resistant aqueous polyurethane coating. Agents and adhesives were obtained. The multiples of methyl methacrylate, modifier, polyol chain extender, filler polymer chain, ammonium persulfate, and water are based on the mass of isocyanate, and the multiples of glyoxime and 3,4,5-trimethoxybenzoic acid are any. Was also based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、30gのポリビニルアルコール、10gのカテキンを70gの水に加え、70℃で2時間撹拌して反応させ、次に5gのアセトンを加え、50℃で2時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得た。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 30 g of polyvinyl alcohol, and 10 g of catechin are added to 70 g of water, and the mixture is stirred and reacted at 70 ° C. for 2 hours, and then 5 g of acetone. Was added, and the mixture was stirred at 50 ° C. for 2 hours to react and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.2gのカーボンナノチューブと320mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は80℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で3時間凝縮・還流した。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄した。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得た。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブであった。
The method for preparing the hydroxylated carbon nanotubes is as follows.
Take 1.2 g of carbon nanotubes and 320 mL of mixed acid (volume ratio of concentrated sulfuric acid and concentrated nitric acid is 3: 1) in a 500 mL flask, and ultrasonically clean at a reaction temperature of 80 ° C., ultrasonic output of 200 W, and ultrasonic frequency of 40 KHz. Condensed and refluxed in the vessel for 3 hours. Then, it was transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration were dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It was an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)10gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、35℃で20分間超音波分散させて溶液Aを得る工程、
(2)14gのジフェニルメタンジイソシアネートと10gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:55の比率で55℃で2時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、70℃で3時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) A step of vacuum-drying 10 g of nanosilicon carbide at 105 ° C., dispersing the nanosilicon carbide in 30 g of N, N-dimethylformamide, and ultrasonically dispersing the nanosilicon carbide at 35 ° C. for 20 minutes to obtain a solution A.
(2) A step of dissolving 14 g of diphenylmethane diisocyanate and 10 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:55 at 55 ° C. for 2 hours to obtain a solution C (the weight of the nanosilver is 1/100 of the weight of the nanosilicon carbide. ),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 70 ° C. for 3 hours to obtain a filler polymer chain.

(1)改質用熱伝導性フィラーの調製:室温で質量比が1:3:3:1.3の3−アミノプロピルトリエトキシシラン、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、40分間加水分解して、加水分解物Aを得た。得られた加水分解物Aを90℃の高速ミキサーに加え、40分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得た。
(2)成分Aの調製:ポリカーボネートジオールと改質用熱伝導性フィラーを質量比2.5:1で最初に超音波により1時間分散させ、次に100℃で1時間、減圧下で脱水して、成分Aを得た。
(3)カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製:60℃で成分A、MDI型イソシアナート、ジブチルスズジラウレートを質量比2.8:1:0.02で70r/minの回転数で70分間反応させ、次に80℃に昇温し2時間反応を継続し、0.2倍の改質剤、0.25倍のジヒドロキシメチル酪酸、0.02倍のフィラーポリマー鎖および1.2倍の水を加え、80℃で1時間反応を継続し、さらにメ0.01倍のタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、70℃で1時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、80℃で2時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得た。前記メタクリル酸メチル、改質剤、ポリオール系鎖延長剤、フィラーポリマー鎖、過硫酸アンモニウム、水の倍数は、イソシアナートの質量を基準とし、グリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とした。
(1) Preparation of thermally conductive filler for modification: At room temperature, 3-aminopropyltriethoxysilane having a mass ratio of 1: 3: 3: 1.3, deionized water, tannic acid, and boron nitride nanosheets are mixed. Hydrolysis was performed for 40 minutes to obtain hydrolyzate A. The obtained hydrolyzate A was added to a high-speed mixer at 90 ° C., mixing was continued for 40 minutes, cooled and taken out, and vacuum dried to obtain a thermally conductive filler for modification.
(2) Preparation of component A: Polycarbonate diol and thermally conductive filler for modification were first dispersed by ultrasonic waves at a mass ratio of 2.5: 1 for 1 hour, and then dehydrated at 100 ° C. for 1 hour under reduced pressure. To obtain component A.
(3) Preparation of light-resistant aqueous polyurethane coating agent and adhesive for modifying carbon nanotubes: Component A, MDI-type isocyanate, and dibutyltin dilaurate at 60 ° C. at a mass ratio of 2.8: 1: 0.02 at 70 r / min. The reaction was carried out at rotation speed for 70 minutes, then the temperature was raised to 80 ° C. and the reaction was continued for 2 hours, with 0.2 times the modifier, 0.25 times the dihydroxymethylbutyric acid, 0.02 times the filler polymer chain and Add 1.2 times water and continue the reaction at 80 ° C. for 1 hour, then add 0.01 times methyl tacrylate, 0.005 times ammonium persulfate and 0.1 times water at 70 ° C. After reacting for 1 hour, 0.01 times more glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid were added, and the mixture was reacted at 80 ° C. for 2 hours to modify a carbon nanotube-modified light-resistant aqueous polyurethane coating agent. Obtained adhesive. The multiples of methyl methacrylate, modifier, polyol chain extender, filler polymer chain, ammonium persulfate, and water are based on the mass of isocyanate, and the multiples of glyoxime and 3,4,5-trimethoxybenzoic acid are any. Was also based on the mass of methyl methacrylate.

前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、25gのポリビニルアルコール、22gのカテキンを80gの水に加え、60℃で1時間撹拌して反応させ、次に5gのアセトンを加え、40℃で1時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得た。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 25 g of polyvinyl alcohol, and 22 g of catechin are added to 80 g of water, and the mixture is stirred at 60 ° C. for 1 hour to react, and then 5 g of acetone. Was added, and the mixture was stirred at 40 ° C. for 1 hour to react and spray-dried to obtain a modifier.

前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりである。
1.2gのカーボンナノチューブと320mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は75℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で5時間凝縮・還流した。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄した。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得た。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブであった。
The method for preparing the hydroxylated carbon nanotubes is as follows.
Take 1.2 g of carbon nanotubes and 320 mL of mixed acid (volume ratio of concentrated sulfuric acid and concentrated nitric acid is 3: 1) in a 500 mL flask, and ultrasonically clean at a reaction temperature of 75 ° C., ultrasonic output of 200 W, and ultrasonic frequency of 40 KHz. Condensed and refluxed in the vessel for 5 hours. Then, it was transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration were dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It was an nanotube.

前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含む:
(1)10gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、50℃で30分間超音波分散させて溶液Aを得る工程、
(2)22gのジフェニルメタンジイソシアネートと12gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:60の比率で60℃で2時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、50℃で2時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The preparation of the filler polymer chain includes the following steps (1) to (4):
(1) A step of vacuum-drying 10 g of nanosilicon carbide at 105 ° C., dispersing the nanosilicon carbide in 30 g of N, N-dimethylformamide, and ultrasonically dispersing the nanosilicon carbide at 50 ° C. for 30 minutes to obtain a solution A.
(2) A step of dissolving 22 g of diphenylmethane diisocyanate and 12 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:60 at 60 ° C. for 2 hours to obtain a solution C (the weight of the nanosilver is 1/100 of the weight of the nanosilicon carbide. ),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 50 ° C. for 2 hours to obtain a filler polymer chain.

以下は、性能テストおよび結果の分析である。
一、熱伝導率とポリウレタンフィルムの平滑性:ASTM E1530−2006に従って、ポリウレタン接着剤の熱伝導率を定常熱伝導率計でテストした。テスト結果を表1に示す。ここで、特許文献1の実施例1で調製した製品を比較例1とし、特許文献2の実施例2で調製された製品を比較例2として使用した。3人の高分子教師(副教授の称号以上)により表面平滑性をスコア1〜10でスコア付けし、スコア10が最高、スコア1が最低である。
The following is a performance test and analysis of the results.
1. Thermal conductivity and smoothness of polyurethane film: According to ASTM E1530-2006, the thermal conductivity of the polyurethane adhesive was tested with a stationary thermal conductivity meter. The test results are shown in Table 1. Here, the product prepared in Example 1 of Patent Document 1 was used as Comparative Example 1, and the product prepared in Example 2 of Patent Document 2 was used as Comparative Example 2. The surface smoothness was scored by three polymer teachers (associate professor title or higher) with a score of 1 to 10, with a score of 10 being the highest and a score of 1 being the lowest.

Figure 2021109957
Figure 2021109957

表1から、本発明は良好な熱伝導性を有することが分かる。また、表1から、改質剤およびヒドロキシ化したカーボンナノチューブが熱伝導率に大きな影響を与えることが分かる。スコア付け結果は、本発明のポリウレタンフィルムの平滑性が優れていることを示している。 From Table 1, it can be seen that the present invention has good thermal conductivity. Further, from Table 1, it can be seen that the modifier and the hydroxylated carbon nanotubes have a great influence on the thermal conductivity. The scoring results show that the polyurethane film of the present invention has excellent smoothness.

二、ポリウレタンコーティング剤の難燃性:ASTM E 662およびGB8323−87に定められている煙密度測定方法で、大きさ10cm×10cm、厚さ10mmのフィルムの試験片を作製し、非特許文献4でポリウレタンコーティング剤によって形成されたフィルムの有炎燃焼時間(燃焼継続時間)を測定した。 2. Flame retardancy of polyurethane coating agent: A test piece of a film having a size of 10 cm × 10 cm and a thickness of 10 mm was prepared by the smoke density measuring method specified in ASTM E 662 and GB8323-87, and Non-Patent Document 4 The flame burning time (burning duration) of the film formed by the polyurethane coating agent was measured in.

ナノシルバーは、1,5−ナフタレンジスルホン酸の改質下でガスを放出し、それを完全燃焼させ、煙の濃度を下げることができる。ASTM E1354−1990(2004規格)を用いて、英国FTT社のコーンカロリーメータ2000で分析・測定した。試験片の大きさは10cmx10cm、厚さは10mm、熱放射電力は12kw/mであった。試験結果を表2および表3に示す。ここで比較例3は、特許文献3の実施例2で調製した製品を採用した。 Nanosilver can release gas under modification of 1,5-naphthalenedisulfonic acid and burn it completely to reduce the concentration of smoke. Analysis and measurement were performed using an ASTM E1354-1990 (2004 standard) with a cone calorie meter 2000 manufactured by FTT of the United Kingdom. The size of the test piece was 10 cm x 10 cm, the thickness was 10 mm, and the thermal radiant power was 12 kW / m 2 . The test results are shown in Tables 2 and 3. Here, as Comparative Example 3, the product prepared in Example 2 of Patent Document 3 was adopted.

Figure 2021109957
Figure 2021109957

Figure 2021109957
Figure 2021109957

表2と表3から、1,5−ナフタレンジスルホン酸を加えずに得られた材料のCOの濃度は比較的高いことが分かり、煙中の有毒ガスとしてのCOを制御する必要がある。 From Tables 2 and 3, it can be seen that the CO concentration of the material obtained without adding 1,5-naphthalenedisulfonic acid is relatively high, and it is necessary to control CO as a toxic gas in smoke.

三、ポリウレタンコーティングおよび接着剤の耐光性:調製されたPUフィルムを人工加速劣化試験用のランプ式黄変試験器に入れた。光源は赤色ランプであり、放射波長は320nm〜400nmであり、最大強度波長は360nmであった。試験片とUVAランプの間の距離は15cmであり、テスト温度は60℃であり、照射時間は96時間であった。 3. Light resistance of polyurethane coating and adhesive: The prepared PU film was placed in a lamp-type yellowing tester for an artificial accelerated deterioration test. The light source was a red lamp, the emission wavelength was 320 nm to 400 nm, and the maximum intensity wavelength was 360 nm. The distance between the test piece and the UVA lamp was 15 cm, the test temperature was 60 ° C., and the irradiation time was 96 hours.

全てのPUフィルムがUV光で異なる時間に劣化した後、比色計で色の変化を測定した。テスト条件は、プローブの直径が8mm、主光源がD65、観測角度が10°であった。 After all PU films were degraded by UV light at different times, the color change was measured with a colorimeter. The test conditions were a probe diameter of 8 mm, a main light source of D65, and an observation angle of 10 °.

CIEの L*a*b*色空間の原理に従って、試験片劣化前後の色差変化を測定した。CIE(L*a*b*)1976の計算式を(1)〜(4)に示す[63]
<数1>
ΔL*= L*劣化後 − L*劣化前 (1)
<数2>
Δa*= a*劣化後− a*劣化前 (2)
<数3>
Δb*= b*劣化後− b*劣化前 (3)
<数4>
ΔE*=[(ΔL*) +(Δa*)+(Δb*)1/2 (4)
According to the CIE L * a * b * color space principle, the color difference change before and after the deterioration of the test piece was measured. The calculation formula of CIE (L * a * b *) 1976 is shown in (1) to (4) [63] .
<Number 1>
ΔL * = L * After deterioration -L * Before deterioration (1)
<Number 2>
Δa * = a * After deterioration -a * Before deterioration (2)
<Number 3>
Δb * = b * after deterioration − b * before deterioration (3)
<Number 4>
ΔE * = [(ΔL *) 2 + (Δa *) 2 + (Δb *) 2 ] 1/2 (4)

式中、Lは試験片の明るさの変化を表し、+Lは明るくなること、−Lは暗くなることを意味する。aは試験片の赤緑の変化を表し、+aは赤くなること、−aは緑になることを意味する。bは試験片の黄青の変化を表し、+bは黄色に変わることを意味し、−bは青に変わることを意味する。コーティング剤の耐光性を定量的に表し、分光光度計で測定して逆色差値△Eを求め、コーティング剤と上塗りの耐光性を表す。△Eは色の変化の度合いを表し、△Eが大きいほど色の変化がはっきりする。一般的に、△E値0〜1.5はわずかな変化、△E値1.5〜3.0は知覚可能な変化、△E値3.0〜6.0は大きな変化となる(非特許文献3を参照)。大きさ10cm×10cm、厚さ10mmのポリウレタンフィルムの試験片を作製してテストした。テスト結果を表4に示す。特許文献1の実施例1で調製された製品を比較例1とし、特許文献2の実施例2で調製された製品を比較例2として使用した。 In the formula, L represents a change in the brightness of the test piece, + L means brightening, and -L means darkening. a represents a change in reddish green of the test piece, + a means that it becomes red, and -a means that it becomes green. b represents the change in yellow-blue of the test piece, + b means that it turns yellow, and -b means that it turns blue. The light resistance of the coating agent is quantitatively expressed, and the reverse color difference value ΔE is obtained by measuring with a spectrophotometer, and the light resistance of the coating agent and the top coat is expressed. ΔE represents the degree of color change, and the larger ΔE, the clearer the color change. In general, ΔE values 0 to 1.5 are slight changes, ΔE values 1.5 to 3.0 are perceptible changes, and ΔE values 3.0 to 6.0 are large changes (non-). See Patent Document 3). A test piece of a polyurethane film having a size of 10 cm × 10 cm and a thickness of 10 mm was prepared and tested. The test results are shown in Table 4. The product prepared in Example 1 of Patent Document 1 was used as Comparative Example 1, and the product prepared in Example 2 of Patent Document 2 was used as Comparative Example 2.

Figure 2021109957
Figure 2021109957

表4から、本発明は耐光性を向上する上で明らかな利点を有することが分かる。 From Table 4, it can be seen that the present invention has a clear advantage in improving the light resistance.

コーティング剤の耐光性を定量的に表し、分光光度計で測定して逆色差値△Eを求め、コーティング剤と上塗りの耐光性を表す。△Eは色の変化の度合いを表し、△Eが大きいほど色の変化がはっきりする。一般的に、△E値0〜1.5はわずかな変化、△E値1.5〜3.0は知覚可能な変化、△E値3.0〜6.0は大きな変化となる(非特許文献3を参照)。大きさ10cm×10cm、厚さ10mmのポリウレタンフィルムの試験片を作製してテストした。テスト結果を表5に示す。 The light resistance of the coating agent is quantitatively expressed, and the reverse color difference value ΔE is obtained by measuring with a spectrophotometer, and the light resistance of the coating agent and the top coat is expressed. ΔE represents the degree of color change, and the larger ΔE, the clearer the color change. In general, ΔE values 0 to 1.5 are slight changes, ΔE values 1.5 to 3.0 are perceptible changes, and ΔE values 3.0 to 6.0 are large changes (non-). See Patent Document 3). A test piece of a polyurethane film having a size of 10 cm × 10 cm and a thickness of 10 mm was prepared and tested. The test results are shown in Table 5.

Figure 2021109957
Figure 2021109957

表5からグリオキシムを加えていないスキームは、製品の耐光性が低下することが分かる。 From Table 5, it can be seen that the scheme without glycimme reduces the light resistance of the product.

四、ポリウレタンコーティング剤および接着剤のフィルム平滑性:厚さ10mmのポリウレタンフィルムを作製してテストした。テストのスコア付け方法は、上記と同じであり、結果を表6に示す。 4. Film smoothness of polyurethane coating agent and adhesive: A polyurethane film having a thickness of 10 mm was prepared and tested. The test scoring method is the same as above and the results are shown in Table 6.

Figure 2021109957
Figure 2021109957

表6からグリオキシムまたは3,4,5−トリメトキシ安息香酸を添加しない場合のポリウレタンフィルムの平滑性が低下することが分かる。 It can be seen from Table 6 that the smoothness of the polyurethane film is reduced when glyoxime or 3,4,5-trimethoxybenzoic acid is not added.

上記の実施例は、本発明の技術的手段を説明するためにのみ使用され、本発明はそのような実施形態に限定されるものではない。前述の実施形例を参照して、本発明を詳細に説明してきたが、当業者は前述の各実施例に記載されている技術的手段について変更するか、または技術的特徴の一部を同等に置換することができ、これらの変更または置換は、対応する技術的手段の本質が本発明の各実施例の技術的手段の精神および範囲から逸脱することはないことは、当業者は理解すべきである。 The above examples are used only to illustrate the technical means of the invention, and the invention is not limited to such embodiments. Although the present invention has been described in detail with reference to the above-described embodiments, those skilled in the art will modify the technical means described in each of the above-described embodiments or equip them with some of the technical features. It will be appreciated by those skilled in the art that these modifications or substitutions will not deviate from the spirit and scope of the technical means of each embodiment of the invention. Should be.

Claims (8)

カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法であって、以下の工程(1)〜(3)を含むことを特徴とするカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。
(1)室温で質量比が1:(2〜5):(1〜3):(1.0〜1.3)のカップリング剤、脱イオン水、タンニン酸、窒化ホウ素ナノシートを混合し、30〜40分間加水分解して、加水分解物Aを得、得られた加水分解物Aを80〜90℃の高速ミキサーに加え、30〜40分間混合を継続し、冷却して取り出し、真空乾燥して、改質用熱伝導性フィラーを得る改質用熱伝導性フィラーの調製工程。
(2)ポリマーポリオールと改質用熱伝導性フィラーを質量比(2〜3):1で最初に超音波により1〜2.5時間分散させ、次に100〜110℃で1〜2時間、減圧下で脱水して、成分Aを得る成分Aの調製工程。
(3)50〜70℃で成分A、イソシアナート、ジブチルスズジラウレートを質量比(2.5〜3.0):1:0.02で60〜80r/minの回転数で60〜90分間反応させ、次に75〜85℃に昇温し1〜3時間反応を継続し、0.1〜0.4倍の改質剤、0.25〜0.34倍のポリオール系鎖延長剤、0.02〜0.05倍のフィラーポリマー鎖および1.2倍の水を加え、80〜90℃で1〜2時間反応を継続し、さらに0.01倍のメタクリル酸メチル、0.005倍の過硫酸アンモニウムおよび0.1倍の水を加え、70〜80℃で1〜2時間反応させ、さらに0.01倍のグリオキシムおよび0.005倍の3,4,5−トリメトキシ安息香酸を加え、70〜80℃で1〜2時間反応させ、カーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤を得るカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製工程。
加えられた改質剤、ポリオール系鎖延長剤、水、メタクリル酸メチル、過硫酸アンモニウム、フィラーポリマー鎖の倍数は、いずれもイソシアナートの質量を基準とし、加えられたグリオキシムおよび3,4,5−トリメトキシ安息香酸の倍数はいずれもメタクリル酸メチルの質量を基準とする。
A method for preparing a light-resistant water-resistant polyurethane coating agent and an adhesive for modifying carbon nanotubes, which comprises the following steps (1) to (3). Adhesive preparation method.
(1) A coupling agent having a mass ratio of 1: (2 to 5): (1 to 3): (1.0 to 1.3) at room temperature, deionized water, tannic acid, and a boron nitride nanosheet are mixed. Hydrolyze for 30-40 minutes to obtain hydrolyzate A, add the resulting hydrolyzate A to a high speed mixer at 80-90 ° C., continue mixing for 30-40 minutes, cool and remove, vacuum dry. The process of preparing the thermally conductive filler for modification to obtain the thermally conductive filler for modification.
(2) The polymer polyol and the thermally conductive filler for modification were first dispersed by ultrasonic waves at a mass ratio (2 to 3): 1 for 1 to 2.5 hours, and then at 100 to 110 ° C. for 1 to 2 hours. A step of preparing component A, which is dehydrated under reduced pressure to obtain component A.
(3) Ingredient A, isocyanate, and dibutyltin dilaurate are reacted at 50 to 70 ° C. at a mass ratio (2.5 to 3.0): 1: 0.02 at a rotation speed of 60 to 80 r / min for 60 to 90 minutes. Then, the temperature was raised to 75 to 85 ° C., and the reaction was continued for 1 to 3 hours. 02 to 0.05 times the filler polymer chain and 1.2 times the water were added, the reaction was continued at 80 to 90 ° C. for 1 to 2 hours, and 0.01 times the methyl methacrylate and 0.005 times the excess. Add ammonium sulfate and 0.1 times water and react at 70-80 ° C. for 1-2 hours, then add 0.01 times glyoxime and 0.005 times 3,4,5-trimethoxybenzoic acid, 70- A step of preparing a carbon nanotube-modified light-resistant aqueous polyurethane coating and an adhesive by reacting at 80 ° C. for 1 to 2 hours to obtain a carbon nanotube-modified light-resistant aqueous polyurethane coating and an adhesive.
The added modifier, polyol chain extender, water, methyl methacrylate, ammonium persulfate, and multiples of the filler polymer chain are all based on the mass of isocyanate, and the added glyoxime and 3,4,5- All multiples of trimethoxybenzoic acid are based on the mass of methyl methacrylate.
前記改質剤の調製方法として、0.1gのヒドロキシ化したカーボンナノチューブ、25〜35gのポリビニルアルコール、4g〜22gのカテキンを70〜80gの水に加え、60〜70℃で1〜2時間撹拌して反応させ、次に5gのアセトンを加え、40〜50℃で1〜2時間撹拌して反応させ、噴霧乾燥させることで、改質剤を得ることを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。 As a method for preparing the modifier, 0.1 g of hydroxylated carbon nanotubes, 25 to 35 g of polyvinyl alcohol, 4 g to 22 g of catechin are added to 70 to 80 g of water, and the mixture is stirred at 60 to 70 ° C. for 1 to 2 hours. 1. The modifier is obtained by adding 5 g of acetone, stirring at 40 to 50 ° C. for 1 to 2 hours to react, and spray-drying. A method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes. 前記ヒドロキシ化したカーボンナノチューブの調製方法は、以下のとおりであることを特徴とする請求項2に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。
1.1〜1.5gのカーボンナノチューブと320〜350mLの混酸(濃硫酸と濃硝酸の体積比は3:1)を500mLフラスコに取り、反応温度は75〜95℃で、超音波出力200W、超音波周波数40KHzの超音波洗浄器内で2〜5時間凝縮・還流する。その後、ビーカーに移し、250gの脱イオン水で希釈し、直径0.2μmの微孔性膜で吸引ろ過し、中性になるまで脱イオン水で繰り返し洗浄する。吸引ろ過後のカーボンナノチューブを105℃で乾燥させ、粉末状に粉砕してヒドロキシ化したカーボンナノチューブを得る。前記カーボンナノチューブは、化学蒸着法によって生成された直径2nm、チューブの長さ100μm、純度99.5wt%、アモルファスカーボン不純物<5%、アッシュ不純物<3wt%、比表面積700m/gの単層カーボンナノチューブである。
The method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes according to claim 2, wherein the method for preparing the hydroxylated carbon nanotubes is as follows.
1.1 to 1.5 g of carbon nanotubes and 320 to 350 mL of mixed acid (volume ratio of concentrated sulfuric acid to concentrated nitric acid is 3: 1) are placed in a 500 mL flask, the reaction temperature is 75 to 95 ° C., and the ultrasonic output is 200 W. Condensate and reflux for 2 to 5 hours in an ultrasonic cleaner with an ultrasonic frequency of 40 KHz. Then, the mixture is transferred to a beaker, diluted with 250 g of deionized water, suction-filtered with a microporous membrane having a diameter of 0.2 μm, and repeatedly washed with deionized water until neutral. The carbon nanotubes after suction filtration are dried at 105 ° C. and pulverized into powder to obtain hydroxylated carbon nanotubes. The carbon nanotubes are single-walled carbon produced by a chemical vapor deposition method, having a diameter of 2 nm, a tube length of 100 μm, a purity of 99.5 wt%, an amorphous carbon impurity <5%, an ash impurity <3 wt%, and a specific surface area of 700 m 2 / g. It is an nanotube.
前記フィラーポリマー鎖の調製は、以下の工程(1)〜(4)を含むことを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。
(1)9〜12gのナノシリコンカーバイドを105℃で真空乾燥させ、ナノシリコンカーバイドを30gのN、N−ジメチルホルムアミドに分散させ、30〜50℃で10〜30分間超音波分散させて溶液Aを得る工程、
(2)12〜22gのジフェニルメタンジイソシアネートと12〜22gのポリ乳酸を42gのN、N−ジメチルホルムアミドに溶解して、溶液Bを得る工程、
(3)ナノシルバーと1,5−ナフタレンジスルホン酸を1:20:50−60の比率で50〜60℃で1〜2時間撹拌して溶液Cを得る工程(前記ナノシルバーの重量はナノシリコンカーバイド重量の1/100)、
(4)溶液Bを溶液Aに滴下し、次に溶液Cを溶液Aに加え、50〜70℃で2〜3時間撹拌して反応させ、フィラーポリマー鎖を得る工程。
The method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes according to claim 1, wherein the preparation of the filler polymer chain includes the following steps (1) to (4).
(1) 9 to 12 g of nanosilicon carbide is vacuum dried at 105 ° C., nanosilicon carbide is dispersed in 30 g of N, N-dimethylformamide, and ultrasonically dispersed at 30 to 50 ° C. for 10 to 30 minutes to solve solution A. The process of getting
(2) A step of dissolving 12 to 22 g of diphenylmethane diisocyanate and 12 to 22 g of polylactic acid in 42 g of N, N-dimethylformamide to obtain a solution B.
(3) A step of stirring nanosilver and 1,5-naphthalenedisulfonic acid at a ratio of 1:20:50-60 at 50-60 ° C. for 1 to 2 hours to obtain a solution C (the weight of the nanosilver is nanosilicon). 1/100 of the carbide weight),
(4) A step of dropping solution B into solution A, then adding solution C to solution A, and stirring and reacting at 50 to 70 ° C. for 2 to 3 hours to obtain a filler polymer chain.
前記カップリング剤は、3−アミノプロピルトリエトキシシランとモノアルコキシチタネートカップリング剤の1種または2種であることを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。 The light-resistant water-resistant polyurethane coating agent for modifying carbon nanotubes according to claim 1, wherein the coupling agent is one or two of 3-aminopropyltriethoxysilane and a monoalkoxy titanate coupling agent. And how to prepare the adhesive. 前記ポリマーポリオールは、ポリテトラメチレンエーテルグリコール、ポリカーボネートジオールのいずれかであることを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。 The method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes according to claim 1, wherein the polymer polyol is either polytetramethylene ether glycol or polycarbonate diol. 前記ポリオール系鎖延長剤は、ジヒドロキシメチル酪酸、ジメチロールプロピオン酸のいずれかであることを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。 The method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes according to claim 1, wherein the polyol-based chain extender is either dihydroxymethylbutyrate or dimethylolpropionic acid. 前記イソシアナートは、MDI型イソシアナートであることを特徴とする請求項1に記載のカーボンナノチューブ改質の耐光性水性ポリウレタンコーティング剤および接着剤の調製方法。 The method for preparing a light-resistant aqueous polyurethane coating agent and an adhesive for modifying carbon nanotubes according to claim 1, wherein the isocyanate is an MDI type isocyanate.
JP2020186827A 2019-12-30 2020-11-09 Method for preparing light-resistant water-based polyurethane coating agent and adhesive for modifying carbon nanotubes Active JP6859003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911393459.1A CN111040612A (en) 2019-12-30 2019-12-30 Preparation method of carbon nano tube modified light-resistant waterborne polyurethane coating and adhesive
CN201911393459.1 2019-12-30

Publications (2)

Publication Number Publication Date
JP6859003B1 JP6859003B1 (en) 2021-04-14
JP2021109957A true JP2021109957A (en) 2021-08-02

Family

ID=70241652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186827A Active JP6859003B1 (en) 2019-12-30 2020-11-09 Method for preparing light-resistant water-based polyurethane coating agent and adhesive for modifying carbon nanotubes

Country Status (2)

Country Link
JP (1) JP6859003B1 (en)
CN (1) CN111040612A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321927A (en) * 2021-08-03 2021-08-31 北京航空航天大学 Modified waterborne polyurethane-carbon nanotube intelligent composite material and preparation method thereof
CN114316205B (en) * 2021-12-08 2023-04-07 山东奥卓新材料有限公司 High-strength low-dynamic-static-stiffness-ratio polyurethane microporous elastic base plate and preparation method thereof
CN114479364B (en) * 2022-01-17 2023-06-27 深圳市姿彩科技有限公司 Alkenyl-terminated polyester grafted carbon nano tube modified photo-curing resin and preparation method thereof
CN114836162B (en) * 2022-03-31 2024-07-02 广元瑞峰新材料有限公司 Preparation method of modified polyurethane adhesive
CN114921971A (en) * 2022-04-14 2022-08-19 浙江彩蝶实业股份有限公司 Production process of polyester curtain fabric based on biomass anti-ultraviolet coating
CN114790545B (en) * 2022-05-07 2023-11-21 安徽未来表面技术有限公司 Corrosion-resistant and color-change-resistant color-coated chromium-free coating liquid for galvanized sheet
CN115058207B (en) * 2022-07-01 2023-07-11 杭州志和新材料有限公司 Wide adhesive film for thermal bonding seamless wall cloth and preparation method thereof
CN115141394B (en) * 2022-07-12 2023-06-27 中国人民解放军海军工程大学 Method for preparing polyurethane composite film by using carbon nano tube dielectric microcapsule
CN115368728B (en) * 2022-09-26 2023-07-14 宁国市锦鼎橡塑制品有限公司 Polymer composite filling block and preparation method thereof
CN115717025B (en) * 2022-11-23 2023-09-29 广东美涂士建材股份有限公司 Modified waterborne polyurethane resin environment-friendly coating and preparation method thereof
CN115897245B (en) * 2022-12-28 2023-05-16 海泰纺织(苏州)有限公司 Preparation method of antistatic finishing agent for fabric
CN116854496B (en) * 2023-07-06 2024-06-25 广西中玻新材料科技集团有限公司 Preparation method of fly ash porous heat-insulating material
CN118087123B (en) * 2024-03-01 2024-07-12 中建三局集团华南有限公司 Nano modified dustproof noise-reduction sky screen cloth and preparation method and application thereof
CN118164737B (en) * 2024-05-10 2024-09-10 徐州和盛矿业科技有限公司 Mining filling material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301799A (en) * 2008-06-11 2009-12-24 Sharp Corp Transparent conductive film
JP2009298625A (en) * 2008-06-11 2009-12-24 Sharp Corp Method for producing carbon nanotube film and carbon nanotube film
JP2012111680A (en) * 2010-11-01 2012-06-14 Osaka Gas Co Ltd Nanocarbon water-dispersion, method for manufacturing the same, and nanocarbon-containing structure
CN103803523A (en) * 2013-11-18 2014-05-21 广东电网公司电力科学研究院 Surface modifying and dispersing method of carbon nano-tube
CN104004449A (en) * 2014-06-15 2014-08-27 段宝荣 Method for preparing light-resistant and flame-resistant aqueous polyurethane coatings
CN105153921A (en) * 2015-10-26 2015-12-16 烟台大学 Method for preparing aqueous polyurethane coating and adhesive modified through carbon nanotubes and graphene
CN105176368A (en) * 2015-10-26 2015-12-23 烟台大学 Preparation method of polyurethane coating and adhesive with flame retardance and light resistance
CN110343413A (en) * 2019-07-17 2019-10-18 烟台大学 Nitrogen phosphorus expansion type flame retardant and the preparation method applied in aqueous polyurethane coating
CN110724320A (en) * 2019-11-28 2020-01-24 北京石油化工学院 Heat-conducting rubber composite material and preparation method thereof
JP2020105514A (en) * 2018-12-26 2020-07-09 Kjケミカルズ株式会社 Laminate and composite including carbon material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292025A1 (en) * 2016-04-07 2017-10-12 Wha Yueb Technology Co., Ltd. Heat-dissipating coating and a manufacturing method thereof
CN107312440A (en) * 2017-07-14 2017-11-03 合肥思敬齐化工材料有限责任公司 High-termal conductivity aqueous polyurethane coating and preparation method thereof
CN109988484A (en) * 2019-03-14 2019-07-09 上海利物盛纳米科技有限公司 A kind of graphene water-based cooling coating and preparation method thereof
CN110003770B (en) * 2019-03-21 2021-01-15 上海鸿宝照明有限公司 Heat dissipation coating for lampshade and application method of coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301799A (en) * 2008-06-11 2009-12-24 Sharp Corp Transparent conductive film
JP2009298625A (en) * 2008-06-11 2009-12-24 Sharp Corp Method for producing carbon nanotube film and carbon nanotube film
JP2012111680A (en) * 2010-11-01 2012-06-14 Osaka Gas Co Ltd Nanocarbon water-dispersion, method for manufacturing the same, and nanocarbon-containing structure
CN103803523A (en) * 2013-11-18 2014-05-21 广东电网公司电力科学研究院 Surface modifying and dispersing method of carbon nano-tube
CN104004449A (en) * 2014-06-15 2014-08-27 段宝荣 Method for preparing light-resistant and flame-resistant aqueous polyurethane coatings
CN105153921A (en) * 2015-10-26 2015-12-16 烟台大学 Method for preparing aqueous polyurethane coating and adhesive modified through carbon nanotubes and graphene
CN105176368A (en) * 2015-10-26 2015-12-23 烟台大学 Preparation method of polyurethane coating and adhesive with flame retardance and light resistance
JP2020105514A (en) * 2018-12-26 2020-07-09 Kjケミカルズ株式会社 Laminate and composite including carbon material
CN110343413A (en) * 2019-07-17 2019-10-18 烟台大学 Nitrogen phosphorus expansion type flame retardant and the preparation method applied in aqueous polyurethane coating
CN110724320A (en) * 2019-11-28 2020-01-24 北京石油化工学院 Heat-conducting rubber composite material and preparation method thereof

Also Published As

Publication number Publication date
JP6859003B1 (en) 2021-04-14
CN111040612A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6859003B1 (en) Method for preparing light-resistant water-based polyurethane coating agent and adhesive for modifying carbon nanotubes
Zhang et al. High biobased carbon content polyurethane dispersions synthesized from fatty acid-based isocyanate
Wei et al. Facile synthesis of a castor oil‐based hyperbranched acrylate oligomer and its application in UV‐curable coatings
US11820853B2 (en) Impact-resistant and aging-resistant reflective plastic applied to automobiles
Xu et al. Effect of polydopamine-modified multi-walled carbon nanotubes on the thermal stability and conductivity of UV-curable polyurethane/polysiloxane pressure-sensitive adhesives
Ding et al. Preparation of waterborne polyurethane-silica nanocomposites by a click chemistry method
CN105505197B (en) Ultraviolet-curing paint and preparation method thereof
Banerjee et al. Functional fluorinated polymer materials and preliminary self-healing behavior
CN105440245B (en) Ultraviolet-curing paint and preparation method thereof
CN110294989A (en) A kind of composite nano-coating and preparation method thereof
CN112341915A (en) Weather-resistant powder coating and preparation method thereof
Lin et al. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica.
CN102816430A (en) Preparation method of polydimethylsiloxane (PDMS) modified polyurethane-imides (PUI) hybrid material
CN109504006B (en) Self-cleaning nano modified super-hydrophobic composite membrane and preparation method thereof
CN108359293B (en) Acryloyl phosphate containing nitrogen and hydroxyl and epoxy acrylate flame-retardant coating thereof
Zhang et al. Abrasion resistant waterborne polyurethane coatings based on dual crosslinked structure
CN111187507A (en) Preparation method of graphene-based hybrid flame retardant/self-repairing polyurethane flame-retardant composite material
Nikje et al. Novel modified nanosilica-based on synthesized dipodal silane and its effects on the physical properties of rigid polyurethane foams
Pavlacky et al. An in situ intercalative polymerization method for preparing UV curable clay–polymer nanocomposites
CN111073385A (en) UV matte ink for galvanized plates of household appliances and preparation method thereof
CN103665310B (en) A kind of preparation method of heat-resistance type UV cured resin
TWI406932B (en) Halogen-free and phosphorus-free resin formulation and halogen-free and phosphorus-free composite materials with low dielectric constant and flame resistance prepared by the resin formulation
US11359093B2 (en) Polyimide film and flexible display device cover substrate using the same
CN113667091A (en) Graphene/waterborne polyurethane composite material and preparation method and application thereof
CN105969165A (en) Impact-resistant water-based polyester coating and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6859003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250