JP2021105699A - Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member - Google Patents

Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member Download PDF

Info

Publication number
JP2021105699A
JP2021105699A JP2019238212A JP2019238212A JP2021105699A JP 2021105699 A JP2021105699 A JP 2021105699A JP 2019238212 A JP2019238212 A JP 2019238212A JP 2019238212 A JP2019238212 A JP 2019238212A JP 2021105699 A JP2021105699 A JP 2021105699A
Authority
JP
Japan
Prior art keywords
wavelength conversion
phosphor
heat conductive
conductive portion
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019238212A
Other languages
Japanese (ja)
Inventor
米田 章法
Akinori Yoneda
章法 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2019238212A priority Critical patent/JP2021105699A/en
Publication of JP2021105699A publication Critical patent/JP2021105699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)

Abstract

To provide a wavelength conversion member capable of reducing the possibility that peeling from a heat radiation component of a wavelength conversion layer may occur, a manufacturing method for the wavelength conversion member, and a light emitting device.SOLUTION: A wavelength conversion member comprises: a heat radiation component with a screw hole; a wavelength conversion layer arranged on the heat radiation component, having a heat conductive part and a phosphor-containing part in contact with the heat conductive part, and having a through hole; and a screw. The wavelength conversion layer is screwed and fixed to the heat radiation component by the screw fitted in the through hole and the screw hole. A light emitting device comprises the wavelength conversion member, and a light source that irradiates the phosphor-containing part of the wavelength conversion member with light.SELECTED DRAWING: Figure 1A

Description

本開示は、波長変換部材、発光装置及び波長変換部材の製造方法に関する。 The present disclosure relates to a wavelength conversion member, a light emitting device, and a method for manufacturing the wavelength conversion member.

従来から、半導体発光素子を用いた発光装置が知られている。このような発光装置では、光が照射される蛍光体層を有する波長変換部材に放熱部材を熱的に接続する構造が提案されている(例えば、特許文献1及び2参照)。 Conventionally, a light emitting device using a semiconductor light emitting element has been known. In such a light emitting device, a structure has been proposed in which a heat radiating member is thermally connected to a wavelength conversion member having a phosphor layer to be irradiated with light (see, for example, Patent Documents 1 and 2).

特開2011−028972号公報Japanese Unexamined Patent Publication No. 2011-028972 特開2016−058624号公報Japanese Unexamined Patent Publication No. 2016-058624

しかし、放熱部材と波長変換部材との固定の形態によっては、両者の剥がれ等が発生することがある。
本開示は上記課題に鑑みなされたものであり、蛍光体含有部を有する波長変換層の放熱部品からの剥がれ等が生じる可能性を低減することができる波長変換部材及び発光装置、波長変換部材の製造方法を提供することを目的とする。
However, depending on the fixed form of the heat radiating member and the wavelength conversion member, peeling of both may occur.
The present disclosure has been made in view of the above problems, and of the wavelength conversion member, the light emitting device, and the wavelength conversion member capable of reducing the possibility of peeling of the wavelength conversion layer having a phosphor-containing portion from the heat radiating component. It is an object of the present invention to provide a manufacturing method.

本願は以下の複数の発明を含む。
(1)ねじ穴を有する放熱部品と、
前記放熱部品の上に配置され、熱伝導部及び該熱伝導部に接触する蛍光体含有部を有し、貫通孔を有する波長変換層と、
ねじとを備え、
前記波長変換層が、前記貫通孔及び前記ねじ穴に嵌め込まれた前記ねじによって前記放熱部品にねじ止め固定されてなる波長変換部材。
(2)上述した波長変換部材と、前記波長変換部材の前記蛍光体含有部に光を照射する光源とを備える発光装置。
(3)熱伝導部及び該熱伝導部に接触する蛍光体含有部を一体的に焼結することによって波長変換層を形成する工程と、
前記波長変換層に貫通孔を形成する工程と、
ねじ穴を有する放熱部品を準備する工程と、
前記波長変換層を、前記放熱部品に、前記貫通孔及び前記ねじ穴にねじを嵌め込んで、ねじ止め固定する工程とを含む波長変換部材の製造方法。
The present application includes the following inventions.
(1) Heat dissipation parts with screw holes and
A wavelength conversion layer arranged on the heat radiating component, having a heat conductive portion and a phosphor-containing portion in contact with the heat conductive portion, and having through holes.
Equipped with screws,
A wavelength conversion member in which the wavelength conversion layer is screwed and fixed to the heat radiating component by the through hole and the screw fitted in the screw hole.
(2) A light emitting device including the wavelength conversion member described above and a light source that irradiates the phosphor-containing portion of the wavelength conversion member with light.
(3) A step of forming a wavelength conversion layer by integrally sintering the heat conductive portion and the phosphor-containing portion in contact with the heat conductive portion.
The step of forming a through hole in the wavelength conversion layer and
The process of preparing heat-dissipating parts with screw holes and
A method for manufacturing a wavelength conversion member, which comprises a step of fitting a screw into the through hole and the screw hole of the heat radiating component and fixing the wavelength conversion layer with a screw.

上述の波長変換部材、発光装置、及び波長変換部材の製造方法によれば、波長変換層の放熱部品からの剥がれ等が生じる可能性を低減することができる。 According to the wavelength conversion member, the light emitting device, and the method for manufacturing the wavelength conversion member described above, it is possible to reduce the possibility that the wavelength conversion layer is peeled off from the heat radiating component.

本発明の実施形態1の波長変換部材の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the wavelength conversion member of Embodiment 1 of this invention. 図1AのIB−IB線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line IB-IB of FIG. 1A. 実施形態1の波長変換部材の変形例を示す概略断面図である。It is schematic cross-sectional view which shows the modification of the wavelength conversion member of Embodiment 1. FIG. 実施形態1の波長変換部材の別の変形例を示す概略断面図である。It is schematic cross-sectional view which shows another modification of the wavelength conversion member of Embodiment 1. FIG. 本発明の実施形態2の波長変換部材の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the wavelength conversion member of Embodiment 2 of this invention. 図2AのIIB−IIB線における概略断面図である。FIG. 2 is a schematic cross-sectional view taken along the line IIB-IIB of FIG. 2A. 本発明の実施形態3の波長変換部材の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the wavelength conversion member of Embodiment 3 of this invention. 図3AのIIIB−IIIB線における概略断面図である。FIG. 3A is a schematic cross-sectional view taken along the line IIIB-IIIB of FIG. 3A. 本発明の実施形態4の波長変換部材の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the wavelength conversion member of Embodiment 4 of this invention. 図4AのIVB−IVB線における概略断面図である。FIG. 6 is a schematic cross-sectional view taken along the line IVB-IVB of FIG. 4A. 本発明の実施形態5の発光装置の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the light emitting device of Embodiment 5 of this invention. 図3Aの波長変換部材の製造方法を示す概略斜視図である。It is a schematic perspective view which shows the manufacturing method of the wavelength conversion member of FIG. 3A. 図3Aの波長変換部材の製造方法を示す概略平面図である。It is a schematic plan view which shows the manufacturing method of the wavelength conversion member of FIG. 3A. 図7AのVIIB−VIIB線における概略断面図である。It is a schematic cross-sectional view in the line VIIB-VIIB of FIG. 7A. 本発明の図3Aの波長変換部材の別の製造方法を示す概略平面図である。It is a schematic plan view which shows another manufacturing method of the wavelength conversion member of FIG. 3A of this invention. 図7CのVIID−VIID線における概略断面図である。FIG. 6 is a schematic cross-sectional view taken along the line VIID-VIID of FIG. 7C. 図4Aの波長変換部材の製造方法を示す概略平面図である。It is a schematic plan view which shows the manufacturing method of the wavelength conversion member of FIG. 4A. 図8AのVIIIB−VIIIB線における概略断面図である。It is a schematic cross-sectional view in line VIIIB-VIIIB of FIG. 8A. 図3Aの波長変換部材の別の製造方法を示す概略平面図である。It is a schematic plan view which shows another manufacturing method of the wavelength conversion member of FIG. 3A. 図9AのIXB−IXB線における概略断面図である。9 is a schematic cross-sectional view taken along the line IXB-IXB of FIG. 9A. 図3Aの波長変換部材の別の製造方法を示す概略平面図である。It is a schematic plan view which shows another manufacturing method of the wavelength conversion member of FIG. 3A. 図10AのXB−XB線における概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the line XB-XB of FIG. 10A. 図3Aの波長変換部材の別の製造方法を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another manufacturing method of the wavelength conversion member of FIG. 3A. 図3Aの波長変換部材の別の製造方法を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another manufacturing method of the wavelength conversion member of FIG. 3A.

以下、本発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明は以下のものに限定されない。各図面が示す部材の大きさ及び位置関係等は、説明を明確にするため、誇張していることがある。また、各実施形態において他の実施形態と同一の名称を用いる部材は、同一又は対応する部材を表している。そのような部材は、特に説明がない限り、他の実施形態で挙げた材料や大きさ等を採用することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the embodiments described below are for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. The size and positional relationship of the members shown in each drawing may be exaggerated for the sake of clarity. Further, the members using the same names as the other embodiments in each embodiment represent the same or corresponding members. Unless otherwise specified, such members may use the materials, sizes, and the like mentioned in other embodiments.

実施形態1:波長変換部材10
実施形態1の波長変換部材10は、例えば、図1A及び1Bに示すように、放熱部品11と、波長変換層14と、ねじ15とを備える。放熱部品11は、ねじ穴11aを有する。波長変換層14は、熱伝導部12と、蛍光体含有部13とを有する。熱伝導部12は、放熱部品11上に配置される。蛍光体含有部13は、熱伝導部12に接触して配置されている。波長変換層14は貫通孔14aを有する。ねじ15は貫通孔14a及びねじ穴11aに嵌め込まれ、波長変換層14が、放熱部品11に、ねじ15によってねじ止め固定されている。
このように、波長変換部材10は熱伝導部12と、蛍光体含有部13とをねじにより機械的に放熱部品11に固定する構成を有する。これにより、熱伝導部12、蛍光体含有部13及び放熱部品11に熱膨張係数差があっても、これら各部材の熱膨張が固定強度に影響する可能性を低減することができる。もし、これらの部材が接着剤や接合層等により固定されていれば、蛍光体含有部13への光の照射による発熱と照射を止めることによる冷却とを繰り返した場合、各部材の熱膨張係数差によって、接着剤や接合層等にクラックが発生する可能性がある。接着剤や接合層等による固定でなく、ねじによって固定されていることにより、そのようなクラックによる固定強度の低下が生じないため、蛍光体含有部13が熱伝導部12から脱離する可能性を低減することができる。さらに、蛍光体含有部13と熱伝導部12の間に接着剤や接合層等の別の部材が存在しないことにより、蛍光体含有部13に光が照射される際の蛍光体含有部13の発熱を、熱伝導部12に直接放散することができるため、効率的な放熱が期待できる。この結果、信頼性の高い波長変換部材10を得ることが可能となる。
Embodiment 1: Wavelength conversion member 10
The wavelength conversion member 10 of the first embodiment includes, for example, a heat radiating component 11, a wavelength conversion layer 14, and a screw 15, as shown in FIGS. 1A and 1B. The heat radiating component 11 has a screw hole 11a. The wavelength conversion layer 14 has a heat conductive portion 12 and a phosphor-containing portion 13. The heat conductive portion 12 is arranged on the heat radiating component 11. The phosphor-containing portion 13 is arranged in contact with the heat conductive portion 12. The wavelength conversion layer 14 has a through hole 14a. The screw 15 is fitted into the through hole 14a and the screw hole 11a, and the wavelength conversion layer 14 is screwed and fixed to the heat radiating component 11 by the screw 15.
As described above, the wavelength conversion member 10 has a configuration in which the heat conductive portion 12 and the phosphor-containing portion 13 are mechanically fixed to the heat radiating component 11 by screws. As a result, even if there is a difference in the coefficient of thermal expansion between the heat conductive portion 12, the phosphor-containing portion 13 and the heat radiating component 11, it is possible to reduce the possibility that the thermal expansion of each of these members affects the fixing strength. If these members are fixed by an adhesive, a bonding layer, or the like, the coefficient of thermal expansion of each member when the heat generated by irradiating the phosphor-containing portion 13 with light and the cooling by stopping the irradiation are repeated. Due to the difference, cracks may occur in the adhesive, the bonding layer, and the like. Since it is fixed by screws instead of being fixed by an adhesive or a bonding layer, the fixing strength does not decrease due to such cracks, so that the phosphor-containing portion 13 may be detached from the heat conductive portion 12. Can be reduced. Further, since there is no other member such as an adhesive or a bonding layer between the phosphor-containing portion 13 and the heat conductive portion 12, the phosphor-containing portion 13 has a phosphor-containing portion 13 when light is irradiated to the phosphor-containing portion 13. Since the heat generated can be dissipated directly to the heat conductive portion 12, efficient heat dissipation can be expected. As a result, it is possible to obtain a highly reliable wavelength conversion member 10.

〔波長変換層14〕
波長変換層14は、熱伝導部12と蛍光体含有部13とから構成される。波長変換層14はこれら以外の部材を備えていてもよい。波長変換層14の波長変換の機能は蛍光体含有部13があれば達成されるため、熱伝導部12は省略してもよい。放熱性の向上の観点からは、波長変換層14は、蛍光体含有部13だけでなく、蛍光体を含有しない熱伝導部12を有することが好ましい。熱伝導部12と蛍光体含有部13とは、後述する放熱部品11の側からこの順に、熱伝導部12と蛍光体含有部13とが一部又は全面において接触して配置されていることが好ましい。これによって、効率的な放熱が期待できる。
波長変換層14は、熱伝導部12と蛍光体含有部13との直接接合層又は一体焼結層である。ここで、直接接合層とは、接着剤を用いずに接合されている層を指し、種々の直接接合法によって形成されたものである。一体焼結層とは、焼結体(セラミックス)同士が接着剤を用いずに一体化されている層を指し、一体的に焼結することにより形成されたものである。
[Wavelength conversion layer 14]
The wavelength conversion layer 14 is composed of a heat conductive portion 12 and a phosphor-containing portion 13. The wavelength conversion layer 14 may include members other than these. Since the wavelength conversion function of the wavelength conversion layer 14 is achieved by the presence of the phosphor-containing portion 13, the heat conduction portion 12 may be omitted. From the viewpoint of improving heat dissipation, it is preferable that the wavelength conversion layer 14 has not only the phosphor-containing portion 13 but also the heat conductive portion 12 that does not contain the phosphor. The heat conductive portion 12 and the phosphor-containing portion 13 are arranged so that the heat conductive portion 12 and the phosphor-containing portion 13 are in contact with each other in this order from the side of the heat radiating component 11 described later. preferable. As a result, efficient heat dissipation can be expected.
The wavelength conversion layer 14 is a direct bonding layer or an integrally sintered layer between the heat conductive portion 12 and the phosphor-containing portion 13. Here, the direct bonding layer refers to a layer bonded without using an adhesive, and is formed by various direct bonding methods. The integrally sintered layer refers to a layer in which sintered bodies (ceramics) are integrated without using an adhesive, and is formed by integrally sintering.

(熱伝導部12)
熱伝導部12は、波長変換層14の一部を構成し、蛍光体含有部13を保持し得る部材であればよい。熱伝導部12は、蛍光体含有部13の発熱による影響を考慮して、耐熱性を有する材料で形成されていることが好ましい。また、熱伝導部12は、蛍光体含有部13との熱膨張係数差が小さい材料によって形成されていることが好ましい。また、熱伝導部12は、光反射性の部材であることが好ましい。これによって、蛍光体含有部13内の光が熱伝導部12によって反射されることとなり、蛍光体含有部13から放熱部品11への主要な光の到達を防止することができる。その結果、放熱部品11に光が吸収されることによる発光効率低下を抑制することができる。
熱伝導部12は、例えば、金属、セラミックス、樹脂、ガラス又はこれらの1種以上を備える複合材等によって形成することができる。なかでも、熱伝導部12は、酸化アルミニウム、窒化アルミニウム、窒化ケイ素、炭化ケイ素等のセラミックスによって形成することが好ましい。これにより、蛍光体含有部13と一体的に形成しやすく、且つ熱伝導率の比較的高い材料を用いることができる。熱伝導部12は、例えば、セラミックスの材料に、添加材として、それらの材料よりも高屈折率の材料を含有させることによって、光反射性材料としてもよい。高屈折率の材料としては、屈折率が、例えば1.8以上又は2.0以上であるものが挙げられる。セラミックスの材料との屈折率差は、例えば0.4以上又は0.7以上のものが挙げられる。添加材としては、例えば、空気等の気体で満たされた空隙、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化イットリウム、酸化ジルコニウム、窒化ホウ素、酸化ルテチウム、酸化ランタン等が挙げられる。
また、熱伝導部12をセラミックスで形成する場合、内在する空隙の密度の程度を調節することにより、光反射性と熱伝導性とを制御することができる。空隙の密度は、セラミックス材料の押圧の程度を変更することで、調整することができる。例えば、蛍光体含有部13の下方は放熱性を確保するために、空隙が比較的少ないことが好ましい。空隙は、例えば、観察対象物の断面を走査型電子顕微鏡(SEM)で観察することにより認識することができる。
(Heat conduction part 12)
The heat conductive portion 12 may be a member that constitutes a part of the wavelength conversion layer 14 and can hold the phosphor-containing portion 13. The heat conductive portion 12 is preferably made of a heat-resistant material in consideration of the influence of heat generation of the phosphor-containing portion 13. Further, the heat conductive portion 12 is preferably formed of a material having a small difference in thermal expansion coefficient from the phosphor-containing portion 13. Further, the heat conductive portion 12 is preferably a light-reflecting member. As a result, the light in the phosphor-containing portion 13 is reflected by the heat conductive portion 12, and it is possible to prevent the main light from reaching the heat radiating component 11 from the phosphor-containing portion 13. As a result, it is possible to suppress a decrease in luminous efficiency due to light being absorbed by the heat radiating component 11.
The heat conductive portion 12 can be formed of, for example, a metal, ceramics, resin, glass, or a composite material including one or more of these. Among them, the heat conductive portion 12 is preferably formed of ceramics such as aluminum oxide, aluminum nitride, silicon nitride, and silicon carbide. As a result, a material that can be easily formed integrally with the phosphor-containing portion 13 and has a relatively high thermal conductivity can be used. The heat conductive portion 12 may be used as a light-reflecting material by, for example, containing a material having a higher refractive index than those materials as an additive in the ceramic material. Examples of the material having a high refractive index include those having a refractive index of 1.8 or more or 2.0 or more. The difference in refractive index from the ceramic material is, for example, 0.4 or more or 0.7 or more. Examples of the additive include voids filled with a gas such as air, titanium oxide, aluminum oxide, zirconium oxide, yttrium oxide, zirconium oxide, boron nitride, lutetium oxide, lanthanum oxide and the like.
Further, when the heat conductive portion 12 is made of ceramics, the light reflectivity and the heat conductivity can be controlled by adjusting the degree of the density of the internal voids. The density of the voids can be adjusted by changing the degree of pressing of the ceramic material. For example, it is preferable that there are relatively few voids below the phosphor-containing portion 13 in order to ensure heat dissipation. The voids can be recognized, for example, by observing the cross section of the object to be observed with a scanning electron microscope (SEM).

熱伝導部12は、蛍光体含有部13を保持し得る形状であればよい。熱伝導部12の形状としては、その表面が平坦な板状の部材が挙げられる。熱伝導部12は、例えば、上面、下面、側面を有し、これら上下面は、互いに平行であるものが挙げられる。平行な上下面を有することにより、波長変換部材10を構成する他の部材への取り付け等が容易となる。また、その結果、波長変換部材10の発光装置等への取り付けを容易にし、光取り出し等の精度を向上させることができる。熱伝導部12の側面は、上面に対して垂直でもよいし、外側又は内側に広がるように傾斜していてもよいし、曲面でもよい。
熱伝導部12の平面形状は、適用する発光装置の形状等によって適宜設定することができ、円形、楕円形又は四角形等の多角形など、種々の形状が挙げられる。熱伝導部12の大きさは、例えば、平面形状において、一辺又は直径が1mm〜50mmが挙げられる。
熱伝導部12の厚みは、強度を考慮すると、例えば、0.2mm以上が挙げられる。コスト及び厚みの増大を抑えるため、熱伝導部12の厚みは2.0mm以下が好ましい。
熱伝導部12の上面は、図1Bに示すように、後述する蛍光体含有部13の下面と一致していてもよい。
The heat conductive portion 12 may have a shape that can hold the phosphor-containing portion 13. Examples of the shape of the heat conductive portion 12 include a plate-shaped member having a flat surface. The heat conductive portion 12 has, for example, an upper surface, a lower surface, and a side surface, and the upper and lower surfaces thereof may be parallel to each other. Having parallel upper and lower surfaces facilitates attachment to other members constituting the wavelength conversion member 10. Further, as a result, the wavelength conversion member 10 can be easily attached to a light emitting device or the like, and the accuracy of light extraction or the like can be improved. The side surface of the heat conductive portion 12 may be perpendicular to the upper surface, may be inclined so as to spread outward or inward, or may be a curved surface.
The planar shape of the heat conductive portion 12 can be appropriately set depending on the shape of the light emitting device to be applied, and various shapes such as a polygon such as a circle, an ellipse, or a quadrangle can be mentioned. The size of the heat conductive portion 12 is, for example, 1 mm to 50 mm on one side or diameter in a planar shape.
Considering the strength, the thickness of the heat conductive portion 12 is, for example, 0.2 mm or more. The thickness of the heat conductive portion 12 is preferably 2.0 mm or less in order to suppress an increase in cost and thickness.
As shown in FIG. 1B, the upper surface of the heat conductive portion 12 may coincide with the lower surface of the phosphor-containing portion 13 described later.

(蛍光体含有部13)
蛍光体含有部13は、蛍光体を含む。蛍光体含有部13は、蛍光体を含むセラミックス又は蛍光体の単結晶からなるものが好ましい。このような構成とすることにより、蛍光体を含有する樹脂を用いた部材と比較して、耐熱性が高いため、レーザ光照射用として比較的長期にわたって使用することができる。例えば、蛍光体含有部13としてセラミックスを用いる場合は、蛍光体と酸化アルミニウム(Al23、融点:約1900℃〜2100℃)等の透光性材料とを焼結させたものが挙げられる。蛍光体の含有量は、セラミックスの総体積に対して0.05体積%〜50体積%が挙げられる。また、実質的に蛍光体のみからなるセラミックスを焼結させたものであってもよい。
蛍光体含有部13に含まれる蛍光体は、当該分野で公知の蛍光体のいずれを用いてもよい。例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)蛍光体、ユウロピウムで賦活されたシリケート蛍光体、αサイアロン蛍光体、βサイアロン蛍光体、KSF蛍光体等が挙げられる。なかでも、耐熱性が良好な蛍光体であるYAG蛍光体を用いることが好ましい。
(Fluorescent material-containing part 13)
The phosphor-containing portion 13 contains a phosphor. The phosphor-containing portion 13 is preferably made of a ceramic containing a phosphor or a single crystal of the phosphor. With such a configuration, the heat resistance is higher than that of the member using the resin containing a phosphor, so that it can be used for a relatively long period of time for laser light irradiation. For example, when ceramics is used as the phosphor-containing portion 13, a phosphor and a translucent material such as aluminum oxide (Al 2 O 3 , melting point: about 1900 ° C to 2100 ° C) may be sintered. .. The content of the phosphor is 0.05% by volume to 50% by volume with respect to the total volume of the ceramics. Further, it may be obtained by sintering ceramics substantially composed of only a phosphor.
As the fluorescent substance contained in the fluorescent substance-containing portion 13, any fluorescent substance known in the art may be used. For example, cerium-activated yttrium aluminum garnet (YAG) phosphor, cerium-activated lutetium aluminum garnet (LAG) phosphor, europium-activated silicate phosphor, α-sialone phosphor, β-sialon. Examples thereof include phosphors and KSF phosphors. Of these, it is preferable to use a YAG phosphor, which is a phosphor having good heat resistance.

蛍光体含有部13は、その全部又は一部が熱伝導部12上に載置し得る形状であればよい。蛍光体含有部13の形状としては、その表面が平坦な板状の部材が挙げられる。例えば、上面、下面、側面を有し、これら上下面が互いに平行である形状とすることができる。平行な上下面を有することにより、波長変換部材10での波長変換光の分布を均一に近付けることができる。蛍光体含有部13は、その下面の全部が、熱伝導部12の上面の上に配置されていることが好ましい。これにより、蛍光体含有部13の熱を効率的に熱伝導部12に逃がすことができる。蛍光体含有部13の側面は、その上面に対して垂直でもよいし、外側又は内側に広がるように傾斜していてもよい。
蛍光体含有部13の平面形状は、適用する発光装置の形状等によって適宜設定することができ、円形、楕円形又は四角形等の多角形など、種々の形状が挙げられる。蛍光体含有部13は、熱伝導部12と同じか、それよりも小さい又は大きい平面形状とすることができる。蛍光体含有部13の大きさ、例えば、平面形状において、一辺又は直径が0.4mm〜55mmが挙げられる。なかでも、蛍光体含有部13は、平面視において、その外縁の全部が、熱伝導部12の外縁と一致しているか、熱伝導部12の外縁の内側に配置されているものが好ましい。これにより、蛍光体含有部13の下面の全部を、熱伝導部12の上面の上に配置することが可能である。
蛍光体含有部13の厚みは、物理的強度を考慮すると、例えば、0.2mm以上が挙げられる。コスト増大、高さの増大を抑え、波長変換の程度を適切な程度にするために、蛍光体含有部13の厚みは5.0mm以下が好ましい。
The phosphor-containing portion 13 may have a shape that allows all or part of the phosphor-containing portion 13 to be placed on the heat conductive portion 12. Examples of the shape of the phosphor-containing portion 13 include a plate-shaped member having a flat surface. For example, it may have a shape having an upper surface, a lower surface, and a side surface, and these upper and lower surfaces are parallel to each other. By having the parallel upper and lower surfaces, the distribution of the wavelength conversion light in the wavelength conversion member 10 can be made uniform. It is preferable that the entire lower surface of the phosphor-containing portion 13 is arranged on the upper surface of the heat conductive portion 12. As a result, the heat of the phosphor-containing portion 13 can be efficiently dissipated to the heat conductive portion 12. The side surface of the phosphor-containing portion 13 may be perpendicular to the upper surface thereof, or may be inclined so as to spread outward or inward.
The planar shape of the phosphor-containing portion 13 can be appropriately set depending on the shape of the light emitting device to be applied, and various shapes such as a polygon such as a circle, an ellipse, or a quadrangle can be mentioned. The phosphor-containing portion 13 may have a planar shape that is the same as or smaller than that of the heat conductive portion 12. The size of the phosphor-containing portion 13, for example, in a planar shape, has a side or diameter of 0.4 mm to 55 mm. Among them, it is preferable that the entire outer edge of the phosphor-containing portion 13 coincides with the outer edge of the heat conductive portion 12 or is arranged inside the outer edge of the heat conductive portion 12 in a plan view. Thereby, the entire lower surface of the phosphor-containing portion 13 can be arranged on the upper surface of the heat conductive portion 12.
Considering the physical strength, the thickness of the phosphor-containing portion 13 is, for example, 0.2 mm or more. The thickness of the phosphor-containing portion 13 is preferably 5.0 mm or less in order to suppress an increase in cost and height and to an appropriate degree of wavelength conversion.

(貫通孔14a)
波長変換層14は、貫通孔14aを有する。貫通孔14aは、図1A及び1Bにおいては、熱伝導部12と蛍光体含有部13との双方に形成されている。また、貫通孔14aは、蛍光体含有部13と熱伝導部12とが配置された領域において、波長変換層14の上面から下面、つまり、蛍光体含有部13の上面から熱伝導部12の下面にわたって形成されている。貫通孔14aは、その上から下まで、同じ断面形状を有していてもよいし、上に向かって、下に向かって、上下に向かって又は中央に向かって、全長又は一部において、拡径又は拡張する形状であってもよい。貫通孔14aは、例えば、後述するねじ15のねじ頭を収容し、波長変換層14の上面とねじ頭とが面一となるように又は波長変換層14の上面よりも放熱部品11側にねじ頭が収容されるように、波長変換層14の上面付近において上面に向かって拡径した形状(図1B等)であるものが好ましい。これによって、ねじ頭が光取り出しを阻害することを防止することができる。
貫通孔14aの数は、任意に設定することができ、1つでもよいが、2つ以上が好ましい。貫通孔14aの形状は、平面視において、円形、楕円形又は四角形等の多角形、これらを組み合わせた形状など、種々の形状が挙げられる。貫通孔14aの位置は、平面視において、任意の位置に配置することができる。なかでも、波長変換層14において、光を照射する領域の外側に配置することが好ましい。光を照射する領域とは、蛍光体含有部13の蛍光体を励起する励起光を照射する領域である。光を照射する領域は、実際に照射する励起光のサイズよりもやや大きなサイズとすることができる。光を照射する領域は、光源の種類等によって適宜設定することができ、その平面形状は、円形、楕円形又は四角形等の多角形など、種々の形状が挙げられる。波長変換層14における光を照射する領域としては、例えば、0.4mm〜2mm×0.4mm〜2mmの領域、言い換えると0.16mm2〜4mm2の領域が挙げられる。具体的には、波長変換する光がレーザ光である場合、一辺又は直径が100μm〜3000μmの大きさとすることができる。貫通孔14aは、例えば、波長変換層14の外周に配置することができる。波長変換層14の外周とは、上述した光を照射する領域を含まない領域を指し、例えば波長変換層14の外縁から20mmまでの領域が挙げられる。
(Through hole 14a)
The wavelength conversion layer 14 has a through hole 14a. The through holes 14a are formed in both the heat conductive portion 12 and the phosphor-containing portion 13 in FIGS. 1A and 1B. Further, the through hole 14a is formed in a region where the phosphor-containing portion 13 and the heat-conducting portion 12 are arranged, from the upper surface to the lower surface of the wavelength conversion layer 14, that is, from the upper surface of the phosphor-containing portion 13 to the lower surface of the heat-conducting portion 12. Is formed over. The through hole 14a may have the same cross-sectional shape from the top to the bottom, and may be widened in the entire length or a part of the through hole 14a from the top to the bottom, upward, downward, vertical, or central. It may have a diameter or an expanding shape. The through hole 14a accommodates, for example, the screw head of the screw 15 described later, and is screwed so that the upper surface of the wavelength conversion layer 14 and the screw head are flush with each other or on the heat radiation component 11 side of the upper surface of the wavelength conversion layer 14. It is preferable that the wavelength conversion layer 14 has a shape (FIG. 1B or the like) whose diameter is increased toward the upper surface in the vicinity of the upper surface so that the head can be accommodated. This makes it possible to prevent the screw head from hindering light extraction.
The number of through holes 14a can be arbitrarily set and may be one, but two or more are preferable. The shape of the through hole 14a includes various shapes such as a polygon such as a circle, an ellipse, or a quadrangle in a plan view, and a shape in which these are combined. The position of the through hole 14a can be arranged at an arbitrary position in a plan view. Above all, in the wavelength conversion layer 14, it is preferable to arrange the wavelength conversion layer 14 outside the region to be irradiated with light. The region to be irradiated with light is a region to be irradiated with excitation light that excites the phosphor of the phosphor-containing portion 13. The region to be irradiated with light can be made slightly larger than the size of the excitation light actually irradiated. The region to be irradiated with light can be appropriately set depending on the type of light source and the like, and the planar shape thereof includes various shapes such as a polygon such as a circle, an ellipse or a quadrangle. The region to be irradiated with light in the wavelength conversion layer 14, for example, regions of 0.4mm~2mm × 0.4mm~2mm, it includes areas of 0.16 mm 2 to 4 mm 2 in other words. Specifically, when the light for wavelength conversion is laser light, the size of one side or diameter can be 100 μm to 3000 μm. The through hole 14a can be arranged on the outer periphery of the wavelength conversion layer 14, for example. The outer circumference of the wavelength conversion layer 14 refers to a region that does not include the above-mentioned region for irradiating light, and examples thereof include a region from the outer edge of the wavelength conversion layer 14 to 20 mm.

貫通孔14aの大きさは、用いるねじの大きさ、波長変換層14の大きさ、厚み等によって適宜設定することができる。貫通孔14aの大きさは、例えば、貫通孔14aの一辺又は直径が0.1mm〜16mmであることが挙げられる。貫通孔14aの一辺又は直径は12mm以下であってもよい。貫通孔14aは、図1Cに示すように、後述するねじ15との間に緩衝材16が埋め込まれることができる程度の隙間が配置される大きさであってもよい。このような緩衝材16の配置によって、より強固に波長変換層14を放熱部品11に固定しながら、ねじ止めの応力で波長変換層の損傷を低減又は回避することができる。なお、緩衝材16としては、ねじ15及び波長変換層14等よりもやわらかい材料であればよく、例えば、樹脂等が挙げられる。
貫通孔14aは、当該分野で公知の方法により形成することができる。例えば、サンドブラスト、エッチング、切削加工、レーザ加工等が挙げられる。これ以外にも、波長変換層14をセラミックスで形成する場合には、グリーンシート等の焼成前の材料の成形によって、容易に貫通孔を所望の形状及び大きさに形成することができる。
The size of the through hole 14a can be appropriately set depending on the size of the screw to be used, the size of the wavelength conversion layer 14, the thickness, and the like. The size of the through hole 14a is, for example, one side or a diameter of the through hole 14a of 0.1 mm to 16 mm. One side or diameter of the through hole 14a may be 12 mm or less. As shown in FIG. 1C, the through hole 14a may have a size such that a gap is arranged between the through hole 14a and the screw 15 described later so that the cushioning material 16 can be embedded. By arranging the cushioning material 16 in this way, it is possible to reduce or avoid damage to the wavelength conversion layer due to the stress of screwing while fixing the wavelength conversion layer 14 to the heat radiating component 11 more firmly. The cushioning material 16 may be a material softer than the screw 15 and the wavelength conversion layer 14, and examples thereof include a resin.
The through hole 14a can be formed by a method known in the art. For example, sandblasting, etching, cutting, laser machining and the like can be mentioned. In addition to this, when the wavelength conversion layer 14 is formed of ceramics, the through holes can be easily formed into a desired shape and size by molding a material such as a green sheet before firing.

〔放熱部品11〕
放熱部品11は、波長変換層14の下方、つまり、熱伝導部12の下面側に配置されている。また、放熱部品11は、熱伝導部12の下面に接触して配置されていることが好ましい。このような接触によって、蛍光体含有部13及び熱伝導部12の熱を放熱部品11に直接かつ効率的に逃がすことができる。
放熱部品11は、熱伝導部12を構成する材料よりも熱伝導率が良好な材料からなるものが挙げられる。放熱部品11は、透光性材料、光反射性材料等によって形成することができる。ここで透光性とは、波長変換部材10に照射される光を透過可能であるものを指し、例えば、その光の透過率が70%以上のもの、80%以上のもの、90%以上のものが挙げられる。熱伝導部12及び放熱部品11を透光性の材料によって形成する場合には、放熱部品側から励起光を取り出すことが可能となる。放熱部品11は、例えば、金属、セラミックス又は単結晶等によって形成することができる。金属としては、熱伝導率の高さを考慮すると、銅、アルミニウム、銅合金、又はアルミニウム合金等が挙げられる。放熱部品11を光反射部材として用いる場合は、反射率を上げるために、銀等を用いてもよい。熱膨張係数が小さく、かつ熱伝導率の高い窒化アルミニウム等のセラミックスの絶縁材料を用いてもよい。この場合、その表面に反射率を上げるために銀等の金属材料をコーティングした構成としてもよい。単結晶としては、サファイア等が挙げられる。放熱部品11は、例えば、図1Dに示すように、2層以上の積層構造としてもよい。これにより、種々の材料の組合せによって、光反射性、放熱性等を確保することができる。図1Dでは、上層、つまり熱伝導部12の下面に接触する側に銅等の金属を主材料とする金属基板112を配置し、下層にヒートシンク111を配置している。ヒートシンクとしては、例えば、銅、アルミニウム、銅合金、又はアルミニウム合金等の金属を主材料として形成されたものが挙げられる。ヒートシンク単体を放熱部品11として用いてもよい。
[Heat dissipation component 11]
The heat radiating component 11 is arranged below the wavelength conversion layer 14, that is, on the lower surface side of the heat conductive portion 12. Further, it is preferable that the heat radiating component 11 is arranged in contact with the lower surface of the heat conductive portion 12. Through such contact, the heat of the phosphor-containing portion 13 and the heat conductive portion 12 can be directly and efficiently dissipated to the heat radiating component 11.
Examples of the heat radiating component 11 include those made of a material having a better thermal conductivity than the material constituting the heat conductive portion 12. The heat radiating component 11 can be formed of a light-transmitting material, a light-reflecting material, or the like. Here, the translucency refers to a material capable of transmitting the light irradiated to the wavelength conversion member 10, for example, a material having a transmittance of 70% or more, a material having a transmittance of 80% or more, and a material having a transmittance of 90% or more. Things can be mentioned. When the heat conductive portion 12 and the heat radiating component 11 are formed of a translucent material, the excitation light can be taken out from the heat radiating component side. The heat radiating component 11 can be formed of, for example, metal, ceramics, a single crystal, or the like. Examples of the metal include copper, aluminum, a copper alloy, an aluminum alloy, and the like in consideration of high thermal conductivity. When the heat radiating component 11 is used as a light reflecting member, silver or the like may be used in order to increase the reflectance. An insulating material of ceramics such as aluminum nitride having a small coefficient of thermal expansion and a high thermal conductivity may be used. In this case, the surface may be coated with a metal material such as silver in order to increase the reflectance. Examples of the single crystal include sapphire and the like. The heat radiating component 11 may have a laminated structure of two or more layers, for example, as shown in FIG. 1D. As a result, light reflectivity, heat dissipation, and the like can be ensured by combining various materials. In FIG. 1D, a metal substrate 112 mainly made of a metal such as copper is arranged on the upper layer, that is, the side in contact with the lower surface of the heat conductive portion 12, and the heat sink 111 is arranged on the lower layer. Examples of the heat sink include those formed by using a metal such as copper, aluminum, a copper alloy, or an aluminum alloy as a main material. The heat sink alone may be used as the heat radiating component 11.

放熱部品11は、平面視において、波長変換層14、特に、熱伝導部12の下面の外縁と同じ形状及び大きさを有していてもよいし、若干大きくても、小さくてもよい。なかでも、放熱部品11は、平面視において、その外縁の全部が、熱伝導部12の下面の外縁の外側に配置されていることが好ましい。
放熱部品11の厚みは、例えば、0.1mm〜5mmが挙げられ、0.3mm〜3mmが好ましい。これにより、放熱部品11の強度を確保でき、また、放熱性を向上させることができる。また、放熱部品11は、その体積が、波長変換層14の体積よりも大きいことが好ましい。これにより、波長変換層14の熱を放熱部品11に効率的に逃がすことができる。
放熱部品11は、ねじ穴11aを有する。ねじ穴11aは、波長変換層14をねじによって固定するためのものであり、波長変換層14の貫通孔14aの数、大きさ、位置等によって、その数、大きさ、位置等を適宜設定することができる。つまり、放熱部品11上の適所に波長変換層14を配置した場合に、波長変換層14の貫通孔14aと重複する位置に、同じ大きさで、同じ数配置することができる。貫通孔14aとねじ15との間に緩衝材16が埋め込まれる場合は、ねじ穴11aの大きさは貫通孔14aの大きさよりも小さくすることが好ましい。これにより、ねじ穴11aとねじ15をより確実に篏合させることができる。例えば、ねじ穴11aとねじ15の間には緩衝材は配置されない。ねじ穴11aの深さは、ねじを、貫通孔14a及びねじ穴11aに挿入して、固定することができる程度であればよく、ねじの長さ等によって適宜設定することができる。
なお、波長変換層14を、放熱部品11にねじ止めする際、波長変換層14と放熱部品11との間に放熱グリス等の、熱を伝える軟らかい部材を設けてもよい。このような部材で隙間を埋めることにより、放熱性をより向上させることができる。また、軟らかい部材を設けることにより、熱衝撃で波長変換層14等が割れる可能性を低減することができる。
The heat radiating component 11 may have the same shape and size as the outer edge of the lower surface of the wavelength conversion layer 14, particularly the heat conductive portion 12, in a plan view, and may be slightly larger or smaller. Among them, it is preferable that the entire outer edge of the heat radiating component 11 is arranged outside the outer edge of the lower surface of the heat conductive portion 12 in a plan view.
The thickness of the heat radiating component 11 is, for example, 0.1 mm to 5 mm, preferably 0.3 mm to 3 mm. As a result, the strength of the heat radiating component 11 can be ensured, and the heat radiating property can be improved. Further, it is preferable that the volume of the heat radiating component 11 is larger than the volume of the wavelength conversion layer 14. As a result, the heat of the wavelength conversion layer 14 can be efficiently dissipated to the heat radiating component 11.
The heat radiating component 11 has a screw hole 11a. The screw holes 11a are for fixing the wavelength conversion layer 14 with screws, and the number, size, position, etc. of the through holes 14a of the wavelength conversion layer 14 are appropriately set according to the number, size, position, and the like. be able to. That is, when the wavelength conversion layer 14 is arranged at an appropriate position on the heat radiating component 11, the same size and the same number can be arranged at a position overlapping the through hole 14a of the wavelength conversion layer 14. When the cushioning material 16 is embedded between the through hole 14a and the screw 15, the size of the screw hole 11a is preferably smaller than the size of the through hole 14a. As a result, the screw hole 11a and the screw 15 can be more reliably aligned. For example, no cushioning material is arranged between the screw hole 11a and the screw 15. The depth of the screw hole 11a may be set as long as the screw can be inserted into the through hole 14a and the screw hole 11a and fixed, and can be appropriately set depending on the length of the screw or the like.
When the wavelength conversion layer 14 is screwed to the heat radiating component 11, a soft member such as heat radiating grease may be provided between the wavelength conversion layer 14 and the heat radiating component 11. By filling the gap with such a member, heat dissipation can be further improved. Further, by providing the soft member, the possibility that the wavelength conversion layer 14 and the like are cracked by thermal shock can be reduced.

〔ねじ15〕
ねじ15は、波長変換層14を放熱部品11に固定するために用いるものであり、波長変換層14を放熱部品11に固定し得るものであればよい。
ねじ15の長さは、波長変換層14における貫通孔14aの全長よりも長く、この全長と放熱部品11のねじ穴11aの深さとの合計長よりも短い範囲で適宜設定することができる。
ねじ15の太さは、波長変換層14における貫通孔14aの平面視における大きさ、及び、ねじ穴11aの平面視における大きさに応じて設定することができる。
このようなねじ15を、貫通孔14a及びねじ穴11aに嵌め込むことによって、波長変換層14を放熱部品11にねじ止め固定することができる。このような固定は、例えば、共晶金属を溶かして接合する、共晶接合等の接合層を用いて波長変換層と放熱部品とを固定する方法と比較して、波長変換層14が放熱部品11から剥がれる可能性を低減することができると考えられる。波長変換層14及び放熱部品11に熱膨張係数差があっても、また、波長変換層14への光の照射及び光の照射の停止により、熱サイクルに付されても、波長変換層14が放熱部品11から脱離する可能性を低減することができる。その結果、波長変換層における発熱を放熱部品に直接放散することができるため、効率的な放熱、ひいては信頼性の高い波長変換部材10を提供することができる。
ねじ15は、SUS等の金属、窒化アルミニウム等のセラミックス等によって形成することができる。ねじ15に光が照射される可能性がある場合は、例えば、波長変換層14に照射される光を吸収しにくい材料でねじ15を形成してもよい。
[Screw 15]
The screw 15 is used for fixing the wavelength conversion layer 14 to the heat radiating component 11, and may be any as long as the wavelength conversion layer 14 can be fixed to the heat radiating component 11.
The length of the screw 15 can be appropriately set in a range longer than the total length of the through hole 14a in the wavelength conversion layer 14 and shorter than the total length of the total length and the depth of the screw hole 11a of the heat radiating component 11.
The thickness of the screw 15 can be set according to the size of the through hole 14a in the wavelength conversion layer 14 in a plan view and the size of the screw hole 11a in a plan view.
By fitting such a screw 15 into the through hole 14a and the screw hole 11a, the wavelength conversion layer 14 can be screwed and fixed to the heat radiating component 11. In such fixing, the wavelength conversion layer 14 is a heat radiating component as compared with a method of fixing the wavelength conversion layer and the heat radiating component by using a bonding layer such as eutectic bonding in which a eutectic metal is melted and bonded. It is considered that the possibility of peeling from 11 can be reduced. Even if there is a difference in the coefficient of thermal expansion between the wavelength conversion layer 14 and the heat radiating component 11, and even if the wavelength conversion layer 14 is subjected to a thermal cycle due to the irradiation of light and the stop of irradiation of light, the wavelength conversion layer 14 remains. The possibility of detaching from the heat radiating component 11 can be reduced. As a result, the heat generated in the wavelength conversion layer can be directly dissipated to the heat radiating component, so that efficient heat radiating and, by extension, the highly reliable wavelength conversion member 10 can be provided.
The screw 15 can be formed of a metal such as SUS, a ceramic such as aluminum nitride, or the like. When there is a possibility that the screw 15 is irradiated with light, for example, the screw 15 may be formed of a material that does not easily absorb the light irradiated to the wavelength conversion layer 14.

実施形態2:波長変換部材20
実施形態2の波長変換部材20は、例えば、図2A及び2Bに示すように、放熱部品11と、波長変換層24と、ねじ15とを備える。
波長変換層24は、熱伝導部12と、蛍光体含有部23とを有する。蛍光体含有部23は、その下面の全面が熱伝導部12に接触して配置されており、蛍光体含有部23の外縁の全部が、平面視、熱伝導部12の外縁の内側に配置されている。蛍光体含有部23は、熱伝導部12の平面積の50%〜90%の平面積で配置することができる。この場合、波長変換層24の上面の一部が蛍光体含有部23の下面の全部と一致する。
波長変換層24は貫通孔24aを有するが、貫通孔24aは、熱伝導部12のうち、蛍光体含有部23が配置されていない部分にのみ配置されている。
上述した構成以外は、上述した実施形態1の波長変換部材と同様の構成を有することができる。従って、上述した実施形態1の波長変換部材と同様の効果を有する。
また、蛍光体含有部23にねじ止め用の貫通孔を設けないため、蛍光体含有部23にはねじ止めによる負荷が掛からない。これにより、蛍光体含有部23が破損する可能性を低減することができる。また、蛍光体含有部23に貫通孔を設けないことで、蛍光体含有部23から取り出される光の均一性を向上させることができる。
なお、蛍光体含有部23は、1つの波長変換部材20において、複数配置されていてもよい。
Embodiment 2: Wavelength conversion member 20
The wavelength conversion member 20 of the second embodiment includes, for example, a heat radiating component 11, a wavelength conversion layer 24, and a screw 15, as shown in FIGS. 2A and 2B.
The wavelength conversion layer 24 has a heat conductive portion 12 and a phosphor-containing portion 23. The entire lower surface of the phosphor-containing portion 23 is arranged in contact with the heat conductive portion 12, and the entire outer edge of the phosphor-containing portion 23 is arranged inside the outer edge of the heat conductive portion 12 in a plan view. ing. The phosphor-containing portion 23 can be arranged in a flat area of 50% to 90% of the flat area of the heat conductive portion 12. In this case, a part of the upper surface of the wavelength conversion layer 24 coincides with the entire lower surface of the phosphor-containing portion 23.
The wavelength conversion layer 24 has a through hole 24a, but the through hole 24a is arranged only in the portion of the heat conductive portion 12 where the phosphor-containing portion 23 is not arranged.
Other than the above-described configuration, it may have the same configuration as the wavelength conversion member of the first embodiment described above. Therefore, it has the same effect as the wavelength conversion member of the first embodiment described above.
Further, since the phosphor-containing portion 23 is not provided with a through hole for screwing, the phosphor-containing portion 23 is not loaded by screwing. Thereby, the possibility that the phosphor-containing portion 23 is damaged can be reduced. Further, by not providing the through hole in the phosphor-containing portion 23, the uniformity of the light extracted from the phosphor-containing portion 23 can be improved.
A plurality of phosphor-containing parts 23 may be arranged in one wavelength conversion member 20.

実施形態3:波長変換部材30
実施形態3の波長変換部材30は、例えば、図3A及び3Bに示すように、放熱部品11と、波長変換層34と、ねじ15とを備える。
波長変換層34は、熱伝導部32と、蛍光体含有部33とを有する。図3Aに示すように、平面視において、蛍光体含有部33の外縁の全部が、熱伝導部32の外縁の内側に配置されている。図3Bに示すように、断面視において、蛍光体含有部33は、その下面の全面が熱伝導部32に接触して配置されており、且つ、蛍光体含有部33の下面及び側面が、熱伝導部32によって、接触するように取り囲まれている。平面視で、蛍光体含有部33は、熱伝導部32の平面積の50%〜90%の平面積で配置することができる。蛍光体含有部33の上面は熱伝導部32の上面より下又は上に配置されていてもよいが、ここでは、蛍光体含有部33の上面及び熱伝導部32の上面が一致している。すなわち、蛍光体含有部33の上面が、熱伝導部32の上面と面一である。このような形状の波長変換層34は、蛍光体含有部33と熱伝導部32を一体的に形成することで得ることができる。この場合、例えば、熱伝導部32の最大厚みを10mm以下とすることができ、最小厚みを0.1mm以上とすることができる。なお、それらの上面が面一である又は一致しているとは、それらの上面が厳密に同一平面に位置している場合に加えて、蛍光体含有部33の厚みの10%以下の範囲内でずれている状態も含むものとする。他の実施形態においても同様である。
波長変換層34は貫通孔34aを有するが、貫通孔34aは、蛍光体含有部33が配置されていない熱伝導部32にのみ配置されている。
なお、上述したように、熱伝導部32をセラミックスで形成する場合、内在する空隙の密度の程度を調節することにより、光反射性と熱伝導性とを制御することができる。熱伝導部32においては、部位によって、内在する空隙の密度を異ならせてもよい。例えば、蛍光体含有部33の下方の部分の空隙率(空隙の密度)を、蛍光体含有部33の側方の部分の空隙率よりも低くすることができる。これにより、蛍光体含有部33の下方では放熱性を向上し、蛍光体含有部33の側方では光反射性を向上させることができる。
上述した構成以外は、上述した実施形態2の波長変換部材と同様の構成を有することができる。従って、上述した実施形態2の波長変換部材と同様の効果を有する。
また、熱伝導部32が光反射性を有する場合には、蛍光体含有部33から横方向への光の出射を低減又は防止することができるため、蛍光体含有部33の上面からの光の取り出し効率を向上させることができる。
Embodiment 3: Wavelength conversion member 30
The wavelength conversion member 30 of the third embodiment includes, for example, a heat radiating component 11, a wavelength conversion layer 34, and a screw 15, as shown in FIGS. 3A and 3B.
The wavelength conversion layer 34 has a heat conductive portion 32 and a phosphor-containing portion 33. As shown in FIG. 3A, in a plan view, the entire outer edge of the phosphor-containing portion 33 is arranged inside the outer edge of the heat conductive portion 32. As shown in FIG. 3B, in a cross-sectional view, the entire lower surface of the phosphor-containing portion 33 is arranged in contact with the heat conductive portion 32, and the lower surface and side surfaces of the phosphor-containing portion 33 are heat. It is surrounded by a conductive portion 32 so as to be in contact with each other. In a plan view, the phosphor-containing portion 33 can be arranged in a flat area of 50% to 90% of the flat area of the heat conductive portion 32. The upper surface of the phosphor-containing portion 33 may be arranged below or above the upper surface of the heat conductive portion 32, but here, the upper surface of the phosphor-containing portion 33 and the upper surface of the heat conductive portion 32 coincide with each other. That is, the upper surface of the phosphor-containing portion 33 is flush with the upper surface of the heat conductive portion 32. The wavelength conversion layer 34 having such a shape can be obtained by integrally forming the phosphor-containing portion 33 and the heat conductive portion 32. In this case, for example, the maximum thickness of the heat conductive portion 32 can be 10 mm or less, and the minimum thickness can be 0.1 mm or more. It should be noted that the fact that their upper surfaces are flush with each other or coincide with each other means that the upper surfaces thereof are exactly on the same plane and within a range of 10% or less of the thickness of the phosphor-containing portion 33. It shall also include the state of being out of alignment with. The same applies to other embodiments.
The wavelength conversion layer 34 has a through hole 34a, but the through hole 34a is arranged only in the heat conductive portion 32 in which the phosphor-containing portion 33 is not arranged.
As described above, when the heat conductive portion 32 is made of ceramics, the light reflectivity and the heat conductivity can be controlled by adjusting the degree of the density of the internal voids. In the heat conductive portion 32, the density of the internal voids may be different depending on the portion. For example, the porosity (porosity) of the lower portion of the phosphor-containing portion 33 can be made lower than the porosity of the lateral portion of the phosphor-containing portion 33. As a result, heat dissipation can be improved below the phosphor-containing portion 33, and light reflectivity can be improved on the side of the phosphor-containing portion 33.
Other than the above-described configuration, it can have the same configuration as the wavelength conversion member of the second embodiment described above. Therefore, it has the same effect as the wavelength conversion member of the second embodiment described above.
Further, when the heat conductive portion 32 has light reflectivity, the emission of light in the lateral direction from the phosphor-containing portion 33 can be reduced or prevented, so that the light from the upper surface of the phosphor-containing portion 33 can be reduced or prevented. The extraction efficiency can be improved.

実施形態4:波長変換部材40
実施形態4の波長変換部材40は、例えば、図4A及び4Bに示すように、放熱部品11と、波長変換層44と、ねじ15とを備える。
波長変換層44は、熱伝導部42と、蛍光体含有部43とを有する。蛍光体含有部43は1つの波長変換部材40において、複数配置されている。各蛍光体含有部43は、光が照射する領域の面積と同じでもよく、もしくはそれよりも大きな面積又は小さな面積を有していてもよい。また、各蛍光体含有部43の平面形状は、上述したように種々の形状とすることができる。熱伝導部42は、各蛍光体含有部43を取り囲んで配置されている。従って、平面視において、各蛍光体含有部43の外縁の全部は、それぞれ熱伝導部42の外縁の内側に配置されている。図4Bに示すように、断面視において、熱伝導部42は、各蛍光体含有部43の側面を取り囲んで配置されている。
蛍光体含有部43の上面は熱伝導部42の上面より上または下に配置されていてもよいが、ここでは、蛍光体含有部43の上面及び熱伝導部42の上面が一致している。この場合の熱伝導部42の最大厚みは10mm以下とすることができ、最小厚みは0.2mm以上とすることができる。
波長変換層44は貫通孔44aを有するが、貫通孔44aは、蛍光体含有部43が配置されていない熱伝導部42にのみ配置されている。
実施形態4の波長変換部材40は、上述した構成以外は、上述した実施形態3の波長変換部材と同様の構成を有することができる。従って、上述した実施形態3の波長変換部材と同様の効果を有する。また、実施形態4の波長変換部材40は、1つの波長変換部材40において複数の蛍光体含有部43が配置されているため、これらの1以上の蛍光体含有部43を独立して発光させることが可能である。
Embodiment 4: Wavelength conversion member 40
The wavelength conversion member 40 of the fourth embodiment includes, for example, a heat radiating component 11, a wavelength conversion layer 44, and a screw 15, as shown in FIGS. 4A and 4B.
The wavelength conversion layer 44 has a heat conductive portion 42 and a phosphor-containing portion 43. A plurality of phosphor-containing parts 43 are arranged in one wavelength conversion member 40. Each phosphor-containing portion 43 may have the same area as the area irradiated with light, or may have a larger area or a smaller area. Further, the planar shape of each phosphor-containing portion 43 can be various shapes as described above. The heat conductive portion 42 is arranged so as to surround each phosphor-containing portion 43. Therefore, in a plan view, the entire outer edge of each phosphor-containing portion 43 is arranged inside the outer edge of the heat conductive portion 42, respectively. As shown in FIG. 4B, in cross-sectional view, the heat conductive portion 42 is arranged so as to surround the side surface of each phosphor-containing portion 43.
The upper surface of the phosphor-containing portion 43 may be arranged above or below the upper surface of the heat conductive portion 42, but here, the upper surface of the phosphor-containing portion 43 and the upper surface of the heat conductive portion 42 coincide with each other. In this case, the maximum thickness of the heat conductive portion 42 can be 10 mm or less, and the minimum thickness can be 0.2 mm or more.
The wavelength conversion layer 44 has a through hole 44a, but the through hole 44a is arranged only in the heat conductive portion 42 in which the phosphor-containing portion 43 is not arranged.
The wavelength conversion member 40 of the fourth embodiment may have the same configuration as the wavelength conversion member of the third embodiment, except for the above-described configuration. Therefore, it has the same effect as the wavelength conversion member of the third embodiment described above. Further, in the wavelength conversion member 40 of the fourth embodiment, since a plurality of phosphor-containing parts 43 are arranged in one wavelength conversion member 40, one or more of these phosphor-containing parts 43 are made to emit light independently. Is possible.

実施形態5:発光装置50
実施形態5の発光装置50は、例えば、波長変換部材10と、この波長変換部材10の蛍光体含有部に光を照射する光源60とを備える。
このような発光装置50では、光源60から出射されて波長変換部材10を経由する光を所望の配光等に変更し得る光学部材52を通して外部に出射することができる。また、光源60から出射した光、例えば、レーザ光を、特定の角度で入射させるため、空間光変調器53を光源60と波長変換部材10との間に配置してもよい。
このような構成を有することにより、光源60からの光は、設計どおりに、その主要部分の略全てが波長変換部材10に入射する。そして、光の一部は、波長変換部材10の蛍光体含有部の蛍光体によって波長変換され、あるいは他の一部は反射され、それらの光は外部に向かう。これらの波長変換光と、波長変換されていない光とが混じり合い、例えば、白色光として外部に出射させることができる。そして、波長変換層の下方に配置された放熱部品が効果的に光照射による熱を放熱し、発光装置としての機能を長期にわたって維持することができる。
Embodiment 5: Light emitting device 50
The light emitting device 50 of the fifth embodiment includes, for example, a wavelength conversion member 10 and a light source 60 that irradiates a phosphor-containing portion of the wavelength conversion member 10 with light.
In such a light emitting device 50, the light emitted from the light source 60 and passing through the wavelength conversion member 10 can be emitted to the outside through an optical member 52 capable of changing the desired light distribution or the like. Further, in order to incident the light emitted from the light source 60, for example, the laser light, at a specific angle, the spatial light modulator 53 may be arranged between the light source 60 and the wavelength conversion member 10.
With such a configuration, almost all of the main portion of the light from the light source 60 is incident on the wavelength conversion member 10 as designed. Then, a part of the light is wavelength-converted by the phosphor in the phosphor-containing portion of the wavelength conversion member 10, or the other part is reflected, and the light goes to the outside. These wavelength-converted light and light that has not been wavelength-converted are mixed and can be emitted to the outside as, for example, white light. Then, the heat radiating component arranged below the wavelength conversion layer effectively dissipates the heat generated by the light irradiation, and the function as a light emitting device can be maintained for a long period of time.

光源60は、発光ダイオード(LED)及び半導体レーザ素子、又は、これらがパッケージ等に封入されたもの等が挙げられ、半導体レーザ装置であることが好ましい。半導体レーザ装置を用いることで、LEDを用いる場合と比較して蛍光体含有部の光入射面の面積を小さくすることができるため、発光装置50のサイズを小型化することができる。また、熱伝導部及び放熱部品によって放熱効果を効率的に確保することができる。
なお、空間光変調器53としては、MEMS(Micro Electro Mechanical Systems)等、当該分野で公知のものを用いることができる。
Examples of the light source 60 include a light emitting diode (LED) and a semiconductor laser element, or a device in which these are enclosed in a package or the like, and a semiconductor laser device is preferable. By using the semiconductor laser device, the area of the light incident surface of the phosphor-containing portion can be reduced as compared with the case of using the LED, so that the size of the light emitting device 50 can be reduced. In addition, the heat dissipation effect can be efficiently ensured by the heat conductive portion and the heat radiating component.
As the spatial light modulator 53, those known in the art such as MEMS (Micro Electro Mechanical Systems) can be used.

実施形態6:波長変換部材の製造方法
実施形態6の波長変換部材の製造方法は、熱伝導部と、この熱伝導部に接触する蛍光体含有部を一体的に焼結することによって波長変換層を形成する工程と、波長変換層に貫通孔を形成する工程と、ねじ穴を有する放熱部品を準備する工程と、貫通孔及びねじ穴にねじを嵌め込んで、波長変換層を放熱部品にねじ止め固定する工程とを含む。
このような製造方法により、波長変換部材の放熱部品からの剥がれ等が発生する可能性を低減して、波長変換部材の熱を効率的に放熱部品に放散することができる波長変換部材を、製造コストの低減を図り、簡便に製造することができる。
Embodiment 6: Manufacturing method of wavelength conversion member The manufacturing method of the wavelength conversion member of Embodiment 6 is a wavelength conversion layer by integrally sintering a heat conductive part and a phosphor-containing part in contact with the heat conductive part. The process of forming a through hole, the process of forming a through hole in the wavelength conversion layer, the process of preparing a heat radiation component having a screw hole, and the process of fitting a screw into the through hole and the screw hole to screw the wavelength conversion layer into the heat radiation component. Includes a step of stopping and fixing.
By such a manufacturing method, a wavelength conversion member capable of efficiently dissipating the heat of the wavelength conversion member to the heat radiating component by reducing the possibility of peeling of the wavelength conversion member from the heat radiating component is manufactured. The cost can be reduced and the product can be easily manufactured.

波長変換層を形成する工程は、上面、下面及び側面を有する前記蛍光体含有部を準備する工程と、蛍光体含有部を取り囲むように、前記蛍光体含有部の側方及び下方に無機材料からなる粉末を含む成形体を形成する工程、成形体を一体的に焼結する工程とを含むことが好ましい。
また、この工程においては、熱伝導部と熱伝導部に接触させた一体物に対して、焼結する前に、貫通孔を形成し、その後、焼結してもよい。
このような波長変換部材の製造方法により、熱伝導部と蛍光体含有部とが接着剤や接合層等によらずに一体的に形成され、且つ、それらを放熱部品にねじにより機械的に固定することができる。よって、各部材に熱膨張係数差があっても、固定強度には影響を及ぼし難い。つまり、蛍光体含有部が熱伝導部から脱離する可能性を低減することができる。また、蛍光体含有部に光が照射される際の蛍光体含有部の発熱を、熱伝導部に直接放散することができるため、効率的な放熱が期待できる。この結果、信頼性の高い波長変換部材を得ることが可能となる。以下に各工程について詳述する。
The steps of forming the wavelength conversion layer include a step of preparing the phosphor-containing portion having an upper surface, a lower surface and a side surface, and a step of preparing the phosphor-containing portion from an inorganic material laterally and below the phosphor-containing portion so as to surround the phosphor-containing portion. It is preferable to include a step of forming a molded body containing the powder and a step of integrally sintering the molded body.
Further, in this step, a through hole may be formed in the one piece in contact with the heat conductive portion and the heat conductive portion before sintering, and then sintered.
By such a method of manufacturing a wavelength conversion member, a heat conductive part and a phosphor-containing part are integrally formed without using an adhesive or a bonding layer, and they are mechanically fixed to heat-dissipating parts with screws. can do. Therefore, even if there is a difference in the coefficient of thermal expansion of each member, it is unlikely to affect the fixing strength. That is, the possibility that the phosphor-containing portion is separated from the heat conductive portion can be reduced. Further, since the heat generated by the phosphor-containing portion when the phosphor-containing portion is irradiated with light can be directly dissipated to the heat conductive portion, efficient heat dissipation can be expected. As a result, it is possible to obtain a highly reliable wavelength conversion member. Each step will be described in detail below.

〔波長変換層の準備〕
まず、波長変換層を準備する。
波長変換層は、セラミックス等の成形体からなる蛍光体含有部と粉粒の熱伝導部の材料とを一体的に成形したものを焼結することにより形成することができる。あるいは、粉粒の蛍光体含有部の材料と成形体からなる熱伝導部とを一体的に成形したものを焼結することにより形成することができる。
成形体は、スリップキャスト法、ドクターブレード法(シート成形法)、乾式成形法などを用いて成形することができる。焼結は、放電プラズマ焼結法(SPS法:spark plasma sintering法)又はホットプレス焼結法(HPS法:hot pressing sintering法)等を用いることができる。これらの方法として、例えば、特開2017−149929号公報等に記載の方法を利用することができる。また、蛍光体含有部の製造には、CIP(Cold Isostatic Pressing)、HIP(Hot Isostatic Pressing)等を用いることができる。
[Preparation of wavelength conversion layer]
First, a wavelength conversion layer is prepared.
The wavelength conversion layer can be formed by sintering a material obtained by integrally molding a phosphor-containing portion made of a molded body such as ceramics and a material for a heat conductive portion of powder particles. Alternatively, it can be formed by sintering a material obtained by integrally molding a material of a phosphor-containing portion of powder particles and a heat conductive portion made of a molded product.
The molded body can be molded by using a slip casting method, a doctor blade method (sheet molding method), a dry molding method, or the like. For sintering, a discharge plasma sintering method (SPS method: spark plasma sintering method), a hot pressing sintering method (HPS method: hot pressing sintering method), or the like can be used. As these methods, for example, the methods described in JP-A-2017-149929 can be used. Further, CIP (Cold Isostatic Pressing), HIP (Hot Isostatic Pressing) and the like can be used for producing the phosphor-containing portion.

例えば、波長変換層は、以下の方法又は例えば、特開2019−9406号公報の記載に準じた方法によって製造することができる。
(1)複数の凸部が表面側に設けられた、蛍光体を含む蛍光部材を準備し、粉末状の光反射部材を準備して、蛍光部材における複数の凸部の間に粉末状の光反射部材を配置する工程と、これらを焼結して蛍光部材と光反射部材とが一体に形成された焼結体(セラミックス)を得る工程と、蛍光部材の表面側又は裏面側の少なくとも一方の側から焼結体の一部を除去する工程とを有する製造方法。なお、粉末状の光反射部材に替えて、粉末状の光反射部材を含有するスラリーを用いてもよい。
(2)複数の凹部が表面側に設けられた光反射部材を準備し、蛍光体を含む粉末状の蛍光部材を準備し、光反射部材における複数の凹部に粉末状の蛍光部材を配置する工程と、これらを焼結して、光反射部材と蛍光部材とが一体に形成された焼結体を得る工程と、少なくとも光反射部材の裏面側から焼結体の一部を除去する工程とを有する製造方法。
(3)互いに反対側にある第1主面及び第2主面を貫通する複数の貫通孔が設けられた光反射部材を準備し、蛍光体を含む粉末状の蛍光部材を準備し、複数の貫通孔に粉末状の蛍光部材を配置する工程と、これらを焼結して、光反射部材と蛍光部材とが一体に形成された焼結体を得る工程と、蛍光部材の表面側又は裏面側の少なくとも一方の側から焼結体の一部を除去する工程とを有する製造方法。ここでの焼結体とは、蛍光部材と支持体とを一体的に焼結したものを意味する。焼結は、1100℃〜1800℃の温度範囲で行うことができる。焼結体を得た後、1000℃〜1500℃の温度範囲で熱処理してもよい。焼結体の一部を除去する方法としては、例えば、研削、研磨、化学機械研磨等が挙げられる。
For example, the wavelength conversion layer can be produced by the following method or, for example, a method according to the description of JP-A-2019-9406.
(1) A fluorescent member containing a phosphor in which a plurality of convex portions are provided on the surface side is prepared, a powdery light reflecting member is prepared, and powdery light is prepared between the plurality of convex portions in the fluorescent member. A step of arranging the reflective members, a step of sintering them to obtain a sintered body (ceramics) in which the fluorescent member and the light reflecting member are integrally formed, and at least one of the front surface side and the back surface side of the fluorescent member. A manufacturing method including a step of removing a part of a sintered body from the side. In addition, instead of the powder-like light-reflecting member, a slurry containing a powder-like light-reflecting member may be used.
(2) A step of preparing a light reflecting member provided with a plurality of recesses on the surface side, preparing a powdered fluorescent member containing a phosphor, and arranging the powdered fluorescent member in the plurality of recesses of the light reflecting member. A step of sintering these to obtain a sintered body in which a light reflecting member and a fluorescent member are integrally formed, and a step of removing at least a part of the sintered body from the back surface side of the light reflecting member. Manufacturing method to have.
(3) A light reflecting member provided with a plurality of through holes penetrating the first main surface and the second main surface on opposite sides is prepared, and a powdery fluorescent member containing a phosphor is prepared, and a plurality of light reflecting members are prepared. A step of arranging a powdery fluorescent member in the through hole, a step of sintering these to obtain a sintered body in which the light reflecting member and the fluorescent member are integrally formed, and a step of obtaining a sintered body on the front surface side or the back surface side of the fluorescent member. A manufacturing method comprising a step of removing a part of a sintered body from at least one side of the above. The sintered body here means a sintered body in which a fluorescent member and a support are integrally sintered. Sintering can be performed in the temperature range of 1100 ° C to 1800 ° C. After obtaining the sintered body, heat treatment may be performed in a temperature range of 1000 ° C. to 1500 ° C. Examples of the method for removing a part of the sintered body include grinding, polishing, and chemical mechanical polishing.

波長変換層は、まず複数の蛍光体含有部を準備し、その後、それらを囲む熱伝導部を焼結で形成する方法によって製造してもよい。具体的には、図3Aに示す波長変換層34を製造する場合、まず、図6に示すように、上面、下面及び側面を有する蛍光体含有部33を複数準備する。蛍光体含有部33は、当該分野で公知の材料によって成形したものを利用することができる。複数準備することにより、1回の焼結で複数の波長変換層を製造することができるため、量産性を向上させることができる。
次いで、図7A、7Bに示すように、1つの凹部31が設けられ、凹部31内に貫通孔に相当する複数の突起35が行列状に配置された支持体36を準備する。
そして、凹部31内に、蛍光体含有部33を配置し、この蛍光体含有部33を取り囲むように、蛍光体含有部33の側方及び上方に熱伝導部を形成するための無機材料からなる粉末322を配置し、成形体を形成する。複数の蛍光体含有部33は、例えば一対の突起35の間にそれぞれ配置される。粉末322は、突起35の側面も囲むように配置される。
その後、成形体を、上述したような方法により、一体的に焼結する。
続いて、図7A、7Bに示す破線Xで、支持体36とともに熱伝導部32を分割し、1つの波長変換層34を得る。これにより、図3Aに示すように、蛍光体含有部33の周囲に熱伝導部32が配置され、貫通孔34aを有する、所望の大きさの波長変換層34を得ることができる。
分割は、例えば、スクライブ、ダイシング等、当該分野で公知の方法を利用すればよい。また、分割は、例えば、得られた焼結体(セラミックス)を支持体36から外した後で行う。
The wavelength conversion layer may be manufactured by a method in which a plurality of phosphor-containing portions are first prepared and then a heat conductive portion surrounding them is formed by sintering. Specifically, when manufacturing the wavelength conversion layer 34 shown in FIG. 3A, first, as shown in FIG. 6, a plurality of phosphor-containing portions 33 having an upper surface, a lower surface, and a side surface are prepared. As the phosphor-containing portion 33, one molded from a material known in the art can be used. By preparing a plurality of wavelength conversion layers, a plurality of wavelength conversion layers can be manufactured by one sintering, so that mass productivity can be improved.
Next, as shown in FIGS. 7A and 7B, a support 36 is prepared in which one recess 31 is provided and a plurality of protrusions 35 corresponding to through holes are arranged in a matrix in the recess 31.
Then, the phosphor-containing portion 33 is arranged in the recess 31, and is made of an inorganic material for forming a heat conductive portion on the side and above of the phosphor-containing portion 33 so as to surround the phosphor-containing portion 33. The powder 322 is placed to form a molded product. The plurality of phosphor-containing portions 33 are arranged, for example, between a pair of protrusions 35. The powder 322 is arranged so as to surround the side surface of the protrusion 35.
Then, the molded product is integrally sintered by the method as described above.
Subsequently, the heat conductive portion 32 is divided together with the support 36 along the broken line X shown in FIGS. 7A and 7B to obtain one wavelength conversion layer 34. As a result, as shown in FIG. 3A, the heat conductive portion 32 is arranged around the phosphor-containing portion 33, and a wavelength conversion layer 34 having a through hole 34a and having a desired size can be obtained.
For the division, a method known in the art such as scribe, dicing and the like may be used. Further, the division is performed, for example, after removing the obtained sintered body (ceramics) from the support 36.

なお、1つの波長変換層を得る場合には、図7A、7Bに示す支持体36に代えて、図7C、7Dに示すような、1つの波長変換層に対応するサイズの1つの凹部31に一対の突起35を有する以外、図7A、7Bに示す支持体36と同様の支持体36Aを用いればよい。
また、波長変換層として、図4A、4Bに示す波長変換層44を製造する場合には、図7A及び7Bに示す支持体36に代えて、図8A及び8Bに示す支持体46を用いればよい。この支持体46を用い、蛍光体含有部43を、1つの凹部41における一対の突起45の間に複数、例えば、8個、等間隔に配置し、熱伝導部を形成するための無機材料からなる粉末422を配置して焼結し、分割することにより、図4A、4Bに示す、蛍光体含有部43の周囲にそれぞれ熱伝導部42が配置された所望の大きさの波長変換層44を得ることができる。
When one wavelength conversion layer is obtained, instead of the support 36 shown in FIGS. 7A and 7B, one recess 31 having a size corresponding to one wavelength conversion layer as shown in FIGS. 7C and 7D is used. A support 36A similar to the support 36 shown in FIGS. 7A and 7B may be used except that it has a pair of protrusions 35.
When the wavelength conversion layer 44 shown in FIGS. 4A and 4B is manufactured as the wavelength conversion layer, the support 46 shown in FIGS. 8A and 8B may be used instead of the support 36 shown in FIGS. 7A and 7B. .. Using this support 46, a plurality of fluorescent material-containing portions 43 are arranged between a pair of protrusions 45 in one recess 41, for example, eight at equal intervals, and are made of an inorganic material for forming a heat conductive portion. By arranging, sintering, and dividing the powder 422, the wavelength conversion layer 44 of a desired size in which the heat conductive portion 42 is arranged around the phosphor-containing portion 43 shown in FIGS. 4A and 4B is formed. Obtainable.

さらに、図3Aに示す波長変換層34を製造する別の方法として、まず、図6に示すように、上面、下面及び側面を有する蛍光体含有部33を複数準備する。
次いで、図9A、9Bに示すように、蛍光体含有部33を、平板状の支持部材80に行列状に配置し、仮止めする。作業性を考慮すると、支持部材80を用いることが好ましいが、支持部材80を用いなくてもよい。なお、スリップキャスト法(泥漿鋳込み成形法)を利用するために、例えば、支持部材80として石膏を用いることができる。
続いて、図10A、10Bに示すように、蛍光体含有部33の側方及び上方を蛍光体含有部33が囲むように、無機材料からなる光反射粉末を含む成形体38を形成する。成形体38は、スリップキャスト法、ドクターブレード法(シート成形法)、乾式成形法などを用いて成形することができる。成形体38を形成する前に、成形体38の外周となる領域に枠体を形成し、この枠体内に、成形体38を充填し、成形してもよい。
その後、支持部材80を除去し、任意に、成形体38内に含まれる有機物等を除去するために、成形体38を焼結する温度よりも低い温度で加熱して脱脂する。
次に、成形体38を、例えば、大気雰囲気下で本焼結し、蛍光体含有部33と熱伝導部32とを一体的に焼結する。
任意に熱伝導部32側から熱伝導部32を研磨して薄膜化し、熱伝導部32で分割し、熱伝導部32に貫通孔を、例えば、ドリル等を用いて形成することにより、図3A、3Bに示すように、蛍光体含有部33の周囲に熱伝導部32が配置された所望の大きさの波長変換層34を得ることができる。
Further, as another method for manufacturing the wavelength conversion layer 34 shown in FIG. 3A, first, as shown in FIG. 6, a plurality of phosphor-containing portions 33 having an upper surface, a lower surface, and a side surface are prepared.
Next, as shown in FIGS. 9A and 9B, the phosphor-containing portions 33 are arranged in a matrix on the flat plate-shaped support member 80 and temporarily fixed. Considering workability, it is preferable to use the support member 80, but the support member 80 may not be used. In addition, in order to utilize the slip casting method (slurry casting molding method), for example, gypsum can be used as the support member 80.
Subsequently, as shown in FIGS. 10A and 10B, a molded product 38 containing a light-reflecting powder made of an inorganic material is formed so that the phosphor-containing portion 33 surrounds the sides and the upper side of the phosphor-containing portion 33. The molded body 38 can be molded by using a slip casting method, a doctor blade method (sheet molding method), a dry molding method, or the like. Before forming the molded body 38, a frame body may be formed in a region to be the outer periphery of the molded body 38, and the molded body 38 may be filled in the frame body and molded.
After that, the support member 80 is removed, and optionally, in order to remove organic substances and the like contained in the molded body 38, the molded body 38 is heated at a temperature lower than the sintering temperature to degreas.
Next, the molded body 38 is main-sintered in, for example, an air atmosphere, and the phosphor-containing portion 33 and the heat conductive portion 32 are integrally sintered.
FIG. 3A is obtained by arbitrarily polishing the heat conductive portion 32 from the heat conductive portion 32 side to make it thin, dividing it by the heat conductive portion 32, and forming a through hole in the heat conductive portion 32 by using, for example, a drill or the like. As shown in 3B, it is possible to obtain a wavelength conversion layer 34 having a desired size in which the heat conductive portion 32 is arranged around the phosphor-containing portion 33.

〔放熱部品11の準備〕
図11Aに示すように、放熱部品11として、ねじ穴11aを有する平板状の放熱部品を準備する。ねじ穴11aは、放熱部品の材料に応じて、当該分野で公知の方法によって、形成することができる。例えば、ドリル等を用いる方法が挙げられる。
[Preparation of heat dissipation component 11]
As shown in FIG. 11A, a flat plate-shaped heat radiating component having a screw hole 11a is prepared as the heat radiating component 11. The screw hole 11a can be formed by a method known in the art, depending on the material of the heat radiating component. For example, a method using a drill or the like can be mentioned.

〔ねじ止め〕
図11Bに示すように、波長変換層34を放熱部品11上に載置し、波長変換層34の貫通孔34aと、放熱部品11のねじ穴11aを合わせ、これら貫通孔34a及びねじ穴11aにねじ15を嵌め込み、放熱部品11に波長変換層34をねじ止め固定する。
ねじ止めの際、放熱グリス等を放熱部品11と波長変換層34の間に配置してもよい。
これにより、熱伝導部32の下面全面を、放熱部品11に接触させることができ、熱引きを効率的に行うことができる波長変換部材30を製造することができる。
また、図1Cに示すように、ねじ15をねじ穴11aに嵌め込んだ後、ねじ15と波長変換層14の隙間に緩衝材16を注入してもよい。
[Screw]
As shown in FIG. 11B, the wavelength conversion layer 34 is placed on the heat radiating component 11, the through hole 34a of the wavelength conversion layer 34 and the screw hole 11a of the heat radiating component 11 are aligned, and the through hole 34a and the screw hole 11a are formed. The screw 15 is fitted, and the wavelength conversion layer 34 is screwed and fixed to the heat radiating component 11.
At the time of screwing, heat-dissipating grease or the like may be arranged between the heat-dissipating component 11 and the wavelength conversion layer 34.
As a result, the entire lower surface of the heat conductive portion 32 can be brought into contact with the heat radiating component 11, and the wavelength conversion member 30 capable of efficiently drawing heat can be manufactured.
Further, as shown in FIG. 1C, after fitting the screw 15 into the screw hole 11a, the cushioning material 16 may be injected into the gap between the screw 15 and the wavelength conversion layer 14.

10、20、30、40 波長変換部材
11 放熱部品
11a ねじ穴
12、32、42 熱伝導部
13、23、33、43 蛍光体含有部
14、24、34、44 波長変換層
14a、24a、34a、44a 貫通孔
15 ねじ
16 緩衝材
31 凹部
35、45 突起
36、36A 支持体
38 成形体
41 凹部
46 支持体
50 発光装置
52 光学部材
53 空間光変調器
60 光源
80 支持部材
111 ヒートシンク
112 金属基板
322、422 粉末
10, 20, 30, 40 Wavelength conversion member 11 Heat sink 11a Screw holes 12, 32, 42 Heat conduction parts 13, 23, 33, 43 Fluorescent material containing parts 14, 24, 34, 44 Wavelength conversion layers 14a, 24a, 34a , 44a Through hole 15 Thread 16 Cushioning material 31 Recess 35, 45 Protrusion 36, 36A Support 38 Molded body 41 Recess 46 Support 50 Light emitting device 52 Optical member 53 Spatial light modulator 60 Light source 80 Support member 111 Heat sink 112 Metal substrate 322 422 powder

Claims (12)

ねじ穴を有する放熱部品と、
前記放熱部品の上に配置され、熱伝導部及び該熱伝導部に接触する蛍光体含有部を有し、貫通孔を有する波長変換層と、
ねじとを備え、
前記波長変換層が、前記貫通孔及び前記ねじ穴に嵌め込まれた前記ねじによって前記放熱部品にねじ止め固定されてなる波長変換部材。
Heat dissipation parts with screw holes and
A wavelength conversion layer arranged on the heat radiating component, having a heat conductive portion and a phosphor-containing portion in contact with the heat conductive portion, and having through holes.
Equipped with screws,
A wavelength conversion member in which the wavelength conversion layer is screwed and fixed to the heat radiating component by the through hole and the screw fitted in the screw hole.
前記波長変換層は、前記熱伝導部及び前記蛍光体含有部との直接接合層又は一体焼結層である請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the wavelength conversion layer is a direct bonding layer or an integrally sintered layer between the heat conductive portion and the phosphor-containing portion. 前記熱伝導部がセラミックスにより形成されている請求項1又は2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2, wherein the heat conductive portion is made of ceramics. 前記波長変換層は、前記放熱部品の側から順に、前記熱伝導部と前記蛍光体含有部とを有し、
前記貫通孔が前記蛍光体含有部と前記熱伝導部とに配置されている請求項1から3のいずれか1つに記載の波長変換部材。
The wavelength conversion layer has the heat conductive portion and the phosphor-containing portion in this order from the side of the heat radiating component.
The wavelength conversion member according to any one of claims 1 to 3, wherein the through holes are arranged in the phosphor-containing portion and the heat conductive portion.
平面視において、前記蛍光体含有部の外縁が前記熱伝導部の外縁の内側に配置され、前記貫通孔が前記熱伝導部にのみ配置されている請求項1から3のいずれか1つに記載の波長変換部材。 The invention according to any one of claims 1 to 3, wherein in a plan view, the outer edge of the phosphor-containing portion is arranged inside the outer edge of the heat conductive portion, and the through hole is arranged only in the heat conductive portion. Wavelength conversion member. 前記蛍光体含有部及び前記熱伝導部が、それぞれ上面、下面及び側面を有し、前記蛍光体含有部の上面が、前記熱伝導部の上面と面一である請求項5に記載の波長変換部材。 The wavelength conversion according to claim 5, wherein the phosphor-containing portion and the heat conductive portion have upper surfaces, lower surfaces, and side surfaces, respectively, and the upper surface of the phosphor-containing portion is flush with the upper surface of the heat conductive portion. Element. 前記ねじは、ねじ頭を有し、該ねじ頭が前記波長変換層の上面と面一又は前記上面より前記放熱部品側にある請求項1から6のいずれか1つに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 6, wherein the screw has a screw head, and the screw head is flush with the upper surface of the wavelength conversion layer or is closer to the heat radiating component side from the upper surface. 前記熱伝導部は、光反射性の部材である請求項1から7のいずれか1つに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the heat conductive portion is a light-reflecting member. 前記貫通孔は、前記ねじとの間に隙間があり、前記隙間に緩衝材が埋め込まれている請求項1から8のいずれか1つに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, wherein the through hole has a gap between the screw and the screw, and a cushioning material is embedded in the gap. 請求項1から9のいずれか1つに記載の波長変換部材と、
前記波長変換部材の前記蛍光体含有部に光を照射する光源とを備える発光装置。
The wavelength conversion member according to any one of claims 1 to 9,
A light emitting device including a light source that irradiates the phosphor-containing portion of the wavelength conversion member with light.
熱伝導部及び該熱伝導部に接触する蛍光体含有部を一体的に焼結することによって波長変換層を形成する工程と、
前記波長変換層に貫通孔を形成する工程と、
ねじ穴を有する放熱部品を準備する工程と、
前記貫通孔及び前記ねじ穴にねじを嵌め込んで、前記波長変換層を前記放熱部品にねじ止め固定する工程とを含む波長変換部材の製造方法。
A step of forming a wavelength conversion layer by integrally sintering a heat conductive portion and a phosphor-containing portion in contact with the heat conductive portion, and
The step of forming a through hole in the wavelength conversion layer and
The process of preparing heat-dissipating parts with screw holes and
A method for manufacturing a wavelength conversion member, which comprises a step of fitting a screw into the through hole and the screw hole and screwing and fixing the wavelength conversion layer to the heat radiating component.
前記波長変換層を形成する工程は、
上面、下面及び側面を有する前記蛍光体含有部を準備する工程と、
前記蛍光体含有部を取り囲むように、前記蛍光体含有部の側方及び下方に無機材料からなる粉末を含む成形体を形成する工程と、
前記成形体を一体的に焼結する工程とを含む請求項11に記載の波長変換部材の製造方法。
The step of forming the wavelength conversion layer is
A step of preparing the phosphor-containing portion having an upper surface, a lower surface and a side surface, and
A step of forming a molded product containing a powder made of an inorganic material on the sides and below the phosphor-containing portion so as to surround the phosphor-containing portion.
The method for manufacturing a wavelength conversion member according to claim 11, which includes a step of integrally sintering the molded body.
JP2019238212A 2019-12-27 2019-12-27 Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member Pending JP2021105699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019238212A JP2021105699A (en) 2019-12-27 2019-12-27 Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238212A JP2021105699A (en) 2019-12-27 2019-12-27 Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member

Publications (1)

Publication Number Publication Date
JP2021105699A true JP2021105699A (en) 2021-07-26

Family

ID=76919258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238212A Pending JP2021105699A (en) 2019-12-27 2019-12-27 Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member

Country Status (1)

Country Link
JP (1) JP2021105699A (en)

Similar Documents

Publication Publication Date Title
US9909722B2 (en) Fluorescence-emitting light source unit
EP2684224B1 (en) A light emitting module, a lamp, a luminaire and a display device
EP2748872B1 (en) A light emitting module, a lamp, a luminaire and a display device
JP6044073B2 (en) Wavelength conversion device and light emitting device using the same
JP7157356B2 (en) Optical component and method for manufacturing optical component
TWI521746B (en) Light emitting device and method of manufacturing the light emitting device
JP7319549B2 (en) OPTICAL MEMBER, LIGHT EMITTING DEVICE, AND OPTICAL MEMBER MANUFACTURING METHOD
JP6511766B2 (en) Light emitting device
JP2015192100A (en) Light-emitting element and method of manufacturing light-emitting element
US10704777B2 (en) Fluorescent light source device and production process of same
US10670200B2 (en) Optical component and method of manufacturing same
EP3450413B1 (en) Fluorescent member, optical component, and light emitting device
JP6288115B2 (en) Wavelength conversion member and light source device using the same
JP2011171504A (en) Light-emitting device
JP2016058619A (en) Light-emitting device
JP7189422B2 (en) WAVELENGTH CONVERSION MEMBER COMPOSITE, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING WAVELENGTH CONVERSION MEMBER COMPOSITE
JP5266603B2 (en) Semiconductor light emitting device
JP2021105699A (en) Wavelength conversion member, light emitting device and manufacturing method for wavelength conversion member
US11870019B2 (en) Wavelength-converting member and light emitting device
WO2015003402A1 (en) Bearing heat-dissipating plate, led light source of remote fluorescent powder structure and production method therefor
JP2016119361A (en) Light-emitting device
JP2016134571A (en) Light-emitting apparatus and illumination apparatus
JP7053984B2 (en) Manufacturing method of optical parts and light emitting device, as well as optical parts and light emitting device
US20230299248A1 (en) Optical member, light-emitting device, method for manufacturing optical member, and method for manufacturing light-emitting device
JP6477734B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514