JP2021099132A - Pipe joint structure for refrigerant - Google Patents

Pipe joint structure for refrigerant Download PDF

Info

Publication number
JP2021099132A
JP2021099132A JP2019231194A JP2019231194A JP2021099132A JP 2021099132 A JP2021099132 A JP 2021099132A JP 2019231194 A JP2019231194 A JP 2019231194A JP 2019231194 A JP2019231194 A JP 2019231194A JP 2021099132 A JP2021099132 A JP 2021099132A
Authority
JP
Japan
Prior art keywords
pipe
tip
diameter
ring
tip diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019231194A
Other languages
Japanese (ja)
Other versions
JP6678981B1 (en
Inventor
井上 智史
Tomohito Inoue
智史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2019231194A priority Critical patent/JP6678981B1/en
Application granted granted Critical
Publication of JP6678981B1 publication Critical patent/JP6678981B1/en
Publication of JP2021099132A publication Critical patent/JP2021099132A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joints With Pressure Members (AREA)

Abstract

To provide a pipe joint structure that has excellent sealing performance and a large anti-drawing force, can support a significant temperature fluctuation of refrigerant and has a long life.SOLUTION: A pipe joint structure for refrigerant includes a flare joint body 20 and a box nut 15. A pipe to be connected P is formed with a tip diameter enlarged pipe part 5 across a specified shaft center dimension from a tip surface 3. A closed annular ring 25 is externally fitted to the tip diameter enlarged pipe part 5 beyond a tapered-stepped part 10 of the pipe P and connected thereto by being applied with a squeezing force so as to come into pressure-contact with a connection cylinder part 31 of an in-core 30.SELECTED DRAWING: Figure 3

Description

本発明は、冷媒用管継手構造に関する。 The present invention relates to a pipe joint structure for a refrigerant.

従来から、図11に示すフレア継手は広く知られている。一般に、このフレア継手は、図11に示すように、パイプPの端部にフレア加工部fを作業工具(治具)によって塑性加工することで形成していた。フレア継手本体hのテーパ部aに当てて袋ナットnにて締付け、袋ナットnのテーパ面tとフレア継手本体hのテーパ部aにて挾圧し、金属面の相互圧接にて密封性を確保する構成である(例えば、特許文献1参照)。作業現場にて、被接続用パイプPの端部に、専用治具(作業工具)を使用してフレア加工部fを形成する際に、テーパ状への大きな塑性変形によって、フレア加工部fの小径側角部f1 に亀裂を生じ易い。特に、パイプPの材質をAlとした場合には、その亀裂発生率が高い。また、(パイプPがCuでも、Alでも、)作業現場におけるフレア加工によって品質のバラツキが発生し易い等の問題があった。
そこで、図9と図10に示すような構造の管継手構造が提案されている(特許文献2参照)。
Conventionally, the flare joint shown in FIG. 11 is widely known. Generally, as shown in FIG. 11, this flared joint is formed by plastic working a flared portion f at the end of a pipe P with a work tool (jig). It is applied to the tapered portion a of the flare joint body h and tightened with a cap nut n, and is pressed by the tapered surface t of the cap nut n and the tapered portion a of the flare joint body h to ensure sealing by mutual pressure welding of metal surfaces. (See, for example, Patent Document 1). At the work site, when the flare processing portion f is formed at the end of the connected pipe P using a special jig (work tool), the flare processing portion f is formed due to a large plastic deformation in a tapered shape. easy to crack the small-diameter side corner portion f 1. In particular, when the material of the pipe P is Al, the crack generation rate is high. In addition, there is a problem that quality variation is likely to occur due to flaring at the work site (whether the pipe P is Cu or Al).
Therefore, a pipe joint structure having a structure as shown in FIGS. 9 and 10 has been proposed (see Patent Document 2).

特開2005−42858号公報Japanese Unexamined Patent Publication No. 2005-42858 特開2010−270846号公報Japanese Unexamined Patent Publication No. 2010-270846

図9,図10に示す管継手構造は、フレア継手本体82と袋ナット83を有し、内部に引抜阻止部材81を備えた構成であって、パイプ先端にフレア加工も、その他の加工も省略できるという優れた点もあるが、極めて超精密な、爪80を有する引抜阻止部材81を必要とした。そのため製作が難しく、コスト高となるという問題が残されている。また、パイプPに回転トルクが作用すると、爪80によって螺旋溝が形成されながらパイプ引抜けが生ずる場合もある。
さらに、図9,図10の管継手構造では、(複数個の)Oリング84,85等のシール材を必要としている。このゴム製のOリング84,85等のシール材では、使用温度が、−50℃〜+130℃の大きな温度変化には耐えることが困難であり、耐久性及び密封性の面で問題が残っている。
The pipe joint structure shown in FIGS. 9 and 10 has a flare joint body 82 and a cap nut 83, and has a pull-out prevention member 81 inside, and flare processing and other processing are omitted at the pipe tip. Although it has the advantage of being able to do so, it required an extremely precise pull-out prevention member 81 having a claw 80. Therefore, there remains a problem that it is difficult to manufacture and the cost is high. Further, when a rotational torque acts on the pipe P, the pipe may be pulled out while the spiral groove is formed by the claw 80.
Further, the pipe joint structures of FIGS. 9 and 10 require sealing materials such as (plural) O-rings 84 and 85. With this rubber O-ring 84, 85 or the like, it is difficult for the operating temperature to withstand a large temperature change of -50 ° C to + 130 ° C, and problems remain in terms of durability and sealing performance. There is.

そこで、本発明は、このような問題を解決して、超精密部品を省略でき、製作も容易でコストダウンを図り得て、コンパクトで接続作業も安定して容易に行い得る管継手構造を提供することを目的とする。特に、冷媒配管用として、過酷な温度変化に十分耐えて、寿命が長く、好適な管継手構造を提供することを他の目的とする。 Therefore, the present invention provides a pipe joint structure that solves such a problem, can omit ultra-precision parts, is easy to manufacture, can reduce costs, is compact, and can perform stable and easy connection work. The purpose is to do. In particular, for refrigerant piping, another object is to provide a suitable pipe joint structure that can sufficiently withstand severe temperature changes and has a long life.

そこで、本発明は、雄ネジ部と先端縮径テーパ部を有するフレア継手本体と、上記雄ネジ部に螺着される雌ネジ部を有する袋ナットとを、備え、被接続用パイプは、先端面から所定軸心寸法に渡って先端拡径管部が形成されると共に、上記先端拡径管部と基本径管部との境界には、テーパ状段付部が形成され、上記パイプの上記先端拡径管部に内挿される接続筒部と、上記先端縮径テーパ部に当接する勾配面を有するインコアを備え、上記袋ナットのフレア継手本体への螺進により、上記パイプのテーパ状段付部を経て上記先端拡径管部に外嵌される閉円環状リングを、上記袋ナットの内部に設け、上記リングのラジアル内方向への縮径付勢力にて、上記パイプの先端拡径管部と上記インコアの接続筒部との密封状態を保ち、さらに、上記袋ナットのフレア継手本体への螺着に伴うアキシャル方向の力を、上記リングを介してインコアに伝達して、上記フレア継手本体の先端縮径テーパ部と、インコアの勾配面との圧接密封状態を保つように構成したものである。 Therefore, the present invention includes a flare joint body having a male threaded portion and a tapered tip diameter portion, and a cap nut having a female threaded portion screwed to the male threaded portion, and the pipe to be connected has a tip. A tip diameter-expanded pipe portion is formed from the surface over a predetermined axial dimension, and a tapered stepped portion is formed at the boundary between the tip diameter-expanded pipe portion and the basic diameter pipe portion. A connection cylinder portion inserted into the tip diameter expansion pipe portion and an incore having a slope surface that abuts on the tip diameter reduction taper portion are provided, and the tapered step of the pipe is provided by screwing the bag nut to the flare joint body. A closed annular ring that is externally fitted to the tip diameter-expanding pipe portion via the attachment portion is provided inside the bag nut, and the tip diameter of the pipe is expanded by the radial inward reducing urging force of the ring. The sealed state between the pipe portion and the connecting cylinder portion of the in-core is maintained, and the axial force accompanying the screwing of the bag nut to the flare joint body is transmitted to the in-core via the ring to cause the flare. It is configured to maintain a pressure-welded sealed state between the tapered tip diameter of the joint body and the sloped surface of the in-core.

また、上記インコアの接続筒部の外周面には、複数本の断面三角形乃至富士山形の独立小突条が形成されている。
また、密封のためのシール材を全く省略して、全ての構成部品を、金属製とした。
また、上記閉円環状リングの肉厚寸法をT25とすると共に、上記パイプの肉厚寸法をTp とすると、数式1が成立するように、寸法設定した。
1.0・Tp ≦T25≦2.5・Tp (数式1)
Further, on the outer peripheral surface of the connecting cylinder portion of the in-core, a plurality of independent small ridges having a triangular cross section or a mountain-shaped cross section are formed.
In addition, the sealing material for sealing was completely omitted, and all the components were made of metal.
Further, when the wall thickness dimension of the closed circular ring ring is T 25 and the wall thickness dimension of the pipe is T p , the dimension is set so that Equation 1 holds.
1.0 ・ T p ≦ T 25 ≦ 2.5 ・ T p (Formula 1)

本発明によれば、超精密部品を省略して比較的容易に製作でき、しかも、パイプに強大な耐引抜力を、付与できる。Oリング等のゴム製シール材を省略可能となり、極低温から超高温まで───例えば、−50℃〜+130℃───の温度変化に十分に耐え、さらに、パイプの耐引抜力を十分大きく維持できる。
先端拡径管部をパイプ端に予め加工する必要があるといえども、従来から長くロウ付けのために使用されていた作業工具(治具)を用いれば、簡単かつ確実に、熟練を要さずに加工できる。この先端拡径管部の存在によって、流路孔の内径寸法が、パイプ自身の内径寸法と同等となり、流体通過抵抗の増加を抑制できる。
According to the present invention, ultra-precision parts can be omitted and the pipe can be manufactured relatively easily, and a strong pull-out force can be imparted to the pipe. Rubber sealing materials such as O-rings can be omitted, and it can withstand temperature changes from extremely low temperature to ultra-high temperature ─── for example, -50 ℃ to + 130 ℃ ───, and also has sufficient pull-out resistance of the pipe. Can be kept large.
Even if it is necessary to pre-process the tip diameter expansion pipe part at the pipe end, if you use a work tool (jig) that has been used for brazing for a long time, skill is required easily and surely. Can be processed without. Due to the presence of the tip diameter-expanded pipe portion, the inner diameter dimension of the flow path hole becomes equal to the inner diameter dimension of the pipe itself, and an increase in fluid passage resistance can be suppressed.

本発明の実施の一形態を示す接続作業途中状態の断面図である。It is sectional drawing of the connection work in progress state which shows one Embodiment of this invention. その後の接続途中状態を示す断面図である。It is sectional drawing which shows the state in the middle of connection after that. 接続完了状態を示す断面図である。It is sectional drawing which shows the connection completion state. 本発明の他の実施形態を示す接続作業途中状態の断面図である。It is sectional drawing of the connection work in progress state which shows the other embodiment of this invention. その後の接続途中状態を示す断面図である。It is sectional drawing which shows the state in the middle of connection after that. 接続完了状態を示す断面図である。It is sectional drawing which shows the connection completion state. 先端拡径管部の形成作業工具の要部と拡径方法を説明する断面図である。It is sectional drawing explaining the main part of the work tool for forming the tip diameter expansion pipe part, and the diameter expansion method. 古くから現在まで実施されているロウ付け作業の説明と、ロウ付けされたパイプ端部を説明するための断面図である。It is sectional drawing for demonstrating the brazing work which has been carried out from ancient times to the present, and demonstrating the end part of the brazed pipe. 従来例を示し、接続作業途中状態の断面図である。A conventional example is shown, and it is a cross-sectional view of a state in the middle of connection work. 従来例を示す接続完了状態の断面図である。It is sectional drawing of the connection completion state which shows the conventional example. 他の従来例を示す断面図である。It is sectional drawing which shows the other conventional example.

以下、図示の実施の形態に基づき本発明を詳説する。
図1と図2と図3に示す本発明の実施の一形態に於て、被接続用パイプPは、先端面3から所定軸心寸法L5 に渡って先端拡径管部5が形成されている。
この先端拡径管部5と、パイプ本来の基本径D0 を有する基本径管部6との境界には、テーパ状段付部10が形成されている。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
In one embodiment of the present invention shown in FIGS. 1, 2 and 3, the connected pipe P has a tip diameter-expanded pipe portion 5 formed from the tip surface 3 over a predetermined axial dimension L 5. ing.
A tapered stepped portion 10 is formed at the boundary between the tip diameter-expanded pipe portion 5 and the basic diameter pipe portion 6 having the original basic diameter D 0 of the pipe.

20は、フレア継手本体であって、雄ネジ部20Aと先端縮径テーパ部20Bを有し、JIS B 8607に規定されたフレア管継手が該当し、図11に示したフレア継手本体hと同様のものである。
15は袋ナットであって、フレア継手本体20の雄ネジ部20Aに螺着される雌ネジ部15Aを有する。
袋ナット15の孔部16には、基端から先端に渡って、大径の雌ネジ部15A,中径部15C,先端小径部15Fが、順次形成されている。
上述の如く、本発明に係る冷媒用管継手構造は、雄ネジ部20Aと先端縮径テーパ部20Bを有するフレア継手本体20と、この雄ネジ部20Aに螺着される雌ネジ部15Aを有する袋ナット15とを、備えている。
Reference numeral 20 denotes a flare joint main body, which has a male threaded portion 20A and a tip diameter reduced taper portion 20B, and corresponds to a flare pipe joint specified in JIS B 8607, which is the same as the flare joint main body h shown in FIG. belongs to.
Reference numeral 15 denotes a cap nut, which has a female threaded portion 15A screwed to the male threaded portion 20A of the flare joint body 20.
A large-diameter female screw portion 15A, a medium-diameter portion 15C, and a tip small-diameter portion 15F are sequentially formed in the hole portion 16 of the cap nut 15 from the base end to the tip end.
As described above, the refrigerant pipe joint structure according to the present invention has a flare joint body 20 having a male threaded portion 20A and a tip diameter reduction tapered portion 20B, and a female threaded portion 15A screwed to the male threaded portion 20A. It is equipped with a cap nut 15.

30は、接続完了状態では、図3に示すように袋ナット15に内有されるインコアであって、このインコア30は、パイプPの先端拡径管部5に内挿される接続筒部31と、継手本体20の先端縮径テーパ部20Bに当接する勾配面32を、備えている。
さらに具体的に説明すれば、インコア30は軸心に沿った貫孔33を有し、勾配面32は、この貫孔33の基端側に形成され、基端方向に拡径テーパ状であり、僅かに凸面状(凸アール状)とするも望ましい。また、インコア30は基端部位が、接続筒部31よりも大径の肉厚大径部34であり、この肉厚大径部34と、(小径の)接続筒部31との間に、段付部35が形成される。
In the connected state, reference numeral 30 denotes an in-core contained in the cap nut 15 as shown in FIG. 3, and the in-core 30 is a connecting cylinder portion 31 inserted in the tip diameter-expanded pipe portion 5 of the pipe P. The joint body 20 is provided with a gradient surface 32 that abuts on the tip diameter reduced tapered portion 20B.
More specifically, the in-core 30 has a through hole 33 along the axis, and the gradient surface 32 is formed on the proximal end side of the through hole 33 and has a diameter-expanding taper shape in the proximal end direction. It is also desirable to make it slightly convex (convex rounded). Further, the base end portion of the in-core 30 is a wall-thick large-diameter portion 34 having a diameter larger than that of the connection cylinder portion 31, and between the thick-walled large-diameter portion 34 and the (small-diameter) connection cylinder portion 31, The stepped portion 35 is formed.

また、インコア30の接続筒部31の外周面には、複数本の断面三角形乃至富士山形の独立小突条36が、複数本形成されている。
また、25は閉円環状リングであって、短円筒体から成る。このリング25は、パイプPに対して、図1に示すように、先端拡径管部5の形成加工前に、遊嵌状に外嵌され、その後、(後述する)図7のように先端拡径管部5を形成すると、リング25はテーパ状段付部10に当たって、パイプPの先端側へ(図1の左方向に)離脱しない。
Further, on the outer peripheral surface of the connecting cylinder portion 31 of the in-core 30, a plurality of independent small ridges 36 having a triangular cross section or a Mt. Fuji shape are formed.
Reference numeral 25 denotes a closed circular ring, which is composed of a short cylinder. As shown in FIG. 1, the ring 25 is fitted externally to the pipe P in a loose-fitting shape before the forming of the tip diameter-expanded pipe portion 5, and then the tip is fitted as shown in FIG. 7 (described later). When the diameter-expanded pipe portion 5 is formed, the ring 25 hits the tapered stepped portion 10 and does not separate from the tip side of the pipe P (to the left in FIG. 1).

図1から図2に示すように、袋ナット15を(手でもって)軽く左方向へ移動させると、リング25は、袋ナット15の中径部15Cに嵌合する。即ち、袋ナット15は、先端位置に、内鍔部17を有し(この内鍔部17の内周面にて小径部15Fが形成されている)、この内鍔部17の軸心直交面状内面17Aと、上記リング25の先端面が、当接する(図2,図3参照)。 As shown in FIGS. 1 to 2, when the cap nut 15 is lightly moved to the left (by hand), the ring 25 fits into the medium diameter portion 15C of the cap nut 15. That is, the cap nut 15 has an inner flange portion 17 at the tip position (a small diameter portion 15F is formed on the inner peripheral surface of the inner flange portion 17), and the axial center orthogonal plane of the inner flange portion 17 is formed. The inner surface 17A and the tip surface of the ring 25 come into contact with each other (see FIGS. 2 and 3).

図1から図2のように、袋ナット15を継手本体20へ接近させ、その後、袋ナット15を継手本体20の雄ネジ部20Aに螺進してゆくと、袋ナット15の内部のリング25は、内鍔部17の内面17Aにて、アキシャル内方向へ押圧されつつ、しだいにパイプ先端方向へ移動して、パイプPのテーパ状段付部10に当接する。 As shown in FIGS. 1 to 2, when the cap nut 15 is brought close to the joint body 20 and then the cap nut 15 is screwed into the male screw portion 20A of the joint body 20, the ring 25 inside the cap nut 15 is formed. Is pressed in the axial inward direction on the inner surface 17A of the inner flange portion 17, gradually moves toward the tip of the pipe, and comes into contact with the tapered stepped portion 10 of the pipe P.

このリング25の内径寸法は、パイプPの先端拡径管部5の自由状態の外径寸法よりも、小さく設定しておく。これによって、袋ナット15を、引続き螺進すれば、図2から図3のように、リング25は、パイプPのテーパ状段付部10を経て、先端拡径管部5に、外嵌され、しかも、縮径方向に大きな力(絞り力)を付与し、先端拡径管部5の内周面には、独立小突条36が食い込み状態となって、図3に示す如く、先端拡径管部5の内周面と、インコア30の接続筒部31の外周面とは、金属相互の食い込み状態(圧接状態)として、密封され、冷媒の外部漏洩を阻止する。 The inner diameter dimension of the ring 25 is set smaller than the outer diameter dimension of the tip enlarged diameter pipe portion 5 of the pipe P in the free state. As a result, if the cap nut 15 is continuously screwed, the ring 25 is fitted onto the tip diameter-expanded pipe portion 5 via the tapered stepped portion 10 of the pipe P, as shown in FIGS. 2 to 3. Moreover, a large force (squeezing force) is applied in the diameter reduction direction, and the independent small ridge 36 bites into the inner peripheral surface of the tip diameter expanding pipe portion 5, and the tip is expanded as shown in FIG. The inner peripheral surface of the diameter pipe portion 5 and the outer peripheral surface of the connecting cylinder portion 31 of the in-core 30 are sealed as a metal-to-metal biting state (pressure contact state) to prevent the refrigerant from leaking to the outside.

言い換えると、金属製リング25のラジアル内方向への縮径付勢力(弾発的付勢力)にて、パイプPの先端拡径管部5と、インコア30の接続筒部31との冷媒密封状態を保つことができる。
さらに、上記袋ナット15のフレア継手本体20への螺着に伴うアキシャル方向の力を、上記リング25を介してインコア30に伝達して、上記フレア継手本体20の先端縮径テーパ部20Bと、インコア30の勾配面32との圧接密封状態を保つことができる(図1から図2参照)。
In other words, the refrigerant is sealed between the expanded pipe portion 5 at the tip of the pipe P and the connecting cylinder portion 31 of the in-core 30 by the radial inwardly contracted urging force (elastic urging force) of the metal ring 25. Can be kept.
Further, the force in the axial direction due to the screwing of the cap nut 15 to the flare joint body 20 is transmitted to the in-core 30 via the ring 25, and the tip diameter reduced tapered portion 20B of the flare joint body 20 and the tapered portion 20B. The in-core 30 can be kept in a pressure-welded sealed state with the slope surface 32 (see FIGS. 1 to 2).

図1〜図3から明らかなように、本発明に係る冷媒用管継手構造では、密封のためのOリング等のゴム又は合成樹脂製のシール材を、全く省略している。即ち、構成部品は金属製である。具体例を挙げると、パイプPはCu又はAlであり、フレア継手本体20は真鍮、袋ナット15は真鍮、インコア30は真鍮又はステンレス鋼、リング25はハードAl又はステンレス鋼等とする。 As is clear from FIGS. 1 to 3, in the refrigerant pipe joint structure according to the present invention, a rubber or synthetic resin sealing material such as an O-ring for sealing is completely omitted. That is, the components are made of metal. To give a specific example, the pipe P is Cu or Al, the flare joint body 20 is brass, the cap nut 15 is brass, the incore 30 is brass or stainless steel, and the ring 25 is hard Al or stainless steel.

次に、リング25が大きな縮径方向の弾発的付勢力を、パイプPの先端拡径管部5に付与させるには、リング25の肉厚寸法T25をパイプPの肉厚寸法Tp に比較すれば、十分大きくすることが望ましい。
例えば、次の数式1が成立するように設定するのが良い。
1.0・Tp ≦T25≦2.5・Tp (数式1)
さらに望ましいのは、次の数式2のように設定する。
1.2・Tp ≦T25≦2.2・Tp (数式2)
Next, the resiliently urging force of the ring 25 is large diameter direction, in order to impart to the tip enlarged tube portion 5 of the pipe P, the thickness dimension T p of the pipe P to the thickness dimension T 25 of the ring 25 It is desirable to make it sufficiently large compared to.
For example, it is preferable to set so that the following formula 1 is satisfied.
1.0 ・ T p ≦ T 25 ≦ 2.5 ・ T p (Formula 1)
Even more desirable is the setting as shown in Equation 2 below.
1.2 ・ T p ≦ T 25 ≦ 2.2 ・ T p (Formula 2)

なお、T25が下限値未満では、ラジアル内方向への絞り力が過小となり、密封性が不十分となる。逆に、上限値を越すと、袋ナット15の螺進によって、リング25を、図2から図3の状態へ、あるいは、後述する図5から図6の状態へ、嵌合させることが困難となる。 If T 25 is less than the lower limit, the squeezing force in the radial inward direction becomes too small and the sealing performance becomes insufficient. On the contrary, when the upper limit is exceeded, it becomes difficult to fit the ring 25 to the state of FIGS. 2 to 3 or the state of FIGS. 5 to 6 described later due to the screwing of the cap nut 15. Become.

次に、図4〜図6に示す他の実施形態について説明する。
この図4〜図6では、前述した数式1の範囲内において、リング25の肉厚寸法T25が大きい値であって、リング外径寸法D25が袋ナット15の雌ネジ部15Aの内径寸法D15よりも大である場合を示す。リング25を、図1,図2のように前方側(雌ネジ部15A側)から袋ナット15の内部へ挿入不可であるため、袋ナット15の後方(図4〜図6の右側)からリング25を袋ナット15の内部へ挿入するための構造を示している。
Next, other embodiments shown in FIGS. 4 to 6 will be described.
In FIGS. 4 to 6, within the range of the above-mentioned formula 1, the wall thickness dimension T 25 of the ring 25 is a large value, and the ring outer diameter dimension D 25 is the inner diameter dimension of the female screw portion 15A of the cap nut 15. The case where it is larger than D 15 is shown. Since the ring 25 cannot be inserted into the cap nut 15 from the front side (female screw portion 15A side) as shown in FIGS. 1 and 2, the ring 25 can be inserted from the rear of the cap nut 15 (right side of FIGS. 4 to 6). The structure for inserting 25 into the cap nut 15 is shown.

即ち、袋ナット15は、後方端側に於て、段付部18を介して、大径部19と逆ネジ部22が、軸心に沿った孔部16の後半部位に、形成される。
さらに、リング保持環23を付設する。つまり、リング25を嵌合する凹窪部24を有し、この凹窪部24にリング25を嵌合して、袋ナット15の逆ネジ部22に対して、リング保持環23の外周の逆ネジ部7を螺進し、図4から図5に示す状態とすれば、図2と同じ状態となる。つまり、パイプPのテーパ状段付部10に対し、リング25の内方角部が当接する。
That is, on the rear end side of the cap nut 15, a large diameter portion 19 and a reverse screw portion 22 are formed in the latter half portion of the hole portion 16 along the axial center via the stepped portion 18.
Further, a ring holding ring 23 is attached. That is, it has a recessed portion 24 for fitting the ring 25, and the ring 25 is fitted into the recessed recessed portion 24 so that the outer circumference of the ring holding ring 23 is reversed with respect to the reverse screw portion 22 of the cap nut 15. If the screw portion 7 is screwed into the state shown in FIGS. 4 to 5, the state is the same as in FIG. That is, the inwardly angular portion of the ring 25 comes into contact with the tapered stepped portion 10 of the pipe P.

その後、図5から図6に示したように、袋ナット15を螺進させてゆけば、リング25は拡径管部5に乗り上げるように外嵌して、リング25の弾発的縮径力により、パイプPの拡径管部5の内面に独立小突条36が食い込み状として、パイプPの耐引抜力を発揮し、かつ、(冷媒に対する)密封状態とできる。
図5,図6に示したような袋ナット15とリング保持環23の組付状態において、図1〜図3に示した内鍔部17は、リング保持環23の側に形成されていると、言うことができる。
After that, as shown in FIGS. 5 to 6, if the cap nut 15 is screwed, the ring 25 is fitted so as to ride on the diameter-expanded pipe portion 5, and the elastic contraction force of the ring 25 is obtained. As a result, the independent small ridges 36 bite into the inner surface of the enlarged diameter pipe portion 5 of the pipe P, exhibit the pull-out resistance of the pipe P, and can be in a sealed state (with respect to the refrigerant).
In the assembled state of the cap nut 15 and the ring holding ring 23 as shown in FIGS. 5 and 6, the inner collar portion 17 shown in FIGS. 1 to 3 is formed on the side of the ring holding ring 23. , Can be said.

このように、図4〜図6に示した実施形態では、リング25の肉厚寸法T25は、図1〜図3の実施形態よりも、十分に大きいので、図6の接続完了状態下でのパイプ耐引抜力は大であり、密封性能は極めて高く維持できる。 As described above, in the embodiment shown in FIGS. 4 to 6, the wall thickness dimension T 25 of the ring 25 is sufficiently larger than the embodiment shown in FIGS. 1 to 3, so that the connection is completed in FIG. The pipe pull-out resistance is large, and the sealing performance can be maintained extremely high.

本発明に於ては、先端拡径管部5を被接続用パイプPに設けることが基本的な一構成要件である。そこで、先端拡径管部5に関して、以下、説明する。
図7に示すように、被加工パイプP0 の先端を分割金型26の孔部26Aに挿入し、4個(又はそれ以上)に分割された横断面扇型の拡径片27をパイプP0 に対して所定深さに挿入する。矢印E方向にテーパ状雄金型28を、分割された拡径片27によって形成されたテーパ状孔部29に、押込めば、図7(A)から(B)のように拡径片27がラジアル外方向Rへ移動し、先端拡径管部5が形成(加工)される。
In the present invention, it is a basic configuration requirement that the tip diameter-expanded pipe portion 5 is provided in the connected pipe P. Therefore, the tip diameter expanding tube portion 5 will be described below.
As shown in FIG. 7, the tip of the pipe P 0 to be machined is inserted into the hole 26A of the split die 26, and the cross-section fan-shaped enlarged diameter piece 27 divided into four (or more) is inserted into the pipe P. Insert to a predetermined depth with respect to 0. When the tapered male mold 28 is pushed into the tapered hole portion 29 formed by the divided diameter-expanding pieces 27 in the direction of arrow E, the diameter-expanding pieces 27 are as shown in FIGS. 7A to 7B. Moves in the radial outward direction R, and the tip diameter expanding tube portion 5 is formed (processed).

なお、テーパ状段付部10を形成するために、拡径片27にはテーパ部27Aが設けられ、金型26の孔部26Aには、テーパ部26Bが設けられている。
その後、金型26を拡径方向に分割作動し、加工されたパイプP0 を引抜けば、図1〜図6等に示すような先端拡径管部5付の被接続用パイプPが製作される。
古くから、図7に示した拡径用手動作業具は、広く知られている。その理由は、図8に示すようなロウ付け管接続63が、古くから、冷媒配管や家庭用給湯(水)配管に使用されているためである。つまり、古くから実施されてきたロウ付け管接続63のために、一方のパイプ61には、図1〜図6に示した先端拡径管部5を予め加工する必要があったためである。(なお、他方のパイプ62は加工せずにそのまま拡径管部5に挿入され、相互嵌合面部X5 がロウ付けされる。)
このように、ロウ付けによるパイプ接続作業に広く用いられていた拡径作業工具、及び、それによって簡単に加工可能な先端拡径管部に、本発明者は着眼し、図1〜図6に示したような独自の形状と構造を結合させて、ロウ付け等の熱を用いずに安全に作業ができ、しかも、従来例の図9に比べて、超精密の食込み爪80等を備えないで、かつ、パイプ接続作業性についても優れた管継手構造を、ここに提案する。
In order to form the tapered stepped portion 10, the enlarged diameter piece 27 is provided with the tapered portion 27A, and the hole portion 26A of the mold 26 is provided with the tapered portion 26B.
After that, the mold 26 is divided and operated in the diameter expansion direction, and the processed pipe P 0 is pulled out to manufacture a connected pipe P with a tip diameter expansion pipe portion 5 as shown in FIGS. 1 to 6 and the like. Will be done.
Since ancient times, the manual work tool for diameter expansion shown in FIG. 7 has been widely known. The reason is that the brazed pipe connection 63 as shown in FIG. 8 has been used for a refrigerant pipe and a household hot water supply (water) pipe for a long time. That is, because of the brazing pipe connection 63 that has been practiced for a long time, it is necessary to pre-process the tip diameter-expanded pipe portion 5 shown in FIGS. 1 to 6 for one of the pipes 61. (The other pipe 62 is inserted into the enlarged diameter pipe portion 5 as it is without being processed, and the mutual fitting surface portion X 5 is brazed.)
In this way, the present inventor focused on the diameter-expanding work tool widely used for pipe connection work by brazing and the tip-diameter-expanded pipe portion that can be easily machined by the tool, and FIGS. 1 to 6 show. By combining the unique shape and structure as shown, it is possible to work safely without using heat such as brazing, and it does not have an ultra-precision biting claw 80 or the like as compared with FIG. 9 of the conventional example. Here, we propose a pipe joint structure that is excellent in pipe connection workability.

本発明は、以上詳述したように、雄ネジ部20Aと先端縮径テーパ部20Bを有するフレア継手本体20と、上記雄ネジ部20Aに螺着される雌ネジ部15Aを有する袋ナット15とを、備え、被接続用パイプPは、先端面3から所定軸心寸法L5 に渡って先端拡径管部5が形成されると共に、上記先端拡径管部5と基本径管部6との境界には、テーパ状段付部10が形成され、上記パイプPの上記先端拡径管部5に内挿される接続筒部31と、上記先端縮径テーパ部20Bに当接する勾配面32を有するインコア30を備え、上記袋ナット15のフレア継手本体20への螺進により、上記パイプPのテーパ状段付部10を経て上記先端拡径管部5に外嵌される閉円環状リング25を、上記袋ナット15の内部に設け、上記リング25のラジアル内方向への縮径付勢力にて、上記パイプPの先端拡径管部5と上記インコア30の接続筒部31との密封状態を保ち、さらに、上記袋ナット15のフレア継手本体20への螺着に伴うアキシャル方向の力を、上記リング25を介してインコア30に伝達して、上記フレア継手本体20の先端縮径テーパ部20Bと、インコア30の勾配面32との圧接密封状態を保つように構成したので、冷媒に対するシール材の耐久性を心配せずに、長期間に渡って優れた密封性能を発揮する。また、作業現場のフレア加工による品質のバラツキの問題が解決され、極めて超精密な爪80(図9,図10参照)を有する部品が省略できて、強力な耐引抜力を発揮する。冷媒配管では、−50℃〜+130℃と極めて温度差が大きく、かつ、高圧力が作用する過酷な使用環境下で、高い密封性を、安定して長期間に渡って維持することが可能となった。 As described in detail above, the present invention includes a flare joint body 20 having a male screw portion 20A and a tip diameter reduction taper portion 20B, and a bag nut 15 having a female screw portion 15A screwed to the male screw portion 20A. In the connected pipe P, the tip diameter-expanded pipe portion 5 is formed from the tip surface 3 over a predetermined axial dimension L 5 , and the tip diameter-expanded pipe portion 5 and the basic diameter pipe portion 6 are formed. A tapered stepped portion 10 is formed at the boundary of the pipe P, and a connecting cylinder portion 31 inserted into the tip diameter-expanded pipe portion 5 of the pipe P and a gradient surface 32 that abuts on the tip diameter-reduced tapered portion 20B are formed. A closed circular annular ring 25 having an in-core 30 and being externally fitted to the tip expansion pipe portion 5 via the tapered stepped portion 10 of the pipe P by screwing the bag nut 15 to the flare joint body 20. Is provided inside the bag nut 15, and the tip diameter-expanded pipe portion 5 of the pipe P and the connecting cylinder portion 31 of the in-core 30 are sealed by the radial inward reducing urging force of the ring 25. Further, the force in the axial direction accompanying the screwing of the bag nut 15 to the flare joint body 20 is transmitted to the in-core 30 via the ring 25, and the tip diameter-reduced tapered portion of the flare joint body 20 is transmitted. Since the 20B and the slope surface 32 of the in-core 30 are configured to be pressure-welded and sealed, excellent sealing performance is exhibited for a long period of time without worrying about the durability of the sealing material against the refrigerant. In addition, the problem of quality variation due to flaring at the work site is solved, parts with extremely precise claws 80 (see FIGS. 9 and 10) can be omitted, and strong pull-out resistance is exhibited. Refrigerant piping has an extremely large temperature difference of -50 ° C to + 130 ° C, and it is possible to stably maintain high sealing performance for a long period of time in a harsh usage environment where high pressure acts. became.

また、上記インコア30の接続筒部31の外周面には、複数本の断面三角形乃至富士山形の独立小突条36が形成されているので、金属製パイプPの先端拡径管部5の内周面に確実に十分深く食い込み、大きい耐引抜力、及び、高い密封性能を、冷媒に対して、発揮できる。 Further, since a plurality of independent small ridges 36 having a triangular cross section or a Mt. Fuji shape are formed on the outer peripheral surface of the connecting cylinder portion 31 of the incore 30, the tip diameter expanding pipe portion 5 of the metal pipe P is included. It surely bites deep enough into the peripheral surface, and can exhibit a large pull-out resistance and high sealing performance with respect to the refrigerant.

また、密封のためのシール材を全く省略して、全ての構成部品を、金属製としたので、超低温(−50℃)から超高温(+130℃)と極めて厳しい使用環境下で、安定した密封性能を長期使用期間に渡って発揮できる。 In addition, since the sealing material for sealing is completely omitted and all the components are made of metal, stable sealing is performed under extremely harsh usage environments from ultra-low temperature (-50 ° C) to ultra-high temperature (+ 130 ° C). Performance can be demonstrated over a long period of use.

また 上記閉円環状リング25の肉厚寸法をT25とすると共に、上記パイプPの肉厚寸法をTp とすると、1.0・Tp ≦T25≦2.5・Tp が成立するように、寸法設定したので、金属製リング25の強力な弾発縮径付勢力がラジアル内方向に向かって発生し、金属製パイプPを十分強力に、インコア30の接続筒部31に対して、圧着でき、しかも、低温から高温までの大きな温度変動にも、安定して高い冷媒への密封性能を発揮し、耐久性にも優れる。 Further, if the wall thickness dimension of the closed circular ring ring 25 is T 25 and the wall thickness dimension of the pipe P is T p , 1.0 · T p ≦ T 25 ≦ 2.5 · T p is established. Since the dimensions are set as described above, a strong elastic contraction diameter urging force of the metal ring 25 is generated toward the radial inward direction, and the metal pipe P is sufficiently strong with respect to the connecting cylinder portion 31 of the in-core 30. It can be crimped, and even with large temperature fluctuations from low temperature to high temperature, it stably exhibits high sealing performance to the refrigerant and has excellent durability.

3 先端面
5 先端拡径管部
6 基本径管部
10 テーパ状段付部
15 袋ナット
15A 雌ネジ部
20 フレア継手本体
20A 雄ネジ部
20B 先端縮径テーパ部
25 閉円環状リング
30 インコア
31 接続筒部
32 勾配面
36 独立小突条
P パイプ
5 所定軸心寸法
25 リングの肉厚寸法
p パイプの肉厚寸法
3 Tip surface 5 Tip diameter expansion tube 6 Basic diameter tube
10 Tapered stepped part
15 cap nut
15A female thread
20 Flare fitting body
20A male screw part
20B Tip diameter taper
25 Closed circular ring
30 incore
31 Connection tube
32 Gradient surface
36 Independent small ridge P pipe L 5 Predetermined axis dimension T 25 Ring wall thickness T p Pipe wall thickness

Claims (4)

雄ネジ部(20A)と先端縮径テーパ部(20B)を有するフレア継手本体(20)と、上記雄ネジ部(20A)に螺着される雌ネジ部(15A)を有する袋ナット(15)とを、備え、
被接続用パイプ(P)は、先端面(3)から所定軸心寸法(L5 )に渡って先端拡径管部(5)が形成されると共に、上記先端拡径管部(5)と基本径管部(6)との境界には、テーパ状段付部(10)が形成され、
上記パイプ(P)の上記先端拡径管部(5)に内挿される接続筒部(31)と、上記先端縮径テーパ部(20B)に当接する勾配面(32)を有するインコア(30)を備え、
上記袋ナット(15)のフレア継手本体(20)への螺進により、上記パイプ(P)のテーパ状段付部(10)を経て上記先端拡径管部(5)に外嵌される閉円環状リング(25)を、上記袋ナット(15)の内部に設け、
上記リング(25)のラジアル内方向への縮径付勢力にて、上記パイプ(P)の先端拡径管部(5)と上記インコア(30)の接続筒部(31)との密封状態を保ち、
さらに、上記袋ナット(15)のフレア継手本体(20)への螺着に伴うアキシャル方向の力を、上記リング(25)を介してインコア(30)に伝達して、上記フレア継手本体(20)の先端縮径テーパ部(20B)と、インコア(30)の勾配面(32)との圧接密封状態を保つように構成したことを特徴とする冷媒用管継手構造。
A flared joint body (20) having a male threaded portion (20A) and a tapered tip diameter portion (20B), and a cap nut (15) having a female threaded portion (15A) screwed onto the male threaded portion (20A). And prepare
In the connected pipe (P), a tip diameter-expanded pipe portion (5) is formed from the tip surface (3) to a predetermined axial dimension (L 5 ), and the tip diameter-expanded pipe portion (5) and the above-mentioned tip diameter-expanded pipe portion (5) are formed. A tapered stepped portion (10) is formed at the boundary with the basic diameter pipe portion (6).
An in-core (30) having a connecting cylinder portion (31) inserted into the tip diameter-expanded pipe portion (5) of the pipe (P) and a gradient surface (32) that abuts on the tip diameter-reduced tapered portion (20B). With
By screwing the cap nut (15) to the flare joint body (20), the cap nut (15) is externally fitted to the tip diameter-expanded pipe portion (5) via the tapered stepped portion (10) of the pipe (P). An annular ring (25) is provided inside the cap nut (15).
With the radial inward contraction force of the ring (25), the tip diameter expanding pipe portion (5) of the pipe (P) and the connecting cylinder portion (31) of the incore (30) are sealed. Keep,
Further, the force in the axial direction accompanying the screwing of the cap nut (15) to the flare joint body (20) is transmitted to the in-core (30) via the ring (25), and the flare joint body (20) is transmitted. ), A pipe joint structure for a refrigerant, characterized in that the tapered portion (20B) at the tip of the tip and the slope surface (32) of the in-core (30) are kept in a pressure-welded sealed state.
上記インコア(30)の接続筒部(31)の外周面には、複数本の断面三角形乃至富士山形の独立小突条(36)が形成されている請求項1記載の冷媒用管継手構造。 The refrigerant pipe joint structure according to claim 1, wherein a plurality of independent small protrusions (36) having a triangular cross section or a Mt. Fuji shape are formed on the outer peripheral surface of the connecting cylinder portion (31) of the incore (30). 密封のためのシール材を全く省略して、全ての構成部品を、金属製とした請求項1又は2記載の冷媒用管継手構造。 The refrigerant pipe joint structure according to claim 1 or 2, wherein the sealing material for sealing is completely omitted, and all the components are made of metal. 上記閉円環状リング(25)の肉厚寸法を(T25)とすると共に、上記パイプ(P)の肉厚寸法を(Tp )とすると、数式1が成立するように、寸法設定した請求項1,2又は3記載の冷媒用管継手構造。
1.0・Tp ≦T25≦2.5・Tp (数式1)
If the wall thickness dimension of the closed circular ring ring (25) is (T 25 ) and the wall thickness dimension of the pipe (P) is (T p ), the dimension is set so that Equation 1 holds. Item 2. The refrigerant pipe joint structure according to item 1, 2, or 3.
1.0 ・ T p ≦ T 25 ≦ 2.5 ・ T p (Formula 1)
JP2019231194A 2019-12-23 2019-12-23 Refrigerant pipe joint structure Active JP6678981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231194A JP6678981B1 (en) 2019-12-23 2019-12-23 Refrigerant pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231194A JP6678981B1 (en) 2019-12-23 2019-12-23 Refrigerant pipe joint structure

Publications (2)

Publication Number Publication Date
JP6678981B1 JP6678981B1 (en) 2020-04-15
JP2021099132A true JP2021099132A (en) 2021-07-01

Family

ID=70166368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231194A Active JP6678981B1 (en) 2019-12-23 2019-12-23 Refrigerant pipe joint structure

Country Status (1)

Country Link
JP (1) JP6678981B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6901178B1 (en) * 2020-10-12 2021-07-14 井上スダレ株式会社 Pipe fitting structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB149856A (en) * 1920-01-27 1920-08-26 Thomas Lillie Fyffe Improvements in or relating to pipe joints and the like
DE7133638U (en) * 1972-01-20 Zako Gmbh & Co Kg Tube fitting
JPS5138122A (en) * 1974-09-27 1976-03-30 Shuzo Mizuno TSUGITE
JPS5369012U (en) * 1976-11-12 1978-06-09
JP2010270846A (en) * 2009-05-22 2010-12-02 Higashio Mech Co Ltd Pipe joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7133638U (en) * 1972-01-20 Zako Gmbh & Co Kg Tube fitting
GB149856A (en) * 1920-01-27 1920-08-26 Thomas Lillie Fyffe Improvements in or relating to pipe joints and the like
JPS5138122A (en) * 1974-09-27 1976-03-30 Shuzo Mizuno TSUGITE
JPS5369012U (en) * 1976-11-12 1978-06-09
JP2010270846A (en) * 2009-05-22 2010-12-02 Higashio Mech Co Ltd Pipe joint

Also Published As

Publication number Publication date
JP6678981B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2021177177A1 (en) Pipe joint structure
US2755110A (en) Synthetic resin gland type coupling for tubes
US3708186A (en) Pipe joint
US3989283A (en) Compression fitting
US3479059A (en) Lined pipe sections and joints
US2457648A (en) Pipe coupling
JP6099800B1 (en) Pipe joint structure
HK1091890A1 (en) Pipe joint between metallic pipes and method of forming such a pipe joint
JP2021099132A (en) Pipe joint structure for refrigerant
JP2009168075A (en) Pipe joint structure, and pipe connection method
JP2015007445A (en) Pipe joint structure
US3438655A (en) Fluid pressure coupling
JPH09229257A (en) Pipe coupling for piping
JP2008038924A (en) Pipe joint
US2951715A (en) Tube coupling connection for plastic or soft metal tubing
US10364922B2 (en) Flexible joint
JP2020516817A (en) Sealing device for cylindrical components
JP2008190676A (en) Pipe joint
US3222094A (en) Plastic pipe to metal pipe coupling
US3453009A (en) Tube coupling
JP2008138694A (en) Pipe joint
JP2018017293A (en) Pressure-proof pipe joint and pressure-proof pipe joint structure
GB2447275A (en) Compression fitting with resilient stop member
CN216344609U (en) Tee bend quick detach connects
JP4858810B2 (en) Detachable member and pipe joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191223

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6678981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250