JP2021102184A - Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device - Google Patents
Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device Download PDFInfo
- Publication number
- JP2021102184A JP2021102184A JP2019233849A JP2019233849A JP2021102184A JP 2021102184 A JP2021102184 A JP 2021102184A JP 2019233849 A JP2019233849 A JP 2019233849A JP 2019233849 A JP2019233849 A JP 2019233849A JP 2021102184 A JP2021102184 A JP 2021102184A
- Authority
- JP
- Japan
- Prior art keywords
- membrane separation
- separation device
- immersion type
- type membrane
- processing unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 156
- 238000000926 separation method Methods 0.000 title claims abstract description 134
- 238000007654 immersion Methods 0.000 title claims abstract description 120
- 230000005856 abnormality Effects 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000012545 processing Methods 0.000 claims abstract description 69
- 239000012466 permeate Substances 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 31
- 238000011156 evaluation Methods 0.000 claims description 30
- 230000002159 abnormal effect Effects 0.000 claims description 22
- 238000002372 labelling Methods 0.000 claims description 17
- 238000010801 machine learning Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000011109 contamination Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000012806 monitoring device Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、浸漬型膜分離装置の異常判定方法及び浸漬型膜分離装置の異常判定装置に関し、例えば微生物を用いて有機性排水を浄化処理する生物処理で用いられる浸漬型膜分離装置に好適な浸漬型膜分離装置の異常判定方法及び浸漬型膜分離装置の異常判定装置に関する。 The present invention relates to an abnormality determination method for an immersion type membrane separation device and an abnormality determination device for an immersion type membrane separation device, and is suitable for, for example, an immersion type membrane separation device used in a biological treatment for purifying organic wastewater using microorganisms. The present invention relates to an abnormality determination method for an immersion type membrane separation device and an abnormality determination device for an immersion type membrane separation device.
特許文献1には、安価な汎用パーソナルコンピュータを用いた膜設置施設の遠隔監視装置が開示されている。当該膜設置施設の遠隔監視装置は、処理槽に浸漬設置した膜分離装置の膜汚染の指標となる所定のデータを、膜汚染検知手段により検知して遠隔監視装置の表示手段に表示させるように構成され、表示手段は膜分離装置の間欠濾過の開始停止に連動して起動停止するように構成されている。膜汚染検知手段として、排水ポンプの吸引側の圧力を検知する圧力検知手段や槽内の被処理液の液位を検知する液位検知手段が用いられている。
特許文献2には、膜分離装置の散気装置を遠隔監視制御することで膜分離装置全体を最適な状態で継続可能とする遠隔監視制御システムが提案されている。当該遠隔監視制御システムは、膜分離装置の運転データを取り込み保管する現地データ保管装置、保管した運転データを送受信する通信装置、通信装置から送信された運転データを受信して演算する演算装置、演算したデータに基づいて膜分離装置を制御する制御装置を備え、散気装置の運転を遠隔で制御するように構成されている。例えば、散気装置は、遠隔制御可能な圧力計を備え、得られた圧力が初期値より3kPa以上上昇した場合に散気装置の洗浄を実施するように構成されている。 Patent Document 2 proposes a remote monitoring and control system that enables the entire membrane separation device to be continuously monitored and controlled in an optimum state by remotely monitoring and controlling the air diffuser of the membrane separation device. The remote monitoring and control system is a local data storage device that captures and stores the operation data of the membrane separation device, a communication device that transmits and receives the stored operation data, a calculation device that receives and calculates the operation data transmitted from the communication device, and a calculation. It is equipped with a control device that controls the membrane separation device based on the obtained data, and is configured to remotely control the operation of the air diffuser. For example, the air diffuser is provided with a remotely controllable pressure gauge, and is configured to wash the air diffuser when the obtained pressure rises by 3 kPa or more from the initial value.
しかし、特許文献1に開示された従来の遠隔監視装置では、排水ポンプの吸引側の圧力を検知する圧力検知手段や槽内の被処理液の液位を検知する液位検知手段による瞬時的な出力に基づいて膜汚染の程度を監視するだけであり、膜分離装置の稼働状態を反映した適切な汚染の程度の評価を行なえるものではなかった。
However, in the conventional remote monitoring device disclosed in
また、特許文献2に開示された遠隔監視制御システムでは、単に分離膜の圧損値が高くなったときに散気装置の洗浄を行うだけであり、分離膜の状態を適切に判断できるものではなかった。 Further, the remote monitoring and control system disclosed in Patent Document 2 merely cleans the air diffuser when the pressure loss value of the separation membrane becomes high, and cannot appropriately determine the state of the separation membrane. It was.
本発明の目的は、上述した従来技術に鑑み、時系列で変化する浸漬型膜分離装置の履歴を加味して異常の発生の有無を適切に判断可能な浸漬型膜分離装置の異常判定方法及び浸漬型膜分離装置の異常判定装置を提供する点にある。 An object of the present invention is an abnormality determination method for an immersion type membrane separation device capable of appropriately determining the presence or absence of an abnormality in consideration of the history of the immersion type membrane separation device that changes over time in view of the above-mentioned prior art. The point is to provide an abnormality determination device for an immersion type membrane separation device.
上述の目的を達成するため、本発明による浸漬型膜分離装置の異常判定方法の第一の特徴構成は、浸漬型膜分離装置の異常判定方法であって、時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいて、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と、前記浸漬型膜分離装置で実測した特性値と、の比較に基づいて前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、を含む点にある。 In order to achieve the above object, the first characteristic configuration of the abnormality determination method of the immersion type membrane separation device according to the present invention is the abnormality determination method of the immersion type membrane separation device, which is the above-mentioned method for a predetermined period of time, which changes in time series. Based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device, a modeling process for generating in advance a time-series model with the intermembrane differential pressure of the immersion type membrane separation device as the characteristic value, and the characteristic value Whether or not an abnormality has occurred in the immersion type membrane separation device based on the comparison between the characteristic value calculated by the time series model from the actual measurement value of the permeate flow rate and the characteristic value actually measured by the immersion type membrane separation device. The point is that it includes an abnormality determination process for determining whether or not it is present.
時系列モデルとは、各時刻の観測値は前の時点から影響を受けており、独立なデータではないとの前提のもとに、現象の時間変動を分析し、将来を予測するモデルであり、モデリング処理では、時系列で変化する所定期間の浸漬型膜分離装置の膜間差圧と透過液流量に基づいて、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルが生成される。そして、当該時系列モデルを生成した後に異常判定処理が行なわれる。異常判定処理では、浸漬型膜分離装置を実測した特性値と時系列モデルで算出した特性値つまり予測値との比較に基づいて異常状態であるか否かが判定される。時系列モデルで算出した特性値と実際の特性値との間に差分などが生じると、時系列モデル生成時に想定されていない要因が何らかの影響を与えたと高い確率で判断できる。 The time series model is a model that analyzes the time fluctuation of the phenomenon and predicts the future on the assumption that the observed values at each time are influenced from the previous time point and are not independent data. In the modeling process, a time-series model in which the intermembrane differential pressure of the immersion type membrane separation device is used as a characteristic value based on the intermembrane differential pressure of the immersion type membrane separation device and the permeate flow rate that change over time is used. Will be generated. Then, after the time series model is generated, the abnormality determination process is performed. In the abnormality determination process, it is determined whether or not the state is abnormal based on the comparison between the characteristic value actually measured by the immersion type membrane separation device and the characteristic value calculated by the time series model, that is, the predicted value. If there is a difference between the characteristic value calculated by the time series model and the actual characteristic value, it can be determined with high probability that a factor not assumed at the time of generating the time series model has some influence.
同第二の特徴構成は、浸漬型膜分離装置の異常判定方法であって、時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいた機械学習を行なって、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と前記浸漬型膜分離装置を時系列で実測した特性値とを比較する比較演算処理と、前記比較演算処理で算出した評価値が所定の閾値以上であるか否かで前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、を含む点にある。 The second characteristic configuration is a method for determining an abnormality of the immersion type membrane separation device, which is based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change in time series. Machine learning was performed to generate a time-series model in advance using the intermembrane differential pressure of the immersion type membrane separation device as a characteristic value, and the time-series model was calculated from the characteristic values and the measured values of the permeate flow rate. The immersion type membrane is subjected to a comparison calculation process for comparing the characteristic value and the characteristic value actually measured by the immersion type membrane separation device in time series, and whether or not the evaluation value calculated by the comparison calculation process is equal to or higher than a predetermined threshold value. The point is that it includes an abnormality determination process for determining whether or not an abnormality has occurred in the separation device.
モデリング処理では、所定期間の浸漬型膜分離装置の膜間差圧と透過液流量を教師信号に用いた機械学習により、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルが生成される。比較演算処理では、時系列モデルで算出した特性値つまり予測値と実測した特性値とが比較され、その評価値が所定の閾値以上となる場合に浸漬型膜分離装置に異常が発生していると判定される。 In the modeling process, a time-series model in which the intermembrane differential pressure of the immersion type membrane separation device is used as a characteristic value is created by machine learning using the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period as a teacher signal. Will be generated. In the comparison calculation process, the characteristic value calculated by the time series model, that is, the predicted value and the actually measured characteristic value are compared, and when the evaluation value exceeds a predetermined threshold value, an abnormality has occurred in the immersion type membrane separation device. Is determined.
同第三の特徴構成は、上述の第二の特徴構成に加えて、前記比較演算処理で評価値が算出された各時刻に対応して、前記浸漬型膜分離装置で実測した特性値を正常または異常の何れかにラベリングするラベリング処理と、前記比較演算処理で算出された評価値が仮の閾値以上であるか否かに基づいて前記時系列モデルの各時刻の特性値を異常または正常と仮判定する仮判定処理と、前記ラベリング処理及び前記仮判定処理の結果に基づいて二値混同行列を生成する混同行列生成処理と、前記行列生成処理で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を前記所定の閾値として求める閾値設定処理と、
を実行することにより前記所定の閾値が設定される点にある。
In the third feature configuration, in addition to the second feature configuration described above, the characteristic values actually measured by the immersion type membrane separation device are normal corresponding to each time when the evaluation value is calculated by the comparison calculation process. Alternatively, the characteristic value at each time of the time-series model is regarded as abnormal or normal based on whether the evaluation value calculated by the comparison calculation process is equal to or higher than the provisional threshold and the labeling process for labeling any of the abnormalities. Calculated for a tentative determination process for tentative determination, a confusion matrix generation process for generating a binary confusion matrix based on the results of the labeling process and the tentative determination process, and a binary confusion matrix generated by the matrix generation process. A matrix setting process for obtaining a tentative threshold that maximizes the F value as the predetermined threshold, and
Is set at the point where the predetermined threshold value is set.
上述した所定の閾値は、二値混同行列を用いたF値演算を行なうことにより適切に求まる。先ず、比較演算処理で、時系列モデルで算出した特性値つまり予測値と実測した特性値とが比較される。その評価値に基づいて浸漬型膜分離装置に異常が発生していると判断できる場合にその実測値を異常とラベリングし、その評価値に基づいて浸漬型膜分離装置に異常が発生しておらず正常であると判断できる場合にその実測値を正常とラベリングする。次に、評価値が仮の閾値以上となる場合に対応する時系列モデルの特性値を異常と仮判定し、評価値が仮の閾値未満である場合に対応する時系列モデルの特性値を正常と仮判定する。換言すると仮判定は時系列モデルの特性値のラベリング処理ともいえる。このような処理結果に基づいて二値混同行列を生成してF値を算出する。仮の閾値を前回と異なる値に設定して同様の処理を複数行ない、算出されるF値が最大となる仮の閾値を所定の閾値として設定する。F値は、検出率R(Recall)と適合率P(Precision)の調和平均(F=2・R・P/(R+P))であり、F値が最大となる点において、両方の評価値が高い均衡をとる値となる。 The above-mentioned predetermined threshold value can be appropriately obtained by performing an F value operation using a binary confusion matrix. First, in the comparison calculation process, the characteristic value calculated by the time series model, that is, the predicted value and the actually measured characteristic value are compared. If it can be determined that an abnormality has occurred in the immersion type membrane separation device based on the evaluation value, the measured value should be labeled as an abnormality, and an abnormality has occurred in the immersion type membrane separation device based on the evaluation value. If it can be determined that it is normal, the measured value is labeled as normal. Next, the characteristic value of the time-series model corresponding to the case where the evaluation value is equal to or more than the provisional threshold is tentatively determined as abnormal, and the characteristic value of the time-series model corresponding to the case where the evaluation value is less than the provisional threshold is normal. Tentatively determined. In other words, the tentative judgment can be said to be the labeling process of the characteristic values of the time series model. Based on such a processing result, a binary confusion matrix is generated and an F value is calculated. A temporary threshold value is set to a value different from the previous value, a plurality of similar processes are performed, and a temporary threshold value that maximizes the calculated F value is set as a predetermined threshold value. The F value is a harmonic mean (F = 2 · R · P / (R + P)) of the detection rate R (Recall) and the precision rate P (Precision), and both evaluation values are at the maximum F value. It is a high equilibrium value.
同第四の特徴構成は、上述の第二または第三の特徴構成に加えて、所定時間継続して前記異常判定処理により異常が発生していると判定されると発報する発報処理を実行する点にある。 In the fourth feature configuration, in addition to the above-mentioned second or third feature configuration, a notification process for notifying when it is determined that an abnormality has occurred by the abnormality determination process continuously for a predetermined time is performed. It is in the point of execution.
異常判定処理によって所定時間継続して評価値が所定の閾値以上である場合に、発報処理を行なって具体的な対処を促す。 When the evaluation value is continuously equal to or higher than the predetermined threshold value by the abnormality determination process, the alarm processing is performed to prompt a specific action.
同第五の特徴構成は、上述の第一から第四の何れかの特徴構成に加えて、前記時系列モデルは、状態空間モデルである点にある。 The fifth feature configuration is that, in addition to any of the first to fourth feature configurations described above, the time series model is a state space model.
状態空間モデルは、状態方程式と観測方程式と呼ばれる2つの方程式によって時系列が表現される統計モデルである。 The state space model is a statistical model in which a time series is represented by two equations called a state equation and an observation equation.
本発明による浸漬型膜分離装置の異常判定装置の第一の特徴構成は、浸漬型膜分離装置の異常判定装置であって、時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいた機械学習を行なって、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理部と、特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と、前記浸漬型膜分離装置を時系列で実測した特性値と、を比較する比較演算処理部と、前記比較演算処理部で算出した評価値が所定の閾値以上であるか否かで前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理部と、を含む点にある。 The first characteristic configuration of the abnormality determination device of the immersion type membrane separation device according to the present invention is the abnormality determination device of the immersion type membrane separation device, which changes between the membranes of the immersion type membrane separation device for a predetermined period of time. A modeling processing unit that performs machine learning based on the measured values of the differential pressure and the permeate flow rate and pre-generates a time-series model using the intermembrane differential pressure of the immersion type membrane separation device as the characteristic value, and the characteristic value and permeation. Calculated by the comparison calculation processing unit and the comparison calculation processing unit that compare the characteristic value calculated by the time series model from the measured value of the liquid flow rate and the characteristic value measured by the immersion type membrane separation device in time series. The point includes an abnormality determination processing unit for determining whether or not an abnormality has occurred in the immersion type membrane separation device depending on whether or not the evaluation value is equal to or higher than a predetermined threshold value.
同第二の特徴構成は、上述の第一の特徴構成に加えて、前記比較演算処理部で評価値が算出された各時刻に対応して、前記浸漬型膜分離装置で実測した特性値を正常または異常の何れかにラベリングするラベリング処理部と、前記比較演算処理部で算出された評価値が仮の閾値以上であるか否かに基づいて前記時系列モデルの各時刻の特性値を異常または正常と仮判定する仮判定処理部と、前記ラベリング処理部及び前記仮判定処理部の結果に基づいて二値混同行列を生成する混同行列生成処理部と、前記行列生成処理部で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を前記所定の閾値として求める閾値設定処理部と、を備えている点にある。 In the second feature configuration, in addition to the first feature configuration described above, the characteristic values actually measured by the immersion type membrane separation device are obtained corresponding to each time when the evaluation value is calculated by the comparison calculation processing unit. The characteristic value of each time of the time series model is abnormal based on whether the evaluation value calculated by the labeling processing unit that labels either normal or abnormal and the evaluation value calculated by the comparison calculation processing unit is equal to or higher than a tentative threshold value. Alternatively, a tentative determination processing unit for tentatively determining normal, a confusion matrix generation processing unit for generating a binary confusion matrix based on the results of the labeling processing unit and the tentative determination processing unit, and two generated by the matrix generation processing unit. The point is that it includes a threshold value setting processing unit for obtaining a tentative threshold value at which the F value calculated for the value confusion matrix is maximized as the predetermined threshold value.
同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、所定時間継続して前記異常判定処理部により異常が発生していると判定されると発報する発報処理部を備えている点にある。 In the third feature configuration, in addition to the first or second feature configuration described above, a notification process for notifying that an abnormality has occurred is continuously determined by the abnormality determination processing unit for a predetermined time. The point is that it has a part.
以上説明した通り、本発明によれば、時系列で変化する浸漬型膜分離装置の履歴を加味して異常の発生の有無を適切に判断可能な浸漬型膜分離装置の異常判定方法及び浸漬型膜分離装置の異常判定装置を提供することができるようになった。 As described above, according to the present invention, an abnormality determination method and an immersion type of an immersion type membrane separation device capable of appropriately determining the presence or absence of an abnormality in consideration of the history of the immersion type membrane separation device that changes over time. It has become possible to provide an abnormality determination device for a membrane separation device.
以下に、本発明による浸漬型膜分離装置の異常判定方法及び浸漬型膜分離装置の異常判定装置を説明する。当該異常判定方法及び装置は、浸漬型膜分離装置が設置された排水処理施設の遠隔地に設置されたコンピュータ端末で浸漬型膜分離装置の異常判定を可能とする異常判定方法及び装置である。好ましくは、排水処理施設に設置された浸漬型膜分離装置に対する膜間差圧や透過水流量などの測定データが通信装置を介してクラウドサーバに集信され、クラウドサーバに接続されたコンピュータ端末で浸漬型膜分離装置の異常判定を行うように構成することができる。なお、コンピュータ端末は遠隔地に設置される態様に限るものではなく、排水処理施設に設置されたコンピュータ端末で施設内の浸漬型膜分離装置の異常判定を可能とする異常判定方法及び装置であってもよい。 The abnormality determination method of the immersion type membrane separation device and the abnormality determination device of the immersion type membrane separation device according to the present invention will be described below. The abnormality determination method and device are abnormality determination methods and devices that enable abnormality determination of the immersion type membrane separation device at a computer terminal installed at a remote location of a wastewater treatment facility where the immersion type membrane separation device is installed. Preferably, the measurement data such as the intermembrane differential pressure and the permeated water flow rate for the immersion type membrane separation device installed in the wastewater treatment facility are collected by the cloud server via the communication device, and the computer terminal connected to the cloud server. It can be configured to determine an abnormality in the immersion type membrane separation device. The computer terminal is not limited to the mode in which it is installed in a remote place, but is an abnormality determination method and device that enables an abnormality determination of the immersion type membrane separation device in the facility with the computer terminal installed in the wastewater treatment facility. You may.
[浸漬型膜分離装置の説明]
図1に示すように、浸漬型膜分離装置3は、膜分離活性汚泥法が採用された排水処理設備の膜分離槽1に浸漬配置され、平板状のろ板の両面に平膜型のろ過膜を配置した膜エレメントを縦姿勢で所定間隔を隔てて複数配列した膜モジュールを備えている。ろ過膜としては、例えばPET製の不織布でなる支持体に多孔性を有する樹脂が塗布及び含浸され、平均孔径が約0.2μmの微多孔性膜が形成された有機ろ過膜などがある。
[Explanation of immersion type membrane separation device]
As shown in FIG. 1, the immersion type
浸漬型膜分離装置3の下方に設置された散気装置4及びポンプ5を作動させることにより、膜分離槽1内の被処理水を浸漬型膜分離装置3でろ過して設定流量の透過水を得るろ過運転が実行され、例えば定期的にまたはろ過運転中の吸引圧が高くなると、槽内の活性汚泥の性状を保ちつつ浸漬型膜分離装置3のろ過膜のファウリングを防止するために、ポンプ5を停止させた状態で散気装置4のみ作動させるリラクゼーション運転が実行される。
By operating the
また、定期的にまたはリラクゼーション運転後の吸引圧が高くなると浸漬型膜分離装置3の2次側から薬液を注入して浸漬型膜分離装置3を洗浄する薬液洗浄工程が実行される。散気装置4にはブロワーファンBから空気が供給される。浸漬型膜分離装置3とポンプ5との間の管路には、膜間差圧を計測する圧力計Pと、透過液流量を計測する流量計Qが配置されている。
Further, when the suction pressure becomes high periodically or after the relaxation operation, a chemical solution cleaning step of injecting a chemical solution from the secondary side of the immersion type
[異常判定装置の説明]
図2に示すように、本発明による浸漬型膜分離装置の異常判定装置10は、時系列で変化する所定期間の浸漬型膜分離装置の膜間差圧と透過液流量を教師信号とする機械学習を行なって、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理部11と、モデリング処理部11で生成した時系列モデルで算出した特性値と浸漬型膜分離装置を時系列で実測した特性値との差分を算出する比較演算処理部12と、比較演算処理部12で算出した評価値が所定の閾値以上であるか否かにより浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理部13と、予め設定された所定時間継続して異常判定処理部13により異常が発生していると判定されると発報する発報処理部14を備えている。
[Explanation of abnormality determination device]
As shown in FIG. 2, the
時系列モデルとは、各時刻の観測値は前の時点から影響を受けており、独立なデータではないとの前提のもとに、現象の時間変動を分析し、将来を予測するモデルであり、モデリング処理では、時系列で変化する所定期間の浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいて、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルが生成される。そして、当該時系列モデルを生成した後に異常判定処理が行なわれる。異常判定処理では、浸漬型膜分離装置を時系列で実測した特性値と透過液流量の実測値を加味した前記時系列モデルで算出した特性値との差分に基づいて異常状態であるか否かが判定される。時系列モデルで算出した特性値と実際の特性値との間に差分が生じると、時系列モデル生成時に想定されていない要因が何らかの影響を与えたと高い確率で判断できる。 The time series model is a model that analyzes the time fluctuation of the phenomenon and predicts the future on the assumption that the observed values at each time are influenced from the previous time point and are not independent data. In the modeling process, when the intermembrane differential pressure of the immersion type membrane separation device is used as the characteristic value based on the measured values of the intermembrane differential pressure of the immersion type membrane separation device and the permeate flow rate that change over time. A series model is generated. Then, after the time series model is generated, the abnormality determination process is performed. In the abnormality determination process, whether or not the immersion type membrane separation device is in an abnormal state based on the difference between the characteristic value actually measured in time series and the characteristic value calculated by the time series model in consideration of the measured value of the permeate flow rate. Is determined. If there is a difference between the characteristic value calculated by the time series model and the actual characteristic value, it can be determined with high probability that a factor not assumed at the time of generating the time series model has some influence.
図5に示すように、各時刻(t1,t2,t3,・・・)における浸漬型膜分離装置の実際の状態、例えば膜の詰り具合を示す状態変数x1、x2、x3、・・・は以前の状態の影響を受けて変化する。その状態を膜間差圧という観測値y1、y2、y3、・・・で観測することができる。 As shown in FIG. 5, the actual state of the immersion type membrane separation device at each time (t1, t2, t3, ...), For example, the state variables x1, x2, x3, ... It changes under the influence of the previous state. The state can be observed with the observed values y1, y2, y3, ...
状態方程式は、以下の数式で表すことができる。
xt+1=ft(xt、vt)、vtは確率変数
t+1期はt期の状態と、何らかの説明変数とノイズを加味した確率変数vtに依存する関数で表すことができる。
観測方程式は、以下の数式で表すことができる。
yt=gt(xt、wt)、wtは確率変数
The equation of state can be expressed by the following equation.
x t + 1 = ft (x t , v t ), v t can be expressed by a function that depends on the state of the t period in the random variable t + 1 period and the random variable v t in which some explanatory variable and noise are added.
The observation equation can be expressed by the following mathematical formula.
y t = g t (x t , w t ), w t is a random variable
上述の観測方程式に基づいて状態変数xを推定することにより、状態空間モデルを得ることができる。つまり、時系列的にサンプリングされた所定期間内の膜間差圧と透過液流量を教師信号として機械学習することにより、状態空間モデルである時系列モデルが得られる。以下、本実施形態では浸漬型膜分離装置3を透過液流量一定の条件の下で濾過運転を行なうため、膜間差圧を特性値とする時系列モデルを生成する例を説明するが、膜間差圧一定の下でろ過運転を行なう場合には、透過液流量を特性値とする時系列モデルを生成することも可能である。
A state space model can be obtained by estimating the state variable x based on the above observation equation. That is, a time-series model, which is a state-space model, can be obtained by machine learning the intermembrane differential pressure and the permeate flow rate within a predetermined period sampled in time series as a teacher signal. Hereinafter, in the present embodiment, in order to perform the filtration operation of the immersion type
図3(a)には、モデリング処理部11で生成された時系列モデルで算出した特性値と、実際に測定された浸漬型膜分離装置の膜間差圧が重畳するようにプロットされている。時系列モデルで算出した特性値が破線で示され、実測値が実線で示されている。双方が重畳している領域は実線として認識される。
In FIG. 3A, the characteristic values calculated by the time-series model generated by the
図3(b)には、比較演算処理部12で算出された差分が示され、図3(c)には、図3(b)の差分を所定の閾値で二値化した特性が示されている。評価値が所定の閾値より大きい場合に1、評価値が所定の閾値未満の場合に0となる。
FIG. 3 (b) shows the difference calculated by the comparison
所定の閾値をどのように設定するかによって、異常判定の信頼性が左右されることが判る。そこで、異常判定装置10には、適切な閾値を決定する演算部が設けられている。
It can be seen that the reliability of the abnormality determination depends on how the predetermined threshold value is set. Therefore, the
即ち、予め、比較演算処理部15で差分が算出された各時刻に対応して、浸漬型膜分離装置で実測した時系列の特性値を正常または異常の何れかに人がラベリングするラベリング処理部16と、比較演算処理部12で算出された差分が仮の閾値以上となるか否かに基づいて時系列モデルの特性値を異常または正常と仮判定する仮判定処理部17と、ラベリング処理部16及び仮判定処理部17の結果に基づいて二値混同行列を生成する混同行列生成処理部18と、混同行列生成処理部18で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を所定の閾値として求める閾値設定処理部19と、を備えている。
That is, the labeling processing unit in which a person labels the characteristic values of the time series actually measured by the immersion type membrane separation device as either normal or abnormal in advance corresponding to each time when the difference is calculated by the comparison calculation processing unit 15. 16 and the provisional determination processing unit 17 that provisionally determines that the characteristic value of the time-series model is abnormal or normal based on whether or not the difference calculated by the comparison
先ず、比較演算処理部12で時系列モデルで算出した特性値と実測した特性値との差分が算出される。ラベリング処理部16は、その差分が生じた時刻の実測値に基づいて浸漬型膜分離装置に異常が発生していると人が判断できる場合にその実測値を異常とラベリングする。
First, the comparison
また、その差分が生じた時刻の実測値に基づいて浸漬型膜分離装置に異常が発生しておらず正常であると人が判断できる場合にはその実測値を正常とラベリングする。 Further, if a person can determine that the immersion type membrane separation device is normal without any abnormality based on the measured value at the time when the difference occurs, the measured value is labeled as normal.
次に、仮判定処理部17は、評価値が仮に設定した閾値以上となる場合に、対応する時系列モデルの特性値を異常と仮判定し、評価値が仮の閾値未満である場合に、対応する時系列モデルの特性値を正常と仮判定する。換言すると仮判定処理は、時系列モデルの特性値のラベリング処理ともいえる。 Next, the tentative determination processing unit 17 tentatively determines the characteristic value of the corresponding time series model as abnormal when the evaluation value is equal to or higher than the tentatively set threshold value, and when the evaluation value is less than the tentative threshold value, Temporarily determine that the characteristic value of the corresponding time series model is normal. In other words, the tentative judgment process can be said to be a labeling process for the characteristic values of the time series model.
このような処理結果に基づいて二値混同行列を生成してF値を算出する。
図6には、二値混同行列が示されている。実測値と時系列モデル(状態空間モデル)の双方で異常と判断される領域がTP(True Positive)、実測値と時系列モデル(状態空間モデル)の双方で正常と判断される領域がTN(True Negative)、実測値で異常、時系列モデル(状態空間モデル)で正常と判断される領域がFN(False Negative)、実測値で正常、時系列モデル(状態空間モデル)で異常と判断される領域がFP(False Positive)となる。
Based on such a processing result, a binary confusion matrix is generated and an F value is calculated.
FIG. 6 shows a binary confusion matrix. The area judged to be abnormal by both the measured value and the time series model (state space model) is TP (True Positive), and the area judged to be normal by both the measured value and the time series model (state space model) is TN ( True Negative), the measured value is abnormal, the area judged to be normal by the time series model (state space model) is judged to be normal by FN (False Negative), the measured value is normal, and the time series model (state space model) is judged to be abnormal. The area becomes FP (False Positive).
判定精度を高めるためには、取りこぼしなく異常なデータを正しく異常と推定する検出率R(Recall:R=TP/(TP+FN))と、異常と分類されたデータの中で実際に異常だったデータの割合である適合率P(Precision:P=TP/(TP+FP))の双方が高いことが望まれる。 In order to improve the judgment accuracy, the detection rate R (Recall: R = TP / (TP + FN)), which correctly estimates abnormal data as abnormal without missing data, and the data classified as abnormal are actually abnormal. It is desirable that both the precision ratio P (Precision: P = TP / (TP + FP)), which is the ratio of the data, is high.
そこで、閾値設定処理部19は、閾値を様々に変化させたときの検出率Rと適合率Pの調和平均であるF値(F=2・R・P/(R+P))を算出し、F値の値が最大となるときの閾値を所定の閾値として設定するように構成されている。 Therefore, the threshold value setting processing unit 19 calculates an F value (F = 2 · R · P / (R + P)) which is a harmonic mean of the detection rate R and the precision rate P when the threshold value is changed in various ways, and F. It is configured to set a threshold value when the value of the value becomes maximum as a predetermined threshold value.
図4には、横軸に閾値、縦軸にF値、検出率R、適合率Pをプロットした特性図が示されている。図3(b)の例では、所定の閾値を「6」に設定する場合にF値が最大になる。 FIG. 4 shows a characteristic diagram in which the threshold value is plotted on the horizontal axis, the F value, the detection rate R, and the precision rate P are plotted on the vertical axis. In the example of FIG. 3B, the F value becomes maximum when the predetermined threshold value is set to “6”.
状態空間モデルは、状態方程式と観測方程式と呼ばれる2つの方程式によって時系列が表現される統計モデルである。 The state space model is a statistical model in which a time series is represented by two equations called a state equation and an observation equation.
特性値として浸漬型膜分離装置の膜間差圧を採用すると、浸漬型膜分離装置の膜詰まりの状態を適切に検出することができる点で好ましい。しかし、上述したように特性値として浸漬型膜分離装置の透過液流量を採用することも可能である。 Adopting the intermembrane differential pressure of the immersion type membrane separation device as a characteristic value is preferable in that the state of membrane clogging of the immersion type membrane separation device can be appropriately detected. However, as described above, it is also possible to adopt the permeate flow rate of the immersion type membrane separation device as a characteristic value.
以上説明したように、本発明による浸漬型膜分離装置の異常判定方法は、時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいて、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、特性値と透過液流量の実測値から時系列モデルで算出した特性値と、浸漬型膜分離装置で実測した特性値と、の比較に基づいて浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、を含む。 As described above, the method for determining an abnormality of the immersion type membrane separation device according to the present invention is based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change in time series. Modeling process to generate a time-series model in advance with the intermembrane differential pressure of the immersion type membrane separation device as the characteristic value, the characteristic value calculated by the time-series model from the characteristic value and the measured value of the permeate flow rate, and the immersion type membrane separation It includes an abnormality determination process for determining whether or not an abnormality has occurred in the immersion type membrane separation apparatus based on a comparison between the characteristic value actually measured by the apparatus.
また、時系列で変化する所定期間の浸漬型膜分離装置の膜間差圧と透過液流量の実測値を教師信号とする機械学習を行なって、浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、特性値と透過液流量の実測値から時系列モデルで算出した特性値と浸漬型膜分離装置を時系列で実測した特性値とを比較する比較演算処理と、比較演算処理で算出した評価値が所定の閾値以上であるか否かで浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、を含む。 In addition, machine learning is performed using the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change over time as a teacher signal, and the intermembrane differential pressure of the immersion type membrane separation device is characterized. Compare the modeling process that generates a time-series model as a value in advance with the characteristic value calculated by the time-series model from the characteristic value and the measured value of the permeate flow rate and the characteristic value actually measured by the immersion type membrane separation device in time series. It includes a comparison calculation process and an abnormality determination process for determining whether or not an abnormality has occurred in the immersion type membrane separation device depending on whether or not the evaluation value calculated by the comparison calculation process is equal to or higher than a predetermined threshold value.
比較演算処理で評価値が算出された各時刻に対応して、浸漬型膜分離装置で実測した特性値を正常または異常の何れかにラベリングするラベリング処理と、比較演算処理で算出された評価値が仮の閾値以上となるか否かに基づいて時系列モデルの特性値を異常または正常と仮判定する仮判定処理と、ラベリング処理及び仮判定処理の結果に基づいて二値混同行列を生成する混同行列生成処理と、行列生成処理で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を所定の閾値として求める閾値設定処理と、を実行することにより所定の閾値が設定される。 A labeling process that labels the characteristic values measured by the immersion type membrane separation device to either normal or abnormal corresponding to each time when the evaluation value is calculated by the comparison calculation process, and an evaluation value calculated by the comparison calculation process. A tentative judgment process for tentatively determining the characteristic value of the time series model as abnormal or normal based on whether or not is equal to or higher than the tentative threshold value, and a binary confusion matrix are generated based on the results of the labeling process and the tentative judgment process. By executing the confusion matrix generation process and the threshold value setting process for obtaining a tentative threshold value that maximizes the F value calculated for the binary confusion matrix generated in the matrix generation process as a predetermined threshold value, a predetermined threshold value can be obtained. Set.
上述した実施形態では、浸漬型膜分離装置3の異常を判定するための評価値として、時系列モデルで算出した特性値と実測した特性値との差分値を用いているが、評価値としては他に2つの特性値の比率や2つの特性値の変化率の差分値などであってもよい。
In the above-described embodiment, the difference value between the characteristic value calculated by the time series model and the measured characteristic value is used as the evaluation value for determining the abnormality of the immersion type
上述した実施形態では、所定時間継続して異常判定処理部13により異常が発生していると判定されると発報処理部14で発報する場合を説明したが、異常の発報は所定期間における異常判定回数や閾値を超えた量の累積値に上限を設けておいて、上限値を超えると発報するようにしてもよい。
In the above-described embodiment, the case where the
上述した実施形態では、浸漬型膜分離装置が、膜分離活性汚泥法が採用された汚水処理設備に用いられる平膜型の膜分離装置である場合を説明したが、平膜に限るものではなく、中空糸膜や多孔質セラミック膜などにも適用可能である。 In the above-described embodiment, the case where the immersion type membrane separation device is a flat membrane type membrane separation device used in a sewage treatment facility in which the membrane separation active sludge method is adopted has been described, but the present invention is not limited to the flat membrane. It can also be applied to hollow fiber membranes and porous ceramic membranes.
また、浄水処理プラント、下水処理プラント、産業配水処理プラントなどの水処理施設に用いられる浸漬型膜分離装置に対しても本発明を適用可能である。 The present invention can also be applied to an immersion type membrane separation device used in a water treatment facility such as a water purification plant, a sewage treatment plant, and an industrial water distribution treatment plant.
上述した実施形態は本発明の一例に過ぎず、本発明による作用効果を奏する範囲において各機能ブロックの具体的構成は適宜変更設計可能であることはいうまでもない。 It goes without saying that the above-described embodiment is merely an example of the present invention, and the specific configuration of each functional block can be appropriately modified and designed within the range in which the action and effect according to the present invention are exhibited.
1:膜分離槽
3:浸漬型膜分離装置
4:散気装置
5:ポンプ
10:異常判定装置
11:モデリング処理部
12,15:比較演算処理部
13:異常判定処理部
14:発報処理部
16:ラベリング処理部
17:仮判定処理部
18:混同行列生成処理部
19:閾値設定処理部
1: Membrane separation tank 3: Immersion type membrane separation device 4: Air diffuser 5: Pump 10: Abnormality determination device 11:
Claims (8)
時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいて、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、
特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と、前記浸漬型膜分離装置で実測した特性値と、の比較に基づいて前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、
を含む浸漬型膜分離装置の異常判定方法。 This is a method for determining abnormalities in the immersion type membrane separation device.
Based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change in time series, a time series model in which the intermembrane differential pressure of the immersion type membrane separation device is used as a characteristic value is created. Modeling process generated in advance and
An abnormality occurred in the immersion type membrane separator based on a comparison between the characteristic value calculated by the time series model from the measured value of the characteristic value and the permeate flow rate and the characteristic value actually measured by the immersion type membrane separation device. Abnormality judgment processing to determine whether or not it is
Abnormality determination method of the immersion type membrane separation device including.
時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいた機械学習を行なって、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理と、
特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と前記浸漬型膜分離装置を時系列で実測した特性値とを比較する比較演算処理と、
前記比較演算処理で算出した評価値が所定の閾値以上であるか否かで前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理と、
を含む浸漬型膜分離装置の異常判定方法。 This is a method for determining abnormalities in the immersion type membrane separation device.
Machine learning is performed based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change in time series, and the intermembrane differential pressure of the immersion type membrane separation device is used as a characteristic value. Modeling process to generate a time series model in advance
Comparison calculation processing that compares the characteristic value calculated by the time series model from the measured value of the characteristic value and the permeate flow rate with the characteristic value actually measured by the immersion type membrane separation device in time series.
An abnormality determination process for determining whether or not an abnormality has occurred in the immersion type membrane separation device based on whether or not the evaluation value calculated by the comparison calculation process is equal to or higher than a predetermined threshold value.
Abnormality determination method of the immersion type membrane separation device including.
前記比較演算処理で算出された評価値が仮の閾値以上であるか否かに基づいて前記時系列モデルの各時刻の特性値を異常または正常と仮判定する仮判定処理と、
前記ラベリング処理及び前記仮判定処理の結果に基づいて二値混同行列を生成する混同行列生成処理と、
前記行列生成処理で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を前記所定の閾値として求める閾値設定処理と、
を実行することにより前記所定の閾値が設定される請求項2記載の浸漬型膜分離装置の異常判定方法。 A labeling process that labels the characteristic values actually measured by the immersion type membrane separation device to either normal or abnormal corresponding to each time when the evaluation value is calculated by the comparison calculation process.
A tentative determination process for tentatively determining the characteristic value at each time of the time series model as abnormal or normal based on whether or not the evaluation value calculated by the comparison calculation process is equal to or higher than the tentative threshold value.
A confusion matrix generation process that generates a binary confusion matrix based on the results of the labeling process and the tentative determination process, and
A threshold setting process for obtaining a tentative threshold value at which the F value calculated for the binary confusion matrix generated in the matrix generation process is maximized as the predetermined threshold value, and
The method for determining an abnormality of the immersion type membrane separation device according to claim 2, wherein the predetermined threshold value is set by executing the above method.
時系列で変化する所定期間の前記浸漬型膜分離装置の膜間差圧と透過液流量の実測値に基づいた機械学習を行なって、前記浸漬型膜分離装置の膜間差圧を特性値とする時系列モデルを予め生成するモデリング処理部と、
特性値と透過液流量の実測値から前記時系列モデルで算出した特性値と、前記浸漬型膜分離装置を時系列で実測した特性値と、を比較する比較演算処理部と、
前記比較演算処理部で算出した評価値が所定の閾値以上であるか否かで前記浸漬型膜分離装置に異常が発生しているか否かを判定する異常判定処理部と、
を含む浸漬型膜分離装置の異常判定装置。 It is an abnormality judgment device for the immersion type membrane separation device.
Machine learning is performed based on the measured values of the intermembrane differential pressure and the permeate flow rate of the immersion type membrane separation device for a predetermined period that change in time series, and the intermembrane differential pressure of the immersion type membrane separation device is used as a characteristic value. A modeling processing unit that generates a time-series model in advance,
A comparison calculation processing unit that compares the characteristic value calculated by the time-series model from the measured value of the characteristic value and the permeate flow rate with the characteristic value actually measured by the immersion type membrane separation device in time series.
An abnormality determination processing unit that determines whether or not an abnormality has occurred in the immersion type membrane separation device based on whether or not the evaluation value calculated by the comparison calculation processing unit is equal to or higher than a predetermined threshold value.
Abnormality determination device for immersion type membrane separation device including.
前記比較演算処理部で算出された評価値が仮の閾値以上であるか否かに基づいて前記時系列モデルの各時刻の特性値を異常または正常と仮判定する仮判定処理部と、
前記ラベリング処理部及び前記仮判定処理部の結果に基づいて二値混同行列を生成する混同行列生成処理部と、
前記行列生成処理部で生成した二値混同行列に対して算出したF値が最大となる仮の閾値を前記所定の閾値として求める閾値設定処理部と、
を備えている請求項6記載の浸漬型膜分離装置の異常判定装置。 A labeling processing unit that labels the characteristic values actually measured by the immersion type membrane separation device to either normal or abnormal corresponding to each time when the evaluation value is calculated by the comparison calculation processing unit.
A provisional determination processing unit that provisionally determines whether the characteristic value at each time of the time series model is abnormal or normal based on whether or not the evaluation value calculated by the comparison calculation processing unit is equal to or higher than the provisional threshold value.
A confusion matrix generation processing unit that generates a binary confusion matrix based on the results of the labeling processing unit and the provisional determination processing unit, and
A threshold setting processing unit that obtains a tentative threshold value at which the F value calculated for the binary confusion matrix generated by the matrix generation processing unit is maximum as the predetermined threshold value.
6. The abnormality determination device for the immersion type membrane separation device according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019233849A JP2021102184A (en) | 2019-12-25 | 2019-12-25 | Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019233849A JP2021102184A (en) | 2019-12-25 | 2019-12-25 | Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021102184A true JP2021102184A (en) | 2021-07-15 |
Family
ID=76754687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019233849A Pending JP2021102184A (en) | 2019-12-25 | 2019-12-25 | Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021102184A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126882A (en) * | 1994-10-28 | 1996-05-21 | Toshiba Corp | Device for controlling operation of water generating plant |
WO2014112568A1 (en) * | 2013-01-18 | 2014-07-24 | 株式会社 東芝 | Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program |
-
2019
- 2019-12-25 JP JP2019233849A patent/JP2021102184A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126882A (en) * | 1994-10-28 | 1996-05-21 | Toshiba Corp | Device for controlling operation of water generating plant |
WO2014112568A1 (en) * | 2013-01-18 | 2014-07-24 | 株式会社 東芝 | Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102330143B1 (en) | Intelligent fluid filtration management system | |
JP5677476B2 (en) | Membrane fouling diagnosis / control device, membrane fouling diagnosis / control method, and membrane fouling diagnosis / control program | |
JPH08126882A (en) | Device for controlling operation of water generating plant | |
JP5259467B2 (en) | Remote monitoring and control system | |
JP2014526957A (en) | How to maintain process stream water quality | |
US20170246565A1 (en) | Clogging estimation method and filter monitoring system | |
JP5961326B2 (en) | Device monitoring system, device monitoring program, and device monitoring method | |
KR102325991B1 (en) | Intelligent asset management system for wastewater treatment facilities and the operation method using it | |
Sabia et al. | Online monitoring of MBR fouling by transmembrane pressure and permeability over a long-term experiment | |
JPWO2017221984A1 (en) | Trouble determination program, trouble determination device, and recording medium for fresh water generation system | |
KR102041670B1 (en) | Membrane filtration system being capable of diagnosing fouling of membrane separation module | |
WO2015198898A1 (en) | Plant abnormality predicting device, abnormality predicting device, display device and display method | |
JP2021102184A (en) | Abnormality determination method for immersion type membrane separation device and abnormality determination apparatus for immersion type membrane separation device | |
JPH0839065A (en) | Operation control device of water making plant | |
JP2005288220A (en) | Water quality modifying system | |
KR20160057595A (en) | Maintenance Cleaning Method of Membrane Precess by TMP and Variation Coefficient | |
JP2003311261A (en) | Membrane type water purification equipment operation support service server | |
JPH10286445A (en) | Membrane separator | |
JPH10314733A (en) | Remotely monitoring apparatus for membrane installed facility | |
JP4903464B2 (en) | Method and system for detecting reliable membrane breakage | |
KR20180113939A (en) | Individual sewage treatment facility monitoring system through smart device | |
KR20150138940A (en) | Hollow fiber membrane and method of detecting damage of membrane thereof | |
JP7462549B2 (en) | Method for detecting abnormalities in a submerged membrane separation device | |
CN113713624B (en) | Double-ceramic-membrane integrated device for sewage treatment and pressure fault judgment method | |
US20240124333A1 (en) | Method for controlling ro system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230531 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230829 |