JP2021097457A - Rotator of rotary electric machine and rotary electric machine - Google Patents

Rotator of rotary electric machine and rotary electric machine Download PDF

Info

Publication number
JP2021097457A
JP2021097457A JP2019226054A JP2019226054A JP2021097457A JP 2021097457 A JP2021097457 A JP 2021097457A JP 2019226054 A JP2019226054 A JP 2019226054A JP 2019226054 A JP2019226054 A JP 2019226054A JP 2021097457 A JP2021097457 A JP 2021097457A
Authority
JP
Japan
Prior art keywords
magnet
rotating
rotor
electric machine
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019226054A
Other languages
Japanese (ja)
Inventor
広樹 成島
Hiroki Narishima
広樹 成島
山▲崎▼ 慎司
Shinji Yamazaki
慎司 山▲崎▼
博光 岡本
Hiromitsu Okamoto
博光 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019226054A priority Critical patent/JP2021097457A/en
Publication of JP2021097457A publication Critical patent/JP2021097457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

To suppress reduction of a torque at a heavy current.SOLUTION: A rotator of a rotary electric machine comprises: a rotator core provided with a magnet housing part; and a permanent magnet housed in the magnet housing part. The permanent magnet forms one pole with combination of a rotation side magnet and a reverse rotation side magnet in a V-shape. A region between the rotation side magnet and the reverse-rotation side magnet is separated into a first region opposite a main flux surface of the reverse rotation side magnet and a second region opposite a main flux surface of the rotation side magnet. A penetration hole penetrating the rotator core penetrates in an axial direction is formed in the second region, the penetration hole being formed from a position crossing a central normal line of the main flux surface of the rotation side magnet to a position in the proximity of the magnet between the rotation side magnet and the reverse rotation side magnet arranged in a V-shape.SELECTED DRAWING: Figure 6

Description

本発明は回転電機の回転子に関する。 The present invention relates to a rotor of a rotary electric machine.

自動車用の回転電機には、小型で高出力を得るために永久磁石式回転電機が用いられる。特に、磁石の磁束によって発生する磁石トルクと、電機子磁束とコアの突極性によって発生するリラクタンストルクの両方を利用できる埋め込み磁石式回転電機が主に使用される。 Permanent magnet type rotary electric machines are used for rotary electric machines for automobiles in order to obtain a small size and high output. In particular, an embedded magnet type rotary electric machine that can utilize both the magnet torque generated by the magnetic flux of the magnet and the reluctance torque generated by the magnetic flux of the armature and the salient pole of the core is mainly used.

本技術分野の背景技術として、以下の先行技術がある。特許文献1(国際公開2019/64801号)には、 磁石トルクとリラクタンストルクとの合計の最終的なトルクを向上させることができる永久磁石式回転電機を提供する。永久磁石式回転電機が備えるロータは、ロータコアと、ロータコア内に埋設される複数の磁石と、複数の磁石のうち1極の磁極を構成する磁石とギャップとの間の領域であるコア領域に設けられ、コア領域の透磁率よりも透磁率の低い領域であって、ロータの外周に近い端部は、1極の磁極の磁極中心よりもコイルに通電することによってロータにかかる周方向の力の方向と同方向側のコア領域に設けられ、ロータの回転軸中心に近い端部は、磁極中心上または磁極中心よりも力の方向と逆方向側のコア領域に設けられる磁気スリットと、を有している永久磁石式回転電機が記載されている(要約参照)。 The following prior arts are the background technologies in this technical field. Patent Document 1 (International Publication No. 2019/64801) provides a permanent magnet type rotary electric machine capable of improving the final torque of the sum of the magnet torque and the reluctance torque. The rotor provided in the permanent magnet type rotary electric machine is provided in a core region which is a region between a rotor core, a plurality of magnets embedded in the rotor core, and a magnet forming a magnetic pole of one pole among the plurality of magnets and a gap. The magnetic permeability is lower than the magnetic permeability of the core region, and the end near the outer circumference of the rotor is the force in the circumferential direction applied to the rotor by energizing the coil rather than the magnetic pole center of the one pole. The end portion provided in the core region on the same direction as the direction and close to the center of the rotation axis of the rotor has a magnetic slit provided on the center of the magnetic pole or in the core region on the side opposite to the direction of the force from the center of the magnetic pole. The permanent magnet type rotating electric machine that is used is described (see summary).

国際公開2019/64801号International Publication No. 2019/64801

前述した埋め込み磁石式回転電機では、磁石に対して回転子表面側及び回転方向側のコアにおいてより大きな磁気飽和が発生して、磁石磁束が反回転方向へ傾いて、トルクが低下することがある。特に、磁気飽和が顕著に生じる大電流時にトルクが低下し、仕様上の最大トルクが得られない問題がある。 In the above-mentioned embedded magnet type rotary electric machine, larger magnetic saturation may occur in the core on the rotor surface side and the rotation direction side with respect to the magnet, and the magnet magnetic flux may be tilted in the counter-rotation direction to reduce the torque. .. In particular, there is a problem that the torque decreases at the time of a large current in which magnetic saturation occurs remarkably, and the maximum torque in the specifications cannot be obtained.

本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、石収納部が設けられた回転子コアと、前記磁石収納部に収納される永久磁石とを備える回転電機の回転子であって、前記永久磁石は、回転側磁石と反回転側磁石とがV字形に組み合わされて一極を形成しており、前記回転側磁石と前記反回転側磁石の間の領域を、反回転側磁石の主磁束面と対向する第1領域と、前記回転側磁石の主磁束面と対向する第2領域とに区分し、前記回転子コアを軸方向に貫通する貫通孔が前記第2領域に形成されており、前記貫通孔は、前記回転側磁石の主磁束面の中央の法線と交差する位置から前記V字配置された前記回転側磁石と前記反回転側磁石の間で、当該磁石が近接する位置まで形成されることを特徴とする。 A typical example of the invention disclosed in the present application is as follows. That is, it is a rotor of a rotating electric machine including a rotor core provided with a stone storage portion and a permanent magnet housed in the magnet storage portion, and the permanent magnets are a rotating side magnet and a counter-rotating side magnet. Are combined in a V shape to form one pole, and the region between the rotating side magnet and the counter-rotating side magnet is a first region facing the main magnetic flux surface of the counter-rotating side magnet and the rotating side. It is divided into a second region facing the main magnetic flux surface of the magnet, and a through hole that penetrates the rotor core in the axial direction is formed in the second region, and the through hole is the main of the rotating magnet. It is characterized in that the magnet is formed from a position intersecting the central normal line of the magnetic flux surface to a position close to the rotating magnet and the counter-rotating magnet arranged in a V shape.

本発明の一態様によれば、回転電機のトルクを向上できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。 According to one aspect of the present invention, the torque of the rotary electric machine can be improved. Issues, configurations and effects other than those mentioned above will be clarified by the description of the following examples.

本発明の実施形態に係る回転電機の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the rotary electric machine which concerns on embodiment of this invention. 本実施例の固定子及び回転子を示す軸方向断面図である。It is an axial sectional view which shows the stator and the rotor of this Example. 実施例1の回転子の1極分を示す軸方向断面図である。It is an axial sectional view which shows one pole part of the rotor of Example 1. FIG. 実施例1の効果を説明する図である。It is a figure explaining the effect of Example 1. FIG. 従来の回転子コアの磁束を示す図である。It is a figure which shows the magnetic flux of the conventional rotor core. 実施例1の回転子コアの磁束を示す図である。It is a figure which shows the magnetic flux of the rotor core of Example 1. 実施例2の回転子の1極分を示す軸方向断面図である。It is an axial sectional view which shows one pole part of the rotor of Example 2. FIG.

以下、図面を参照して本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

(回転電機の全体構成)
本実施例に係る回転電機は、自動車の走行への使用が好適な回転電機である。ここで、回転電機を使用するいわゆる電気自動車には、エンジンと回転電機の両方を備えるハイブリッドタイプの電気自動車(HEV)と、エンジンを用いないで回転電機のみで走行する純粋な電気自動車(EV)とがあるが、以下に説明する回転電機は両方のタイプに利用できる。
(Overall configuration of rotary electric machine)
The rotary electric machine according to the present embodiment is a rotary electric machine suitable for use in running an automobile. Here, the so-called electric vehicles that use a rotating electric vehicle include a hybrid type electric vehicle (HEV) that has both an engine and a rotating electric vehicle, and a pure electric vehicle (EV) that runs only on the rotating electric vehicle without using an engine. However, the rotary electric machines described below can be used for both types.

図1は、本発明の実施例に係る回転電機100の全体構成を示す模式図であり、回転電機100の一部分を断面として、回転電機100の内部を示している。回転電機100は、ケース10の内部に配設され、ハウジング112と、ハウジング112に固定される固定子コア132を有する固定子130と、固定子130内に回転自在に配設される回転子150とを有する。ケース10は、エンジンのケースや変速機のケースによって構成されてもよい。 FIG. 1 is a schematic view showing the overall configuration of the rotary electric machine 100 according to the embodiment of the present invention, and shows the inside of the rotary electric machine 100 with a part of the rotary electric machine 100 as a cross section. The rotary electric machine 100 is arranged inside the case 10, a housing 112, a stator 130 having a stator core 132 fixed to the housing 112, and a rotor 150 rotatably arranged in the stator 130. And have. The case 10 may be composed of an engine case or a transmission case.

この回転電機100は、永久磁石内蔵型の三相同期モータである。 The rotary electric machine 100 is a three-phase synchronous motor with a built-in permanent magnet.

本実施例の回転電機100は、固定子コア132に巻回される固定子コイル138に三相交流電流が供給されることで、回転子150を回転させる電動機として作動する。また、回転電機100は、エンジンによって駆動されると、発電機として作動して三相交流の発電電力を出力する。つまり、回転電機100は、電気エネルギーに基づいて回転トルクを発生する電動機としての機能と、機械エネルギーに基づいて発電する発電機としての機能の両方を有しており、自動車の走行状態によって前述した機能を選択的に利用できる。 The rotary electric machine 100 of this embodiment operates as an electric machine for rotating the rotor 150 by supplying a three-phase AC current to the stator coil 138 wound around the stator core 132. Further, when the rotary electric machine 100 is driven by an engine, it operates as a generator and outputs three-phase alternating current generated power. That is, the rotary electric machine 100 has both a function as an electric motor that generates rotational torque based on electric energy and a function as a generator that generates electric power based on mechanical energy, and is described above depending on the running state of the automobile. Functions can be used selectively.

固定子130はハウジング112に固定されている。固定子130は、ハウジング112の軸方向一端に設けられたフランジ115がボルト12によりケース10に締結されることによって、ケース10内に固定され、保持されている。ハウジング112は、厚さ2〜5mm程度の鋼板(高張力鋼板など)を絞り加工によって円筒形状に形成されている。フランジ115は、絞り加工によってハウジング112と一体に形成される。なお、ハウジング112を設けずに、固定子130をケース10に直接固定してもよい。回転軸118に固定された回転子150は、ケース10の軸受け14A、14Bにより支承され、固定子コア132の内側において回転可能に保持される。 The stator 130 is fixed to the housing 112. The stator 130 is fixed and held in the case 10 by fastening a flange 115 provided at one end in the axial direction of the housing 112 to the case 10 by bolts 12. The housing 112 is formed in a cylindrical shape by drawing a steel plate (high-strength steel plate or the like) having a thickness of about 2 to 5 mm. The flange 115 is integrally formed with the housing 112 by drawing. The stator 130 may be directly fixed to the case 10 without providing the housing 112. The rotor 150 fixed to the rotating shaft 118 is supported by bearings 14A and 14B of the case 10 and is rotatably held inside the stator core 132.

図2は、本実施例の固定子130及び回転子150を示す軸方向断面図である。 FIG. 2 is an axial sectional view showing the stator 130 and the rotor 150 of this embodiment.

固定子130は、ハウジング112の内周側に固定される。固定子130の内側には、固定子130と回転子150が接触しない距離のギャップを介して、回転子150が軸支される。 The stator 130 is fixed to the inner peripheral side of the housing 112. Inside the stator 130, the rotor 150 is pivotally supported via a gap at a distance where the stator 130 and the rotor 150 do not come into contact with each other.

固定子130は、円筒状の固定子コア132と、固定子コア132に装着される固定子コイル138とを有している。固定子コア132は、例えば、厚さが0.05〜1.0mm程度の打ち抜き加工又はエッチング加工によって成形された複数の電磁鋼板を積層して形成される。積層された電磁鋼板は溶接、カシメ、積層接着などによって接続されて、固定され、ハウジング112に取り付けた際の締め付け力に起因する電磁鋼板の変形が抑制される。 The stator 130 has a cylindrical stator core 132 and a stator coil 138 mounted on the stator core 132. The stator core 132 is formed by laminating a plurality of electromagnetic steel sheets formed by punching or etching, for example, having a thickness of about 0.05 to 1.0 mm. The laminated electromagnetic steel sheets are connected and fixed by welding, caulking, laminated adhesion, or the like, and deformation of the electrical steel sheets due to the tightening force when attached to the housing 112 is suppressed.

固定子コア132には、軸方向に延在する複数のスロット420が周方向に等間隔となるように形成されている。スロット420の数は、例えば本実施の形態では72個である。スロット420には、固定子コイル138が収容される。スロット420は開スロットであり、固定子コア132の内周側には開口が形成されている。この開口の周方向の幅は、固定子コイル138が装着される各スロット420のコイル装着部とほぼ同等又はコイル装着部よりも若干小さいとよい。 The stator core 132 is formed with a plurality of slots 420 extending in the axial direction at equal intervals in the circumferential direction. The number of slots 420 is, for example, 72 in this embodiment. The stator coil 138 is housed in the slot 420. The slot 420 is an open slot, and an opening is formed on the inner peripheral side of the stator core 132. The width of the opening in the circumferential direction may be substantially equal to or slightly smaller than the coil mounting portion of each slot 420 in which the stator coil 138 is mounted.

なお、各スロット420内には、絶縁紙(いわゆるスロットライナー)が配置されている。絶縁紙は、例えば耐熱ポリアミド紙の絶縁シートであり、厚さは0.1〜0.5mm程である。絶縁紙は、スロット420やコイルエンドに配設される。絶縁紙をスロット420に配設することによって、スロット420に挿通される固定子コイル138の相互間、及び固定子コイル138とスロット420の内面との間に配設されて、固定子コイル138間や固定子コイル138とスロット420の内面との間の絶縁耐圧を向上している。 Insulating paper (so-called slot liner) is arranged in each slot 420. The insulating paper is, for example, an insulating sheet of heat-resistant polyamide paper, and has a thickness of about 0.1 to 0.5 mm. The insulating paper is arranged in the slot 420 and the coil end. By arranging the insulating paper in the slot 420, it is arranged between the stator coils 138 inserted into the slot 420 and between the stator coil 138 and the inner surface of the slot 420, and between the stator coils 138. The withstand voltage between the stator coil 138 and the inner surface of the slot 420 is improved.

スロット420の間にはティース430が形成されており、各ティース430は環状のコアバック440と一体に成形されている。固定子コア132は、各ティース430とコアバック440とが一体に成形された一体型コアとされている。ティース430は、固定子コイル138によって発生した回転磁界を回転子150に導き、回転子150に回転トルクを発生させる。 Teeth 430 are formed between the slots 420, and each tooth 430 is integrally formed with an annular core back 440. The stator core 132 is an integrated core in which each tooth 430 and a core back 440 are integrally formed. The teeth 430 guides the rotating magnetic field generated by the stator coil 138 to the rotor 150 and generates a rotational torque in the rotor 150.

<実施例1>
図3は、本発明の実施例1の回転子150の1極分を示す軸方向断面図である。
<Example 1>
FIG. 3 is an axial sectional view showing one pole of the rotor 150 according to the first embodiment of the present invention.

回転子150は、成形された複数の電磁鋼板を積層して溶接によって固定される回転子コア(ロータコア)152と、回転子コア152に形成された磁石収納部153に保持されている永久磁石154とを有している。 The rotor 150 includes a rotor core (rotor core) 152 that is fixed by laminating and welding a plurality of molded electromagnetic steel plates, and a permanent magnet 154 that is held in a magnet storage portion 153 formed in the rotor core 152. And have.

回転子コア152には、複数の磁石収納部153が設けられる。磁石収納部153は、1極内に二つが磁極中心軸(d軸)に対して所定の角度でV字形に配置され、各々に一つの永久磁石154が収納され、接着剤などで固定されている。永久磁石154は、回転子150の回転方向に位置する回転側永久磁石154Aと、回転子150の反回転方向に位置する反回転側永久磁石154BとがV字形に組み合わされて一極を形成している。磁石収納部153の内周の両側には磁石止め部が設けられ,磁石止め部の凸部によって磁石収納部153内の永久磁石154の位置が定まる。磁石収納部153の周方向の幅は、永久磁石154の周方向の幅より大きく形成されており、永久磁石154の両側には磁気的空隙が設けられている。この磁気的空隙は接着剤を埋め込んでもよいし、樹脂で永久磁石154と一体に固めてもよい。磁石収納部153の外周側には、細く形成されるアウターブリッジが設けられている。アウターブリッジが細く形成されることによって、当該部分の磁気抵抗を大きくして、永久磁石154から生じる磁束の隣接する磁極への漏れを抑制している。永久磁石154は、回転子150の界磁極を形成する。永久磁石154には、ネオジウム系、サマリウム系の焼結磁石やフェライト磁石、ネオジウム系のボンド磁石などを用いることができ、残留磁束密度Br=0.2T以上であることが望ましい。 The rotor core 152 is provided with a plurality of magnet storage portions 153. Two magnet housing units 153 are arranged in a V shape at a predetermined angle with respect to the magnetic pole center axis (d axis) in one pole, and one permanent magnet 154 is housed in each and fixed with an adhesive or the like. There is. In the permanent magnet 154, the rotating side permanent magnet 154A located in the rotation direction of the rotor 150 and the counter-rotating side permanent magnet 154B located in the counter-rotating direction of the rotor 150 are combined in a V shape to form one pole. ing. Magnet stoppers are provided on both sides of the inner circumference of the magnet accommodating portion 153, and the position of the permanent magnet 154 in the magnet accommodating portion 153 is determined by the convex portion of the magnet stopper. The width of the magnet accommodating portion 153 in the circumferential direction is formed to be larger than the width of the permanent magnet 154 in the circumferential direction, and magnetic gaps are provided on both sides of the permanent magnet 154. The magnetic void may be embedded with an adhesive, or may be integrally solidified with the permanent magnet 154 with a resin. A thin outer bridge is provided on the outer peripheral side of the magnet storage portion 153. By forming the outer bridge thinly, the magnetic resistance of the portion is increased, and the leakage of the magnetic flux generated from the permanent magnet 154 to the adjacent magnetic pole is suppressed. The permanent magnet 154 forms the field pole of the rotor 150. As the permanent magnet 154, a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bonded magnet, or the like can be used, and it is desirable that the residual magnetic flux density Br = 0.2T or more.

1極を構成する二つの磁石収納部153の間の回転子コア152には、回転子コア152を軸方向に貫通する貫通孔155が設けられる。貫通孔155は、回転側永久磁石154Aの主磁束面1541と対向する第2領域158において、回転側永久磁石154Aの主磁束面1541の法線のうち中央軸1542と回転子コア152内で交差する位置から、当該二つの磁石収納部153の間のインナーブリッジ156の位置(例えば、永久磁石154の最近接位置より内周側に)まで形成される。貫通孔155は、回転子コア152より透磁率が低く、磁気的に絶縁する磁気抵抗として機能する。貫通孔155は、二つの磁石収納部153の間で径方向に延伸する垂直部155Aと、回転側永久磁石154Aの主磁束面1541の中央軸1542と交差する位置へ延伸する斜め部155Bとで形成される。貫通孔155の幅は、永久磁石154の強さ、永久磁石154の配置、固定子コイル138に流れる電流、回転電機100の仕様(トルク、回転数など)によって決めるとよい。例えば、貫通孔155の幅は、垂直部155Aにおいて0.5mm程度、斜め部155Bにおいて0.5mmから3.5mm程度が望ましい。貫通孔155の幅が広いと当該部分の回転子コア152の磁気抵抗が大きくなり、磁石磁束の方向を容易に制御できるようになる。 The rotor core 152 between the two magnet housing portions 153 constituting one pole is provided with a through hole 155 that penetrates the rotor core 152 in the axial direction. The through hole 155 intersects the central axis 1542 of the normal line of the main magnetic flux surface 1541 of the rotating permanent magnet 154A in the rotor core 152 in the second region 158 facing the main magnetic flux surface 1541 of the rotating permanent magnet 154A. It is formed from the position where the magnet is stored to the position of the inner bridge 156 between the two magnet housing portions 153 (for example, on the inner peripheral side from the closest position of the permanent magnet 154). The through hole 155 has a lower magnetic permeability than the rotor core 152, and functions as a magnetic resistor that magnetically insulates the through hole 155. The through hole 155 is formed by a vertical portion 155A extending in the radial direction between the two magnet housing portions 153 and an oblique portion 155B extending to a position intersecting the central axis 1542 of the main magnetic flux surface 1541 of the rotating side permanent magnet 154A. It is formed. The width of the through hole 155 may be determined by the strength of the permanent magnet 154, the arrangement of the permanent magnets 154, the current flowing through the stator coil 138, and the specifications (torque, rotation speed, etc.) of the rotary electric machine 100. For example, the width of the through hole 155 is preferably about 0.5 mm in the vertical portion 155A and about 0.5 mm to 3.5 mm in the diagonal portion 155B. When the width of the through hole 155 is wide, the magnetic resistance of the rotor core 152 of the portion is increased, and the direction of the magnetic flux of the magnet can be easily controlled.

三相交流電流が固定子コイル138に供給されることによって、固定子130に発生した回転磁界が永久磁石154に作用して、磁石トルクが発生する。回転子150には、この磁石トルクに加えて、上述のリラクタンストルクが発生するので、回転子150には上述の磁石トルクとリラクタンストルクとの両方のトルクが回転トルクとして作用し、大きな回転トルクを得ることができる。 When the three-phase AC current is supplied to the stator coil 138, the rotating magnetic field generated in the stator 130 acts on the permanent magnet 154 to generate magnet torque. In addition to this magnet torque, the above-mentioned reluctance torque is generated in the rotor 150. Therefore, both the above-mentioned magnet torque and the above-mentioned reluctance torque act as the rotation torque in the rotor 150, and a large rotation torque is applied to the rotor 150. Obtainable.

図4、図5、図6を参照して、本発明の効果を説明する。本実施例では、図4に示すように、V字に配置された磁石の間まで貫通孔155を形成することによって、回転側永久磁石154Aが発生する磁束1543を反回転側の第1領域157に流れないようにしている。また、貫通孔155は、q軸電流磁束1545を第1領域157内に留め、第2領域158に流れない位置に形成されている。このため、q軸電流磁束1545は、反回転側磁石のアウターブリッジ近傍より流入し、貫通孔近傍より流出する経路を通る。そして、反回転側永久磁石154Bが発生する磁束1544とq軸電流磁束1545との合成によって第1領域157で磁気飽和が発生し、回転側永久磁石154Aが発生する磁束1543によって第2領域158で磁気飽和が発生する。 The effects of the present invention will be described with reference to FIGS. 4, 5, and 6. In this embodiment, as shown in FIG. 4, the magnetic flux 1543 generated by the permanent magnet 154A on the rotating side is generated by forming the through hole 155 between the magnets arranged in a V shape in the first region 157 on the counter-rotating side. I try not to flow to. Further, the through hole 155 is formed at a position where the q-axis current magnetic flux 1545 is kept in the first region 157 and does not flow into the second region 158. Therefore, the q-axis current magnetic flux 1545 passes through a path that flows in from the vicinity of the outer bridge of the counter-rotating side magnet and flows out from the vicinity of the through hole. Then, magnetic saturation is generated in the first region 157 by the combination of the magnetic flux 1544 generated by the anti-rotating side permanent magnet 154B and the q-axis current magnetic flux 1545, and the magnetic flux 1543 generated by the rotating side permanent magnet 154A causes the second region 158. Magnetic saturation occurs.

一般的に、埋め込み磁石式回転電機では、固定子コイル138に通電する際に、回転側永久磁石154Aの外径側のコアにおいて磁気飽和が発生する。これにより、図5に示すように、コイル通電時に回転側永久磁石154Aが発生する磁束1546が、反回転側(反回転側永久磁石154Bの主磁束面に対向する第1領域157)へ流れる。このような磁気飽和を抑制するため、本実施例では、図6に示すように、V字形に配置された永久磁石154の間のインナーブリッジ156に貫通孔155(垂直部155A)を設け、回転側永久磁石154Aの磁束1543が反回転側の第1領域157漏れる経路を遮断して、反回転側への磁束1546の流れを抑制する。 Generally, in an embedded magnet type rotary electric machine, magnetic saturation occurs in the core on the outer diameter side of the permanent magnet 154A on the rotating side when the stator coil 138 is energized. As a result, as shown in FIG. 5, the magnetic flux 1546 generated by the rotating side permanent magnet 154A when the coil is energized flows to the counter-rotating side (first region 157 facing the main magnetic flux surface of the counter-rotating side permanent magnet 154B). In order to suppress such magnetic saturation, in this embodiment, as shown in FIG. 6, a through hole 155 (vertical portion 155A) is provided in the inner bridge 156 between the permanent magnets 154 arranged in a V shape to rotate. The magnetic flux 1543 of the side permanent magnet 154A blocks the leakage path of the first region 157 on the counter-rotating side, and suppresses the flow of the magnetic flux 1546 to the counter-rotating side.

このため、回転側永久磁石154A及び反回転側永久磁石154Bが発生する磁束を阻害することなく、かつ回転側永久磁石154Aが発生する磁束1543が反回転側へ漏れる経路を完全に遮断できる。このため、固定子コイル138に通電した場合に回転側と反回転側とに発生する磁気飽和の偏りによる磁石磁束の傾きを低減できる。よって、磁気飽和による影響を低減し、磁石磁束の利用率を向上できる。そして、回転を抑制する方向の磁束が低減され、トルクを向上できる。 Therefore, the path through which the magnetic flux 1543 generated by the rotating permanent magnet 154A leaks to the counter-rotating side can be completely blocked without hindering the magnetic flux generated by the rotating permanent magnet 154A and the counter-rotating permanent magnet 154B. Therefore, when the stator coil 138 is energized, the inclination of the magnet magnetic flux due to the bias of magnetic saturation generated on the rotating side and the counter-rotating side can be reduced. Therefore, the influence of magnetic saturation can be reduced and the utilization rate of the magnet magnetic flux can be improved. Then, the magnetic flux in the direction of suppressing rotation is reduced, and the torque can be improved.

また、狭く形成されたインナーブリッジ156の幅は貫通孔155によってさらに狭くなるので、短絡磁束の発生を抑制できる。 Further, since the width of the narrowly formed inner bridge 156 is further narrowed by the through hole 155, the generation of short-circuit magnetic flux can be suppressed.

<実施例2>
図7は、本発明の実施例2の固定子コア132の1極分を示す軸方向断面図である。
<Example 2>
FIG. 7 is an axial sectional view showing one pole of the stator core 132 of the second embodiment of the present invention.

実施例2では実施例1と異なり、貫通孔155の内周側端部が磁石収納部153の最近接位置より内周側に位置する。貫通孔155の内周側端部は、永久磁石154の内周側端部位置よりより内周側に位置してもよい。より望ましくは、貫通孔155の内周側端部は、磁石収納部153の内周側端部と同位置又は内周側に位置するとよい。他の構成は、前述した実施例1と同一なので、それらの説明は省略する。 In the second embodiment, unlike the first embodiment, the inner peripheral side end portion of the through hole 155 is located on the inner peripheral side from the closest position of the magnet accommodating portion 153. The inner peripheral side end of the through hole 155 may be located closer to the inner peripheral side than the inner peripheral side end position of the permanent magnet 154. More preferably, the inner peripheral side end portion of the through hole 155 may be located at the same position as the inner peripheral side end portion of the magnet accommodating portion 153 or on the inner peripheral side. Since the other configurations are the same as those in the first embodiment described above, their description will be omitted.

実施例2では、貫通孔155をインナーブリッジ156を通り磁石収納部153より内周側まで延伸することによって、インナーブリッジ156を通る短絡磁束を抑制でき、磁石が発生する磁束の利用率をより向上して、より大きなトルクが得られる。 In the second embodiment, by extending the through hole 155 through the inner bridge 156 to the inner peripheral side from the magnet storage portion 153, the short-circuit magnetic flux passing through the inner bridge 156 can be suppressed, and the utilization rate of the magnetic flux generated by the magnet is further improved. Then, a larger torque can be obtained.

また、実施例2では、回転子コア152の外周側が貫通孔155によって磁気的に分割されており、貫通孔155によってインナーブリッジ156の幅が狭くなっているので、回転側永久磁石154Aの磁束1543の反回転側の第1領域157への漏れを抑制できる。 Further, in the second embodiment, the outer peripheral side of the rotor core 152 is magnetically divided by the through hole 155, and the width of the inner bridge 156 is narrowed by the through hole 155. Therefore, the magnetic flux 1543 of the rotating side permanent magnet 154A. Leakage to the first region 157 on the counter-rotating side of the magnet can be suppressed.

以上に説明したように、本実施例の回転電機100の回転子150では、回転子コア152を軸方向に貫通する貫通孔155が回転側永久磁石154Aと対向する第2領域158に形成されており、貫通孔155は、回転側永久磁石154Aの主磁束面1541の中央の法線と交差する位置からV字配置された永久磁石154A、154Bの間で、永久磁石154A、154Bが近接する位置まで形成されるので、回転側永久磁石154Aが発生する磁束のうち、永久磁石154A、154Bと貫通孔155の間を通り、反回転側の第1領域157へ漏れる磁束を抑制できる。このため、トルクの低下を抑制できる。 As described above, in the rotor 150 of the rotary electric machine 100 of the present embodiment, a through hole 155 penetrating the rotor core 152 in the axial direction is formed in the second region 158 facing the permanent magnet 154A on the rotating side. The through hole 155 is a position where the permanent magnets 154A and 154B are close to each other between the permanent magnets 154A and 154B arranged in a V shape from the position intersecting the central normal line of the main magnetic flux surface 1541 of the rotating side permanent magnet 154A. Of the magnetic flux generated by the permanent magnet 154A on the rotating side, the magnetic flux leaking to the first region 157 on the counter-rotating side through between the permanent magnets 154A and 154B and the through hole 155 can be suppressed. Therefore, it is possible to suppress a decrease in torque.

また、貫通孔155は、反回転側永久磁石154Bより回転側永久磁石154Aに近い位置であって、回転側永久磁石154Aの主磁束面1541の中央の法線(中央軸)1542と回転子コア152内で交差する位置から、インナーブリッジ156まで形成される。第1領域157において、反回転側永久磁石154Bが発生する磁束とq軸電流磁束1545との合成により、貫通孔155近傍にて磁気飽和が発生する。第2領域158において、回転側永久磁石154Aが発生する磁束の経路が貫通孔155によって回転側へ補正され、回転側永久磁石154Aが発生する磁束がギャップ近傍の断面積が小さい第2領域158の外周部に密集するため、磁気飽和が発生する。このため、第1領域157と第2領域158との透磁率の差が小さくなるため、磁石が発生する磁束が反回転側へ傾く現象が抑制される。このため、トルクの低下を抑制できる。 Further, the through hole 155 is located closer to the rotating side permanent magnet 154A than the counter-rotating side permanent magnet 154B, and is the central normal line (central axis) 1542 and the rotor core of the main magnetic flux surface 1541 of the rotating side permanent magnet 154A. From the intersecting position in 152, the inner bridge 156 is formed. In the first region 157, magnetic saturation occurs in the vicinity of the through hole 155 due to the combination of the magnetic flux generated by the permanent magnet 154B on the counter-rotating side and the q-axis current magnetic flux 1545. In the second region 158, the path of the magnetic flux generated by the rotating side permanent magnet 154A is corrected to the rotating side by the through hole 155, and the magnetic flux generated by the rotating side permanent magnet 154A is in the second region 158 where the cross-sectional area near the gap is small. Magnetic saturation occurs because it is densely packed on the outer periphery. Therefore, since the difference in magnetic permeability between the first region 157 and the second region 158 becomes small, the phenomenon that the magnetic flux generated by the magnet tilts to the counter-rotation side is suppressed. Therefore, it is possible to suppress a decrease in torque.

また、貫通孔155は、反回転側永久磁石154Bより回転側永久磁石154Aに近い位置であって、回転側永久磁石154Aの主磁束面1541の中央の法線(中央軸)1542と回転子コア152内で交差する位置から、インナーブリッジ156を通り、一極を構成する磁石収納部153の最近接位置より内周側まで形成されるので、インナーブリッジ156を通る短絡磁束を抑制し、磁石磁束の利用率を向上でき、トルクの低下を抑制できる。 Further, the through hole 155 is located closer to the rotating side permanent magnet 154A than the counter-rotating side permanent magnet 154B, and is the central normal line (central axis) 1542 and the rotor core of the main magnetic flux surface 1541 of the rotating side permanent magnet 154A. Since it is formed from the position where it intersects in 152, passes through the inner bridge 156, and extends from the closest position to the inner peripheral side of the magnet storage portion 153 that constitutes one pole, the short-circuit magnetic flux passing through the inner bridge 156 is suppressed and the magnet magnetic flux is suppressed. It is possible to improve the utilization rate of magnets and suppress the decrease in torque.

なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 It should be noted that the present invention is not limited to the above-described examples, but includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the described configurations. Further, a part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Further, the configuration of another embodiment may be added to the configuration of one embodiment. In addition, other configurations may be added / deleted / replaced with respect to a part of the configurations of each embodiment.

10 ケース、12 ボルト、14A、14B 軸受け、100 回転電機、112 ハウジング、115 フランジ、118 回転軸、130 固定子、132 固定子コア、138 固定子コイル、150 回転子、152 回転子コア、153 磁石収納部、154 永久磁石、154A 回転側永久磁石、154B 反回転側永久磁石、155 貫通孔、155A 貫通孔の垂直部、155B 貫通孔の斜め部、156 インナーブリッジ、157 第1領域、158 第2領域、420 スロット、430 ティース、440 コアバック、1541 主磁束面、1542 中央軸、1543 回転側永久磁石154Aが発生する磁束、1544 反回転側永久磁石154Bが発生する磁束、1545 q軸電流磁束 10 cases, 12 bolts, 14A, 14B bearings, 100 rotors, 112 housings, 115 flanges, 118 rotors, 130 stators, 132 stator cores, 138 stator coils, 150 rotors, 152 rotor cores, 153 magnets Storage, 154 permanent magnet, 154A rotating side permanent magnet, 154B counter-rotating side permanent magnet, 155 through hole, 155A through hole vertical part, 155B through hole diagonal part, 156 inner bridge, 157 first area, 158 second Region, 420 slots, 430 teeth, 440 core back, 1541 main magnetic flux surface, 1542 central axis, 1543 magnetic flux generated by rotating permanent magnet 154A, 1544 counter-rotating permanent magnet 154B generated magnetic flux, 1545 q-axis current magnetic flux

Claims (4)

磁石収納部が設けられた回転子コアと、前記磁石収納部に収納される永久磁石とを備える回転電機の回転子であって、
前記永久磁石は、回転側磁石と反回転側磁石とがV字形に組み合わされて一極を形成しており、
前記回転側磁石と前記反回転側磁石の間の領域を、前記反回転側磁石の主磁束面と対向する第1領域と、前記回転側磁石の主磁束面と対向する第2領域とに区分し、
前記回転子コアを軸方向に貫通する貫通孔が前記第2領域に形成されており、
前記貫通孔は、前記回転側磁石の主磁束面の中央の法線と交差する位置から前記V字配置された前記回転側磁石と前記反回転側磁石の間で、当該磁石が近接する位置まで形成されることを特徴とする回転電機の回転子。
A rotor of a rotating electric machine including a rotor core provided with a magnet storage portion and a permanent magnet housed in the magnet storage portion.
In the permanent magnet, a rotating magnet and a counter-rotating magnet are combined in a V shape to form one pole.
The region between the rotating side magnet and the counter-rotating side magnet is divided into a first region facing the main magnetic flux surface of the counter-rotating side magnet and a second region facing the main magnetic flux surface of the rotating side magnet. And
A through hole that penetrates the rotor core in the axial direction is formed in the second region.
The through hole extends from a position intersecting the central normal line of the main magnetic flux surface of the rotating magnet to a position where the magnet is close to the rotating magnet and the counter-rotating magnet arranged in a V shape. A rotor of a rotating electric machine, characterized in that it is formed.
請求項1に記載の回転電機の回転子であって、
前記回転子コアの内周側において前記回転側磁石と前記反回転側磁石との間には、幅狭のインナーブリッジが形成されており、
前記貫通孔は、前記反回転側磁石より前記回転側磁石に近い位置であって、前記回転側磁石の主磁束面の中央の法線と前記回転子コア内で交差する位置から、前記インナーブリッジまで形成される回転電機の回転子。
The rotor of the rotary electric machine according to claim 1.
A narrow inner bridge is formed between the rotating magnet and the counter-rotating magnet on the inner peripheral side of the rotor core.
The through hole is located closer to the rotating side magnet than the counter-rotating side magnet, and from a position where it intersects the central normal line of the main magnetic flux surface of the rotating side magnet in the rotor core, the inner bridge. Rotor of a rotating electric machine formed up to.
請求項1に記載の回転電機の回転子であって、
前記貫通孔は、前記反回転側磁石より前記回転側磁石に近い位置であって、前記回転側磁石の主磁束面の中央の法線と回転子コア内で交差する位置から、インナーブリッジを通り、一極を形成する前記磁石収納部の最近接位置より内周側まで形成される回転電機の回転子。
The rotor of the rotary electric machine according to claim 1.
The through hole passes through the inner bridge from a position closer to the rotating side magnet than the counter-rotating side magnet and intersecting the central normal line of the main magnetic flux surface of the rotating side magnet in the rotor core. , A rotor of a rotating electric machine formed from the closest position to the inner peripheral side of the magnet housing portion forming one pole.
請求項1から3のいずれか一つに記載の回転子を有する回転電機。 A rotary electric machine having the rotor according to any one of claims 1 to 3.
JP2019226054A 2019-12-16 2019-12-16 Rotator of rotary electric machine and rotary electric machine Pending JP2021097457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226054A JP2021097457A (en) 2019-12-16 2019-12-16 Rotator of rotary electric machine and rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226054A JP2021097457A (en) 2019-12-16 2019-12-16 Rotator of rotary electric machine and rotary electric machine

Publications (1)

Publication Number Publication Date
JP2021097457A true JP2021097457A (en) 2021-06-24

Family

ID=76431776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226054A Pending JP2021097457A (en) 2019-12-16 2019-12-16 Rotator of rotary electric machine and rotary electric machine

Country Status (1)

Country Link
JP (1) JP2021097457A (en)

Similar Documents

Publication Publication Date Title
CN112838693B (en) Rotary electric machine
US9071118B2 (en) Axial motor
JP3509508B2 (en) Permanent magnet synchronous motor
US7804216B2 (en) Permanent-magnet reluctance electrical rotary machine
JP4623471B2 (en) Rotating motor
JP3308828B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
JP5943063B2 (en) Hybrid excitation type rotating electric machine
JP2005094955A (en) Axial permanent magnet motor
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
JP6592525B2 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
JP2019041450A (en) Rotary electric machine
JP6466612B1 (en) Rotating electric machine
WO2021106395A1 (en) Rotary electric machine, rotor, and electromagnetic steel plate
JP3790665B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2012249389A (en) Rotor for rotary electric machine, and rotary electric machine using the same
WO2019187205A1 (en) Rotary electric machine
US10424981B2 (en) Rotating electric machine with magnetic gaps
JP4211200B2 (en) Synchronous machine with magnet
JP2021097457A (en) Rotator of rotary electric machine and rotary electric machine
JP3790773B2 (en) Permanent magnet rotating electric machine and automobile
JP3790765B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2020182358A (en) Rotor of rotating electric machine
JP6088465B2 (en) Drive unit
JP3790766B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine