JP2021108432A - Underwater communication system - Google Patents

Underwater communication system Download PDF

Info

Publication number
JP2021108432A
JP2021108432A JP2019239492A JP2019239492A JP2021108432A JP 2021108432 A JP2021108432 A JP 2021108432A JP 2019239492 A JP2019239492 A JP 2019239492A JP 2019239492 A JP2019239492 A JP 2019239492A JP 2021108432 A JP2021108432 A JP 2021108432A
Authority
JP
Japan
Prior art keywords
unit
reference signal
correlation
data
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019239492A
Other languages
Japanese (ja)
Other versions
JP7454834B2 (en
Inventor
太一 川上
Taichi Kawakami
太一 川上
大橋 徹
Toru Ohashi
徹 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO DENSHI KK
Original Assignee
KAIYO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO DENSHI KK filed Critical KAIYO DENSHI KK
Priority to JP2019239492A priority Critical patent/JP7454834B2/en
Publication of JP2021108432A publication Critical patent/JP2021108432A/en
Application granted granted Critical
Publication of JP7454834B2 publication Critical patent/JP7454834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To provide an underwater communication system that is also suitable for POC and can accurately calculate correlation.SOLUTION: An underwater acoustic communication system 10 according to the present invention includes: a reference signal generator 11 that generates a reference signal; a data transmission unit 12 that digitally modulates the reference signal generated by the reference signal generator 11 into an ultrasonic signal containing data and transmits the ultrasonic signal underwater; a data reception unit 13 that receives the ultrasonic signal transmitted by the data transmission unit 12; an equalizer unit 14 that corrects the reference signal; and a correlation calculator 15 that calculates correlation between the ultrasonic signal received by the data reception unit 13 and the reference signal corrected by the equalizer unit 14.SELECTED DRAWING: Figure 1

Description

本発明は、データ送信部が基準信号に基づいて水中に送信したデータを含む物理信号をデータ受信部が受信し、このデータ受信部が受信した物理信号について基準信号との相関を計算する水中通信システムに関する。 In the present invention, the data receiving unit receives a physical signal including data transmitted underwater by the data transmitting unit based on the reference signal, and the underwater communication for calculating the correlation between the physical signal received by the data receiving unit and the reference signal is calculated. Regarding the system.

データ送信部が基準信号に基づいて水中に送信したデータを含む物理信号をデータ受信部が受信し、このデータ受信部が受信した物理信号について基準信号との相関を計算する水中通信システムとして、例えば特許文献1に記載の水中通信システムが知られている。 As an underwater communication system in which a data receiving unit receives a physical signal including data transmitted underwater by the data transmitting unit based on a reference signal and calculates the correlation between the received physical signal and the reference signal for the physical signal received by the data receiving unit, for example. The underwater communication system described in Patent Document 1 is known.

図5に示すように、このような従来の水中通信システム1では、基準信号発生器2が発生した電気信号である基準信号について、データ送信部3が変調部4においてPSK(Phase Shift Keying:位相偏移変調)等のデジタル変調を行うとともに、変換器(トランスデューサー)5においてデータを含む超音波信号、光信号等の物理信号に変換し、水中に送信する。そして、被測定物における反射等により物理信号が戻ってくると、その物理信号をデータ受信部6が受信し、バンドパスフィルタリング及び増幅して相関計算器7に出力する。相関計算器7には、データ受信部6が受信した物理信号とともに、データ送信部3でデジタル変調された基準信号(特許文献1においては、同期信号)が入力され、相関計算器7では、図6(a)に示すように、それらの信号がフーリエ変換された後に、振幅及び位相が合成されて逆フーリエ変換されることにより、データ受信部6が受信した物理信号について基準信号との相関が計算される。 As shown in FIG. 5, in such a conventional underwater communication system 1, the data transmission unit 3 performs PSK (Phase Shift Keying: phase) in the modulation unit 4 with respect to the reference signal which is the electric signal generated by the reference signal generator 2. In addition to performing digital modulation such as (phase shift keying), the converter (transductor) 5 converts it into a physical signal such as an ultrasonic signal or an optical signal containing data, and transmits it into water. Then, when the physical signal is returned due to reflection or the like on the object to be measured, the data receiving unit 6 receives the physical signal, performs bandpass filtering and amplification, and outputs the physical signal to the correlation calculator 7. A reference signal (synchronous signal in Patent Document 1) digitally modulated by the data transmitting unit 3 is input to the correlation calculator 7 together with the physical signal received by the data receiving unit 6, and the correlation computer 7 shows the figure. As shown in 6 (a), after those signals are Fourier transformed, the amplitude and phase are combined and inverse Fourier transformed, so that the physical signal received by the data receiving unit 6 is correlated with the reference signal. It is calculated.

特開2006−217267号公報Japanese Unexamined Patent Publication No. 2006-217267

ところで、従来の水中通信システムでは、伝送系が遅延波やドップラー効果で歪むことにより相関結果が分散し、相関を正確に計算できないことが多かった。そこで、相関結果を分散させずに相関のピークを検出しやすくするために、POC(Phase Only Correlation:位相限定相関法)のアルゴリズムを使用することが考えられる。前述のとおり、相関の計算には、通常は振幅及び位相を用いるが、POCでは、図6(b)に示すように、位相だけを用いて相関を計算することにより、相関のピークが出やすくなる。 By the way, in the conventional underwater communication system, the correlation result is dispersed due to the distortion of the transmission system due to the delay wave or the Doppler effect, and the correlation cannot be calculated accurately in many cases. Therefore, in order to make it easier to detect the peak of the correlation without dispersing the correlation result, it is conceivable to use a POC (Phase Only Correlation) algorithm. As described above, the amplitude and phase are usually used for the calculation of the correlation, but in POC, as shown in FIG. 6 (b), the peak of the correlation is likely to occur by calculating the correlation using only the phase. Become.

しかしながら、POCでは、相関計算に用いられる基準信号や物理信号の精度が高くなければならず、たとえ従来の水中通信システムでは問題にならない精度であったとしても、POCによる計算時には誤差が増大して実用的ではないという問題がある。例えば、従来の計算では、図7(a)に示すような波形(横軸は位相又は時間、縦軸は振幅又は相関値)がPOCによる計算では同図(b)に示すような波形になるはずであっても、実際には同図(a)に類する同図(c)に示すような波形にしかならないことが多々生じる。 However, in POC, the accuracy of the reference signal and physical signal used in the correlation calculation must be high, and even if the accuracy is not a problem in the conventional underwater communication system, the error increases during the calculation by POC. There is a problem that it is not practical. For example, in the conventional calculation, the waveform shown in FIG. 7A (horizontal axis is phase or time, vertical axis is amplitude or correlation value) becomes the waveform shown in FIG. 7B in the calculation by POC. Even if it should be, in reality, it often happens that the waveform is similar to that shown in FIG.

本発明は、上記の事情に鑑みてなされたもので、POCにも好適で相関を正確性高く計算することができる水中通信システムを提供することを課題としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an underwater communication system that is suitable for POC and can calculate correlations with high accuracy.

上記課題を解決するために、本発明に係る水中通信システムは、基準信号を発生する基準信号発生部と、前記基準信号発生部が発生した基準信号をデジタル変調してデータを含む物理信号に変換し、水中に送信するデータ送信部と、前記データ送信部が送信した物理信号を受信するデータ受信部と、前記基準信号又は前記データ受信部が受信した物理信号を補正するイコライザー部と、前記データ受信部が受信した物理信号と前記イコライザー部が補正した基準信号との相関、又は、前記データ受信部が受信し前記イコライザー部が補正した物理信号と前記基準信号との相関を計算する相関計算部とを備えることを特徴とする。 In order to solve the above problems, the underwater communication system according to the present invention digitally modulates a reference signal generating unit that generates a reference signal and a reference signal generated by the reference signal generating unit into a physical signal including data. A data transmission unit that transmits data in water, a data reception unit that receives a physical signal transmitted by the data transmission unit, an equalizer unit that corrects a reference signal or a physical signal received by the data reception unit, and the data. Correlation calculation unit that calculates the correlation between the physical signal received by the receiving unit and the reference signal corrected by the equalizer unit, or the correlation between the physical signal received by the data receiving unit and corrected by the equalizer unit and the reference signal. It is characterized by having and.

前記イコライザー部は、前記基準信号又は前記データ受信部が受信した物理信号を前記データ送信部及び前記データ受信部の伝達特性に基づいて補正してもよく、前記相関計算部は、POCにより相関を計算してもよい。 The equalizer unit may correct the reference signal or the physical signal received by the data receiving unit based on the transmission characteristics of the data transmitting unit and the data receiving unit, and the correlation calculation unit correlates by POC. You may calculate.

また、前記基準信号発生部は、前記相関計算部の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であってもよく、前記データ受信部は、前記データ送信部による物理信号の送信時に動作を停止してもよい。 Further, the reference signal generation unit may be able to select the generated reference signal from a plurality of reference signals based on the calculation result of the correlation calculation unit, and the data reception unit may be the data transmission unit. The operation may be stopped when the physical signal is transmitted by.

本発明に係る水中通信システムによれば、POCにも好適で相関を正確性高く計算することができる。 According to the underwater communication system according to the present invention, it is also suitable for POC and the correlation can be calculated with high accuracy.

発明を実施するための形態に係る水中音響通信システムを示す説明図である。It is explanatory drawing which shows the underwater acoustic communication system which concerns on embodiment for carrying out an invention. 発明を実施するための他の形態に係る水中音響通信システムを示す説明図である。It is explanatory drawing which shows the underwater acoustic communication system which concerns on another embodiment for carrying out an invention. 発明を実施するためのさらに他の形態に係る水中音響通信システムを示す説明図である。It is explanatory drawing which shows the underwater acoustic communication system which concerns on still another form for carrying out an invention. (a)は1シンボルが8波の基本波に対して反射波が遅延した場合を示す説明図、(b)は(a)の遅延が4波分でS/Nが0dBになる場合を示す説明図、(c)は遅延が4波分の際にシンボル長を2倍にした場合を示す説明図である。(A) is an explanatory diagram showing the case where the reflected wave is delayed with respect to the fundamental wave of 8 waves of 1 symbol, and (b) shows the case where the delay of (a) is 4 waves and the S / N is 0 dB. An explanatory diagram, (c) is an explanatory diagram showing a case where the symbol length is doubled when the delay is four waves. 従来の水中音響通信システムを示す説明図である。It is explanatory drawing which shows the conventional underwater acoustic communication system. (a)は従来の相関の計算方法を示す説明図、(b)はPOCによる相関の計算方法を示す説明図である。(A) is an explanatory diagram showing a conventional correlation calculation method, and (b) is an explanatory diagram showing a correlation calculation method by POC. (a)は従来の相関の計算方法によるピークの出現例を示す説明図、(b)はPOCによる相関の計算方法による理想的なピークの出現例を示す説明図、(c)はPOCによる相関の計算方法による実際のピークの出現例を示す説明図である。(A) is an explanatory diagram showing an example of appearance of a peak by a conventional correlation calculation method, (b) is an explanatory diagram showing an example of an ideal appearance of a peak by a calculation method of correlation by POC, and (c) is an explanatory diagram showing an example of appearance of an ideal peak by a correlation calculation method by POC. It is explanatory drawing which shows the appearance example of the actual peak by the calculation method of.

本発明を実施するための形態について、図面に基づいて説明する。 A mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本実施の形態に係る水中音響通信システム10は、基準信号発生器11と、データ送信部12と、データ受信部13と、イコライザー部14と、相関計算器15とを備える。 As shown in FIG. 1, the underwater acoustic communication system 10 according to the present embodiment includes a reference signal generator 11, a data transmission unit 12, a data reception unit 13, an equalizer unit 14, and a correlation calculator 15. Be prepared.

基準信号発生器11は、デジタル信号であるM系列等の基準信号を発生し、データ送信部12に出力する。 The reference signal generator 11 generates a reference signal such as an M sequence which is a digital signal and outputs the reference signal to the data transmission unit 12.

データ送信部12は、変調部16及び変換器(トランスデューサー)17を有し、基準信号発生器11が発生した基準信号が入力されると、その基準信号を変調部16においてデジタル変調し、変換器17においてアナログ信号に変換した後にデータを含む超音波信号として水中に送信する。 The data transmission unit 12 has a modulation unit 16 and a converter (transductor) 17, and when a reference signal generated by the reference signal generator 11 is input, the reference signal is digitally modulated by the modulation unit 16 and converted. After being converted into an analog signal by the device 17, it is transmitted underwater as an ultrasonic signal containing data.

データ受信部13は、データ送信部12が送信した超音波信号が被測定物における反射等により戻ってくると、その超音波信号を受信し、バンドパスフィルタリング及び増幅して相関計算器15に出力する。 When the ultrasonic signal transmitted by the data transmitting unit 12 returns due to reflection or the like on the object to be measured, the data receiving unit 13 receives the ultrasonic signal, performs bandpass filtering and amplification, and outputs the ultrasonic signal to the correlation calculator 15. do.

イコライザー部14には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、イコライザー部14は、その基準信号をデータ送信部12及びデータ受信部13の伝達特性に基づいて補正し、補正した基準信号を相関計算器15に出力する。すなわち、データ送信部12及びデータ受信部13は、S/Nや妨害特性の改善を目的として帯域制限をするため、データ受信部13が相関計算器15に出力する超音波信号には歪みが生じるが、イコライザー部14は、データ送信部12及びデータ受信部13の逆伝達関数を再現し、その超音波信号との相関をとる基準信号を超音波信号と同様に歪ませる補正を行う。 A reference signal digitally modulated by the modulation unit 16 is input to the equalizer unit 14, and the equalizer unit 14 corrects the reference signal based on the transmission characteristics of the data transmission unit 12 and the data reception unit 13. Then, the corrected reference signal is output to the correlation calculator 15. That is, since the data transmitting unit 12 and the data receiving unit 13 limit the band for the purpose of improving the S / N and the interference characteristics, the ultrasonic signal output by the data receiving unit 13 to the correlation calculator 15 is distorted. However, the equalizer unit 14 reproduces the inverse transmission function of the data transmission unit 12 and the data reception unit 13, and corrects the reference signal that correlates with the ultrasonic signal to distort the reference signal in the same manner as the ultrasonic signal.

相関計算器15は、データ受信部13が受信した超音波信号及びイコライザー部14が補正した基準信号が入力されると、両信号をフーリエ変換した後に位相を合成して逆フーリエ変換し(図6(b)参照)、両信号の相関をPOCにより計算する。この計算結果により、水中音響通信システム10又は外部の演算装置では、データ受信部13が受信した超音波信号についてのデータ復調のタイミングや伝達時間(超音波信号を発信してから受信するまでの伝達時間)が求められる。 When the ultrasonic signal received by the data receiving unit 13 and the reference signal corrected by the equalizer unit 14 are input, the correlation calculator 15 Fourier transforms both signals and then synthesizes the phases to perform inverse Fourier transform (FIG. 6). (See (b)), the correlation between both signals is calculated by POC. Based on this calculation result, in the underwater acoustic communication system 10 or an external computing device, the timing and transmission time of data demodulation (transmission from transmission to reception of ultrasonic signal) of the ultrasonic signal received by the data reception unit 13 Time) is required.

水中音響通信システム10は、図2に示すように、イコライザー部14がデータ送信部12と相関計算器15との間に設けられるのではなく、データ受信部13と相関計算器15との間に設けられてもよい。この場合、イコライザー部14は、データ送信部12及びデータ受信部13の伝達関数を再現し、データ受信部13が受信した超音波信号をデータ送信部12及びデータ受信部13による伝送系歪みをキャンセルするように補正して、補正した超音波信号を相関計算器15に出力する。相関計算器15には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、相関計算器15は、その基準信号とともにイコライザー部14が補正した超音波信号が入力されると、両信号をフーリエ変換した後に位相を合成して逆フーリエ変換し、両信号の相関をPOCにより計算する。 In the underwater acoustic communication system 10, as shown in FIG. 2, the equalizer unit 14 is not provided between the data transmission unit 12 and the correlation calculator 15, but between the data reception unit 13 and the correlation calculator 15. It may be provided. In this case, the equalizer unit 14 reproduces the transmission functions of the data transmission unit 12 and the data reception unit 13 and cancels the transmission system distortion by the data transmission unit 12 and the data reception unit 13 for the ultrasonic signal received by the data reception unit 13. The corrected ultrasonic signal is output to the correlation calculator 15. When the reference signal digitally modulated by the modulation unit 16 is input to the correlation calculator 15 from the data transmission unit 12, and the ultrasonic signal corrected by the equalizer unit 14 is input to the correlation calculator 15 together with the reference signal. After Fourier transforming both signals, the phases are synthesized and inverse Fourier transform is performed, and the correlation between both signals is calculated by POC.

また、水中音響通信システム10は、図3に示すように、複数が組み合わせられてもよく、同図においては、2つの水中音響通信システム10が組み合わせられ、各水中音響通信システム10を区別するために符号の末尾にA,Bを付している。例えば水中音響通信システム10Aは海上(船上)に設置可能であり、水中音響通信システム10Bは海底に設置可能である。 Further, as shown in FIG. 3, a plurality of underwater acoustic communication systems 10 may be combined, and in the figure, two underwater acoustic communication systems 10 are combined to distinguish each underwater acoustic communication system 10. A and B are added to the end of the code. For example, the underwater acoustic communication system 10A can be installed on the sea (on board), and the underwater acoustic communication system 10B can be installed on the seabed.

水中音響通信システム10Aのデータ送信部12Aから送信された超音波信号は、水中音響通信システム10Bのデータ受信部13Bで受信された後、相関計算器15Bに入力される。相関計算器15Bには、基準信号発生器11Bで発生してデータ送信部12Bの変調部16Bでデジタル変調され、さらにイコライザー部14Bで補正された基準信号も入力され、この補正された基準信号とデータ受信部13Bが受信した超音波信号との相関が計算される。 The ultrasonic signal transmitted from the data transmission unit 12A of the underwater acoustic communication system 10A is received by the data reception unit 13B of the underwater acoustic communication system 10B and then input to the correlation calculator 15B. A reference signal generated by the reference signal generator 11B, digitally modulated by the modulation section 16B of the data transmission section 12B, and further corrected by the equalizer section 14B is also input to the correlation calculator 15B. The correlation with the ultrasonic signal received by the data receiving unit 13B is calculated.

一方、水中音響通信システム10Bは、水中音響通信システム10Aから超音波信号を受信すると、データ送信部12Bから水中音響通信システム10Aに向けて超音波信号を送信する。データ送信部12Bから送信された超音波信号は、水中音響通信システム10Aのデータ受信部13Aで受信された後、相関計算器15Aに入力される。相関計算器15Aには、基準信号発生器11Aで発生してデータ送信部12Aの変調部16Aでデジタル変調され、さらにイコライザー部14Aで補正された基準信号も入力され、この補正された基準信号とデータ受信部13Aが受信した超音波信号との相関が計算される。 On the other hand, when the underwater acoustic communication system 10B receives the ultrasonic signal from the underwater acoustic communication system 10A, the data transmission unit 12B transmits the ultrasonic signal to the underwater acoustic communication system 10A. The ultrasonic signal transmitted from the data transmission unit 12B is received by the data reception unit 13A of the underwater acoustic communication system 10A and then input to the correlation calculator 15A. A reference signal generated by the reference signal generator 11A, digitally modulated by the modulation section 16A of the data transmission section 12A, and further corrected by the equalizer section 14A is also input to the correlation calculator 15A. The correlation with the ultrasonic signal received by the data receiving unit 13A is calculated.

本実施の形態において、基準信号発生器11は、相関計算器15の計算結果に基づいて発生する基準信号を複数の基準信号の中から選択可能であり、伝送系の歪みに適した基準信号を発生させることもできる。 In the present embodiment, the reference signal generator 11 can select a reference signal generated based on the calculation result of the correlation calculator 15 from a plurality of reference signals, and selects a reference signal suitable for distortion of the transmission system. It can also be generated.

例えば、遅延波が想定遅延より長い伝送系について説明すると、図4(a)に示すように、変調部16においてPSKで1シンボルごとに位相を変更して基準信号を変調し(図4は6シンボル(6ビット)で基準信号を構成し、1シンボル区間に8波のsin波が入った例を表す。)、基本波に対して反射波が時間tだけ遅れて到達する場合、基本波のうち、そのtに相当する部分が干渉を受け、シンボルのS/Nはt/tとなる(tに相当する部分+tに相当する部分=1シンボル)。 For example, to explain a transmission system in which the delay wave is longer than the assumed delay, as shown in FIG. 4A, the modulation unit 16 modulates the reference signal by changing the phase for each symbol with the PSK (FIG. 4 shows 6). An example is shown in which a reference signal is composed of symbols (6 bits) and 8 sine waves are included in one symbol section.) When the reflected wave arrives with a delay of time t I with respect to the fundamental wave, the fundamental wave Of these, the part corresponding to t I is interfered with, and the S / N of the symbol becomes t S / t I (the part corresponding to t I + the part corresponding to t S = 1 symbol).

したがって、同図(b)に示すように、tに相当する部分及びtに相当する部分がいずれも4波だとすると、S/Nは0dBになって基準信号としては使えなくなるが、基準信号発生器11は、同図(c)に示すように、シンボル長を2倍とする基準信号を選択して発生することができ、これにより、S/Nは10dBになって基準信号として利用可能になる。 Therefore, as shown in FIG. 6B, if the portion corresponding to t I and the portion corresponding to t S are both four waves, the S / N becomes 0 dB and cannot be used as a reference signal, but the reference signal. As shown in FIG. 3C, the generator 11 can select and generate a reference signal that doubles the symbol length, whereby the S / N becomes 10 dB and can be used as the reference signal. become.

本実施の形態に係る水中音響通信システム10は、基準信号を発生する基準信号発生器11と、基準信号発生器11が発生した基準信号をデジタル変調してデータを含む超音波信号に変換し、水中に送信するデータ送信部12と、データ送信部12が送信した超音波信号を受信するデータ受信部13と、基準信号又はデータ受信部13が受信した超音波信号を補正するイコライザー部14と、データ受信部13が受信した超音波信号とイコライザー部14が補正した基準信号との相関、又は、データ受信部13が受信しイコライザー部14が補正した超音波信号と基準信号との相関を計算する相関計算器15とを備えるので、相関計算に用いられる基準信号や超音波信号がイコライザー部14により補正され、相関計算時の水中伝送系以外の送受信機内(データ送信部12及びデータ受信部13の内部の)伝送系歪みの影響が除かれることにより、相関を正確性高く計算することができる。 The underwater acoustic communication system 10 according to the present embodiment digitally modulates the reference signal generator 11 that generates a reference signal and the reference signal generated by the reference signal generator 11 into an ultrasonic signal including data. A data transmission unit 12 that transmits underwater, a data reception unit 13 that receives an ultrasonic signal transmitted by the data transmission unit 12, an equalizer unit 14 that corrects a reference signal or an ultrasonic signal received by the data reception unit 13, and an equalizer unit 14. Calculates the correlation between the ultrasonic signal received by the data receiving unit 13 and the reference signal corrected by the equalizer unit 14, or the correlation between the ultrasonic signal received by the data receiving unit 13 and corrected by the equalizer unit 14 and the reference signal. Since the correlation calculator 15 is provided, the reference signal and the ultrasonic signal used for the correlation calculation are corrected by the equalizer unit 14, and the inside of the transmitter / receiver other than the underwater transmission system at the time of the correlation calculation (data transmission unit 12 and data reception unit 13). By removing the influence of transmission system distortion (internal), the correlation can be calculated with high accuracy.

ここでは、イコライザー部14が基準信号又はデータ受信部13が受信した超音波信号をデータ送信部12及びデータ受信部13の伝達特性に基づいて補正することによって、POCにより相関を計算しても図7(b)に示すような波形が得られるので、相関計算器15は、POCにより相関を計算し、相関のピークが正確に検出される。 Here, even if the equalizer unit 14 corrects the reference signal or the ultrasonic signal received by the data receiving unit 13 based on the transmission characteristics of the data transmitting unit 12 and the data receiving unit 13, the correlation can be calculated by POC. Since the waveform shown in 7 (b) is obtained, the correlation calculator 15 calculates the correlation by POC, and the peak of the correlation is accurately detected.

また、基準信号発生器11は、相関計算器15の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であるので、1つの基準信号では相関の計算が難しいような場合にも相関の計算が可能となり(図4(b),(c)参照)、相関を利用した様々な分析等が可能になる。 Further, since the reference signal generator 11 can select the generated reference signal from a plurality of reference signals based on the calculation result of the correlation calculator 15, it seems difficult to calculate the correlation with one reference signal. In some cases, the correlation can be calculated (see FIGS. 4 (b) and 4 (c)), and various analyzes using the correlation can be performed.

以上、本発明を実施するための形態について例示したが、本発明の実施形態は上述したものに限られず、発明の趣旨を逸脱しない範囲で適宜変更等してもよい。 Although the embodiments for carrying out the present invention have been illustrated above, the embodiments of the present invention are not limited to those described above, and may be appropriately modified without departing from the spirit of the invention.

例えば、水中通信システムが送受信する物理信号は超音波信号に限られず、光信号等であってもよく、基準信号発生器が発生する複数の基準信号は、シンボル長を異ならせたものではなく波の数等を異ならせたものでもよい(図4(c)においては、シンボル長を2倍にしたが、シンボル数は6個のまま、1シンボルを16波とすることもできる。)。 For example, the physical signal transmitted and received by the underwater communication system is not limited to an ultrasonic signal, but may be an optical signal or the like. (In FIG. 4C, the symbol length is doubled, but the number of symbols may remain 6 and one symbol may have 16 waves).

さらに、データ受信部は、データ送信部による物理信号の送信時に動作を停止し、物理信号を受信しないように構成してもよく、これにより、データ送信部が送信していない物理信号をデータ受信部が誤って受信し、相関計算に悪影響が生じる事態を防止することができる。 Further, the data receiving unit may be configured to stop the operation when the data transmitting unit transmits the physical signal so as not to receive the physical signal, whereby the data receiving unit receives the physical signal not transmitted by the data transmitting unit. It is possible to prevent a situation in which the unit receives the data erroneously and adversely affects the correlation calculation.

10 水中音響通信システム(水中通信システム)
11 基準信号発生器(基準信号発生部)
12 データ送信部
13 データ受信部
14 イコライザー部
15 相関計算器(相関計算部)
10 Underwater acoustic communication system (underwater communication system)
11 Reference signal generator (reference signal generator)
12 Data transmission unit 13 Data reception unit 14 Equalizer unit 15 Correlation calculator (correlation calculation unit)

イコライザー部14には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、イコライザー部14は、その基準信号をデータ送信部12及びデータ受信部13の伝達特性に基づいて補正し、補正した基準信号を相関計算器15に出力する。すなわち、データ送信部12及びデータ受信部13は、S/Nや妨害特性の改善を目的として帯域制限をするため、データ受信部13が相関計算器15に出力する超音波信号には歪みが生じるが、イコライザー部14は、データ送信部12及びデータ受信部13の伝達関数を再現し、その超音波信号との相関をとる基準信号を超音波信号と同様に歪ませる補正を行う。 A reference signal digitally modulated by the modulation unit 16 is input to the equalizer unit 14, and the equalizer unit 14 corrects the reference signal based on the transmission characteristics of the data transmission unit 12 and the data reception unit 13. Then, the corrected reference signal is output to the correlation calculator 15. That is, since the data transmitting unit 12 and the data receiving unit 13 limit the band for the purpose of improving the S / N and the interference characteristics, the ultrasonic signal output by the data receiving unit 13 to the correlation calculator 15 is distorted. However, the equalizer unit 14 reproduces the transmission functions of the data transmission unit 12 and the data reception unit 13 and makes corrections that distort the reference signal that correlates with the ultrasonic signal in the same manner as the ultrasonic signal.

水中音響通信システム10は、図2に示すように、イコライザー部14がデータ送信部12と相関計算器15との間に設けられるのではなく、データ受信部13と相関計算器15との間に設けられてもよい。この場合、イコライザー部14は、データ送信部12及びデータ受信部13の逆伝達関数を再現し、データ受信部13が受信した超音波信号をデータ送信部12及びデータ受信部13による伝送系歪みをキャンセルするように補正して、補正した超音波信号を相関計算器15に出力する。相関計算器15には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、相関計算器15は、その基準信号とともにイコライザー部14が補正した超音波信号が入力されると、両信号をフーリエ変換した後に位相を合成して逆フーリエ変換し、両信号の相関をPOCにより計算する。 In the underwater acoustic communication system 10, as shown in FIG. 2, the equalizer unit 14 is not provided between the data transmission unit 12 and the correlation calculator 15, but between the data reception unit 13 and the correlation calculator 15. It may be provided. In this case, the equalizer unit 14 reproduces the inverse transmission function of the data transmission unit 12 and the data reception unit 13, and transmits the ultrasonic signal received by the data reception unit 13 to the transmission system distortion by the data transmission unit 12 and the data reception unit 13. It is corrected so as to be canceled, and the corrected ultrasonic signal is output to the correlation calculator 15. When the reference signal digitally modulated by the modulation unit 16 is input to the correlation calculator 15 from the data transmission unit 12, and the ultrasonic signal corrected by the equalizer unit 14 is input to the correlation calculator 15 together with the reference signal. After Fourier transforming both signals, the phases are synthesized and inverse Fourier transform is performed, and the correlation between both signals is calculated by POC.

Claims (5)

基準信号を発生する基準信号発生部と、
前記基準信号発生部が発生した基準信号をデジタル変調してデータを含む物理信号に変換し、水中に送信するデータ送信部と、
前記データ送信部が送信した物理信号を受信するデータ受信部と、
前記基準信号又は前記データ受信部が受信した物理信号を補正するイコライザー部と、
前記データ受信部が受信した物理信号と前記イコライザー部が補正した基準信号との相関、又は、前記データ受信部が受信し前記イコライザー部が補正した物理信号と前記基準信号との相関を計算する相関計算部とを備えることを特徴とする水中通信システム。
A reference signal generator that generates a reference signal,
A data transmission unit that digitally modulates the reference signal generated by the reference signal generation unit, converts it into a physical signal containing data, and transmits it underwater.
A data receiving unit that receives a physical signal transmitted by the data transmitting unit, and
An equalizer unit that corrects the reference signal or the physical signal received by the data receiving unit, and
Correlation between the physical signal received by the data receiving unit and the reference signal corrected by the equalizer unit, or the correlation of calculating the correlation between the physical signal received by the data receiving unit and corrected by the equalizer unit and the reference signal. An underwater communication system including a calculation unit.
前記イコライザー部は、前記基準信号又は前記データ受信部が受信した物理信号を前記データ送信部及び前記データ受信部の伝達特性に基づいて補正することを特徴とする請求項1に記載の水中通信システム。 The underwater communication system according to claim 1, wherein the equalizer unit corrects the reference signal or the physical signal received by the data receiving unit based on the transmission characteristics of the data transmitting unit and the data receiving unit. .. 前記相関計算部は、POCにより相関を計算することを特徴とする請求項1又は請求項2に記載の水中通信システム。 The underwater communication system according to claim 1 or 2, wherein the correlation calculation unit calculates the correlation by POC. 前記基準信号発生部は、前記相関計算部の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の水中通信システム。 Any one of claims 1 to 3, wherein the reference signal generation unit can select the generated reference signal from a plurality of reference signals based on the calculation result of the correlation calculation unit. The underwater communication system described in the section. 前記データ受信部は、前記データ送信部による物理信号の送信時に動作を停止することを特徴とする請求項1乃至請求項4のいずれか1項に記載の水中通信システム。 The underwater communication system according to any one of claims 1 to 4, wherein the data receiving unit stops its operation when the data transmitting unit transmits a physical signal.
JP2019239492A 2019-12-27 2019-12-27 Underwater communication system Active JP7454834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239492A JP7454834B2 (en) 2019-12-27 2019-12-27 Underwater communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239492A JP7454834B2 (en) 2019-12-27 2019-12-27 Underwater communication system

Publications (2)

Publication Number Publication Date
JP2021108432A true JP2021108432A (en) 2021-07-29
JP7454834B2 JP7454834B2 (en) 2024-03-25

Family

ID=76968276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239492A Active JP7454834B2 (en) 2019-12-27 2019-12-27 Underwater communication system

Country Status (1)

Country Link
JP (1) JP7454834B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265186A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Radar transponder
JP2006217267A (en) * 2005-02-03 2006-08-17 Furuno Electric Co Ltd Submerged communication system
JP2012042449A (en) * 2010-07-20 2012-03-01 Univ Of Electro-Communications Ultrasonic wave propagation time measuring method and ultrasonic wave propagation time measuring apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969703B2 (en) 2001-12-21 2007-09-05 古野電気株式会社 Received signal processing apparatus and distance measuring apparatus
US8306132B2 (en) 2009-04-16 2012-11-06 Advantest Corporation Detecting apparatus, calculating apparatus, measurement apparatus, detecting method, calculating method, transmission system, program, and recording medium
JP2012244413A (en) 2011-05-19 2012-12-10 Nippon Hoso Kyokai <Nhk> Signal monitoring device and program, and signal correction device and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265186A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Radar transponder
JP2006217267A (en) * 2005-02-03 2006-08-17 Furuno Electric Co Ltd Submerged communication system
JP2012042449A (en) * 2010-07-20 2012-03-01 Univ Of Electro-Communications Ultrasonic wave propagation time measuring method and ultrasonic wave propagation time measuring apparatus

Also Published As

Publication number Publication date
JP7454834B2 (en) 2024-03-25

Similar Documents

Publication Publication Date Title
US9444556B1 (en) Underwater acoustic array, communication and location system
JP5628590B2 (en) Interference canceling apparatus, signal processing apparatus, radar apparatus, interference canceling method and program
JP2009128299A (en) Device and system for detecting object azimuth
JP5301882B2 (en) Pulse signal transmitter / receiver
JP6707737B2 (en) Underwater ultrasonic communication device using OFDM modulation with performance deterioration prevention function against position fluctuation
KR101580427B1 (en) Doppler Frequency Estimation and receiving method for Time-varying Underwater Acoustic Communication Channel
JP2017215208A (en) Pulse radar
KR101877268B1 (en) Peak cancellation crest factor reduction apparatus and method for reducing peak to average power ratio, and apparatus for determining peak value
JP6438321B2 (en) Radar equipment
CN100544338C (en) Be used for detecting the equipment and the method for echo at frequency domain
JP2010060520A (en) Modulating/demodulating method for ultrasonic waves, distance detecting method, and communication method
JP7454834B2 (en) Underwater communication system
JP4386282B2 (en) Underwater communication system
JP5188204B2 (en) Ranging communication device
JP6975760B2 (en) Autocorrelator and receiver
JP2005328319A (en) Underwater communication system
JP6051787B2 (en) Communication apparatus and communication method
JPH07120553A (en) Sonar device
JP2009044292A (en) Fsk modulator
Carlson et al. Mbit/second communication through a rock bolt using ultrasound
JP6009953B2 (en) Optical receiver
JP2007013403A (en) Time difference measuring method, synchronization method and measuring method, and time difference measuring device, synchronization device and measuring device
JP4827449B2 (en) Amplitude phase control device and receiving system
RU2658649C1 (en) Method and device for distribution of discrete information for quick moving objects
JP2009260504A (en) Transmitter, receiver and communication device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7454834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150