JP2021106113A - Positive electrode, lithium ion secondary battery, positive electrode manufacturing method, and lithium ion secondary battery manufacturing method - Google Patents

Positive electrode, lithium ion secondary battery, positive electrode manufacturing method, and lithium ion secondary battery manufacturing method Download PDF

Info

Publication number
JP2021106113A
JP2021106113A JP2019236900A JP2019236900A JP2021106113A JP 2021106113 A JP2021106113 A JP 2021106113A JP 2019236900 A JP2019236900 A JP 2019236900A JP 2019236900 A JP2019236900 A JP 2019236900A JP 2021106113 A JP2021106113 A JP 2021106113A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
weight
phosphonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019236900A
Other languages
Japanese (ja)
Other versions
JP7376348B2 (en
Inventor
高椋 輝
Teru Takakura
輝 高椋
松原 恵子
Keiko Matsubara
恵子 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to JP2019236900A priority Critical patent/JP7376348B2/en
Publication of JP2021106113A publication Critical patent/JP2021106113A/en
Application granted granted Critical
Publication of JP7376348B2 publication Critical patent/JP7376348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a positive electrode active material for a lithium ion secondary battery, a positive electrode, and a lithium ion secondary battery capable of achieving both excellent slurry stability and excellent cycle characteristics.SOLUTION: In a positive electrode according to an embodiment of the present invention, a positive electrode active material layer including a positive electrode active material containing a lithium transition metal oxide and an oxide solid electrolyte and a phosphonic acid compound as additives is formed on a positive electrode current collector.SELECTED DRAWING: None

Description

本発明の実施形態は、正極、リチウムイオン二次電池、正極の製造方法、及びリチウムイオン二次電池の製造方法に関する。 Embodiments of the present invention relate to a positive electrode, a lithium ion secondary battery, a method for manufacturing a positive electrode, and a method for manufacturing a lithium ion secondary battery.

モバイル機器に対する技術開発と需要が増加するに伴い、エネルギー源として二次電池の需要が急激に増加している。このような二次電池のうち、高いエネルギー密度及び電圧を有し、サイクル寿命が長く、自己放電率が低いリチウムイオン二次電池が常用化され、広く使用されている。現在、このようなリチウムイオン二次電池の高容量化及び高エネルギー密度化を試みる研究が精力的に進められている。 With the increase in technological development and demand for mobile devices, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium ion secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commonly used and widely used. Currently, research is being vigorously pursued to increase the capacity and energy density of such lithium-ion secondary batteries.

しかしながら、このようなリチウムイオン二次電池の高容量化にあたり、正極活物質スラリーのスラリー安定性が低下する場合や十分な寿命特性が得られない場合があり、これらの特性の改善が望まれている。 However, in order to increase the capacity of such a lithium ion secondary battery, the slurry stability of the positive electrode active material slurry may be lowered or sufficient life characteristics may not be obtained, and improvement of these characteristics is desired. There is.

特開2000−034134号公報Japanese Unexamined Patent Publication No. 2000-034134

特開2017−010923号公報JP-A-2017-010923

本発明が解決しようとする課題は、優れたスラリー安定性と優れたサイクル特性とを両立させることのできるリチウムイオン二次電池用の正極活物質、正極、及びリチウムイオン二次電池を提供することである。 An object to be solved by the present invention is to provide a positive electrode active material for a lithium ion secondary battery, a positive electrode, and a lithium ion secondary battery capable of achieving both excellent slurry stability and excellent cycle characteristics. Is.

本発明の一態様によると、リチウム遷移金属酸化物を含有する正極活物質と、添加剤として酸化物固体電解質及びホスホン酸化合物と、を含む正極活物質層が正極集電体上に形成された、正極が提供される。本明細書において、「リチウム遷移金属酸化物」とは、リチウム及び遷移金属を含み、遷移金属−酸素結合を有する化合物を意味し、アルミニウムなどの典型金属元素や酸素以外の非金属元素を含有するものも含む。また、「酸化物固体電解質」とは、固体中をイオンが移動することで電気が流れる化合物であって酸素を含むものを意味する。また、「ホスホン酸化合物」とは、示性式H−P(=O)(OH)で表される無機ホスホン酸(以下、単に「ホスホン酸」という)及び示性式R−P(=O)(OH)(R:任意の有機基)で表される有機ホスホン酸、並びにこれらの塩、エステルその他の誘導体の総称である。 According to one aspect of the present invention, a positive electrode active material layer containing a positive electrode active material containing a lithium transition metal oxide and an oxide solid electrolyte and a phosphonic acid compound as additives was formed on the positive electrode current collector. , Positive electrode is provided. As used herein, the term "lithium transition metal oxide" means a compound containing lithium and a transition metal and having a transition metal-oxygen bond, and contains a typical metal element such as aluminum and a non-metal element other than oxygen. Including things. Further, the "oxide solid electrolyte" means a compound in which electricity flows by moving ions in the solid and contains oxygen. The "phosphonic acid compound" is an inorganic phosphonic acid represented by the demonstrative formula HP (= O) (OH) 2 (hereinafter, simply referred to as "phosphonic acid") and the demonstrative formula RP (=). It is a general term for organic phosphonic acids represented by O) (OH) 2 (R: any organic group), and salts, esters and other derivatives thereof.

上記態様に係る正極において、リチウム遷移金属酸化物は、遷移金属の総量を基準として50モル%以上のニッケルを含み得る。 In the positive electrode according to the above aspect, the lithium transition metal oxide may contain 50 mol% or more of nickel based on the total amount of transition metals.

上記態様に係る正極において、リチウム遷移金属酸化物は、遷移金属の総量を基準として80モル%以上のニッケルを含み得る。 In the positive electrode according to the above aspect, the lithium transition metal oxide may contain 80 mol% or more of nickel based on the total amount of transition metals.

上記態様に係る正極において、酸化物固体電解質は、リチウムイオン伝導性を有し得る。 In the positive electrode according to the above aspect, the oxide solid electrolyte may have lithium ion conductivity.

上記態様に係る正極において、正極活物質層中の酸化物固体電解質の含有量は、0.01重量%以上5重量%以下であり得る。 In the positive electrode according to the above aspect, the content of the oxide solid electrolyte in the positive electrode active material layer can be 0.01% by weight or more and 5% by weight or less.

上記態様に係る正極において、ホスホン酸化合物は、リチウム遷移金属酸化物の粒子の表面上で被覆を形成し得る。 In the positive electrode according to the above aspect, the phosphonic acid compound can form a coating on the surface of the particles of the lithium transition metal oxide.

ホスホン酸化合物の添加量は、正極活物質層の重量を基準として0.01重量%以上5重量%以下であり得る。 The amount of the phosphonic acid compound added may be 0.01% by weight or more and 5% by weight or less based on the weight of the positive electrode active material layer.

ホスホン酸化合物は、ホスホン酸又は有機ホスホン酸であり得る。 The phosphonic acid compound can be a phosphonic acid or an organic phosphonic acid.

本発明の別の態様によると、上記態様に係る正極と、珪素又は珪素化合物を含有する負極活物質を含む負極活物質層が負極集電体上に形成された負極と、を備える、リチウムイオン二次電池が提供される。 According to another aspect of the present invention, a lithium ion comprising a positive electrode according to the above aspect and a negative electrode having a negative electrode active material layer containing a negative electrode active material containing silicon or a silicon compound formed on a negative electrode current collector. Secondary batteries are provided.

上記態様に係るリチウムイオン二次電池は、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートのうち少なくとも一つを含む電解液をさらに備え得る。 The lithium ion secondary battery according to the above aspect may further include an electrolytic solution containing at least one of fluoroethylene carbonate and difluoroethylene carbonate.

本発明の別の態様によると、リチウムイオン二次電池用の正極の製造方法であって、
リチウム遷移金属酸化物と、酸化物固体電解質と、ホスホン酸化合物と、溶媒と、を混合することにより正極活物質スラリーを得るステップと、
正極活物質スラリーを乾燥させることにより、正極活物質層を正極集電体上に形成することにより正極を得るステップと、
を含む、正極の製造方法が提供される。
According to another aspect of the present invention, it is a method for manufacturing a positive electrode for a lithium ion secondary battery.
A step of obtaining a positive electrode active material slurry by mixing a lithium transition metal oxide, an oxide solid electrolyte, a phosphonic acid compound, and a solvent.
A step of obtaining a positive electrode by forming a positive electrode active material layer on a positive electrode current collector by drying the positive electrode active material slurry.
A method for manufacturing a positive electrode is provided.

本発明の別の態様によると、リチウムイオン二次電池の製造方法であって、
上記態様に係る正極の製造方法により正極を得るステップと、
珪素又は珪素化合物を含有する負極活物質を含む負極活物質層を負極集電体上に形成することにより負極を得るステップと、
正極と負極との間にセパレータ及び電解液を介在させるステップと、
を含む、リチウムイオン二次電池の製造方法が提供される。
According to another aspect of the present invention, it is a method for manufacturing a lithium ion secondary battery.
The step of obtaining a positive electrode by the method for manufacturing a positive electrode according to the above aspect, and
A step of obtaining a negative electrode by forming a negative electrode active material layer containing a negative electrode active material containing silicon or a silicon compound on a negative electrode current collector, and
A step of interposing a separator and an electrolytic solution between the positive electrode and the negative electrode,
A method for manufacturing a lithium ion secondary battery including the above is provided.

以下、本発明の実施形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

本明細書において、「平均粒径」とは、レーザー回折散乱法により測定した粒度分布における積算値50%での粒径、すなわちメジアン径(D50)を意味する。 As used herein, the "average particle size" means the particle size at an integrated value of 50% in the particle size distribution measured by the laser diffraction / scattering method, that is, the median diameter (D 50 ).

リチウムイオン二次電池の高容量化に伴って生じ得るスラリー安定性及び高温での寿命特性の問題について、一例としてニッケルの含有率が高いリチウム遷移金属酸化物を正極材料として用いるリチウムイオン二次電池を取り上げて説明する。 Regarding the problems of slurry stability and life characteristics at high temperatures that may occur with the increase in capacity of lithium ion secondary batteries, as an example, a lithium ion secondary battery that uses a lithium transition metal oxide having a high nickel content as a positive electrode material. Will be taken up and explained.

リチウムイオン二次電池の正極材料として、LiNiCoMnのようなリチウムニッケルコバルトマンガン三元系正極活物質において、組成中のニッケル量を増加させることで高容量化を図ることができることが知られている。しかしながら、リチウムニッケルコバルトマンガン三元系正極活物質では、ニッケル量の増加に伴ってアルカリ性が高くなる。このようなアルカリ性の正極活物質を用いた場合、バインダーとして一般に用いられるポリフッ化ビニリデン(PVdF)や大気中の水分との反応によって正極活物質スラリーのゲル化や粘度上昇などが起こり、スラリー安定性が低下して、電極集電体への塗工に困難を伴う場合がある。 As the positive electrode material of a lithium ion secondary battery, in Li a Ni x Co y Mn z lithium-nickel-cobalt-manganese ternary positive electrode active material, such as O 2, increase the capacity by increasing the amount of nickel in the composition It is known that it can be done. However, in the lithium nickel cobalt manganese ternary positive electrode active material, the alkalinity increases as the amount of nickel increases. When such an alkaline positive electrode active material is used, the reaction with polyvinylidene fluoride (PVdF), which is generally used as a binder, and moisture in the atmosphere causes gelation and viscosity increase of the positive electrode active material slurry, resulting in slurry stability. May be difficult to apply to the electrode current collector.

一方、負極材料については、珪素(Si)や酸化珪素(SiO)などの珪素系材料が、現在主流である黒鉛などの炭素系材料よりも高い理論容量密度を有しているため、リチウムイオン二次電池のエネルギー密度を向上させる負極活物質として期待されている。しかしながら、現在負極材料として広く用いられている炭素系材料では、初回充電時に電極−電解液界面にSEI(Solid Electrolyte Interface)被膜が形成され、充放電を繰り返してもこのSEI被膜が維持されるので、電解液との副反応が抑制されるのに対し、珪素系材料では、充電時の膨張及び放電時の収縮が大きいため、この膨張収縮により粒子表面や粒子内部に亀裂が生じたりSEI被膜の破損や脱落が生じたりして、電池のサイクル特性(すなわち寿命特性)に悪影響を及ぼす場合がある。このため、負極材料として珪素系材料を用いる場合には、SEI形成剤であるフルオロエチレンカーボネート(FEC)やジフルオロエチレンカーボネート(DFEC)を電解液に添加し、充放電ごとに良好な被膜形成を行うことが有効である。しかしながら、上記のようにアルカリ性の高い正極材料を用いた場合には、電解液中のFECやDFECが正極活物質のアルカリ成分と反応し、特に45℃以上の高温で炭酸ガスや一酸化炭素などのガスが発生し得る。これらのガスが電極とセパレータとの間などに溜まることにより、電池の寿命特性が劣化するおそれがある。 On the other hand, as for the negative electrode material , silicon-based materials such as silicon (Si) and silicon oxide (SiO x ) have a higher theoretical capacity density than carbon-based materials such as graphite, which are currently mainstream, and therefore lithium ions. It is expected as a negative electrode active material that improves the energy density of secondary batteries. However, in carbon-based materials that are widely used as negative electrode materials at present, an SEI (Solid Electrolyte Interface) film is formed at the electrode-electrolyte solution interface at the time of initial charging, and this SEI film is maintained even after repeated charging and discharging. In contrast to the suppression of side reactions with the electrolytic solution, silicon-based materials have large expansion and contraction during charging and contraction during discharge. Therefore, this expansion and contraction causes cracks on the particle surface and inside the particles, and the SEI coating. It may be damaged or fall off, which may adversely affect the cycle characteristics (that is, the life characteristics) of the battery. Therefore, when a silicon-based material is used as the negative electrode material, fluoroethylene carbonate (FEC) or difluoroethylene carbonate (DFEC), which are SEI forming agents, are added to the electrolytic solution to form a good film for each charge and discharge. Is effective. However, when a highly alkaline positive electrode material is used as described above, FEC and DFEC in the electrolytic solution react with the alkaline component of the positive electrode active material, and carbon dioxide gas, carbon monoxide, etc. are particularly generated at a high temperature of 45 ° C. or higher. Gas can be generated. Accumulation of these gases between the electrodes and the separator may deteriorate the life characteristics of the battery.

本発明者は、リチウムイオン二次電池において、リチウム遷移金属酸化物を含む正極活物質を用いる際に、酸化物固体電解質及びホスホン酸化合物を添加することにより、正極活物質スラリーのスラリー安定性及びリチウムイオン二次電池のサイクル特性が改善され得ることを見出し、本発明を完成するに至った。 When a positive electrode active material containing a lithium transition metal oxide is used in a lithium ion secondary battery, the present inventor adds an oxide solid electrolyte and a phosphonic acid compound to the slurry stability of the positive electrode active material slurry. We have found that the cycle characteristics of a lithium ion secondary battery can be improved, and have completed the present invention.

また、本発明者は、特にリチウム遷移金属酸化物のニッケルの含有率が高い場合など正極活物質がアルカリ性の場合には、正極活物質スラリーのスラリー安定性や高温での寿命特性の問題が顕著に見られることがあるため、本発明が特に有効であり得ることを見出した。 In addition, the present inventor has remarkable problems with the slurry stability of the positive electrode active material slurry and the life characteristics at high temperatures, especially when the positive electrode active material is alkaline, such as when the nickel content of the lithium transition metal oxide is high. It has been found that the present invention may be particularly effective because it may be found in.

[リチウムイオン二次電池]
本発明の一実施形態に係るリチウムイオン二次電池は、正極、負極、正極と負極との間に介在するセパレータ、及び非水電解質を含む。また、リチウムイオン二次電池は、正極、負極、及びセパレータから構成される電極組立体を収容する電池ケース、並びに電池ケースを密封する密封部材を選択的に含み得る。
[Lithium-ion secondary battery]
The lithium ion secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. Further, the lithium ion secondary battery may selectively include a battery case for accommodating an electrode assembly composed of a positive electrode, a negative electrode, and a separator, and a sealing member for sealing the battery case.

[正極]
実施形態に係るリチウムイオン二次電池において、正極は、正極集電体及び当該正極集電体の一面上又は両面上に形成された正極活物質層を含む。正極活物質層は、正極集電体の面全体に形成されてもよく、一部のみに形成されてもよい。例えば、実施形態に係る正極は、電解液を含むリチウムイオン二次電池用の正極である。
[Positive electrode]
In the lithium ion secondary battery according to the embodiment, the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on one surface or both surfaces of the positive electrode current collector. The positive electrode active material layer may be formed on the entire surface of the positive electrode current collector, or may be formed only on a part of the surface of the positive electrode current collector. For example, the positive electrode according to the embodiment is a positive electrode for a lithium ion secondary battery containing an electrolytic solution.

(正極集電体)
正極に使用される正極集電体は、電気化学的に安定に使用でき、導電性を有するものであれば、特に制限されない。例えば、正極集電体として、ステンレス鋼;アルミニウム;ニッケル;チタン;又はこれらの合金であってもよく、これらの組み合わせからなる1種又は2種以上の混合物であってもよい。また、焼成炭素や、アルミニウム又はステンレス鋼の表面に炭素、ニッケル、チタン、銀などで表面処理したものなどであってもよい。
(Positive current collector)
The positive electrode current collector used for the positive electrode is not particularly limited as long as it can be used electrochemically stably and has conductivity. For example, the positive electrode current collector may be stainless steel; aluminum; nickel; titanium; or an alloy thereof, or may be one kind or a mixture of two or more kinds composed of a combination thereof. Further, the surface of calcined carbon or aluminum or stainless steel may be surface-treated with carbon, nickel, titanium, silver or the like.

正極集電体は、3μm以上500μm以下の厚さを有し得る。正極集電体の表面上に微細な凹凸を形成して正極活物質との接着力を高めることもできる。正極集電体は、例えば、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体など多様な形態を有し得る。 The positive electrode current collector can have a thickness of 3 μm or more and 500 μm or less. It is also possible to form fine irregularities on the surface of the positive electrode current collector to enhance the adhesive force with the positive electrode active material. The positive electrode current collector can have various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven fabric.

(正極活物質層)
正極活物質層は、正極活物質、正極添加剤、導電剤、及びバインダーの混合物が溶媒中に溶解及び分散した正極活物質スラリーを正極集電体に塗布した後、乾燥及び圧延することで形成することができる。
(Positive electrode active material layer)
The positive electrode active material layer is formed by applying a positive electrode active material slurry in which a mixture of a positive electrode active material, a positive electrode additive, a conductive agent, and a binder is dissolved and dispersed in a solvent to a positive electrode current collector, and then drying and rolling. can do.

(正極活物質)
正極活物質としては、リチウムを吸蔵及び放出することができるリチウム遷移金属酸化物を用いることができる。正極活物質は、例えば、ニッケルを含有するリチウム遷移金属酸化物を含み、好ましくは、ニッケルの含有率が高いリチウム遷移金属酸化物を含み得る。ここで、「ニッケルの含有率が高い」とは、遷移金属の総量を基準として50モル%以上のニッケルを含むことを意味する。
(Positive electrode active material)
As the positive electrode active material, a lithium transition metal oxide capable of occluding and releasing lithium can be used. The positive electrode active material may contain, for example, a nickel-containing lithium transition metal oxide, preferably a lithium transition metal oxide having a high nickel content. Here, "high nickel content" means that 50 mol% or more of nickel is contained based on the total amount of transition metals.

正極活物質の含有量は、正極活物質層の総重量に対して80重量%以上99.5重量%以下であり得る。正極活物質の含有量は、好ましくは85重量%以上98.5重量%以下であり得る。正極活物質の含有量が上記範囲内であれば、優れた容量特性を実現することが可能である。これに対し、正極活物質の含有量が上記範囲未満である場合には、正極の塗布量が増え、厚みが増加し、十分な体積エネルギー密度が達成できない可能性があり、上記範囲を上回る場合には、バインダー及び導電材が不足し、その結果、電極の導電性及び接着力が不足して電池の性能が低下する可能性がある。 The content of the positive electrode active material can be 80% by weight or more and 99.5% by weight or less with respect to the total weight of the positive electrode active material layer. The content of the positive electrode active material can be preferably 85% by weight or more and 98.5% by weight or less. When the content of the positive electrode active material is within the above range, excellent capacitance characteristics can be realized. On the other hand, when the content of the positive electrode active material is less than the above range, the coating amount of the positive electrode increases, the thickness increases, and a sufficient volumetric energy density may not be achieved. There is a possibility that the binder and the conductive material are insufficient, and as a result, the conductivity and the adhesive force of the electrodes are insufficient, and the performance of the battery is deteriorated.

(リチウム遷移金属酸化物)
リチウム金属複合酸化物の例としては、リチウム−マンガン系酸化物(例えば、LiMnO、LiMnO、LiMn、LiMnなど);リチウム−コバルト系酸化物(例えば、LiCoOなど);リチウム−ニッケル系酸化物(例えば、LiNiOなど);リチウム−銅系酸化物(例えば、LiCuOなど);リチウム−バナジウム系酸化物(例えば、LiVなど);リチウム−ニッケル−マンガン系酸化物(例えば、LiNi1−zMn(0<z<1)、LiMn2−zNi(0<z<2)など);リチウム−ニッケル−コバルト系酸化物(例えば、LiNi1−yCo(0<y<1)など);リチウム−マンガン−コバルト系酸化物(例えば、LiCo1−zMn(0<z<1)、LiMn2−yCo(0<y<2)など);リチウム−ニッケル−マンガン−コバルト系酸化物(例えば、Li(NiCoMn)O(0<x<1、0<y<1、0<z<1、x+y+z=1)、Li(NiCoMn)O(0<x<2、0<y<2、0<z<2、x+y+z=2)など);リチウム−ニッケル−コバルト−金属(M)酸化物(例えば、Li(NiCoMn)O(MはAl、Fe、V、Cr、Ti、Ta、Mg、及びMoからなる群より選択され、0<x<1、0<y<1、0<z<1、0<w<1、x+y+z+w=1)など);Li
過剰固溶体正極(例えば、pLiMnO−(1−p)Li(NiCoMn)O(0<x<1、0<y<1、0<z<1、x+y+z=1、0<p<1);これらの化合物中の遷移金属元素が部分的に他の1種又は2種以上の金属元素で置換された化合物などが挙げられる。正極活物質層は、これらのうちいずれか1つ又は2つ以上の化合物を含むことができるが、これらに限定されるものではない。
(Lithium transition metal oxide)
Examples of the lithium metal composite oxide, lithium - manganese oxide (e.g., such as LiMnO 2, LiMnO 3, LiMn 2 O 3, LiMn 2 O 4); lithium - cobalt oxide (e.g., LiCoO 2) ; lithium - nickel based oxide (e.g., LiNiO 2); lithium - copper oxide (e.g., Li 2 CuO 2); lithium - vanadium oxides (e.g., such as LiV 3 O 8); lithium - nickel -Mangane oxides (eg LiNi 1-z Mn z O 2 (0 <z <1), LiMn 2-z Ni z O 4 (0 <z <2), etc.); Lithium-nickel-cobalt oxide (for example, LiNi 1-y Co y O 2 (0 <y <1)); lithium - manganese - cobalt oxide (e.g., LiCo 1-z Mn z O 2 (0 <z <1), LiMn 2 -y Co y O 4 (0 < y <2) , etc.); lithium - nickel - manganese - cobalt oxide (e.g., Li (Ni x Co y Mn z) O 2 (0 <x <1,0 <y <1,0 <z <1, x + y + z = 1), Li (Ni x Co y Mn z) O 4 (0 <x <2,0 <y <2,0 <z <2, x + y + z = 2) , etc.) ; lithium - nickel - cobalt - metal (M) oxide (for example, a Li (Ni x Co y Mn z M w) O 2 (M is Al, Fe, V, Cr, Ti, Ta, Mg, and Mo Selected from the group, 0 <x <1, 0 <y <1, 0 <z <1, 0 <w <1, x + y + z + w = 1), etc.); Li
Excess solid solution positive electrode (e.g., pLi 2 MnO 3 - (1 -p) Li (Ni x Co y Mn z) O 2 (0 <x <1,0 <y <1,0 <z <1, x + y + z = 1, 0 <p <1); Examples thereof include compounds in which the transition metal element in these compounds is partially replaced with another one or more metal elements. The positive electrode active material layer is any of these. Can include, but is not limited to, one or more compounds.

特に、電池の高容量化に有効なニッケルの含有率が高いリチウム遷移金属酸化物の例として、LiNiO(0.5≦a≦1.5);Li(NiCoMn)O(0.5≦a≦1.5、0.5≦x<1、0<y<0.5、0<z<0.5、x+y+z=1);LiNi1−yCo(0.5≦a≦1.5、0<y≦0.5);LiNi1−zMn(0.5≦a≦1.5、0<z≦0.5);Li(NiCoMn)O(0.5≦a≦1.5、1≦x<2、0<y<1、0<z<1、x+y+z=2);Li(NiCo)O(Mは、Al、Fe、V、Cr、Ti、Ta、Mg、Mo、Zr、Zn、Ga、及びInからなる群より選択される1種又は2種以上の元素であり、0.5≦a≦1.5、0.5≦x<1、0<y<0.5、0<w<0.5、x+y+w=1);Li(NiCoMn)O(Mは、Al、Fe、V、Cr、Ti、Ta、Mg、Mo、Zr、Zn、Ga、及びInからなる群より選択される1種又は2種以上の元素であり、0.5≦a≦1.5、0.5≦x<1、0<y<0.5、0<z<0.5、0<w<0.5、x+y+z+w=1);これらの化合物中の遷移金属原子が少なくとも部分的に他の1種又は2種以上の金属元素(例えば、Al、Fe、V、Cr、Ti、Ta、Mg、Mo、Zr、Zn、Ga、及びInのうち1種又は2種以上)で置換された化合物;これらの化合物中の酸素原子が部分的に他の1種又は2種以上の非金属元素(例えば、P、F、S、及びNのうち1種又は2種以上)で置換された化合物などが挙げられる。正極活物質は、これらのうち1つ又は2つ以上を含むことができるが、これらに限定されるものではない。また、同じ粒子内でも、内部と表層とで置換された濃度に分布があってもよい。また、粒子の表面に被覆されたものでもよい。例えば、金属酸化物、リチウム遷移金属酸化物、ポリマーなどで被覆された表面などがあげられるが、これに限定されるものではない。 In particular, examples of the content of active nickel high capacity high lithium transition metal oxide cell, Li a NiO 2 (0.5 ≦ a ≦ 1.5); Li a (Ni x Co y Mn z ) O 2 (0.5 ≦ a ≦ 1.5, 0.5 ≦ x <1, 0 <y <0.5, 0 <z <0.5, x + y + z = 1); Li a Ni 1-y Co y O 2 (0.5 ≦ a ≦ 1.5, 0 <y ≦ 0.5); Li a Ni 1-z Mn z O 2 (0.5 ≦ a ≦ 1.5, 0 <z ≦ 0. 5); Li a (Ni x Co y Mn z) O 4 (0.5 ≦ a ≦ 1.5,1 ≦ x <2,0 <y <1,0 <z <1, x + y + z = 2); Li a (Ni x Co y M w ) O 2 (M is, Al, Fe, V, Cr , Ti, Ta, Mg, Mo, Zr, Zn, 1 kind selected from the group consisting of Ga, and in or 2 Elements of more than one species, 0.5 ≦ a ≦ 1.5, 0.5 ≦ x <1, 0 <y <0.5, 0 <w <0.5, x + y + w = 1); Li a (Ni) x Co y Mn z M w) O 2 (M is, Al, Fe, V, Cr , Ti, Ta, Mg, Mo, Zr, Zn, 1 kind or two kinds selected from the group consisting of Ga, and in These elements are 0.5 ≦ a ≦ 1.5, 0.5 ≦ x <1, 0 <y <0.5, 0 <z <0.5, 0 <w <0.5, x + y + z + w = 1); Transition metal atoms in these compounds are at least partially other metal elements of one or more (eg, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, Zn, Compounds substituted with one or more of Ga and In; oxygen atoms in these compounds are partially other one or more non-metallic elements (eg, P, F, S). , And a compound substituted with one or more of N). The positive electrode active material can include, but is not limited to, one or more of these. Further, even within the same particle, there may be a distribution in the concentration substituted between the inside and the surface layer. Further, the surface of the particles may be coated. For example, a surface coated with a metal oxide, a lithium transition metal oxide, a polymer, or the like can be mentioned, but the present invention is not limited thereto.

特に、電池の容量特性及び安定性の向上の面で、LiNiO、Li(Ni0.5MnCo)O(y+z=0.5)、Li(Ni0.6MnCo)O(y+z=0.4)、Li(Ni0.7MnCo)O(y+z=0.3)、Li(Ni0.8MnCo)O(y+z=0.2)、Li(Ni0.8CoMnAl)O(y+z+w=0.2)、Li(Ni0.85CoMn)O(y+z=0.15)、Li(Ni0.85CoMnAl)O(y+z+w=0.15)、Li(Ni0.9CoMn)O(y+z=0.1)、Li(Ni0.9CoMnAl)O(y+z+w=0.1)、Li(Ni0.9CoMn)O(y+z=0.1)、Li(Ni0.95CoMnAl)O(y+z+w=0.05)などが好ましい。ここで、aの値はいずれも、例えば0.5≦a≦1.5であり、好ましくは1.0≦a≦1.5であり得る。 In particular, in terms of improving the capacity characteristics and stability of the battery, Li a NiO 2 , Li a (Ni 0.5 Mn y Co z ) O 2 (y + z = 0.5), Li a (Ni 0.6 Mn) y Co z ) O 2 (y + z = 0.4), Li a (Ni 0.7 Mn y Co z ) O 2 (y + z = 0.3), Li a (Ni 0.8 Mn y Co z ) O 2 (y + z = 0.2), Li a (Ni 0.8 Co y Mn z Al w) O 2 (y + z + w = 0.2), Li a (Ni 0.85 Co y Mn z) O 2 (y + z = 0 .15), Li a (Ni 0.85 Co y Mn z Al w ) O 2 (y + z + w = 0.15), Li a (Ni 0.9 Co y Mn z ) O 2 (y + z = 0.1), Li a (Ni 0.9 Co y Mn z Al w) O 2 (y + z + w = 0.1), Li a (Ni 0.9 Co y Mn z) O 2 (y + z = 0.1), Li a (Ni 0.95 Co y Mn z Al w), such as O 2 (y + z + w = 0.05) is preferred. Here, the value of a can be, for example, 0.5 ≦ a ≦ 1.5, preferably 1.0 ≦ a ≦ 1.5.

より具体的には、LiNiO、Li(Ni0.5Mn0.3Co0。2)O、Li(Ni0.6Mn0.2Co0.2)O、Li(Ni0.7Mn0.15Co0.15)O、Li(Ni0.8Mn0.1Co0.1)O、Li(Ni0.8Co0.15Al0.05)O、Li(Ni0.8Co0.1Mn0.05Al0.05)O、Li(Ni0.85Co0.10Mn0.05)O、Li(Ni0.85Co0.10Mn0.03Al0.02)O、Li(Ni0.9Co0.05Mn0.05)O2、Li(Ni0.9Co0.05Al0.05)O、Li(Ni0.95Co0.03Mn0.02)O、Li(Ni0.95Co0.03Al0.02)Oなどが好ましい。 More specifically, LiNiO 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0. 7 Mn 0.15 Co 0.15 ) O 2 , Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , Li (Ni 0.8 Co 0.1 Mn 0.05 Al 0.05 ) O 2 , Li (Ni 0.85 Co 0.10 Mn 0.05 ) O 2 , Li (Ni 0.85 Co 0.10 Mn) 0.03 Al 0.02 ) O 2 , Li (Ni 0.9 Co 0.05 Mn 0.05 ) O 2, Li (Ni 0.9 Co 0.05 Al 0.05 ) O 2 , Li (Ni) 0.95 Co 0.03 Mn 0.02 ) O 2 and Li (Ni 0.95 Co 0.03 Al 0.02 ) O 2 are preferable.

リチウム遷移金属酸化物の粒子の平均粒径は、例えば、1μm以上50μm以下であり、好ましくは1μm以上20μm以下であり、より好ましくは1μm以上10μm以下であり得る。 The average particle size of the particles of the lithium transition metal oxide can be, for example, 1 μm or more and 50 μm or less, preferably 1 μm or more and 20 μm or less, and more preferably 1 μm or more and 10 μm or less.

(正極添加剤)
正極添加剤は、1種以上の酸化物固体電解質と1種以上のホスホン酸化合物とを含む添加剤を用いることができる。また、上記以外に、導電材の分散を向上するための分散材や充填剤、その他の添加剤を含有してもよい。
(Positive electrode additive)
As the positive electrode additive, an additive containing one or more kinds of oxide solid electrolytes and one or more kinds of phosphonic acid compounds can be used. In addition to the above, a dispersant, a filler, and other additives for improving the dispersion of the conductive material may be contained.

正極添加剤の量は、例えば、正極活物質層の総重量を基準として、0.01重量%以上5重量%以下であり、好ましくは1重量%以上3重量%以下であり得る。正極添加剤の添加量が当該範囲内であれば、優れた容量特性を実現することが可能である。 The amount of the positive electrode additive may be, for example, 0.01% by weight or more and 5% by weight or less, preferably 1% by weight or more and 3% by weight or less, based on the total weight of the positive electrode active material layer. When the amount of the positive electrode additive added is within the range, excellent capacitance characteristics can be realized.

(酸化物固体電解質)
酸化物固体電解質は、イオン伝導性を有する固体酸化物であれば特に制限されず、結晶性固体電解質、非結晶性固体電解質、ガラスセラミック固体電解質などであり得る。伝導イオンも特に制限されず、リチウムやナトリウムなどのアルカリ金属イオン、プロトン、アンモニウムイオン、酸素イオンなどがあり得る。
(Oxide solid electrolyte)
The oxide solid electrolyte is not particularly limited as long as it is a solid oxide having ionic conductivity, and may be a crystalline solid electrolyte, an amorphous solid electrolyte, a glass ceramic solid electrolyte, or the like. The conduction ion is also not particularly limited, and may be an alkali metal ion such as lithium or sodium, a proton, an ammonium ion, an oxygen ion, or the like.

特に、リチウムイオン伝導性を有する酸化物固体電解質を用いると、充放電時の正極活物質におけるリチウムイオンの出入りが容易になると考えられるので好ましい。リチウムイオン伝導性を有する酸化物固体電解質の例としては、LLTO系化合物((La,Li)TiO)、LiLaCaTa12、LiLaANb12(A:アルカリ土類金属)、LiNdTeSbO12、LiBO2.50.5、LiSiAlO、LAGP系化合物(Li1+xAlGe2−x(PO(0≦x≦1、0≦y≦1))、LiO−Al−TiO−PのようなLATP系化合物(Li1+xAlTi2−x(PO(0≦x≦1、0≦y≦1))、Li1+xTi2−xAlSi(PO3−y(0≦x≦1、0≦y≦1)、Li1+yAl2−x(PO(Mは、Ti、Ge、Sr、Sn、Zr、及びCaからなる群から選択される1種又は2種以上の元素であり、0≦x≦1、0≦y≦1)、LiTiZr2−x(PO(0≦x≦1、0≦y≦1)、LISICON(Li4−2xZnGeO(0≦x≦1))、LIPON系化合物(Li3+yPO4−x(0≦x≦1、0≦y≦1))、NASICON系化合物(LiTi(POなど)、ガーネット系化合物(LiLaZr12、Li7−xLaZr1−xNb12(0≦x≦1)など)などが挙げられる。 In particular, it is preferable to use an oxide solid electrolyte having lithium ion conductivity because it is considered that lithium ions can easily enter and exit the positive electrode active material during charging and discharging. Examples of solid oxide electrolytes having lithium ion conductivity include LLTO compounds ((La, Li) TiO 3 ), Li 6 La 2 CaTa 2 O 12 , Li 6 La 2 ANb 2 O 12 (A: alkaline soil). Metals), Li 2 Nd 3 TeSbO 12 , Li 3 BO 2.5 N 0.5 , Li 9 SiAlO 8 , LAGP-based compounds (Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 1) , 0 ≤ y ≤ 1)), LATP-based compounds such as Li 2 O-Al 2 O 3- TiO 2- P 2 O 5 (Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≤ x ≤) 1, 0 ≤ y ≤ 1)), Li 1 + x Ti 2-x Al x S y (PO 4 ) 3-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), Li 1 + y Al x M 2-x ( PO 4 ) 3 (M is one or more elements selected from the group consisting of Ti, Ge, Sr, Sn, Zr, and Ca, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) , LiTi x Zr 2-x (PO 4 ) 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), LISION (Li 4-2 x Zn x GeO 4 (0 ≦ x ≦ 1)), LIPON-based compounds (Li) 3 + y PO 4-x N x (0 ≦ x ≦ 1, 0 ≦ y ≦ 1)), NASICON-based compounds (LiTi 2 (PO 4 ) 3, etc.), garnet-based compounds (Li 7 La 3 Zr 2 O 12 , Li 7-x La 3 Zr 1-x Nb x O 12 (0≤x≤1), etc.) and the like.

リチウムイオン以外のイオン伝導性を有する酸化物固体電解質の例としては、タングステンブロンズ(NaWO)、β−アルミナ、安定化ジルコニアなどが挙げられる。 Examples of the oxide solid electrolyte having ionic conductivity other than lithium ion include tungsten bronze (Na x WO 3 ), β-alumina, stabilized zirconia and the like.

正極添加剤、ひいては正極活物質層は、上記の酸化物固体電解質のうち1つ又は2つ以上を含むことができるが、これらに限定されるものではない。 The positive electrode additive, and thus the positive electrode active material layer, may contain, but is not limited to, one or more of the above-mentioned solid oxide electrolytes.

酸化物固体電解質は、サイクル中に発生するガス発生を抑制することで、電極反応の不均一反応を抑制し、50サイクル以下の容量維持率を改善すると推測される。特に、酸化物固体電解質は、正極活物質の粒子の表面上よりむしろ正極活物質層に点在した状態で、容量維持率を改善する効果を奏し得る。このため、正極活物質の粒子の表面を被覆して、電解液と正極活物質の表面との反応を抑制しているわけではなく、ガスを吸収することにより、又は電解液に作用してガス反応を抑制することにより、電池のサイクル劣化を抑制し得るものと推測される。ただし、これは単に本願の理解を補助するための例示的な推測であり、何ら本発明を限定するものではない。 It is presumed that the oxide solid electrolyte suppresses the heterogeneous reaction of the electrode reaction by suppressing the generation of gas generated during the cycle, and improves the capacity retention rate of 50 cycles or less. In particular, the oxide solid electrolyte can exert an effect of improving the capacity retention rate in a state of being scattered in the positive electrode active material layer rather than on the surface of the particles of the positive electrode active material. Therefore, the surface of the particles of the positive electrode active material is not covered to suppress the reaction between the electrolytic solution and the surface of the positive electrode active material, but the gas is absorbed or acts on the electrolytic solution. It is presumed that the cycle deterioration of the battery can be suppressed by suppressing the reaction. However, this is merely an exemplary speculation to aid in the understanding of the present application and does not limit the present invention in any way.

酸化物固体電解質の含有量は、例えば、正極活物質層の総重量を基準として、0.01重量%以上5重量%以下であり、好ましくは0.1重量%以上4重量%以下であり、より好ましくは0.1重量%以上3重量%以下であり得る。酸化物固体電解質の含有量が上記範囲内であれば、正極の劣化を抑制することができ、良好な容量維持率が実現され得る。一方、酸化物固体電解質の含有量が上記範囲未満の場合には、電池の劣化を十分に抑制し得ない場合があり、酸化物固体電解質の含有量が上記範囲を上回る場合には、十分なエネルギー密度が得られない場合がある。 The content of the oxide solid electrolyte is, for example, 0.01% by weight or more and 5% by weight or less, preferably 0.1% by weight or more and 4% by weight or less, based on the total weight of the positive electrode active material layer. More preferably, it may be 0.1% by weight or more and 3% by weight or less. When the content of the oxide solid electrolyte is within the above range, deterioration of the positive electrode can be suppressed, and a good capacity retention rate can be realized. On the other hand, if the content of the oxide solid electrolyte is less than the above range, the deterioration of the battery may not be sufficiently suppressed, and if the content of the oxide solid electrolyte exceeds the above range, it is sufficient. Energy density may not be obtained.

酸化物固体電解質の粒子の平均粒径は、例えば、0.1μm以上10μm以下であり、好ましくは0.2μm以上5μm以下であり、より好ましくは0.2μm以上2μm以下であり得る。例えば、酸化物固体電解質の粒子の平均粒径は、リチウム遷移金属酸化物の粒子の平均粒径よりも小さい。 The average particle size of the particles of the oxide solid electrolyte can be, for example, 0.1 μm or more and 10 μm or less, preferably 0.2 μm or more and 5 μm or less, and more preferably 0.2 μm or more and 2 μm or less. For example, the average particle size of the particles of the oxide solid electrolyte is smaller than the average particle size of the particles of the lithium transition metal oxide.

(ホスホン酸化合物)
正極添加剤として使用するホスホン酸化合物の例としては、ホスホン酸、有機ホスホン酸、ホスホン酸塩、有機ホスホン酸塩、ホスホン酸エステル、有機ホスホン酸エステルなどが挙げられる。有機ホスホン酸の例としては、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、フェニルホスホン酸などが挙げられ、置換基を有してもよい。ただし、これらに限定されるものではない。酸化物固体電解質とともにホスホン酸化合物を添加することにより、正極活物質層は、添加されたホスホン酸化合物に由来する化合物を含み得る。なお、本明細書においては、例えば正極活物質層においてリチウム遷移金属酸化物とホスホン酸化合物由来の化合物とが化学結合している場合も、「正極活物質層は、ホスホン酸化合物由来の化合物を含む」のように表現する。
(Phosphonate compound)
Examples of the phosphonic acid compound used as the positive electrode additive include phosphonic acid, organic phosphonic acid, phosphonate, organic phosphonate, phosphonic acid ester, organic phosphonic acid ester and the like. Examples of the organic phosphonic acid include methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, phenylphosphonic acid and the like, and may have a substituent. However, it is not limited to these. By adding the phosphonic acid compound together with the oxide solid electrolyte, the positive electrode active material layer may contain a compound derived from the added phosphonic acid compound. In the present specification, for example, even when the lithium transition metal oxide and the compound derived from the phosphonic acid compound are chemically bonded in the positive electrode active material layer, "the positive electrode active material layer is a compound derived from the phosphonic acid compound. Express as "include".

例えば、正極添加剤として添加されるホスホン酸化合物は、ホスホン酸又は有機ホスホン酸である。また、正極添加材は、上記のホスホン酸化合物のうち1つ又は2つ以上を含むことができるが、これらに限定されるものではない。 For example, the phosphonic acid compound added as a positive electrode additive is phosphonic acid or organic phosphonic acid. Further, the positive electrode additive may contain, but is not limited to, one or more of the above phosphonic acid compounds.

ホスホン酸化合物は、以下のようなメカニズムにより、電池のサイクル劣化やスラリー安定性の低下を抑制し得るものと推測される。ただし、これは単に本願の理解を補助するための例示的な推測であり、何ら本発明を限定するものではない。 It is presumed that the phosphonic acid compound can suppress the cycle deterioration of the battery and the deterioration of the slurry stability by the following mechanism. However, this is merely an exemplary speculation to aid in the understanding of the present application and does not limit the present invention in any way.

リチウム遷移金属酸化物が粒子表面のヒドロキシル基などによりアルカリ性を示す場合や当該リチウム遷移金属酸化物の粒子表面に水酸化リチウムや炭酸リチウムなどが存在している場合などには、リチウム遷移金属酸化物とホスホン酸化合物とが混合されると、ホスホン酸化合物がこれらのアルカリ成分と反応して、詳細は不明であるが、リチウム遷移金属酸化物の粒子表面とホスホン酸化合物との結合が生じ、化合物を形成し得ると考えられる。このように生成した化合物は、リチウム遷移金属酸化物の粒子の表面上で被覆を形成し得ると考えられる。この被覆が正極材料と電解液との化学反応を抑制することにより、電池のサイクル劣化やガスの発生が抑えられ得ると推測される。特許文献2にも記載されるように、ホスホン酸化合物は、このような被覆を形成し得るものと考えられている。また、ホスホン酸化合物とアルカリ成分との中和反応により、正極活物質スラリーのゲル化が抑制されてスラリー安定性が向上し得ると推測される。 When the lithium transition metal oxide is alkaline due to the hydroxyl group on the particle surface, or when lithium hydroxide, lithium carbonate, etc. are present on the particle surface of the lithium transition metal oxide, the lithium transition metal oxide is present. When the phosphonic acid compound is mixed with the phosphonic acid compound, the phosphonic acid compound reacts with these alkaline components, and although the details are unknown, the particle surface of the lithium transition metal oxide and the phosphonic acid compound are bonded to each other, resulting in the compound. It is thought that can form. It is considered that the compound thus produced can form a coating on the surface of the particles of the lithium transition metal oxide. It is presumed that this coating suppresses the chemical reaction between the positive electrode material and the electrolytic solution, so that the cycle deterioration of the battery and the generation of gas can be suppressed. As described in Patent Document 2, it is considered that the phosphonic acid compound can form such a coating. Further, it is presumed that the neutralization reaction between the phosphonic acid compound and the alkaline component can suppress the gelation of the positive electrode active material slurry and improve the slurry stability.

(バインダー)
バインダーは、活物質と導電剤との結合や集電体との結合などを促進する成分として添加される。バインダーの例としては、ポリフッ化ビニリデン(PVdF)、ポリビニルアルコール(PVA)、ポリアクリロニトリル、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、これらの種々の共重合体などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。
(binder)
The binder is added as a component that promotes the bond between the active material and the conductive agent, the bond with the current collector, and the like. Examples of binders include polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene- Examples thereof include propylene-diene polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluororubber, various copolymers thereof, and one or a mixture of two or more of these can be used. , Not limited to these.

バインダーの含有量は、正極活物質層の総重量を基準として0.1重量%以上30重量%以下であり得る。バインダーの含有量は、好ましくは0.5重量%以上15重量%以下であり、さらに好ましくは0.5重量%以上5重量%以下であり得る。バインダー高分子の含量が上記の範囲を満足するとき、電池の容量特性低下を防止しながら、電極内の十分な接着力を付与することができる。 The content of the binder can be 0.1% by weight or more and 30% by weight or less based on the total weight of the positive electrode active material layer. The content of the binder is preferably 0.5% by weight or more and 15% by weight or less, and more preferably 0.5% by weight or more and 5% by weight or less. When the content of the binder polymer satisfies the above range, sufficient adhesive force in the electrode can be imparted while preventing deterioration of the capacity characteristics of the battery.

(導電剤)
導電剤は、化学変化を誘発しない電気伝導性材料であれば、特に制限されない。導電剤の例としては、人造黒鉛、天然黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、デンカブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、ランプブラック、カーボンナノチューブ、炭素繊維などの炭素系材料;アルミニウム、スズ、ビスマス、シリコン、アンチモン、ニッケル、銅、チタン、バナジウム、クロム、マンガン、鉄、コバルト、亜鉛、モリブデン、タングステン、銀、金、ランタン、ルテニウム、白金、イリジウムなどの金属粉末や金属繊維;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリアニリン、ポリチオフェン、ポリアセチレン、ポリピロール、ポリフェニレン誘導体などの導電性高分子などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。
(Conducting agent)
The conductive agent is not particularly limited as long as it is an electrically conductive material that does not induce a chemical change. Examples of conductive agents are carbon-based materials such as artificial graphite, natural graphite, carbon black, acetylene black, ketjen black, denca black, thermal black, channel black, furnace black, lamp black, carbon nanotubes, and carbon fiber; aluminum. , Tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lantern, ruthenium, platinum, iridium and other metal powders and fibers; Conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; conductive polymers such as polyaniline, polythiophene, polyacetylene, polypyrrole and polyphenylene derivatives, and one or two of these. Mixtures of more than one species can be used, but are not limited thereto.

導電剤の含有量は、正極活物質層の総重量を基準として0.1重量%以上30重量%以下であり得る。導電剤の含有量は、好ましくは0.5重量%以上15重量%以下であり、より好ましくは0.5重量%以上5重量%以下であり得る。導電剤の含量が上記の範囲を満足するとき、十分な導電性を付与することができ、正極活物質の量を減少させないため電池容量を確保できる点で有利である。 The content of the conductive agent can be 0.1% by weight or more and 30% by weight or less based on the total weight of the positive electrode active material layer. The content of the conductive agent is preferably 0.5% by weight or more and 15% by weight or less, and more preferably 0.5% by weight or more and 5% by weight or less. When the content of the conductive agent satisfies the above range, it is advantageous in that sufficient conductivity can be imparted and the battery capacity can be secured because the amount of the positive electrode active material is not reduced.

(溶媒)
正極活物質スラリーにおいて使用される溶媒は、一般に正極の製造に使用されるものであれば特に制限されない。溶媒の例としては、N,N−ジメチルアミノプロピルアミン、ジエチレントリアミン、N,N−ジメチルホルムアミド(DMF)などのアミン系溶媒、テトラヒドロフランなどのエーテル系溶媒、メチルエチルケトンなどのケトン系溶媒、アセト酸メチルなどのエステル系溶媒、ジメチルアセトアミド、1−メチル−2−ピロリドン(NMP)などのアミド系溶媒、ジメチルスルホキシド(DMSO)、水などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。
(solvent)
The solvent used in the positive electrode active material slurry is not particularly limited as long as it is generally used for producing a positive electrode. Examples of the solvent include amine solvents such as N, N-dimethylaminopropylamine, diethylenetriamine, N, N-dimethylformamide (DMF), ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, methyl acetate and the like. Examples of the ester solvent, dimethylacetamide, amide solvent such as 1-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), water, etc., and one or a mixture of two or more of these are used. Obtain, but are not limited to these.

溶媒の使用量は、スラリーの塗布厚さや製造収率を考慮して、正極活物質、導電材、及びバインダーを溶解又は分散させるとともに、正極集電体への塗布時に優れた厚さ均一度を示し得る粘度を有する程度であれば十分である。 The amount of the solvent used is such that the positive electrode active material, the conductive material, and the binder are dissolved or dispersed in consideration of the coating thickness of the slurry and the production yield, and excellent thickness uniformity is obtained when the slurry is coated on the positive electrode current collector. It is sufficient if it has a viscosity that can be shown.

[正極の製造方法]
実施形態に係るリチウムイオン二次電池用の正極の製造方法は、(1)正極活物質から正極活物質スラリーを得るステップ;及び(2)正極活物質スラリーから正極を得るステップを含み得る。
[Manufacturing method of positive electrode]
The method for producing a positive electrode for a lithium ion secondary battery according to an embodiment may include (1) obtaining a positive electrode active material slurry from a positive electrode active material; and (2) obtaining a positive electrode from a positive electrode active material slurry.

(1)正極活物質スラリーを得るステップ
正極活物質である少なくとも1種類以上のリチウム遷移金属酸化物に、正極添加剤である酸化物固体電解質及びホスホン酸化合物や、溶媒、導電剤、バインダーなどを添加する。このとき、必要に応じて、分散材などの他の添加剤を添加してもよい。その後、これらを溶媒に分散させることにより、正極活物質スラリーが得られる。なお、酸化物固体電解質は粉体で添加してもよく、分散液の状態で添加してもよい。ホスホン酸化合物の形態は特に制限されるものではなく、粉末の状態で添加してもよく、分散液の状態で添加してもよく、溶液の状態で添加してもよいが、溶液の状態で添加するのが好ましい。また、添加するタイミングはいずれの添加剤も、正極活物質と先に混ぜてもよく、一括で混ぜても良い。
(1) Step to obtain a positive electrode active material slurry At least one kind of lithium transition metal oxide which is a positive electrode active material is mixed with an oxide solid electrolyte and a phosphonic acid compound which are positive electrode additives, a solvent, a conductive agent, a binder and the like. Added. At this time, other additives such as a dispersant may be added as needed. Then, by dispersing these in a solvent, a positive electrode active material slurry is obtained. The oxide solid electrolyte may be added as a powder or may be added in the state of a dispersion liquid. The form of the phosphonic acid compound is not particularly limited, and it may be added in the powder state, in the dispersion state, or in the solution state, but in the solution state. It is preferable to add it. Further, as for the timing of addition, any of the additives may be mixed with the positive electrode active material first, or may be mixed at once.

リチウム遷移金属酸化物の添加量は、正極活物質層の総重量を100重量部とした場合、例えば、85重量部以上99.5重量部以下であり、好ましくは90重量部以上99重量部以下であり得る。また、酸化物固体電解質の添加量は、例えば、0.01重量部以上5重量部以下であり、好ましくは0.1重量部以上4重量部以下であり、より好ましくは0.1重量部以上3重量部以下であり得る。また、ホスホン酸化合物の添加量は、例えば、0.01重量部以上5重量部以下であり、好ましくは0.1重量部以上4重量部以下であり、より好ましくは0.1重量部以上3重量部以下であり得る。 The amount of the lithium transition metal oxide added is, for example, 85 parts by weight or more and 99.5 parts by weight or less, preferably 90 parts by weight or more and 99 parts by weight or less, when the total weight of the positive electrode active material layer is 100 parts by weight. Can be. The amount of the oxide solid electrolyte added is, for example, 0.01 parts by weight or more and 5 parts by weight or less, preferably 0.1 parts by weight or more and 4 parts by weight or less, and more preferably 0.1 parts by weight or more. It can be 3 parts by weight or less. The amount of the phosphonic acid compound added is, for example, 0.01 parts by weight or more and 5 parts by weight or less, preferably 0.1 parts by weight or more and 4 parts by weight or less, and more preferably 0.1 parts by weight or more and 3 parts by weight. It can be less than a part by weight.

なお、(1)の混合時に、リチウム遷移金属酸化物の粒子表面のヒドロキシル基や水酸化リチウムなどのアルカリ成分とホスホン酸化合物との反応が起こり得る。これにより、リチウム遷移金属酸化物の粒子表面にホスホン酸化合物由来の被覆が形成され得ると考えられる。 During the mixing of (1), a reaction between an alkaline component such as a hydroxyl group or lithium hydroxide on the particle surface of the lithium transition metal oxide and a phosphonic acid compound may occur. As a result, it is considered that a coating derived from the phosphonic acid compound can be formed on the particle surface of the lithium transition metal oxide.

ここで、本発明において、ホスホン酸化合物と酸化物固体電解質とを併用することにより優れた効果が得られる理由は、以下のように推測される。ホスホン酸化合物は、正極活物質の粒子表面にあり、粒子表面のアルカリ成分と反応して、表面のガス発生面積を減らすため、サイクル特性の改善などの効果があると推測される。ただし、ホスホン酸化合物の添加量が増えるほど被覆による効果が少なくなると考えられる。これに対し、酸化物固体電解質は、活物質表面に必ずしもなく、正極活物質層内にまばらに分布し得る。また、酸化物固体電解質は、主な効果がガス吸収に起因する効果と推測されるため、添加重量当たりの効果は、少量添加時にはホスホン酸化合物に比べて劣るが、添加量に対して効果が落ちにくいと考えられる。添加量を最適に保つことにより、ホスホン酸化合物又は酸化物固体電解質を単独で添加する場合と比較して、より高いガス抑制効果が得られると考えられる。上記のようにガス抑制の相乗効果に加え、酸化物固体電解質を使用することで、さらに、インピーダンスが減少する効果もあると推測される。 Here, in the present invention, the reason why an excellent effect can be obtained by using the phosphonic acid compound and the oxide solid electrolyte in combination is presumed as follows. The phosphonic acid compound is located on the particle surface of the positive electrode active material and reacts with the alkaline component on the particle surface to reduce the gas generation area on the surface, so that it is presumed to have an effect such as improvement of cycle characteristics. However, it is considered that the effect of coating decreases as the amount of the phosphonic acid compound added increases. On the other hand, the oxide solid electrolyte is not necessarily on the surface of the active material and can be sparsely distributed in the positive electrode active material layer. Further, since the main effect of the oxide solid electrolyte is presumed to be due to gas absorption, the effect per weight added is inferior to that of the phosphonic acid compound when added in a small amount, but the effect is effective on the amount added. It is thought that it is hard to fall off. By keeping the addition amount optimal, it is considered that a higher gas suppression effect can be obtained as compared with the case where the phosphonic acid compound or the oxide solid electrolyte is added alone. In addition to the synergistic effect of gas suppression as described above, it is presumed that the use of the oxide solid electrolyte also has the effect of further reducing the impedance.

(2)正極活物質スラリーから正極を得るステップ
正極活物質スラリーを正極集電体に塗布した後、乾燥及び圧延することにより、正極集電体上に正極活物質層が形成された正極が製造され得る。
(2) Step of obtaining a positive electrode from a positive electrode active material slurry By applying a positive electrode active material slurry to a positive electrode current collector, drying and rolling the positive electrode, a positive electrode having a positive electrode active material layer formed on the positive electrode current collector is manufactured. Can be done.

他の方法として、例えば、上記の正極活物質スラリーを別の支持体上にキャストした後、その支持体から剥離して得られたフィルムを正極集電体上にラミネートすることで正極が製造されてもよい。また、その他の任意の方法を用いて正極活物質層が正極集電体上に形成されてもよい。 As another method, for example, a positive electrode is manufactured by casting the above-mentioned positive electrode active material slurry on another support and then laminating a film obtained by peeling from the support on a positive electrode current collector. You may. Further, the positive electrode active material layer may be formed on the positive electrode current collector by using any other method.

[負極]
実施形態に係るリチウムイオン二次電池において、負極は、負極集電体及び当該負極集電体の一面上又は両面上に形成された負極活物質層を含む。負極活物質層は、負極集電体の面全体に形成されてもよく、一部のみに形成されてもよい。
[Negative electrode]
In the lithium ion secondary battery according to the embodiment, the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on one surface or both surfaces of the negative electrode current collector. The negative electrode active material layer may be formed on the entire surface of the negative electrode current collector, or may be formed only on a part of the surface of the negative electrode current collector.

(負極集電体)
負極に使用される負極集電体は、電気化学的に安定に使用でき、かつ、導電性を有するものであれば、特に制限されない。例えば、負極集電体として、銅;ステンレス鋼;アルミニウム;ニッケル;チタン;焼成炭素;銅又はステンレス鋼の表面に炭素、ニッケル、チタン、銀などで表面処理したもの;アルミニウム−カドミウム合金などが使用され得る。
(Negative electrode current collector)
The negative electrode current collector used for the negative electrode is not particularly limited as long as it can be used electrochemically stably and has conductivity. For example, as the negative electrode current collector, copper; stainless steel; aluminum; nickel; titanium; calcined carbon; copper or stainless steel whose surface is surface-treated with carbon, nickel, titanium, silver, etc .; aluminum-cadmium alloy, etc. are used. Can be done.

負極集電体は、3μm以上500μm以下の厚さを有し得る。負極集電体の表面上に微細な凹凸を形成して負極活物質との接着力を高めることもできる。負極集電体は、例えば、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体など多様な形態を有し得る。 The negative electrode current collector can have a thickness of 3 μm or more and 500 μm or less. It is also possible to form fine irregularities on the surface of the negative electrode current collector to enhance the adhesive force with the negative electrode active material. The negative electrode current collector can have various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven fabric.

(負極活物質層)
負極活物質層は、例えば、負極活物質、バインダー、及び導電剤の混合物が溶媒中に溶解又は分散した負極活物質スラリーを負極集電体に塗布した後、乾燥及び圧延することにより形成され得る。上記混合物は、必要に応じて、さらに分散剤や充填材その他の任意の添加剤を含み得る。
(Negative electrode active material layer)
The negative electrode active material layer can be formed, for example, by applying a negative electrode active material slurry in which a mixture of a negative electrode active material, a binder, and a conductive agent is dissolved or dispersed in a solvent to a negative electrode current collector, and then drying and rolling. .. The mixture may further contain dispersants, fillers and any other additives, if desired.

(負極活物質)
負極活物質としては、リチウムの可逆的な挿入(インターカレーション)及び脱離(デインターカレーション)が可能な化合物が使用できる。負極活物質の例としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、非晶質炭素などの炭素質材料;珪素粉末、アモルファス珪素、珪素ナノファイバー、珪素ナノワイヤーなどの珪素質材料;珪素合金、珪素酸化物、アルカリ金属又はアルカリ土類金属(リチウムやマグネシウムなど)がドープされた珪素酸化物などの珪素化合物;Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd、Sn合金、Al合金など、リチウムと合金化可能な金属質材料;SnO、バナジウム酸化物、リチウムバナジウム酸化物など、リチウムのドープ及び脱ドープが可能な金属酸化物;珪素質材料と炭素質材料との複合体やSn−C複合体などの複合物などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。なお、炭素質材料は、低結晶性炭素や高結晶性炭素などのいずれが用いられてもよい。低結晶性炭素としては、ソフトカーボン及びハードカーボンが代表的であり、高結晶性炭素としては、無定形、板状、麟片状、球状、又は繊維状の天然黒鉛又は人造黒鉛、キッシュ黒鉛、熱分解炭素、メソフェーズピッチ系炭素繊維、メソカーボンマイクロビーズ、メソフェーズピッチ、石油・石炭系コークスなどの高温焼成炭素が代表的である。
(Negative electrode active material)
As the negative electrode active material, a compound capable of reversible insertion (intercalation) and deintercalation (deintercalation) of lithium can be used. Examples of negative electrode active materials include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; siliconic materials such as silicon powder, amorphous silicon, silicon nanofibers, and silicon nanowires; silicon alloys. , Silicon compounds such as silicon oxides doped with silicon oxides, alkali metals or alkaline earth metals (such as lithium and magnesium); Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Sn alloys. , Al alloys and other metallic materials that can be alloyed with lithium; SnO 2 , vanadium oxides, lithium vanadium oxides and other metallic oxides that can be doped and dedoped with lithium; Examples thereof include a complex, a complex such as a Sn—C complex, and one or a mixture of two or more of these may be used, but the present invention is not limited thereto. As the carbonaceous material, either low crystalline carbon or high crystalline carbon may be used. Soft carbon and hard carbon are typical as low crystalline carbon, and amorphous, plate-shaped, fragment-shaped, spherical, or fibrous natural graphite or artificial graphite, kissed graphite, etc. as high crystalline carbon. Typical examples are high-temperature calcined carbon such as thermally decomposed carbon, mesophase pitch carbon fiber, mesocarbon microbeads, mesophase pitch, and petroleum / coal coke.

特に、負極活物質が珪素又は珪素化合物(珪素合金や酸化珪素など)を含む場合、負極の充放電容量を増加させるのに有効である。 In particular, when the negative electrode active material contains silicon or a silicon compound (silicon alloy, silicon oxide, etc.), it is effective in increasing the charge / discharge capacity of the negative electrode.

珪素合金は、珪素が主成分の合金である。珪素合金は、例えば、珪素Siと、Sn、In、Al、及びTiのうち1種又は2種以上の金属元素との合金であり得る。珪素合金中の珪素の含有率は、例えば、50mol%以上であり、好ましくは70mol%以上であり、より好ましくは90mol%以上であり得る。 The silicon alloy is an alloy whose main component is silicon. The silicon alloy can be, for example, an alloy of silicon Si and one or more metal elements of Sn, In, Al, and Ti. The content of silicon in the silicon alloy can be, for example, 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more.

酸化珪素は、例えば、SiO(0<x<2)で表される化合物である。SiOは、例えば、アモルファスの酸化珪素のマトリックス中にSi微粒子が微結晶又はアモルファスの形態で分散した構造を有し得る。珪素に対する酸素の比率xは、0<x<2であり、好ましくは0.5≦x≦1.6であり、より好ましくは0.8≦x≦1.5であり得る。例えば、酸化珪素はSiO(x=1)であり得る。 Silicon oxide is, for example, a compound represented by SiO x (0 <x <2). SiO x may have, for example, a structure in which Si fine particles are dispersed in a matrix of amorphous silicon oxide in the form of microcrystals or amorphous. The ratio x of oxygen to silicon can be 0 <x <2, preferably 0.5 ≦ x ≦ 1.6, and more preferably 0.8 ≦ x ≦ 1.5. For example, silicon oxide can be SiO (x = 1).

負極活物質は、好ましくは、珪素質材料と炭素質材料とを含み得る。例えば、負極活物質は、上記のSiO(0<x<2)と上記の炭素質材料(天然黒鉛など)とを含み得る。負極活物質中の珪素質材料と炭素質材料との重量比は、例えば、1:99〜30:70であり、好ましくは5:95〜20:80であり、より好ましくは8:92〜15:85であり得る。なお、珪素質材料の表面に混合する炭素質材料とは別に、予め炭素質材料を表面に被覆してもよい。 The negative electrode active material may preferably include a silicon material and a carbon material. For example, the negative electrode active material may include the above SiO x (0 <x <2) and the above carbonaceous material (natural graphite or the like). The weight ratio of the silicon material to the carbon material in the negative electrode active material is, for example, 1:99 to 30:70, preferably 5:95 to 20:80, and more preferably 8:92 to 15 : Can be 85. In addition to the carbonaceous material mixed on the surface of the siliconous material, the carbonaceous material may be coated on the surface in advance.

珪素質材料の粒子の平均粒径は、例えば、1μm以上15μm以下であり、好ましくは2μm以上10μm以下であり得る。また、炭素質材料の粒子の平均粒径は、例えば、1μm以上50μm以下であり、好ましくは10μm以上20μm以下であり得る。 The average particle size of the particles of the siliconaceous material can be, for example, 1 μm or more and 15 μm or less, preferably 2 μm or more and 10 μm or less. The average particle size of the particles of the carbonaceous material may be, for example, 1 μm or more and 50 μm or less, preferably 10 μm or more and 20 μm or less.

負極活物質は、負極活物質層の全重量を基準に80重量%以上99重量%以下で含まれ得る。 The negative electrode active material may be contained in an amount of 80% by weight or more and 99% by weight or less based on the total weight of the negative electrode active material layer.

(バインダー及び導電剤)
負極活物質スラリーに使用されるバインダー及び導電剤の種類及び含有量は、正極について説明したものと同様であり得る。
(Binder and conductive agent)
The types and contents of the binder and the conductive agent used in the negative electrode active material slurry can be the same as those described for the positive electrode.

(増粘剤)
負極活物質スラリーは、増粘剤をさらに含むことができる。具体的に、増粘剤は、カルボキシメチルセルロース(CMC)などのセルロース系化合物であり得る。増粘剤は、負極活物質層の総重量を基準として、例えば0.5質量%以上10質量%以下の量で含まれ得る。
(Thickener)
The negative electrode active material slurry can further contain a thickener. Specifically, the thickener can be a cellulosic compound such as carboxymethyl cellulose (CMC). The thickener may be contained in an amount of, for example, 0.5% by mass or more and 10% by mass or less based on the total weight of the negative electrode active material layer.

(溶媒)
負極活物質スラリーにおいて使用される溶媒は、一般に負極の製造に使用されるものであれば特に制限されない。溶媒の例としては、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、イソプロピルアルコール、アセトン、水などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。
(solvent)
The solvent used in the negative electrode active material slurry is not particularly limited as long as it is generally used for producing a negative electrode. Examples of the solvent include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), isopropyl alcohol, acetone, water and the like, and one or a mixture of two or more of these can be used. , Not limited to these.

[負極の製造方法]
実施形態に係るリチウムイオン二次電池用の負極の製造方法は、負極活物質を、必要に応じてバインダー、導電剤、増粘剤などとともに溶媒に溶解又は分散させることにより負極活物質スラリーを得るステップと、正極の製造方法と同様に負極活物質スラリーを負極集電体上に塗布するなどして負極活物質層を負極集電体上に形成することにより負極を得るステップと、を含み得る。
[Manufacturing method of negative electrode]
In the method for manufacturing a negative electrode for a lithium ion secondary battery according to the embodiment, a negative electrode active material slurry is obtained by dissolving or dispersing the negative electrode active material in a solvent together with a binder, a conductive agent, a thickener and the like, if necessary. The steps may include a step of obtaining a negative electrode by forming a negative electrode active material layer on the negative electrode current collector by applying a negative electrode active material slurry on the negative electrode current collector as in the method of manufacturing a positive electrode. ..

[セパレータ]
実施形態に係るリチウムイオン二次電池において、セパレータは、負極と正極とを分離してリチウムイオンの移動通路を提供するものであって、通常リチウムイオン二次電池でセパレータとして使用されるものであれば特に制限なく使用可能である。特に、電解質のイオン移動に対する抵抗が小さく、電解質の含湿能に優れたものが好ましい。例えば、エチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/メタクリレート共重合体などのポリオレフィン系高分子から製造された多孔性高分子フィルム、又はこれらの2層以上の積層構造体がセパレータとして使用され得る。また、通常の多孔性不織布、例えば高融点のガラス繊維やポリエチレンテレフタレート繊維などから製造された不織布も使用され得る。また、耐熱性又は機械的強度確保のためにセラミック成分又は高分子物質がコーティングされたセパレータが用いられてもよい。
[Separator]
In the lithium ion secondary battery according to the embodiment, the separator is one that separates the negative electrode and the positive electrode to provide a movement passage for lithium ions, and is usually used as a separator in the lithium ion secondary battery. It can be used without any particular restrictions. In particular, those having a small resistance to ion transfer of the electrolyte and having an excellent moisture-containing capacity of the electrolyte are preferable. For example, a porous polymer film produced from a polyolefin polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, or an ethylene / methacrylate copolymer, or these. A laminated structure of two or more layers can be used as a separator. Further, ordinary porous non-woven fabrics, for example, non-woven fabrics made from high melting point glass fibers, polyethylene terephthalate fibers, etc., can also be used. Further, a separator coated with a ceramic component or a polymer substance may be used to ensure heat resistance or mechanical strength.

[非水電解質]
実施形態に係るリチウムイオン二次電池において、非水電解質は、リチウムイオン二次電池の製造に使用可能な有機系液体電解質、無機系液体電解質などが挙げられるが、これらに限定されるものではない。
[Non-aqueous electrolyte]
In the lithium ion secondary battery according to the embodiment, examples of the non-aqueous electrolyte include, but are not limited to, an organic liquid electrolyte and an inorganic liquid electrolyte that can be used in the production of the lithium ion secondary battery. ..

非水電解質は、有機溶媒及びリチウム塩を含むことができ、さらに必要に応じて電解質添加剤を含むことができる。以下、液体電解質を「電解液」ともいう。 The non-aqueous electrolyte can contain an organic solvent and a lithium salt, and can further contain an electrolyte additive if necessary. Hereinafter, the liquid electrolyte is also referred to as "electrolyte solution".

有機溶媒は、電池の電気化学的反応に関与するイオンが移動可能な媒質の役割を果たせるものであれば、特に制限なく使用可能である。有機溶媒の例としては、メチルアセテート、エチルアセテート、γ−ブチロラクトン、ε−カプロラクトンなどのエステル系溶媒;ジブチルエーテル、テトラヒドロフランなどのエーテル系溶媒;シクロヘキサノンなどのケトン系溶媒;ベンゼン、フルオロベンゼンなどの芳香族炭化水素系溶媒;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート系溶媒;エチルアルコール、イソプロピルアルコールなどのアルコール系溶媒;R−CN(RはC2からC20の直鎖状、分岐状又は環状構造の炭化水素基であり、二重結合芳香環又はエーテル結合を含んでよい)などのニトリル系溶媒;ジメチルホルムアミドなどのアミド系溶媒;1,3−ジオキソランなどのジオキソラン系溶媒;スルホラン系溶媒などが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。特に、カーボネート系溶媒が好ましく、電池の充電/放電性能を高めることができる高いイオン伝導度及び高誘電率を有する環状カーボネート(例えば、エチレンカーボネートやプロピレンカーボネートなど)と、低粘度の直鎖状カーボネート系化合物(例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなど)の混合物がより好ましい。この場合、環状カーボネートと鎖状カーボネートは、1:1〜1:9の体積比で混合して用いると、優れた電解質性能を示し得る。 The organic solvent can be used without particular limitation as long as it can serve as a medium in which ions involved in the electrochemical reaction of the battery can move. Examples of organic solvents include ester solvents such as methyl acetate, ethyl acetate, γ-butyrolactone and ε-caprolactone; ether solvents such as dibutyl ether and tetrahydrofuran; ketone solvents such as cyclohexanone; aromatics such as benzene and fluorobenzene. Group hydrocarbon solvent; carbonate solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC); ethyl Alcohol-based solvents such as alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group of C2 to C20 and may contain a double-bonded aromatic ring or an ether bond) and the like. Nitrile-based solvent; amide-based solvent such as dimethylformamide; dioxolane-based solvent such as 1,3-dioxolane; sulfolane-based solvent and the like, and one or a mixture of two or more of these can be used. It is not limited to. In particular, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate and propylene carbonate) that can enhance the charging / discharging performance of the battery and low-viscosity linear carbonates. A mixture of the system compounds (for example, ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of 1: 1 to 1: 9, excellent electrolyte performance can be exhibited.

リチウム塩は、リチウムイオン二次電池で使用されるリチウムイオンを提供可能な化合物であれば、特に制限なく使用可能である。リチウム塩の例としては、LiPF、LiClO、LiAsF、LiBF、LiSbF、LiAlO、LiAlCl、LiCFSO、LiCSO、LiN(CSO、LiN(CSO、LiN(CFSO、LiCl、LiIまたはLiB(Cなどが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。当該リチウム塩は、例えば電解質に0.1mol/L以上2mol/L以下の濃度で含まれ得る。リチウム塩の濃度が当該範囲に含まれる場合、電解質が適切な伝導度及び粘度を有するので、優れた電解質性能を示すことができ、リチウムイオンが効果的に移動できる。 The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium ion secondary battery. Examples of the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAlO 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiCl, LiI or LiB (C 2 O 4 ) 2, etc., and one or a mixture of two or more of these can be mentioned. It can be used, but is not limited to these. The lithium salt can be contained in the electrolyte at a concentration of 0.1 mol / L or more and 2 mol / L or less, for example. When the concentration of the lithium salt is included in the range, the electrolyte has appropriate conductivity and viscosity, so that excellent electrolyte performance can be exhibited and lithium ions can move effectively.

電解質添加剤は、電池寿命特性の向上、電池容量減少の抑制及び電池放電容量の向上などを目的として、必要に応じて使用可能である。電解質添加剤の例としては、フルオロエチレンカーボネート(FEC)やジフルオロエチレンカーボネート(DFEC)などのハロアルキレンカーボネート系化合物、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが挙げられ、これらのうち1種又は2種以上の混合物が用いられ得るが、これらに限定されるものではない。当該電解質添加剤は、例えば、電解質の総重量に対して0.1重量%以上15重量%以下で含まれ得る。 The electrolyte additive can be used as needed for the purpose of improving the battery life characteristics, suppressing the decrease in battery capacity, improving the battery discharge capacity, and the like. Examples of electrolyte additives include haloalkylene carbonate compounds such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC), pyridine, triethylphosphite, triethanolamine, cyclic ethers, ethylenediamine, n-grim, hexaphosphate. Examples thereof include triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, and the like. Species or mixtures of two or more species may be used, but are not limited thereto. The electrolyte additive may be contained, for example, in an amount of 0.1% by weight or more and 15% by weight or less based on the total weight of the electrolyte.

特に、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートは、電極と電解質との界面に被膜を形成する被膜形成剤として働き得る。例えば、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートのうち少なくとも一方を含む場合、珪素系材料を含む負極活物質を使用した負極で珪素系材料とリチウムとが合金化する過程において、良好なSEI被膜が形成されることにより安定した充放電が行われ得る。一方、正極に対しては、高温時に正極活物質と反応し、ガス発生の原因ともなり得る。このため、珪素系材料を含有する負極に対しては、電解液は被膜形成剤を含んでもよいが、正極に対しては、少量であることが好ましく、被膜形成剤の含有量は、例えば、電解液の総重量を基準として、0.1重量%以上15重量%以下であり、好ましくは0.5重量%以上10重量%以下であり、より好ましくは0.5重量%以上7重量%以下であり得る。当該被膜形成剤は、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートのうち少なくとも一方を含み得る。 In particular, fluoroethylene carbonate and difluoroethylene carbonate can act as a film-forming agent that forms a film at the interface between the electrode and the electrolyte. For example, when at least one of fluoroethylene carbonate and difluoroethylene carbonate is contained, a good SEI film is formed in the process of alloying the silicon-based material and lithium in the negative electrode using the negative electrode active material containing the silicon-based material. As a result, stable charging and discharging can be performed. On the other hand, the positive electrode reacts with the positive electrode active material at a high temperature and may cause gas generation. Therefore, for the negative electrode containing a silicon-based material, the electrolytic solution may contain a film-forming agent, but for the positive electrode, it is preferably in a small amount, and the content of the film-forming agent is, for example, Based on the total weight of the electrolytic solution, it is 0.1% by weight or more and 15% by weight or less, preferably 0.5% by weight or more and 10% by weight or less, and more preferably 0.5% by weight or more and 7% by weight or less. Can be. The film-forming agent may contain at least one of fluoroethylene carbonate and difluoroethylene carbonate.

[リチウムイオン二次電池の製造方法]
実施形態に係るリチウムイオン二次電池は、上記のように製造した正極と上記のように製造した負極との間にセパレータ(例えば分離膜)及び電解液を介在させることにより製造することができる。より具体的には、正極と負極との間にセパレータを配置して電極組立体を形成し、当該電極組立体を円筒形電池ケースや角形電池ケースなどの電池ケースに入れた後、電解質を注入して製造することができる。あるいは、上記電極組立体を積層した後、これを電解質に含浸させて得られた結果物を電池ケースに入れて密封して製造することもできる。
[Manufacturing method of lithium ion secondary battery]
The lithium ion secondary battery according to the embodiment can be manufactured by interposing a separator (for example, a separation membrane) and an electrolytic solution between the positive electrode manufactured as described above and the negative electrode manufactured as described above. More specifically, a separator is arranged between the positive electrode and the negative electrode to form an electrode assembly, the electrode assembly is placed in a battery case such as a cylindrical battery case or a square battery case, and then an electrolyte is injected. Can be manufactured. Alternatively, after laminating the electrode assembly, the resulting product obtained by impregnating the electrolyte with an electrolyte can be placed in a battery case and sealed for production.

上記の電池ケースは、当分野で通常用いられるものが採択され得る。電池ケースの形状は、例えば、缶を用いた円筒形、角形、パウチ(pouch)形またはコイン(coin)形などであり得る。 As the above battery case, those commonly used in the art can be adopted. The shape of the battery case can be, for example, a cylindrical shape using a can, a square shape, a pouch shape, a coin shape, or the like.

実施形態に係るリチウムイオン二次電池は、小型デバイスの電源として用いられ得るだけでなく、多数の電池セルなどを含む中大型電池モジュールの単位電池としても用いられ得る。このような中大型デバイスの好ましい例としては、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、電力貯蔵用システムなどを挙げることができるが、これらのみに限定されるものではない。 The lithium ion secondary battery according to the embodiment can be used not only as a power source for a small device but also as a unit battery of a medium-sized and large-sized battery module including a large number of battery cells and the like. Preferred examples of such medium- and large-sized devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.

以下、実施例及び比較例を参照して本発明についてさらに説明するが、本発明はこれらの実施例に限定されるものではない。また、以下に記載されるメカニズムは、単に本願の理解を補助するための例示的な推測であり、何ら本発明を限定するものではない。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Moreover, the mechanism described below is merely an exemplary speculation for assisting the understanding of the present application, and does not limit the present invention in any way.

[実施例1]
(正極の製造)
92重量部のLiNi0.8Co0.1Mn0.1粉末に対して、正極添加剤として2重量部のLiO−Al−SiO−P−TiO−GeOリチウムイオン伝導性ガラスセラミック固体電解質(オハラ社製LICGC(登録商標)PW−01);以下、単に「LICGC」ともいう)及び2重量部のホスホン酸と、導電剤として2重量部のカーボンブラックと、バインダーとして2重量部のポリフッ化ビニリデン(PVdF)とを、溶媒であるN−メチル−2−ピロリドン(NMP)とともに添加してミキサー(Thinky社製 あわとり練太郎)で混合し、正極活物質スラリーを得た。ここで、使用したLiNi0.8Co0.1Mn0.1粉末の平均粒径は約5μmであった。中和滴定により測定したLiNi0.8Co0.1Mn0.1粉末におけるアルカリ成分(炭酸リチウム、水酸化リチウムと仮定した場合の合計)は、LiNi0.8Co0.1Mn0.1粉末全体の0.45重量%に相当した。
[Example 1]
(Manufacturing of positive electrode)
For 92 parts by weight of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder, 2 parts by weight of Li 2 O-Al 2 O 3- SiO 2- P 2 O 5- TiO 2 as a positive electrode additive. -GeO 2 Lithium ion conductive glass-ceramic solid electrolyte (LICGC (registered trademark) PW-01 manufactured by O'Hara); 2 parts by weight of phosphonic acid, hereinafter simply referred to as "LICGC") and 2 parts by weight as a conductive agent. Carbon black and 2 parts by weight of polyvinylidene fluoride (PVdF) as a binder are added together with the solvent N-methyl-2-pyrrolidone (NMP) and mixed with a mixer (Thinky's Awatori Rentaro). A positive electrode active material slurry was obtained. Here, the average particle size of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder used was about 5 μm. The alkaline component (total assuming lithium carbonate and lithium hydroxide) in the LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder measured by neutralization titration is LiNi 0.8 Co 0.1 Mn 0. It corresponded to 0.45% by weight of the whole 1 O 2 powder.

次いで、得られた正極活物質スラリーをアルミニウム箔に塗布して、120℃で真空乾燥し、所定の密度になるようにロールプレスでプレスして、正極を得た。 Next, the obtained positive electrode active material slurry was applied to an aluminum foil, vacuum dried at 120 ° C., and pressed with a roll press to a predetermined density to obtain a positive electrode.

(負極の製造)
平均粒径6μmのSiO粉末と平均粒径15μmの天然黒鉛とを重量比で1:9となるように混合し、負極活物質粉末を得た。次いで、96重量部の負極活物質粉末に対して、導電剤として1重量部のカーボンブラック、バインダーとして1.5重量部のスチレンブタジエンゴム(SBR)、増粘剤として1.5重量部のカルボキシメチルセルロース(CMC;増粘剤)を添加し、溶媒として純水を加えて正極材料と同様にミキサーで混合し、負極活物質スラリーを得た。この負極活物質スラリーを銅箔に塗布し、110℃で真空乾燥し、所定の密度になるようにプレスして、負極を得た。
(Manufacturing of negative electrode)
SiO powder having an average particle size of 6 μm and natural graphite having an average particle size of 15 μm were mixed so as to have a weight ratio of 1: 9 to obtain a negative electrode active material powder. Next, with respect to 96 parts by weight of the negative electrode active material powder, 1 part by weight of carbon black as a conductive agent, 1.5 parts by weight of styrene butadiene rubber (SBR) as a binder, and 1.5 parts by weight of carboxy as a thickener. Methyl cellulose (CMC; thickener) was added, pure water was added as a solvent, and the mixture was mixed with a mixer in the same manner as the positive electrode material to obtain a negative electrode active material slurry. This negative electrode active material slurry was applied to a copper foil, vacuum dried at 110 ° C., and pressed to a predetermined density to obtain a negative electrode.

(電解液の製造)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7となるように混合し、電解液の総重量を基準として5重量%となるようにフルオロエチレンカーボネート(FEC)を添加した。ここにLiPFを1mol/Lの濃度で溶解させて、電解液を得た。
(Manufacturing of electrolyte)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in a volume ratio of 3: 7, and fluoroethylene carbonate (FEC) was added so as to be 5% by weight based on the total weight of the electrolytic solution. .. LiPF 6 was dissolved here at a concentration of 1 mol / L to obtain an electrolytic solution.

(電池の製造)
上記のように製造した正極及び負極を、対向面積が12cmとなるように互いに対向させた。ここで、正極活物質及び負極活物質の塗布量は、正極と負極との充電容量比が片面(各対向面)の容量で1:1.05となるような量とした。正極と負極との間にはセパレータとしてポリオレフィンフィルムを挟み、正極、セパレータ、及び負極をアルミラミネートに封入した。その後、300μLの上記電解液の真空注液を行い、アルミラミネートの電解液注液口を封止して、単電池を製造した。
(Battery manufacturing)
The positive electrode and the negative electrode manufactured as described above were opposed to each other so that the facing area was 12 cm 2. Here, the coating amounts of the positive electrode active material and the negative electrode active material were set so that the charge capacity ratio between the positive electrode and the negative electrode was 1: 1.05 in terms of the capacity of one side (each facing surface). A polyolefin film was sandwiched between the positive electrode and the negative electrode as a separator, and the positive electrode, the separator, and the negative electrode were sealed in an aluminum laminate. Then, 300 μL of the above-mentioned electrolytic solution was vacuum-injected, and the electrolytic solution injection port of the aluminum laminate was sealed to manufacture a cell.

[実施例2]
LiNi0.8Co0.1Mn0.1粉末の量を94重量部とし、ホスホン酸の量を1重量部とし、LICGCの量を1重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Example 2]
Except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 94 parts by weight, the amount of phosphonic acid was 1 part by weight, and the amount of LICGC was 1 part by weight. Similarly, a positive electrode and a cell cell using the positive electrode were manufactured.

[比較例1]
ホスホン酸を添加せず、LiNi0.8Co0.1Mn0.1粉末の量を91重量部とし、LICGCの量を5重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Comparative Example 1]
Positive electrode as in Example 1 except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 91 parts by weight and the amount of LICGC was 5 parts by weight without adding phosphonic acid. And a cell cell using the positive electrode was manufactured.

[比較例2]
LICGCを添加せず、LiNi0.8Co0.1Mn0.1粉末の量を91重量部とし、ホスホン酸の量を5重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Comparative Example 2]
Positive electrode as in Example 1 except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 91 parts by weight and the amount of phosphonic acid was 5 parts by weight without adding LICGC. And a cell cell using the positive electrode was manufactured.

[比較例3]
ホスホン酸を添加せず、LiNi0.8Co0.1Mn0.1粉末の量を94重量部とし、LICGCの量を2重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Comparative Example 3]
Positive electrode as in Example 1 except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 94 parts by weight and the amount of LICGC was 2 parts by weight without adding phosphonic acid. And a cell cell using the positive electrode was manufactured.

[比較例4]
LICGCを添加せず、LiNi0.8Co0.1Mn0.1粉末の量を94重量部とし、ホスホン酸の量を2重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Comparative Example 4]
Positive electrode as in Example 1 except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 94 parts by weight and the amount of phosphonic acid was 2 parts by weight without adding LICGC. And a cell cell using the positive electrode was manufactured.

[比較例5]
ホスホン酸及びLICGCを添加せず、LiNi0.8Co0.1Mn0.1粉末の量を96重量部としたことを除き、実施例1と同様に正極及び当該正極を用いた単電池を製造した。
[Comparative Example 5]
The positive electrode and the positive electrode were used in the same manner as in Example 1 except that the amount of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder was 96 parts by weight without adding phosphonic acid and LICGC. Manufactured a battery.

[評価例1:正極活物質スラリーの流動性]
各実施例及び各比較例における正極活物質スラリーの流動性を調べた。流動性が低かった正極活物質スラリーにはゲル化が見られ、アルミニウム箔への塗工に困難を伴った。
[Evaluation Example 1: Fluidity of Positive Electrode Active Material Slurry]
The fluidity of the positive electrode active material slurry in each Example and each Comparative Example was examined. Gelation was observed in the positive electrode active material slurry, which had low fluidity, and it was difficult to apply it to the aluminum foil.

[評価例2:高温での容量維持率]
各実施例及び各比較例により製造された単電池に対し、25℃で1回充放電を行った後、一度電池内部のガス抜き処理をして再度封止した。次いで、充電上限電圧を4.25V、放電下限電圧を2.50Vとして、45℃において充放電を50回繰り返した。この50回の繰り返し充放電における容量維持率を次式で定義する。

Figure 2021106113
[Evaluation example 2: Capacity retention rate at high temperature]
The cells manufactured according to each Example and each Comparative Example were charged and discharged once at 25 ° C., and then the inside of the battery was once degassed and resealed. Next, charging / discharging was repeated 50 times at 45 ° C. with the upper limit voltage of charging set to 4.25 V and the lower limit voltage of discharge set to 2.50 V. The capacity retention rate in the 50 times of repeated charging and discharging is defined by the following equation.
Figure 2021106113

[評価例3:インピーダンス測定]
各実施例及び各比較例により製造された単電池を完全に充電した状態で、インピーダンスアナライザを使用して、周波数1kHzにおける当該単電池全体のインピーダンスを測定した。
[Evaluation example 3: Impedance measurement]
With the cells manufactured by each Example and each Comparative Example fully charged, the impedance of the entire cells at a frequency of 1 kHz was measured using an impedance analyzer.

[評価例4:電池の体積変化]
各実施例及び各比較例により製造された単電池を完全に充電した状態でアルキメデス法で体積を測定し、45℃の1サイクルと比較し、50サイクル時点でどのくらい体積が増えているかを下表に記載した。
[Evaluation example 4: Battery volume change]
The volume was measured by the Archimedes method with the cells manufactured by each Example and each Comparative Example fully charged, and compared with one cycle at 45 ° C., the table below shows how much the volume has increased at 50 cycles. Described in.

各実施例及び各比較例における正極活物質スラリーの流動性、容量維持率、及び単電池のインピーダンスは、以下のとおりであった。なお、下記表にはホスホン酸及びLICGCの添加量(重量部表記)も併記した。

Figure 2021106113
The fluidity of the positive electrode active material slurry, the capacity retention rate, and the impedance of the cell in each Example and each Comparative Example were as follows. The amount of phosphonic acid and LICGC added (indicated by weight) is also shown in the table below.
Figure 2021106113

ホスホン酸を添加した実施例1、実施例2、比較例2、及び比較例4では、LICGCの有無にかかわらず、正極活物質スラリーは良好な流動性を呈した。一方、ホスホン酸を添加しなかった比較例1、比較例3、及び比較例5では、正極活物質スラリーのゲル化が見られ、流動性が低かった。これは、ホスホン酸存在下ではLiNi0.8Co0.1Mn0.1粉末の粒子表面のアルカリ性官能基や当該粒子表面に残留している水酸化リチウムなどのアルカリ成分が中和されたり、LiNi0.8Co0.1Mn0.1粉末の粒子表面にホスホン酸由来の化合物の被膜が形成されてゲル化反応が抑制されたりしてゲル化が抑えられるのに対し、ホスホン酸を添加しない場合には中和反応や被覆が起こらずにスラリーのゲル化が促進されるためであると推測される。 In Example 1, Example 2, Comparative Example 2, and Comparative Example 4 to which phosphonic acid was added, the positive electrode active material slurry exhibited good fluidity regardless of the presence or absence of LICGC. On the other hand, in Comparative Example 1, Comparative Example 3, and Comparative Example 5 in which phosphonic acid was not added, gelation of the positive electrode active material slurry was observed, and the fluidity was low. This is because in the presence of phosphonic acid , alkaline functional groups on the particle surface of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder and alkaline components such as lithium hydroxide remaining on the particle surface are neutralized. Alternatively, gelation is suppressed by forming a film of a compound derived from phosphonic acid on the particle surface of LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder and suppressing the gelation reaction. It is presumed that this is because when phosphonic acid is not added, the gelation of the slurry is promoted without neutralization reaction or coating.

45℃での50回繰り返し充放電における容量維持率を比較すると、実施例1、実施例2、及び比較例1〜比較例3では、90%以上の優れた容量維持率が得られた。一方、2重量部のホスホン酸のみを添加した比較例4及びホスホン酸及びLICGCのいずれも添加しなかった比較例5では、容量維持率は90%を下回っていた。すなわち、LICGCを添加しない場合、少量のホスホン酸を添加するだけでは十分な容量維持率が得られなかった。 Comparing the capacity retention rates in 50 times of repeated charging and discharging at 45 ° C., in Examples 1, 2, and Comparative Examples 1 to 3, an excellent capacity retention rate of 90% or more was obtained. On the other hand, in Comparative Example 4 in which only 2 parts by weight of phosphonic acid was added and Comparative Example 5 in which neither phosphonic acid nor LICGC was added, the volume retention rate was less than 90%. That is, when LICGC was not added, a sufficient volume retention rate could not be obtained by adding only a small amount of phosphonic acid.

周波数1kHzにおけるインピーダンスを比較すると、比較例2及び比較例5による単電池が、他の例と比べて高いインピーダンスを示した。比較例2のようにホスホン酸の添加量が多い場合には、LiNi0.8Co0.1Mn0.1粉末の表面にホスホン酸由来の被覆が過度に生じてしまい、これによりインピーダンスが増加するものと思われる。インピーダンスが高いと、十分な出力特性が得られず、実際に使用できるエネルギーが低下するという問題がある。 Comparing the impedances at a frequency of 1 kHz, the single batteries according to Comparative Example 2 and Comparative Example 5 showed higher impedance than the other examples. When the amount of phosphonic acid added is large as in Comparative Example 2, the surface of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder is excessively coated with phosphonic acid, which causes impedance. Is expected to increase. If the impedance is high, there is a problem that sufficient output characteristics cannot be obtained and the energy that can be actually used decreases.

このように、ホスホン酸及び酸化物固体電解質(LICGC)の両方を添加した実施例1及び実施例2においてのみ、優れたスラリー流動性、高い容量維持率、及び良好なインピーダンス特性をすべて実現することができた。 Thus, only in Examples 1 and 2 to which both the phosphonic acid and the oxide solid electrolyte (LICGC) are added, excellent slurry fluidity, high capacity retention, and good impedance characteristics are all realized. Was made.

また、ホスホン酸とLICGCとが混在することによる相乗効果も見られた。LICGCのみを2重量部添加した場合(比較例3:体積変化0.16cc)、ホスホン酸及びLICGCのいずれも未添加の場合(比較例5:体積変化0.31cc)と比較して、ガスによると推測される体積変化は0.15cc減少したのに対し、ホスホン酸のみを2重量部添加した場合(比較例4:体積変化0.12cc)、未添加の場合(比較例5:体積変化0.31cc)と比較した体積変化は0.19cc減少した。すなわち、体積変化を抑制する効果は、LICGC添加時よりもホスホン酸添加時の方が高かった。これに対し、実施例2(体積変化0.06cc)でLICGCを1重量部、ホスホン酸を1重量部添加した場合(正極添加剤の総量が上記の比較例3及び比較例4と同様にトータルで2重量部である)、未添加の場合(比較例5:体積変化0.31cc)と比較した体積変化は−0.25ccであった。このように、正極添加剤を2種類添加した場合、正極添加剤を1種類のみ添加した場合(比較例3及び比較例4)に比べ、相乗効果により、ガス発生が原因と考えられる体積変化が相当抑えられている。なお、1種類の正極添加剤を5重量部添加した場合に結果が異なるのは、ホスホン酸を5重量部添加した場合には、量が過剰であり、実際に正極活物質の粒子表面の残留アルカリと反応している割合が少ないためと考えられる。推定されるメカニズムを以下に示す。ホスホン酸は、正極活物質の粒子表面にあり、粒子表面のアルカリ成分と反応して、表面のガス発生面積を減らすためサイクル特性の改善などの効果があると推測される。ただしホスホン酸の添加量が増えるほど被覆による効果が少なくなると考えられる。これに対し、LICGCは、主な効果がガス吸収に起因する効果と推測されるため、添加重量当たりの効果は、少量添加時にはホスホン酸に比べて劣るが、添加量に対して効果が落ちにくいと考えられる。添加量を最適に保つことにより、ホスホン酸又は酸化物固体電解質を単独で添加する場合と比較して、より高いガス抑制効果が得られると考えられる。また、導電性固体電解質であるLICGCを使用することで、被覆しない効果の他に、さらに、インピーダンスが減少する効果も得られ、これがインピーダンス測定の結果に寄与していると推測される。 In addition, a synergistic effect was also observed due to the mixture of phosphonic acid and LICGC. Compared with the case where only 2 parts by weight of LICGC was added (Comparative Example 3: volume change 0.16 cc) and the case where neither phosphonic acid nor LICGC was added (Comparative Example 5: volume change 0.31 cc), it depends on the gas. The presumed volume change decreased by 0.15 cc, whereas when only 2 parts by weight of phosphonic acid was added (Comparative Example 4: Volume change 0.12 cc), when it was not added (Comparative Example 5: Volume change 0). The volume change compared to .31 cc) was reduced by 0.19 cc. That is, the effect of suppressing the volume change was higher when the phosphonic acid was added than when the LICGC was added. On the other hand, in Example 2 (volume change 0.06 cc), when 1 part by weight of LICGC and 1 part by weight of phosphonic acid were added (the total amount of the positive electrode additive was the same as in Comparative Example 3 and Comparative Example 4 above). The volume change was −0.25 cc as compared with the case where the additive was not added (Comparative Example 5: Volume change 0.31 cc). As described above, when two types of positive electrode additives are added, compared with the case where only one type of positive electrode additive is added (Comparative Example 3 and Comparative Example 4), the volume change considered to be caused by gas generation is caused by the synergistic effect. It is considerably suppressed. The difference in the results when 5 parts by weight of one type of positive electrode additive is added is that when 5 parts by weight of phosphonic acid is added, the amount is excessive and actually remains on the particle surface of the positive electrode active material. This is probably because the rate of reaction with alkali is small. The presumed mechanism is shown below. Phosphonate is located on the particle surface of the positive electrode active material, and is presumed to have an effect of improving cycle characteristics in order to reduce the gas generation area on the surface by reacting with the alkaline component on the particle surface. However, it is considered that the effect of coating decreases as the amount of phosphonic acid added increases. On the other hand, since it is presumed that the main effect of LICGC is due to gas absorption, the effect per weight added is inferior to that of phosphonic acid when a small amount is added, but the effect is less likely to decrease with respect to the amount added. it is conceivable that. By keeping the addition amount optimal, it is considered that a higher gas suppressing effect can be obtained as compared with the case where the phosphonic acid or the oxide solid electrolyte is added alone. Further, by using LICGC, which is a conductive solid electrolyte, in addition to the effect of not coating, the effect of reducing impedance is also obtained, and it is presumed that this contributes to the result of impedance measurement.

以上のように、ホスホン酸化合物(ここではホスホン酸)の添加により、正極活物質スラリーのスラリー安定性が改善されるとともに容量維持率に一定の向上が見られた。しかしながら、ホスホン酸化合物を単独で添加した場合には、添加量が多すぎると電池のインピーダンスが増加してしまい、十分な容量維持率を得るには至らなかった。一方、酸化物固体電解質の添加によっても容量維持率に一定の向上が見られ、ホスホン酸化合物及び酸化物固体電解質の両方を添加することにより、インピーダンスの増加を抑えつつ十分な容量維持率を達成することができた。さらに、ホスホン酸化合物及び酸化物固体電解質の両方を添加することにより、ガス抑制効果に予想以上の向上が見られた。また、少ない添加物量で改善できるため、エネルギー密度も改善でき得る。 As described above, the addition of the phosphonic acid compound (here, phosphonic acid) improved the slurry stability of the positive electrode active material slurry and also showed a certain improvement in the capacity retention rate. However, when the phosphonic acid compound is added alone, if the amount added is too large, the impedance of the battery increases, and a sufficient capacity retention rate cannot be obtained. On the other hand, the addition of the oxide solid electrolyte also showed a certain improvement in the capacity retention rate, and by adding both the phosphonic acid compound and the oxide solid electrolyte, a sufficient capacity retention rate was achieved while suppressing the increase in impedance. We were able to. Furthermore, by adding both the phosphonic acid compound and the oxide solid electrolyte, the gas suppression effect was improved more than expected. Moreover, since it can be improved with a small amount of additives, the energy density can also be improved.

特に、電池の高容量化を目指して正極材料にニッケルの含有率が高いリチウム遷移金属酸化物を使用するとともに負極材料に珪素系材料を使用する場合には、リチウム遷移金属酸化物のアルカリ成分や、珪素質材料の劣化を防ぐために電解液中に加えられるフルオロエチレンカーボネートやジフルオロエチレンカーボネートの影響により、スラリー安定性及びサイクル特性が大きな問題になる傾向がある。このため、上記のようなホスホン酸化合物及び酸化物固体電解質の両方を添加した正極活物質が特に有効である。 In particular, when a lithium transition metal oxide having a high nickel content is used as the positive electrode material and a silicon-based material is used as the negative electrode material with the aim of increasing the capacity of the battery, the alkali component of the lithium transition metal oxide or Due to the influence of fluoroethylene carbonate and difluoroethylene carbonate added to the electrolytic solution to prevent deterioration of the silicon material, slurry stability and cycle characteristics tend to become major problems. Therefore, the positive electrode active material to which both the phosphonic acid compound and the oxide solid electrolyte as described above are added is particularly effective.

Claims (12)

リチウム遷移金属酸化物を含有する正極活物質と、添加剤として酸化物固体電解質及びホスホン酸化合物と、を含む正極活物質層が正極集電体上に形成された、正極。 A positive electrode in which a positive electrode active material layer containing a positive electrode active material containing a lithium transition metal oxide and an oxide solid electrolyte and a phosphonic acid compound as additives is formed on a positive electrode current collector. 前記リチウム遷移金属酸化物は、遷移金属の総量を基準として50モル%以上のニッケルを含む、請求項1に記載の正極。 The positive electrode according to claim 1, wherein the lithium transition metal oxide contains 50 mol% or more of nickel based on the total amount of transition metals. 前記リチウム遷移金属酸化物は、遷移金属の総量を基準として80モル%以上のニッケルを含む、請求項2に記載の正極。 The positive electrode according to claim 2, wherein the lithium transition metal oxide contains 80 mol% or more of nickel based on the total amount of transition metals. 前記酸化物固体電解質は、リチウムイオン伝導性を有する、請求項1〜請求項3のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein the oxide solid electrolyte has lithium ion conductivity. 前記正極活物質層中の前記酸化物固体電解質の含有量は、0.01重量%以上5重量%以下である、請求項1〜請求項4のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 4, wherein the content of the oxide solid electrolyte in the positive electrode active material layer is 0.01% by weight or more and 5% by weight or less. 前記ホスホン酸化合物は、前記リチウム遷移金属酸化物の粒子の表面上で被覆を形成している、請求項1〜請求項5のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 5, wherein the phosphonic acid compound forms a coating on the surface of the particles of the lithium transition metal oxide. 前記ホスホン酸化合物の添加量が、前記正極活物質層の重量を基準として0.01重量%以上5重量%以下である、請求項1〜請求項6のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 6, wherein the amount of the phosphonic acid compound added is 0.01% by weight or more and 5% by weight or less based on the weight of the positive electrode active material layer. 前記ホスホン酸化合物は、ホスホン酸又は有機ホスホン酸である、請求項1〜請求項7のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 7, wherein the phosphonic acid compound is a phosphonic acid or an organic phosphonic acid. 請求項1〜請求項8のいずれか一項に記載の正極と、
珪素又は珪素化合物を含有する負極活物質を含む負極活物質層が負極集電体上に形成された負極と、
を備える、リチウムイオン二次電池。
The positive electrode according to any one of claims 1 to 8.
A negative electrode in which a negative electrode active material layer containing a negative electrode active material containing silicon or a silicon compound is formed on a negative electrode current collector, and a negative electrode.
Lithium-ion secondary battery.
フルオロエチレンカーボネート及びジフルオロエチレンカーボネートのうち少なくとも一つを含む電解液をさらに備える、請求項9に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 9, further comprising an electrolytic solution containing at least one of fluoroethylene carbonate and difluoroethylene carbonate. リチウムイオン二次電池用の正極の製造方法であって、
リチウム遷移金属酸化物と、酸化物固体電解質と、ホスホン酸化合物と、溶媒と、を混合することにより正極活物質スラリーを得るステップと、
前記正極活物質スラリーを乾燥させることにより、正極活物質層を正極集電体上に形成することにより正極を得るステップと、
を含む、正極の製造方法。
A method for manufacturing a positive electrode for a lithium ion secondary battery.
A step of obtaining a positive electrode active material slurry by mixing a lithium transition metal oxide, an oxide solid electrolyte, a phosphonic acid compound, and a solvent.
A step of obtaining a positive electrode by forming a positive electrode active material layer on a positive electrode current collector by drying the positive electrode active material slurry.
A method for manufacturing a positive electrode, including.
リチウムイオン二次電池の製造方法であって、
請求項11に記載の方法により正極を得るステップと、
珪素又は珪素化合物を含有する負極活物質を含む負極活物質層を負極集電体上に形成することにより負極を得るステップと、
前記正極と前記負極との間にセパレータ及び電解液を介在させるステップと、
を含む、リチウムイオン二次電池の製造方法。
A method for manufacturing lithium-ion secondary batteries.
The step of obtaining a positive electrode by the method according to claim 11 and
A step of obtaining a negative electrode by forming a negative electrode active material layer containing a negative electrode active material containing silicon or a silicon compound on a negative electrode current collector, and
A step of interposing a separator and an electrolytic solution between the positive electrode and the negative electrode,
A method for manufacturing a lithium ion secondary battery, including.
JP2019236900A 2019-12-26 2019-12-26 Positive electrode, lithium ion secondary battery, manufacturing method of positive electrode, and manufacturing method of lithium ion secondary battery Active JP7376348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236900A JP7376348B2 (en) 2019-12-26 2019-12-26 Positive electrode, lithium ion secondary battery, manufacturing method of positive electrode, and manufacturing method of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236900A JP7376348B2 (en) 2019-12-26 2019-12-26 Positive electrode, lithium ion secondary battery, manufacturing method of positive electrode, and manufacturing method of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2021106113A true JP2021106113A (en) 2021-07-26
JP7376348B2 JP7376348B2 (en) 2023-11-08

Family

ID=76919470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236900A Active JP7376348B2 (en) 2019-12-26 2019-12-26 Positive electrode, lithium ion secondary battery, manufacturing method of positive electrode, and manufacturing method of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7376348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871623A (en) * 2021-09-28 2021-12-31 星恒电源股份有限公司 High-nickel anode material slurry for lithium ion battery, preparation method of slurry and lithium ion battery
JP7570371B2 (en) 2022-04-20 2024-10-21 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing the negative electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216768A (en) * 2001-01-18 2002-08-02 Hitachi Maxell Ltd Nonaqueous secondary battery
US20020136956A1 (en) * 2001-03-21 2002-09-26 Hong Gan Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
JP2013175325A (en) * 2012-02-24 2013-09-05 Hitachi Ltd Method of manufacturing composition for positive electrode mixture layer formation and method of manufacturing lithium ion secondary battery
JP2017010923A (en) * 2015-06-18 2017-01-12 日本電気株式会社 Positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, lithium secondary cell, and method for manufacturing them
JP2018106950A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Lithium ion secondary battery
JP2018206487A (en) * 2017-05-30 2018-12-27 凸版印刷株式会社 Laminate green sheet, all-solid secondary battery and manufacturing method thereof
WO2019077919A1 (en) * 2017-10-20 2019-04-25 株式会社Gsユアサ Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216768A (en) * 2001-01-18 2002-08-02 Hitachi Maxell Ltd Nonaqueous secondary battery
US20020136956A1 (en) * 2001-03-21 2002-09-26 Hong Gan Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
JP2013175325A (en) * 2012-02-24 2013-09-05 Hitachi Ltd Method of manufacturing composition for positive electrode mixture layer formation and method of manufacturing lithium ion secondary battery
JP2017010923A (en) * 2015-06-18 2017-01-12 日本電気株式会社 Positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, lithium secondary cell, and method for manufacturing them
JP2018106950A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Lithium ion secondary battery
JP2018206487A (en) * 2017-05-30 2018-12-27 凸版印刷株式会社 Laminate green sheet, all-solid secondary battery and manufacturing method thereof
WO2019077919A1 (en) * 2017-10-20 2019-04-25 株式会社Gsユアサ Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871623A (en) * 2021-09-28 2021-12-31 星恒电源股份有限公司 High-nickel anode material slurry for lithium ion battery, preparation method of slurry and lithium ion battery
CN113871623B (en) * 2021-09-28 2022-12-27 星恒电源股份有限公司 High-nickel anode material slurry for lithium ion battery, preparation method of slurry and lithium ion battery
JP7570371B2 (en) 2022-04-20 2024-10-21 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing the negative electrode

Also Published As

Publication number Publication date
JP7376348B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
KR102354281B1 (en) Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery including the same
KR102325727B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102453274B1 (en) Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery including the same
KR100881637B1 (en) Lithium Secondary Battery of Improved Low-Temperature Power Property
CN111542949B (en) Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery including the same
CN111226330A (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
JP7357997B2 (en) Cathode material for secondary batteries and lithium secondary batteries containing the same
US20220013775A1 (en) Positive Electrode Active Material, Method of Preparing the Positive Electrode Active Material, and Positive Electrode and Lithium Secondary Battery Which Include the Positive Electrode Active Material
JP2009026514A (en) Nonaqueous electrolyte secondary battery
KR20180041602A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US11508961B2 (en) Method of preparing positive electrode active material for secondary battery
CN111201647B (en) Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
CN116207230A (en) Positive electrode active material, method for preparing same, positive electrode for secondary battery comprising same, and lithium secondary battery
KR20220048347A (en) Additives for cathode, munufacturing method of the same, cathode including the same, and lithium rechargeable battery including the same
CN110267917B (en) Method for preparing positive electrode active material for lithium secondary battery, positive electrode active material prepared thereby, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP7497903B2 (en) Positive electrode active material for secondary battery and lithium secondary battery including the same
US12021228B2 (en) Method of producing positive electrode material for secondary battery
JP2021103684A (en) Negative electrode active material, negative electrode, and secondary battery
KR20220120551A (en) Slurry for aqueous positive electrode, positive electrode composition, lithium ion secondary battery comprising the positive electrode composition, and manufacturing method thereof
JP7376348B2 (en) Positive electrode, lithium ion secondary battery, manufacturing method of positive electrode, and manufacturing method of lithium ion secondary battery
CN111357139A (en) Lithium-cobalt-based positive electrode active material, method for producing same, and positive electrode and secondary battery comprising same
JP2022547282A (en) BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME
KR20210083098A (en) Method for manufacturing active material for negative electrode
US20220407077A1 (en) Method of Preparing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material Prepared by the Same
JP2024540381A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231026

R150 Certificate of patent or registration of utility model

Ref document number: 7376348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150