JP2021107135A - Wooden fiber board and manufacturing method thereof - Google Patents

Wooden fiber board and manufacturing method thereof Download PDF

Info

Publication number
JP2021107135A
JP2021107135A JP2019239401A JP2019239401A JP2021107135A JP 2021107135 A JP2021107135 A JP 2021107135A JP 2019239401 A JP2019239401 A JP 2019239401A JP 2019239401 A JP2019239401 A JP 2019239401A JP 2021107135 A JP2021107135 A JP 2021107135A
Authority
JP
Japan
Prior art keywords
wood
fiber
fiber board
defibrated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019239401A
Other languages
Japanese (ja)
Other versions
JP7417419B2 (en
Inventor
英治 山野
Eiji Yamano
英治 山野
雄介 前田
Yusuke Maeda
雄介 前田
若松 建吾
Kengo Wakamatsu
建吾 若松
泰則 木村
Yasunori Kimura
泰則 木村
祐治 木下
Yuji Kinoshita
祐治 木下
大起 猪野
Daiki Ino
大起 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidai Co Ltd
N&E Co Ltd
Original Assignee
Eidai Co Ltd
N&E Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidai Co Ltd, N&E Co Ltd filed Critical Eidai Co Ltd
Priority to JP2019239401A priority Critical patent/JP7417419B2/en
Publication of JP2021107135A publication Critical patent/JP2021107135A/en
Application granted granted Critical
Publication of JP7417419B2 publication Critical patent/JP7417419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

To provide a method for manufacturing a wooden fiber board having a white color close to that of a wood chip before defibrillated.SOLUTION: A manufacturing method of a wooden fiber board 1 comprises a defibrillating process S11 for defibrillating from heated wood chip T into a fiber F after heating the wood chip T made from coniferous trees under an atmosphere including moisture and a molding process for molding the wooden fiber board 1 by compressing and heating the defibrillated fiber F. The defibrillating process S11 comprises a step of generating a single fiber fa and a fiber assembly fb in a state before defibrillated into the single fiber fa as a fiber F from the wood chip T. In the defibrillating process S11, the wood chip f is defibrillated so that the fiber assembly fb of which opening does not pass through a sieve of 150 μm is in a range of 40 mass%-52 mass% relative to the defibrillated fiber F.SELECTED DRAWING: Figure 3

Description

本発明は、針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードおよびその製造方法に関する。 The present invention relates to a wood fiber board formed from fibers obtained by defibrating wood chips made from coniferous wood and a method for producing the same.

従来から、木質繊維ボードは、フレーク、チップ、繊維等を熱圧成形して製造される。例えば、特許文献1には、水分を含む雰囲気下で針葉樹を原料とする木削片を加熱した後、加熱した木削片から繊維に解繊し、解繊した繊維を加圧および加熱することで木質繊維ボードを成形している。ここで、繊維に解繊する前の木削片の加熱条件の一例として、飽和蒸気圧下で5分、0.8MPa(具体的には加熱温度が170℃)の条件で、木削片を加熱している。 Conventionally, a wood fiber board is manufactured by hot-press molding flakes, chips, fibers and the like. For example, in Patent Document 1, after heating wood shavings made of softwood in an atmosphere containing water, the heated wood shavings are defibrated into fibers, and the defibrated fibers are pressurized and heated. The wood fiber board is molded in. Here, as an example of the heating conditions of the wood shavings before defibration into fibers, the wood shavings are heated under the condition of 0.8 MPa (specifically, the heating temperature is 170 ° C.) for 5 minutes under saturated steam pressure. is doing.

特開2012−214011号公報Japanese Unexamined Patent Publication No. 2012-214011

しかしながら、特許文献1に示す製造方法で木質繊維ボードを製造した場合、原料の木削片(針葉樹)の色と、木質繊維ボードの色とを比べると、解繊前の木削片の色に対して、木質繊維ボードの色が黒ずんでいることに発明者らは気付いた。 However, when the wood fiber board is manufactured by the manufacturing method shown in Patent Document 1, when the color of the raw wood shavings (coniferous tree) is compared with the color of the wood fiber board, the color of the wood shavings before defibration is obtained. On the other hand, the inventors noticed that the color of the wood fiber board was darkened.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、解繊前の木削片の色に近い白みを帯びた木質繊維ボードとこれを製造する製造方法を提供することにある。 The present invention has been made in view of these points, and an object of the present invention is a whitish wood fiber board having a color close to the color of wood shavings before defibration and a manufacturing method for manufacturing the same. Is to provide.

発明者らが、鋭意検討を重ねた結果、木質繊維ボードの色の黒ずみは、解繊工程において、単繊維への加工時の加工熱により単繊維の表面が変色することが原因であると突き止めた。特に、単繊維の状態でリファイナの歯の間を移動する際に、繊維が加熱され続ける場合があることがわかった。したがって、単繊維に加工された直後から単繊維がリファイナの歯の間を移動する間に、単繊維を集合させた繊維集合体を残せば、本来加熱される単繊維の熱を繊維集合体に吸熱させ、単繊維の変色を抑えることができると考えた。 As a result of diligent studies by the inventors, it was found that the darkening of the color of the wood fiber board was caused by the discoloration of the surface of the single fiber due to the processing heat during processing into the single fiber in the defibration process. rice field. In particular, it has been found that the fibers may continue to be heated as they move between the refiner's teeth in the state of single fibers. Therefore, if the fiber assembly in which the single fibers are aggregated is left while the single fibers move between the teeth of the refiner immediately after being processed into the single fibers, the heat of the originally heated single fibers is converted into the fiber aggregate. It was thought that heat could be absorbed and discoloration of single fibers could be suppressed.

本発明は、発明者らの新たな知見に基づくものであり、本発明に係る木質繊維ボードの製造方法は、水分を含む雰囲気下で針葉樹を原料とする木削片を加熱した後、加熱した木削片から繊維に解繊する解繊工程と、前記解繊した繊維を加圧および加熱することで木質繊維ボードを成形する成形工程と、を含む木質繊維ボードの製造方法であって、前記解繊工程は、前記木削片から、前記繊維として、単繊維と、単繊維に解繊される前の状態の繊維集合体と、を生成するものであり、前記解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、前記解繊した繊維に対して、40質量%〜52質量%の範囲となるように、前記木削片を解繊することを特徴とする。 The present invention is based on the new findings of the inventors, and the method for producing a wood fiber board according to the present invention is to heat wood chips made from coniferous trees in an atmosphere containing water and then heat them. A method for producing a wood fiber board, which comprises a defibration step of defibrating wood chips into fibers and a molding step of forming a wood fiber board by pressurizing and heating the deflated fibers. In the defibration step, a single fiber and a fiber aggregate in a state before being defibrated into the single fiber are produced as the fiber from the wood shavings, and in the defibration step, the opening is opened. It is characterized in that the wood shavings are defibrated so that the fiber aggregate that does not pass through the 150 μm sieve is in the range of 40% by mass to 52% by mass with respect to the defibrated fibers.

本発明によれば、目開きが150μmの篩を通過しないものは、単繊維が集合した繊維集合体であり、この繊維集合体が、解繊した繊維に対して、40質量%〜52質量%の範囲となるように、木削片を解繊する。 According to the present invention, what does not pass through a sieve having a mesh size of 150 μm is a fiber aggregate in which single fibers are aggregated, and the fiber aggregate is 40% by mass to 52% by mass with respect to the defibrated fibers. The wood shavings are defibrated so that they are within the range of.

これにより、解繊工程において、単繊維および繊維集合体に加工された直後の加工熱で単繊維および繊維集合体が加熱されたとしても、繊維集合体の熱容量は単繊維に比べて大きいため、繊維集合体に加工熱が吸熱される。これにより、単繊維の変色を抑えることができる。木削片を解繊した繊維の色は、加熱前の木削片の色に近いため、この繊維から成形した木質繊維ボードの色も、加熱前の木削片の色に近い。このような結果、木材固有の色を有した木質繊維ボードを製造することができる。 As a result, even if the single fiber and the fiber aggregate are heated by the processing heat immediately after being processed into the single fiber and the fiber aggregate in the defibration step, the heat capacity of the fiber aggregate is larger than that of the single fiber. Processing heat is absorbed by the fiber aggregate. As a result, discoloration of the single fiber can be suppressed. Since the color of the fiber obtained by defibrating the wood shavings is close to the color of the wood shavings before heating, the color of the wood fiber board formed from this fiber is also close to the color of the wood shavings before heating. As a result, it is possible to manufacture a wood fiber board having a color peculiar to wood.

特に、針葉樹は、広葉樹に比べて白みを帯びているので、本発明の如く、針葉樹を原料とする木削片を用いれば、白みを帯びた木質繊維ボードを得ることができる。この結果、木質繊維ボードに、たとえば白色の突板を貼り合わせたとしても、突板の表面に、木質繊維ボードの表面の黒ずみが映り込むことを抑えることができる。 In particular, since softwood is whiter than hardwood, a whitish wood fiber board can be obtained by using wood chips made from softwood as in the present invention. As a result, even if a white veneer is attached to the wood fiber board, for example, it is possible to prevent the darkening of the surface of the wood fiber board from being reflected on the surface of the veneer.

解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維全体に対して、40質量%未満となるように木削片を解繊した場合、単繊維の量が多く、繊維集合体の量が少ないため、単繊維に加工熱が入熱され易い。この結果、単繊維の変色を十分に抑えることができない。 In the defibration step, when the wood shavings are defibrated so that the fiber aggregate that does not pass through the sieve having a mesh size of 150 μm is less than 40% by mass with respect to the entire defibrated fiber, the amount of single fibers is increased. Since the amount of fiber aggregates is large and the amount of fiber aggregates is small, processing heat is easily applied to single fibers. As a result, discoloration of the single fiber cannot be sufficiently suppressed.

一方、解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維全体に対して、52質量%を超えるように木削片を解繊した場合、繊維集合体の割合が多いため、この繊維で成形された木質繊維ボードの加湿環境下および吸水環境下における寸法変化が大きくなることがある。 On the other hand, in the defibration step, when the wood shavings are defibrated so that the fiber aggregate that does not pass through the sieve having a mesh size of 150 μm exceeds 52% by mass with respect to the entire defibrated fiber, the fiber aggregate Due to the high proportion, the dimensional change of the wood fiber board molded from this fiber in a humid environment and a water absorption environment may be large.

さらに、発明者らは、製造された木質繊維ボードの黒ずみは、解繊前に木削片を加熱した際に、木削片に含まれるヘミセルロースが熱により変色したことによると考えた。この変色は、木削片に入熱される熱エネルギに依存するため、木削片を解繊できる程度に、木削片に入熱される熱エネルギを抑えることが重要であるとの新たな知見を、発明者らは得た。 Furthermore, the inventors believed that the darkening of the manufactured wood fiber board was due to the heat discoloration of the hemicellulose contained in the wood shavings when the wood shavings were heated before defibration. Since this discoloration depends on the heat energy input to the wood shavings, it is important to suppress the heat energy input to the wood shavings to the extent that the wood shavings can be defibrated. , The inventors got.

より好ましい態様としては、前記解繊工程において、前記木削片を加熱する加熱温度が155℃〜170℃の範囲であり、前記木削片を加熱する加熱時間が3分〜6分の範囲であって、前記加熱温度と前記加熱時間とのグラフにおいて、加熱温度170℃、加熱時間3分となる第1の点と、加熱温度155℃、加熱時間3分となる第2の点と、加熱温度155℃、加熱時間6分となる第3の点と、を結んだ線分で囲まれた領域内の加熱温度および加熱時間で、前記木削片を加熱する。 In a more preferred embodiment, in the defibration step, the heating temperature for heating the wood chips is in the range of 155 ° C. to 170 ° C., and the heating time for heating the wood chips is in the range of 3 minutes to 6 minutes. In the graph of the heating temperature and the heating time, the first point where the heating temperature is 170 ° C. and the heating time is 3 minutes, the second point where the heating temperature is 155 ° C. and the heating time is 3 minutes, and the heating The wood shavings are heated at the heating temperature and heating time in the region surrounded by the line connecting the third point having a temperature of 155 ° C. and a heating time of 6 minutes.

本発明によれば、解繊工程において、第1〜第3の点を結んだ領域内の加熱温度および加熱時間で、木削片を加熱することにより、木削片が熱により黒色に変色することを抑えることができる。これにより、木削片を解繊した繊維の色は、加熱前の木削片の色に近いため、この繊維から成形した木質繊維ボードの色も、加熱前の木削片の色に近い。このような結果、木材固有の色である白色の木質繊維ボードを製造することができる。 According to the present invention, in the defibration step, by heating the wood shavings at the heating temperature and heating time in the region connecting the first to third points, the wood shavings turn black due to heat. It can be suppressed. As a result, the color of the fiber obtained by defibrating the wood shavings is close to the color of the wood shavings before heating, so that the color of the wood fiber board formed from this fiber is also close to the color of the wood shavings before heating. As a result, a white wood fiber board, which is a color peculiar to wood, can be produced.

ここで、加熱温度が155℃未満である場合には、木削片の解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱時間が、170℃を超える場合には、木削片が熱により黒色に変色し易く、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Here, when the heating temperature is less than 155 ° C., the defibrated fibers of the wood shavings tend to be finely divided (micronized), and the strength of the wood fiber board may be lowered. On the other hand, when the heating time exceeds 170 ° C, the wood shavings tend to turn black due to heat, and even if the wood fiber board is molded from the fibers obtained by defibrating the wood shavings, the wood fiber board is blackened. It may end up.

また、加熱時間が3分未満である場合には、木削片の解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱時間が、6分を超える場合には、木削片が熱により黒色に変色し易く、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Further, when the heating time is less than 3 minutes, the defibrated fibers of the wood shavings tend to be finely divided (micronized), and the strength of the wood fiber board may be lowered. On the other hand, if the heating time exceeds 6 minutes, the wood shavings tend to turn black due to heat, and even if the wood fiber board is molded from the fibers obtained by defibrating the wood shavings, the wood fiber board will turn black. It may end up.

さらに、木削片を加熱する加熱温度が155℃〜170℃の範囲であり、木削片を加熱する加熱時間が3分〜6分の範囲であっても、本発明で規定する領域を外れた場合には、木削片への入熱が多いため、この熱により黒色に変色し易い。したがって、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Further, even if the heating temperature for heating the wood shavings is in the range of 155 ° C. to 170 ° C. and the heating time for heating the wood shavings is in the range of 3 minutes to 6 minutes, it is out of the region specified in the present invention. In that case, since a large amount of heat is input to the wood shavings, the heat tends to cause the wood to turn black. Therefore, even if the wood fiber board is formed from the fibers obtained by defibrating the wood shavings, the wood fiber board may be darkened.

本明細書では、本発明として、木質繊維ボードをも開示する。本発明に係る木質繊維ボードは、針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードであって、前記繊維は、単繊維と、前記単繊維に解繊される前の状態の繊維集合体と、を備えており、前記木質繊維ボードは、目開きが150μmの篩を通過しない繊維集合体を、前記解繊した繊維に対して、40質量%〜52質量%の範囲で含有し、JIS Z 8781−4で規定されるL、a、およびbから算出される色差を△Eとしたときに、前記原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることを特徴とする。 The present specification also discloses a wood fiber board as the present invention. The wood fiber board according to the present invention is a wood fiber board formed from fibers obtained by defibrating wood chips made from coniferous trees, and the fibers are a single fiber and before being defibrated into the single fiber. The wood fiber board comprises a fiber aggregate in the state of When the color difference contained in the range and calculated from L * , a * , and b * defined in JIS Z 8781-4 is ΔE, the color difference of the wood fiber board with respect to the color of the coniferous tree as the raw material. It is characterized in that ΔE is 5.1 or less.

本発明によれば、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維に対して、40質量%〜52質量%の範囲となる木質繊維ボードは、上述した如く、解繊時において、繊維が黒ずむような変色が抑えられたものであるといえる。このような木質繊維ボードは、原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることから、針葉樹固有の色である白みのある色の木質繊維ボードである。 According to the present invention, as described above, the wood fiber board in which the fiber aggregate having a mesh size of 150 μm and does not pass through the sieve is in the range of 40% by mass to 52% by mass with respect to the defibrated fibers is defibrated. At times, it can be said that discoloration such as darkening of fibers is suppressed. Such a wood fiber board is a wood fiber board having a whitish color, which is a color peculiar to softwood, because the color difference ΔE of the wood fiber board with respect to the color of the raw material conifer is 5.1 or less. ..

より好ましい態様としては、前記木質繊維ボードの表面には、前記木質繊維ボードの表面のLよりも高いLを有した化粧材が設けられている。この態様によれば、木質繊維ボードの単繊維および繊維集合体の露出した表面に、L(明度)が高い化粧材を設けた場合であっても、化粧材の木質繊維ボードの表面が映り込むことを抑えることができる。 In a more preferred embodiment, the surface of the wood fiber board is provided with a decorative material having an L * higher than the surface L * of the wood fiber board. According to this aspect, even when a decorative material having a high L * (brightness) is provided on the exposed surface of the single fiber and the fiber aggregate of the wood fiber board, the surface of the wood fiber board of the decorative material is reflected. It can be suppressed from getting crowded.

本発明によれば、解繊前の針葉樹の木削片の色に近い白みを帯びた木質繊維ボードを得ることができる。 According to the present invention, it is possible to obtain a whitish wood fiber board having a color close to the color of wood chips of coniferous trees before defibration.

本発明の実施形態に係る木質繊維ボードの製造方法を説明するためのフロー図である。It is a flow figure for demonstrating the manufacturing method of the wood fiber board which concerns on embodiment of this invention. 図1に示す解繊工程に用いるリファイナの模式図である。It is a schematic diagram of the refiner used in the defibration process shown in FIG. 図2に示すリファイナで解繊された繊維の模式図である。It is a schematic diagram of the fiber defibrated by the refiner shown in FIG. 図1に示す解繊工程において木削片の加熱温度と加熱時間の関係を示したグラフである。It is a graph which showed the relationship between the heating temperature and the heating time of a wood cutting piece in the defibration process shown in FIG. 図1に示す製造方法で製造された木質繊維ボードの表面に化粧材を貼着した状態を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a state in which a decorative material is attached to the surface of a wood fiber board manufactured by the manufacturing method shown in FIG.

以下に、本発明に係る実施形態を説明する。
本実施形態に係る木質繊維ボードの製造方法は、木削片を木質繊維に解繊し、解繊した木質繊維から木質繊維ボードを製造する方法であり、中質繊維板(MDF)などの乾式の木質繊維ボードを製造する方法である。
Hereinafter, embodiments according to the present invention will be described.
The method for manufacturing a wood fiber board according to the present embodiment is a method in which wood chips are defibrated into wood fibers and the wood fiber board is manufactured from the defibrated wood fibers, and is a dry method such as a medium fiber board (MDF). It is a method of manufacturing a wood fiber board.

まず、本実施形態に係る木質繊維ボードについて、図1および図2を参照しながら、説明し、この製造方法について説明する。 First, the wood fiber board according to the present embodiment will be described with reference to FIGS. 1 and 2, and the manufacturing method will be described.

本実施形態における木質繊維ボード1の製造方法は、以下に示す、解繊工程S11、集積工程S12、成形工程S13を少なくとも含む。以下に、各工程について説明する。 The method for producing the wood fiber board 1 in the present embodiment includes at least the defibration step S11, the integration step S12, and the molding step S13, which are shown below. Each step will be described below.

解繊工程S11について
解繊工程S11を図1〜図3を参照しながら、以下に説明する。まず、実施形態の木質繊維ボード1の出発材料として、チップ状の木削片を準備する。木削片としては、例えば、スギ、マツ、ヒノキなどの針葉樹を原料とした木削片Tを準備する。
About the defibration step S11 The defibration step S11 will be described below with reference to FIGS. 1 to 3. First, as a starting material for the wood fiber board 1 of the embodiment, chip-shaped wood chips are prepared. As the wood shavings, for example, wood shavings T made from coniferous trees such as sugi, pine, and cypress are prepared.

次に、このような木削片Tを水分を含む雰囲気下で加熱後、加熱した木削片Tから湿式繊維Fに解繊する。具体的には、材料供給部32を介して木削片Tを、圧力容器33に投入し、蒸気供給部31を介して蒸気sを圧力容器33に供給する。 Next, such wood shavings T are heated in an atmosphere containing moisture, and then the heated wood shavings T are defibrated into wet fibers F. Specifically, the wood shavings T are charged into the pressure vessel 33 via the material supply unit 32, and the steam s is supplied to the pressure vessel 33 via the steam supply unit 31.

次に、圧力容器33の排出部34から、蒸煮処理した木削片Tを刃型35に送り込む。具体的には、図示しないが、刃型35の内部に、加熱された状態(具体的には温度が保持された状態)の木削片Tが供給され、この木削片Tが、刃型35、36の間に送り込まれる。刃型36には、モータ37の出力軸が連結されている。 Next, the steamed wood shavings T are sent to the blade mold 35 from the discharge portion 34 of the pressure vessel 33. Specifically, although not shown, a heated wood cutting piece T (specifically, a state in which the temperature is maintained) is supplied to the inside of the blade mold 35, and the wood cutting piece T is the blade mold. It is sent between 35 and 36. The output shaft of the motor 37 is connected to the blade mold 36.

これにより、刃型36が回転し、刃型35、36間において、木削片Tが解繊され、その回転中心からその外周に向かって、単繊維faおよび繊維集合体fbからなる繊維Fが放出される。本実施形態では、刃型35、36の間隔dをこれまでよりも広くすることにより、解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、40質量%〜52質量%の範囲となるように、木削片Tを解繊する。 As a result, the blade mold 36 rotates, the wood cutting piece T is defibrated between the blade molds 35 and 36, and the fiber F composed of the single fiber fa and the fiber aggregate fb is formed from the center of rotation to the outer periphery thereof. Be released. In the present embodiment, by making the distance d between the blade dies 35 and 36 wider than before, in the defibration step S11, the fiber aggregate fb having a mesh opening of 150 μm does not pass through the sieve is the entire defibrated fiber F. The wood shavings T are defibrated so as to be in the range of 40% by mass to 52% by mass.

ここで、目開きとは、JIS Z 8801−1(2019)に規定された公称目開きのことであり、後述する解繊工程後に、解繊された繊維を分級することにより、目開きが150μmの篩を通過しない繊維集合体fbの割合を確認することができる。 Here, the opening is a nominal opening defined in JIS Z 8801-1 (2019), and the opening is 150 μm by classifying the defibrated fibers after the defibration step described later. The ratio of the fiber aggregate fb that does not pass through the sieve can be confirmed.

目開きが150μmの篩を通過しないものは、単繊維faが集合した繊維集合体fbであり、これを通過するものは、単繊維faである。この繊維集合体fbが、解繊した繊維Fに対して、40質量%〜52質量%の範囲となるように、木削片Tを解繊することにより、単繊維faおよび繊維集合体fbに加工された直後の加工熱で単繊維faおよび繊維集合体fbが加熱されたとしても、繊維集合体fbに単繊維faの熱が吸熱される。これにより、単繊維faの変色を抑えることができる。 Those that do not pass through a sieve having a mesh size of 150 μm are fiber aggregates fb in which single fiber fas are aggregated, and those that pass through this are single fiber fas. By defibrating the wood shavings T so that the fiber aggregate fb is in the range of 40% by mass to 52% by mass with respect to the defibrated fiber F, the single fiber fa and the fiber aggregate fb are formed. Even if the single fiber fa and the fiber aggregate fb are heated by the processing heat immediately after the processing, the heat of the single fiber fa is absorbed by the fiber aggregate fb. As a result, discoloration of the single fiber fa can be suppressed.

解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、40質量%未満となるように木削片Tを解繊した場合、単繊維faの量が多いため、単繊維faに加工熱が入熱され易い。この結果、単繊維faの変色を十分に抑えることができない。 In the defibration step S11, when the wood shavings T are defibrated so that the fiber aggregate fb having a mesh opening of 150 μm does not pass through the sieve is less than 40% by mass with respect to the entire defibrated fiber F. Since the amount of fiber fa is large, processing heat is easily applied to the single fiber fa. As a result, discoloration of the single fiber fa cannot be sufficiently suppressed.

一方、解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、52質量%を超えるように木削片Tを解繊した場合、単繊維faの量が少なくなるため、繊維Fで成形された木質繊維ボード1の強度が低下することがある。 On the other hand, in the defibration step S11, when the wood shavings T are defibrated so that the fiber aggregate fb having a mesh opening of 150 μm does not pass through the sieve exceeds 52% by mass with respect to the entire defibrated fiber F. Since the amount of the single fiber fa is reduced, the strength of the wood fiber board 1 formed of the fiber F may be reduced.

解繊工程S11において、圧力容器33内の木削片Tを加熱する加熱温度は155℃〜170℃の範囲であることが好ましく、前記木削片を加熱する加熱時間は3分〜6分の範囲であることが好ましい。特に、図4に示すように、加熱温度と前記加熱時間とのグラフにおいて、加熱温度170℃、加熱時間3分となる第1の点P1と、加熱温度155℃、加熱時間3分となる第2の点P2と、加熱温度155℃、加熱時間6分となる第3の点P3と、を結んだ線分で囲まれた領域S内の加熱温度および加熱時間で、木削片Tを加熱することが好ましい。 In the defibration step S11, the heating temperature for heating the wood shavings T in the pressure vessel 33 is preferably in the range of 155 ° C. to 170 ° C., and the heating time for heating the wood shavings is 3 minutes to 6 minutes. It is preferably in the range. In particular, as shown in FIG. 4, in the graph of the heating temperature and the heating time, the first point P1 at which the heating temperature is 170 ° C. and the heating time is 3 minutes, and the first point P1 at which the heating temperature is 155 ° C. and the heating time is 3 minutes. The wood shavings T are heated at the heating temperature and heating time in the region S surrounded by the line connecting the point P2 of 2 and the third point P3 having a heating temperature of 155 ° C. and a heating time of 6 minutes. It is preferable to do so.

後述する発明者らの実験からも明らかなように、解繊工程S11において、第1〜第3の点P1〜P3を結んだ領域S内の加熱温度および加熱時間で、木削片Tを加熱することにより、木削片Tが熱により黒色に変色することを抑えることができる。これにより、木削片Tを解繊した繊維の色は、加熱前の木削片Tの色に近くなる。 As is clear from the experiments of the inventors described later, in the defibration step S11, the wood shavings T are heated at the heating temperature and heating time in the region S connecting the first to third points P1 to P3. By doing so, it is possible to prevent the wood cutting piece T from turning black due to heat. As a result, the color of the fibers obtained by defibrating the wood shavings T becomes close to the color of the wood shavings T before heating.

ここで、加熱温度が155℃未満である場合には、木削片Tの解繊される繊維Fが微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱温度が、170℃を超える場合には、木削片Tが熱により黒色に変色し易く、この木削片Tを解繊した繊維Fから木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Here, when the heating temperature is less than 155 ° C., the defibrated fibers F of the wood shavings T tend to be finely divided (micronized), and the strength of the wood fiber board may decrease. On the other hand, when the heating temperature exceeds 170 ° C., the wood shavings T tend to turn black due to heat, and even if the wood fiber board is formed from the fibers F obtained by defibrating the wood shavings T, the wood fibers The board may darken.

また、加熱時間が3分未満である場合には、木削片Tの解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボード1の強度が低下するおそれがある。一方、加熱時間が、6分を超える場合には、木削片Tが熱により黒色に変色し易く、この木削片Tを解繊した繊維から木質繊維ボード1を成形しても、木質繊維ボード1が黒ずんでしまうことがある。 Further, when the heating time is less than 3 minutes, the defibrated fibers of the wood shavings T tend to be finely divided (micronized), and the strength of the wood fiber board 1 may be lowered. On the other hand, if the heating time exceeds 6 minutes, the wood shavings T are likely to turn black due to heat, and even if the wood fiber board 1 is molded from the fibers obtained by defibrating the wood shavings T, the wood fibers Board 1 may darken.

さらに、木削片を加熱する加熱温度が155℃〜170℃の範囲であり、木削片を加熱する加熱時間が3分〜6分の範囲であっても、本発明で規定する領域を外れた場合には、木削片Tへの入熱が多いため、この熱により黒色に変色し易い。したがって、この木削片Tを解繊した繊維から木質繊維ボード1を成形しても、木質繊維ボード1が黒ずんでしまうことがある。 Further, even if the heating temperature for heating the wood shavings is in the range of 155 ° C. to 170 ° C. and the heating time for heating the wood shavings is in the range of 3 minutes to 6 minutes, it is out of the region specified in the present invention. In this case, since a large amount of heat is input to the wood cutting piece T, the heat tends to cause the wood to turn black. Therefore, even if the wood fiber board 1 is formed from the fibers obtained by defibrating the wood shavings T, the wood fiber board 1 may be darkened.

集積工程S12について
この工程では、解繊された繊維Fに接着剤を添加後に乾燥させて、マット状に集積する(木質マットを成形する)。接着剤は、熱硬化性樹脂からなる接着剤、熱可塑性樹脂からなる接着剤のいずれであってもよい。熱硬化性樹脂としては、常温硬化型または熱硬化型の熱硬化性樹脂でよく、例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、またはアルキド樹脂等を挙げることができる。
Accumulation step S12 In this step, an adhesive is added to the defibrated fiber F and then dried to accumulate in a mat shape (a wood mat is formed). The adhesive may be either an adhesive made of a thermosetting resin or an adhesive made of a thermoplastic resin. The thermosetting resin may be a room temperature curable resin or a thermosetting resin. For example, a urea resin, a melamine resin, a phenol resin, an epoxy resin, an unsaturated polyester resin, a polyurethane resin, a diallyl phthalate resin, or a silicone resin. , Or an epoxy resin or the like.

成形工程S13について
この工程では、成形された木質マットをプレス機に投入して、加圧・加熱(熱圧)することにより、木質繊維ボードを成形する。具体的には、木質マットを、成形装置に投入し、加熱温度を160℃〜260℃、加圧条件として、0.2MPa〜5MPaで加圧保持時間30秒〜5分間で熱圧する。
About molding step S13 In this step, a wood fiber board is molded by putting a molded wood mat into a press machine and pressurizing and heating (heat pressure). Specifically, the wood mat is put into a molding apparatus, and the heating temperature is 160 ° C. to 260 ° C., and the pressurization condition is 0.2 MPa to 5 MPa, and the pressurization holding time is 30 seconds to 5 minutes.

木質繊維ボード1について
このようにして得られた木質繊維ボード1は、針葉樹を原料とする木削片Tを解繊した繊維Fから成形された木質繊維ボード1である。図5に示すように、繊維Fは、単繊維faと、単繊維faに解繊される前の状態の繊維集合体fbと、を備えている。木質繊維ボード1は、目開きが150μmの篩を通過しない繊維集合体fbを、解繊した繊維Fに対して、40質量%〜52質量%の範囲で含有することになる。
About the wood fiber board 1 The wood fiber board 1 thus obtained is a wood fiber board 1 formed from fibers F obtained by defibrating wood shavings T made from coniferous trees. As shown in FIG. 5, the fiber F includes a single fiber fa and a fiber aggregate fb in a state before being defibrated into the single fiber fa. The wood fiber board 1 contains a fiber aggregate fb having a mesh size of 150 μm that does not pass through a sieve in the range of 40% by mass to 52% by mass with respect to the defibrated fiber F.

本発明によれば、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維Fに対して、40質量%〜52質量%の範囲となる木質繊維ボードは、上述した如く、解繊時において、繊維Fが黒ずむような変色が抑えられたものである。 According to the present invention, the wood fiber board in which the fiber aggregate fb having a mesh size of 150 μm and does not pass through the sieve is in the range of 40% by mass to 52% by mass with respect to the defibrated fiber F is as described above. At the time of defibration, discoloration such that the fiber F is darkened is suppressed.

したがって、木削片Tを解繊した繊維Fの色は、加熱前の木削片Tの色に近いため、この繊維から成形した木質繊維ボード1の色も、加熱前の木削片Tの色に近い。このような結果、木材固有の色を有した木質繊維ボード1を製造することができる。 Therefore, since the color of the fiber F obtained by defibrating the wood cutting piece T is close to the color of the wood cutting piece T before heating, the color of the wood fiber board 1 formed from this fiber is also the color of the wood cutting piece T before heating. Close to color. As a result, the wood fiber board 1 having a color peculiar to wood can be manufactured.

具体的には、JIS Z 8781−4(2013)(CIE1976表色系)で規定されるL、a、およびbから算出される色差を△Eとしたときに、解繊前の針葉樹の色に対する木質繊維ボード1の色の色差△Eが5.1以下である。したがって、木質繊維ボード1は、色差△Eが5.1以下である。特に、針葉樹は、広葉樹に比べて白みを帯びているので、本実施形態の如く、針葉樹を原料とする木削片Tを用いれば、白みを帯びた木質繊維ボード1を得ることができる。 Specifically, when the color difference calculated from L * , a * , and b * defined in JIS Z 8781-4 (2013) (CIE1976 color system) is ΔE, the coniferous tree before defibration The color difference ΔE of the color of the wood fiber board 1 with respect to the color of is 5.1 or less. Therefore, the wood fiber board 1 has a color difference ΔE of 5.1 or less. In particular, since softwood is whiter than hardwood, a whitish wood fiber board 1 can be obtained by using wood shavings T made from softwood as in the present embodiment. ..

図5に示すように、木質繊維ボード1の表面に接着剤を介して化粧材50を貼り付けてもよい。ここで接着剤としては、たとえば、酢酸ビニル樹脂エマルジョン接着剤、ユリア樹脂接着剤、エポキシ樹脂接着剤、フェノール樹脂接着剤、合成ゴム系接着剤などの溶液系(有機溶媒系も含む)、または水分散系の接着剤、を挙げることができる。接着剤の代わりに、粘着剤を用いてもよく、粘着剤としては、アクリル樹脂系粘着剤、合成ゴム系粘着剤、天然ゴム系粘着剤、ビニルエーテル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤など粘着剤を挙げることができる。 As shown in FIG. 5, the decorative material 50 may be attached to the surface of the wood fiber board 1 via an adhesive. Here, as the adhesive, for example, a solution system (including an organic solvent system) such as a vinyl acetate resin emulsion adhesive, a urea resin adhesive, an epoxy resin adhesive, a phenol resin adhesive, a synthetic rubber adhesive, or water. Dispersive adhesives can be mentioned. An adhesive may be used instead of the adhesive, and the adhesive may be an acrylic resin adhesive, a synthetic rubber adhesive, a natural rubber adhesive, a vinyl ether adhesive, a silicone adhesive, or a urethane adhesive. Adhesives such as agents can be mentioned.

化粧材50は、木質繊維ボード1の表面のL(明度)よりも低いLを有したものであることが好ましい。通常、このようなL(明度)が高い化粧材50は、白みを帯びているので、木質繊維ボードの表面の黒ずんだ色が映り込み易い。しかしながら、本実施形態では、露出した表面に、L(明度)が高い化粧材50を設けた場合であっても、化粧材の木質繊維ボードの表面が映り込むことを抑えることができる。 The decorative material 50 preferably has an L * lower than the L * (brightness) of the surface of the wood fiber board 1. Normally, the decorative material 50 having a high L * (brightness) is whitish, so that the dark color on the surface of the wood fiber board is easily reflected. However, in the present embodiment, even when the decorative material 50 having a high L * (brightness) is provided on the exposed surface, it is possible to suppress the reflection of the surface of the wood fiber board of the decorative material.

化粧材50としては、上述した針葉樹からなる突板またはクラフト紙などを挙げることができ、突板である場合には、下地となる木質繊維ボード1の表面が映り込み易い0.2〜0.6mm程度の厚さの突板であることが好ましい。 Examples of the decorative material 50 include the above-mentioned veneer made of softwood or kraft paper, and in the case of the veneer, the surface of the wood fiber board 1 as a base is easily reflected on the surface of about 0.2 to 0.6 mm. It is preferable that the veneer has a thickness of.

以下に、本発明の実施例を説明する。 Examples of the present invention will be described below.

〔実施例1〕
木削片として、図2に示すリファイナを用いて、大きさ数センチの針葉樹チップ(スギ)を、加熱温度(蒸煮温度)160℃にし、加熱時間(蒸煮時間)を3分で蒸煮した後、この針葉樹チップの加熱温度を保持した状態で、針葉樹チップをリファイナで解繊した。刃型の間隔は、従来設定されている間隔の2倍に設定した。解繊した繊維の重量を測定し、JIS Z 8801−1(2019)に準拠して、目開きが150μmの篩で分級し、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Example 1]
Using the refiner shown in FIG. 2 as a piece of wood, a coniferous tree chip (sugi) with a size of several centimeters was heated to a heating temperature (steaming temperature) of 160 ° C., and the heating time (steaming time) was steamed for 3 minutes. While maintaining the heating temperature of the softwood chips, the softwood chips were defibrated with a refiner. The blade-shaped spacing was set to twice the conventionally set spacing. Weigh the defibrated fibers and classify them with a sieve with a mesh size of 150 μm according to JIS Z 8801-1 (2019), and measure the total mass of fiber aggregates that do not pass through a sieve with a mesh size of 150 μm. And the ratio was measured. The results are shown in Table 1.

〔実施例2〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、繊維集合体の割合がより多くなるように、刃型の間隔を調整した。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Example 2]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 was that the distance between the blade molds was adjusted so that the proportion of fiber aggregates was larger than that of Example 1. Then, in the same manner as in Example 1, the total mass of the fiber aggregates having a mesh size of 150 μm and not passing through the sieve was measured, and the ratio thereof was measured. The results are shown in Table 1.

〔実施例3および4〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例3が、実施例1と相違する点は、実施例1に対して、蒸煮温度を165℃にした点である。実施例4が、実施例1と相違する点は、実施例1に対して、蒸煮温度を165℃にした点と、実施例2の刃型の間隔で解繊した点である。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Examples 3 and 4]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference between Example 3 and Example 1 is that the steaming temperature was set to 165 ° C. as compared with Example 1. The difference between Example 4 and Example 1 is that the steaming temperature was set to 165 ° C. and the fiber was defibrated at the interval of the blade mold of Example 2. Then, in the same manner as in Example 1, the total mass of the fiber aggregates having a mesh size of 150 μm and not passing through the sieve was measured, and the ratio thereof was measured. The results are shown in Table 1.

〔比較例1〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、特許文献1に示した条件で、繊維集合体の割合が少なくなるように、刃型の間隔を狭くし、蒸煮温度、および蒸煮時間を調整した。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Comparative Example 1]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that, under the conditions shown in Patent Document 1, the blade mold spacing is narrowed so that the proportion of fiber aggregates is small, and the steaming temperature and steaming time are different from those of Example 1. Was adjusted. Then, in the same manner as in Example 1, the total mass of the fiber aggregates having a mesh size of 150 μm and not passing through the sieve was measured, and the ratio thereof was measured. The results are shown in Table 1.

〔比較例2〕
実施例3と同じようにして、針葉樹チップをリファイナで解繊した。実施例3と相違する点は、実施例3に対して、特許文献1に示した条件で、刃型の間隔を従来通りの間隔となるように狭くした。そして、実施例3と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Comparative Example 2]
The softwood chips were defibrated with a refiner in the same manner as in Example 3. The difference from Example 3 is that, under the conditions shown in Patent Document 1, the blade mold spacing is narrowed so as to be the same as that of the conventional embodiment. Then, in the same manner as in Example 3, the total mass of the fiber aggregates having a mesh size of 150 μm and not passing through the sieve was measured, and the ratio thereof was measured. The results are shown in Table 1.

(評価試験)
実施例1〜4および比較例1で得られた繊維から、マット成形機を用いて、木質マットに成形した。この木質マットを、プレス機に投入して、加熱条件、すなわち熱圧温度185℃、熱圧時間50秒、厚さ3mmとなるように加圧することにより、木質繊維ボードを得た。なお、比較例1は、市販されている木質繊維ボードに近い状態である。
(Evaluation test)
The fibers obtained in Examples 1 to 4 and Comparative Example 1 were molded into a wood mat using a mat molding machine. This woody mat was put into a press machine and pressed so as to have a heating condition, that is, a heat pressure temperature of 185 ° C., a heat pressure time of 50 seconds, and a thickness of 3 mm to obtain a wood fiber board. In addition, Comparative Example 1 is in a state close to a commercially available wood fiber board.

得られた木質繊維ボードの表面に対して、分光色彩計(日本電色、SE7700)を用いて、JIS Z 8781−4(2013)で規定されるL、a、およびbを測定した。さらに、木質繊維ボードの原材料と同じ配合で木削片(辺材+心材)が変色しないように破砕し、この紛体のL、a、およびbを測定した。以下の数1により、解繊前の針葉樹(スギ)の色に対する木質繊維ボードの色の色差△Eを算出した。なお、以下の数1では、基準となるスギ紛体のL、a、およびbが、L、a、およびbであり、木質繊維ボードのL、a、およびbが、L、a、およびbである。この結果を表1に示す。 On the surface of the obtained wood fiber board, L * , a * , and b * specified by JIS Z 8781-4 (2013) were measured using a spectrocolorimeter (Nippon Denshoku, SE7700). .. Further, the wood shavings (sapwood + core material) were crushed with the same composition as the raw material of the wood fiber board so as not to discolor , and L * , a * , and b * of this powder were measured. The color difference ΔE of the color of the wood fiber board with respect to the color of the coniferous tree (Sugi) before defibration was calculated by the following equation 1. In the following equation 1, the reference Sugi powder L * , a * , and b * are L 0, a 0 , and b 0 , and the wood fiber board L * , a * , and b *. Are L 1 , a 1 , and b 1 . The results are shown in Table 1.

Figure 2021107135
Figure 2021107135

Figure 2021107135
Figure 2021107135

実施例1〜4の木質繊維ボードでは、木質繊維ボードの色差が△5.1以下であり、針葉樹チップ(スギ)固有の色に近かった。一方、比較例1および2の木質繊維ボードでは、木質繊維ボードの色差が7.0を超えており、針葉樹チップ(スギ)固有の色よりも黒い色になっていることが確認された。 In the wood fiber boards of Examples 1 to 4, the color difference of the wood fiber boards was Δ5.1 or less, which was close to the color peculiar to the softwood chips (sugi). On the other hand, in the wood fiber boards of Comparative Examples 1 and 2, the color difference of the wood fiber boards exceeded 7.0, and it was confirmed that the color was blacker than the color peculiar to the softwood chips (sugi).

実施例1〜4は、比較例1、2に比べて、繊維集合体の割合が多い。このことから、単繊維および繊維集合体に加工された直後の加工熱で単繊維および繊維集合体が加熱されたとしても、実施例1〜4では、繊維集合体に単繊維および繊維集合体の熱が吸熱されるため、単繊維の変色を抑えることができたと考えられる。この結果、実施例1〜4では、針葉樹を原料とする木削片に近い白みを帯びた木質繊維ボードを得ることができたと考えられる。 Examples 1 to 4 have a higher proportion of fiber aggregates than Comparative Examples 1 and 2. From this, even if the single fiber and the fiber aggregate are heated by the processing heat immediately after being processed into the single fiber and the fiber aggregate, in Examples 1 to 4, the single fiber and the fiber aggregate are combined with the fiber aggregate. Since the heat is absorbed, it is considered that the discoloration of the single fiber could be suppressed. As a result, in Examples 1 to 4, it is considered that a whitish wood fiber board similar to wood shavings made from coniferous trees could be obtained.

〔実施例5〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度170℃、加熱時間3分にした点であり、図3のグラフの第1の点P1に相当する。
[Example 5]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that the heating temperature is 170 ° C. and the heating time is 3 minutes with respect to Example 1, which corresponds to the first point P1 in the graph of FIG.

〔実施例6〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度155℃、加熱時間3分にした点であり、図3のグラフの第1の点P2に相当する。
[Example 6]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that the heating temperature is 155 ° C. and the heating time is 3 minutes with respect to Example 1, which corresponds to the first point P2 in the graph of FIG.

〔実施例7〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度155℃、加熱時間6分にした点であり、図3のグラフの第1の点P3に相当する。
[Example 7]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that the heating temperature is 155 ° C. and the heating time is 6 minutes with respect to Example 1, which corresponds to the first point P3 in the graph of FIG.

〔比較例3〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度160℃、加熱時間7分にした点である。
[Comparative Example 3]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that the heating temperature was 160 ° C. and the heating time was 7 minutes with respect to Example 1.

〔比較例4〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度165℃、加熱時間7分にした点である。
[Comparative Example 4]
The softwood chips were defibrated with a refiner in the same manner as in Example 1. The difference from Example 1 is that the heating temperature was 165 ° C. and the heating time was 7 minutes with respect to Example 1.

(評価試験)
実施例1と同様に、実施例5〜7および比較例3、4で得られた繊維から、マット成形機を用いて、木質マットを成形し、この木質マットを、プレス機に投入して、木質繊維ボードを製造した。実施例1と同様に、得られた木質繊維ボードの表面に対して、L、a、およびbを測定し、解繊前の針葉樹(スギ)の色に対する木質繊維ボードの色の色差△Eを算出した。
(Evaluation test)
In the same manner as in Example 1, a wood mat was formed from the fibers obtained in Examples 5 to 7 and Comparative Examples 3 and 4 using a mat molding machine, and the wood mat was put into a press machine. Manufactured wood fiber board. In the same manner as in Example 1, L * , a * , and b * were measured on the surface of the obtained wood fiber board, and the color difference of the wood fiber board with respect to the color of the conifer (sugi) before defibration. ΔE was calculated.

Figure 2021107135
Figure 2021107135

実施例5〜7に係る木質繊維ボードでは、木質繊維ボードの色差が4程度、針葉樹チップ(スギ)固有の色に近かった。一方、比較例3および4の木質繊維ボードでは、木質繊維ボードの色差が6程度であり、針葉樹チップ(スギ)固有の色よりも黒い色になっていることが確認された。 In the wood fiber boards according to Examples 5 to 7, the color difference of the wood fiber boards was about 4, which was close to the color peculiar to the softwood chips (sugi). On the other hand, in the wood fiber boards of Comparative Examples 3 and 4, it was confirmed that the color difference of the wood fiber boards was about 6, which was blacker than the color peculiar to the softwood chips (sugi).

実施例4〜6では、解繊工程において、木削片に加熱された加熱温度および加熱時間からも明らかなように、比較例3、4に比べて、入熱される熱は少ない。このことから、図4に示すグラフの領域Sの範囲内においては、針葉樹を原料とする木削片に近い白みを帯びた木質繊維ボードを得ることができることが想定される。 In Examples 4 to 6, in the defibration step, less heat is input as compared with Comparative Examples 3 and 4, as is clear from the heating temperature and heating time of the wood shavings. From this, it is assumed that a whitish wood fiber board close to wood chips made from coniferous wood can be obtained within the range of the area S of the graph shown in FIG.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various types are described within the scope of the claims as long as the spirit of the present invention is not deviated. It is possible to make design changes.

1:木質繊維ボード、S11:解繊工程、S13:成形工程、F:繊維、fa:単繊維、fb:繊維集合体、T:木削片、P1:第1の点、P2:第2の点、P3:第3の点 1: Wood fiber board, S11: defibration process, S13: molding process, F: fiber, fa: single fiber, fb: fiber aggregate, T: wood shavings, P1: first point, P2: second Point, P3: Third point

Claims (4)

水分を含む雰囲気下で針葉樹を原料とする木削片を加熱した後、加熱した木削片から繊維に解繊する解繊工程と、
前記解繊した繊維を加圧および加熱することで木質繊維ボードを成形する成形工程と、を含む木質繊維ボードの製造方法であって、
前記解繊工程は、前記木削片から、前記繊維として、単繊維と、単繊維に解繊される前の状態の繊維集合体と、を生成するものであり、
前記解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、前記解繊した繊維に対して、40質量%〜52質量%の範囲となるように、前記木削片を解繊することを特徴とする木質繊維ボードの製造方法。
A defibration process in which wood shavings made from softwood are heated in an atmosphere containing water and then defibrated from the heated wood shavings into fibers.
A method for producing a wood fiber board, which comprises a molding step of forming a wood fiber board by pressurizing and heating the defibrated fibers.
In the defibration step, single fibers and fiber aggregates in a state before being defibrated into single fibers are produced as the fibers from the wood shavings.
In the defibration step, the wood shavings are defibrated so that the fiber aggregate having a mesh opening of 150 μm does not pass through the sieve is in the range of 40% by mass to 52% by mass with respect to the defibrated fiber. A method for manufacturing a wood fiber board, which is characterized by the fact that the wood fiber board is manufactured.
前記解繊工程において、前記木削片を加熱する加熱温度が155℃〜170℃の範囲であり、前記木削片を加熱する加熱時間が3分〜6分の範囲であって、
前記加熱温度と前記加熱時間とのグラフにおいて、加熱温度170℃、加熱時間3分となる第1の点と、加熱温度155℃、加熱時間3分となる第2の点と、加熱時間155℃、加熱時間6分となる第3の点と、を結んだ線分で囲まれた領域内の加熱温度および加熱時間で、前記木削片を加熱することを特徴とする請求項1に記載の木質繊維ボードの製造方法。
In the defibration step, the heating temperature for heating the wood shavings is in the range of 155 ° C. to 170 ° C., and the heating time for heating the wood shavings is in the range of 3 minutes to 6 minutes.
In the graph of the heating temperature and the heating time, the first point where the heating temperature is 170 ° C. and the heating time is 3 minutes, the second point where the heating temperature is 155 ° C. and the heating time is 3 minutes, and the heating time is 155 ° C. The first aspect of claim 1, wherein the wood shavings are heated at a heating temperature and a heating time in a region surrounded by a line connecting the third point having a heating time of 6 minutes. How to make wood fiber board.
針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードであって、
前記繊維は、単繊維と、前記単繊維に解繊される前の状態の繊維集合体と、を備えており、
前記木質繊維ボードは、目開きが150μmの篩を通過しない繊維集合体を、前記解繊した繊維に対して、40質量%〜52質量%の範囲で含有し、
JIS Z 8781−4で規定されるL、a、およびbから算出される色差を△Eとしたときに、前記原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることを特徴とする木質繊維ボード。
It is a wood fiber board molded from fibers made by defibrating wood chips made from softwood.
The fiber comprises a single fiber and a fiber aggregate in a state before being defibrated into the single fiber.
The wood fiber board contains a fiber aggregate having a mesh size of 150 μm that does not pass through a sieve in the range of 40% by mass to 52% by mass with respect to the defibrated fibers.
When the color difference calculated from L * , a * , and b * defined in JIS Z 8781-4 is ΔE, the color difference ΔE of the wood fiber board with respect to the color of the coniferous tree as the raw material is 5. A wood fiber board characterized by being 1 or less.
前記木質繊維ボードの表面には、前記木質繊維ボードの表面のLよりも高いLを有した化粧材が設けられていることを特徴とする請求項3に記載の木質繊維ボード。 The wood fiber board according to claim 3, wherein a decorative material having an L * higher than the surface L * of the surface of the wood fiber board is provided on the surface of the wood fiber board.
JP2019239401A 2019-12-27 2019-12-27 wood fiber board Active JP7417419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239401A JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239401A JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Publications (2)

Publication Number Publication Date
JP2021107135A true JP2021107135A (en) 2021-07-29
JP7417419B2 JP7417419B2 (en) 2024-01-18

Family

ID=76967529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239401A Active JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Country Status (1)

Country Link
JP (1) JP7417419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276759A1 (en) 2021-06-28 2023-01-05 出光興産株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244516A (en) * 1998-04-20 1998-09-14 Tomiyasu Honda Composite board
JPH10264117A (en) * 1997-03-27 1998-10-06 Nippon Paper Ind Co Ltd Fiberboard
JP2000052321A (en) * 1998-08-12 2000-02-22 Yamaha Corp Manufacture of wood panel
JP2001001318A (en) * 1999-06-24 2001-01-09 Yoji Kikata Method for manufacturing lignocellulose molding from lignocellulose material
JP2012214011A (en) * 2011-03-31 2012-11-08 Eidai Co Ltd Method for manufacturing woody board
US20160002414A1 (en) * 2013-02-26 2016-01-07 Medite Europe Limited Process for manufacturing products from acetylated wood fibre
WO2016163080A1 (en) * 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Process for producing fiberboard
JP2017515707A (en) * 2014-05-15 2017-06-15 オムヤ インターナショナル アーゲー Fibreboard products containing calcium carbonate-containing materials
JP2017177087A (en) * 2016-03-31 2017-10-05 地方独立行政法人山口県産業技術センター Method for manufacturing fibrillated material of natural fibrous material and method for manufacturing composite cotton-like fibrillated material of fibrillated material and cotton-like fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264117A (en) * 1997-03-27 1998-10-06 Nippon Paper Ind Co Ltd Fiberboard
JPH10244516A (en) * 1998-04-20 1998-09-14 Tomiyasu Honda Composite board
JP2000052321A (en) * 1998-08-12 2000-02-22 Yamaha Corp Manufacture of wood panel
JP2001001318A (en) * 1999-06-24 2001-01-09 Yoji Kikata Method for manufacturing lignocellulose molding from lignocellulose material
JP2012214011A (en) * 2011-03-31 2012-11-08 Eidai Co Ltd Method for manufacturing woody board
US20160002414A1 (en) * 2013-02-26 2016-01-07 Medite Europe Limited Process for manufacturing products from acetylated wood fibre
JP2017515707A (en) * 2014-05-15 2017-06-15 オムヤ インターナショナル アーゲー Fibreboard products containing calcium carbonate-containing materials
WO2016163080A1 (en) * 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Process for producing fiberboard
JP2017177087A (en) * 2016-03-31 2017-10-05 地方独立行政法人山口県産業技術センター Method for manufacturing fibrillated material of natural fibrous material and method for manufacturing composite cotton-like fibrillated material of fibrillated material and cotton-like fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276759A1 (en) 2021-06-28 2023-01-05 出光興産株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JP7417419B2 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
KR100715153B1 (en) Arundo donax composite panal and method thereof
US3927235A (en) Reconstituted board products from plant-fiber residues
CN105437327B (en) A kind of moistureproof, mould proof, low formaldehyde type middle and higher density fiberboard preparation method
EP2508671B1 (en) Cellulose nanofibers and method of producing cellulose nanofibers
US2831794A (en) Process for manufacturing veneer panels
US3021244A (en) Process for producing high density hardboard
US2080078A (en) Molding composition and process of making same
CN1094091C (en) Board produced from malvaceous bast plant and process for producing the same
JP2021107135A (en) Wooden fiber board and manufacturing method thereof
US3438853A (en) Process of curing hardboard containing wood fibers and portland cement
Ibrahim et al. Effect of refining parameters on medium density fibreboard (MDF) properties from oil palm trunk (Elaeis guineensis)
US20130199743A1 (en) Binderless panel made from wood particles and cellulosic fibers
JP6503182B2 (en) Molded body and method for producing the same
US20070095491A1 (en) Arundo donax pulp, paper products, and particle board
Eshraghi et al. Waste paperboard in composition panels
JP7100614B2 (en) Wood fiber board and its manufacturing method
Iwakiri et al. Evaluation of the quality of particleboard panels manufactured with wood from Sequoia sempervirens and Pinus taeda
JP4526946B2 (en) Method for producing wooden molded body and wooden molded body
JPH09314524A (en) Fiber board and its manufacture
Saffian et al. Feasibility of manufacturing a medium density fibreboard made of 4-year old rubber tree RRIM 2020 clone
WO1992012836A1 (en) Building substrate and method of manufacturing same
US2346943A (en) Fiberboard composition
US3050782A (en) Method of making consolidated lignocellulose boards
Raymond Influence of wood density and fibre length on properties of medium density fibreboard manufactured from Pinus radiata
Uday et al. Study on Utilization of Plantation-Grown Timber Species Grevillea robusta (Silver Oak) for Medium-Density Fibre Board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240105

R150 Certificate of patent or registration of utility model

Ref document number: 7417419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150