JP2021096462A - Array substrate, display panel, and display device - Google Patents

Array substrate, display panel, and display device Download PDF

Info

Publication number
JP2021096462A
JP2021096462A JP2020184826A JP2020184826A JP2021096462A JP 2021096462 A JP2021096462 A JP 2021096462A JP 2020184826 A JP2020184826 A JP 2020184826A JP 2020184826 A JP2020184826 A JP 2020184826A JP 2021096462 A JP2021096462 A JP 2021096462A
Authority
JP
Japan
Prior art keywords
electrode
pixel electrode
opening
common electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020184826A
Other languages
Japanese (ja)
Inventor
舜 溝端
Shun Mizobata
舜 溝端
伊藤 昌稔
Masatoshi Ito
昌稔 伊藤
章剛 西脇
Akitake Nishiwaki
章剛 西脇
義真 八木
Yoshimasa Yagi
義真 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JP2021096462A publication Critical patent/JP2021096462A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

To suppress the occurrence of white spots that cause display defects.SOLUTION: An array substrate comprises a switching element 32, a pixel electrode 34 and a common electrode 35 capable of forming a fringe electric field between the pixel electrodes 34 and itself. The pixel electrode 34 includes a contact part 34B that penetrates at least an interlayer insulating film 38 and is connected to a first electrode 32D. The common electrode 35 includes an opening 37 at a position that overlaps the contact part 34B in a plan view. Th opening 37 is divided into an overlapping opening 37A that overlaps the pixel electrode 34 in a plan view and a non-overlapping opening 37B that does not overlap the pixel electrode 34, an interelectrode distance L1 between the pixel electrode 34 and the common electrode 35 facing each other via the non-overlapping opening 37B, in an in-plane direction, being 5 μm and over to less than 10 μm.SELECTED DRAWING: Figure 6

Description

本発明は、アレイ基板、表示パネル、及び表示装置に関する。 The present invention relates to an array substrate, a display panel, and a display device.

液晶分子を基板の板面方向(水平方向)にスイッチングさせる液晶表示装置として、FFS(Fringe Field Switching)モードで動作するものが知られており、その一例が特許文献1に記載されている。FFSモードの液晶表示装置では、液晶を挟持する一対の基板の一方(アレイ基板)に、画素電極及び共通電極が共に形成され、これらが層間絶縁膜を介して異なる層に配される。液晶分子の配向は、画素電極と共通電極との間に発生する斜め電界(いわゆるフリンジ電界)によって制御される。 A liquid crystal display device that switches liquid crystal molecules in the plate surface direction (horizontal direction) of a substrate is known to operate in an FFS (Fringe Field Switching) mode, and an example thereof is described in Patent Document 1. In the FFS mode liquid crystal display device, a pixel electrode and a common electrode are both formed on one of a pair of substrates (array substrate) that sandwiches the liquid crystal, and these are arranged in different layers via an interlayer insulating film. The orientation of the liquid crystal molecules is controlled by an oblique electric field (so-called fringe electric field) generated between the pixel electrode and the common electrode.

特許文献1に記載の液晶表示装置は、細長状の開口であるスリットを有する画素電極(上層電極)と、比誘電率が液晶に比して小さい層間絶縁膜と、画素電極との間でフリンジ電界を形成する共通電極(下層電極)と、を有する。特許文献1の液晶表示装置は、層間絶縁膜に比誘電率の小さい材料を用いることで、フリンジ電界が局所的に過大となって焼き付き等の表示不良が生じてしまう課題を抑制可能としている。 The liquid crystal display device described in Patent Document 1 has a fringe between a pixel electrode (upper layer electrode) having a slit which is an elongated opening, an interlayer insulating film having a relative permittivity smaller than that of a liquid crystal, and a pixel electrode. It has a common electrode (lower layer electrode) that forms an electric field. The liquid crystal display device of Patent Document 1 makes it possible to suppress the problem that the fringe electric field becomes locally excessive and display defects such as burn-in occur by using a material having a small relative permittivity for the interlayer insulating film.

特許第5858869号公報Japanese Patent No. 5858869

ところで、画素電極は、スイッチング素子であるTFT(Thin film Transistor、薄膜トランジスタ)とコンタクトホールを通じて接続されている。このコンタクトホール周辺には、フリンジ電界の局所的な過大に起因して、0.3mm程度から1mm程度の微細な白点が表示されてしまうことがある。そこで、フリンジ電界を緩和するために、特許文献1のように層間絶縁膜に比誘電率の小さい材料を用いると、電極間のリーク電流が増大したり、光透過率が低下したりしてしまうのが実情である。 By the way, the pixel electrode is connected to a TFT (Thin film Transistor) which is a switching element through a contact hole. Around the contact hole, fine white spots of about 0.3 mm to about 1 mm may be displayed due to the local excess of the fringe electric field. Therefore, if a material having a small relative permittivity is used for the interlayer insulating film as in Patent Document 1 in order to relax the fringe electric field, the leakage current between the electrodes increases or the light transmittance decreases. Is the reality.

本願明細書に記載の技術は上記のような実情に基づいて完成されたものであって、表示不良となる白点の発生を抑制することを目的とする。 The technique described in the specification of the present application has been completed based on the above circumstances, and an object thereof is to suppress the occurrence of white spots that cause display defects.

(1)本願明細書に記載の技術に関わるアレイ基板は、絶縁性基板と、前記絶縁性基板の上層側に配されるスイッチング素子と、前記スイッチング素子を構成する第1電極と接続される画素電極と、前記画素電極と異なる層に配され、前記画素電極との間でフリンジ電界を形成可能な共通電極と、前記画素電極と前記共通電極との層間に配される層間絶縁膜と、前記画素電極、前記共通電極、及び前記層間絶縁膜を覆う絶縁性の配向膜と、を備え、前記画素電極は、少なくとも前記層間絶縁膜を貫通して前記第1電極と接続されるコンタクト部を有し、前記共通電極は、前記コンタクト部と平面に視て重畳する位置に開口を有しており、前記開口は、平面に視て前記画素電極と重畳する重畳開口部と、前記画素電極と重畳しない非重畳開口部と、に区分され、前記非重畳開口部を介して対向する前記画素電極と前記共通電極との電極間距離は、前記絶縁性基板の面内方向において5μm以上10μm未満である。 (1) The array substrate according to the technique described in the present specification is a pixel connected to an insulating substrate, a switching element arranged on the upper layer side of the insulating substrate, and a first electrode constituting the switching element. The electrode, a common electrode arranged on a layer different from the pixel electrode and capable of forming a fringe electric field between the pixel electrodes, an interlayer insulating film arranged between the pixel electrode and the common electrode, and the above-mentioned A pixel electrode, the common electrode, and an insulating alignment film covering the interlayer insulating film are provided, and the pixel electrode has a contact portion that penetrates at least the interlayer insulating film and is connected to the first electrode. However, the common electrode has an opening at a position where it overlaps with the contact portion when viewed in a plane, and the opening overlaps with the pixel electrode and a superimposed opening which is superimposed on the pixel electrode when viewed in a plane. The distance between the electrode of the pixel electrode and the common electrode facing each other through the non-superimposed opening is 5 μm or more and less than 10 μm in the in-plane direction of the insulating substrate. ..

(2)また、上記アレイ基板は、上記(1)に加え、前記配向膜が、前記非重畳開口部を介して前記画素電極と対向する前記共通電極と平面に視て重畳し、且つ前記絶縁性基板の面内方向に沿って延在する平坦部と、前記非重畳開口部と平面に視て重畳し、且つ前記絶縁性基板の面内方向と交わるように傾斜する傾斜部と、を有し、前記平坦部の膜厚T1と前記傾斜部の膜厚T2との比T2/T1は、0.60以上1.20以下であってもよい。 (2) Further, in the array substrate, in addition to the above (1), the alignment film is superposed on the common electrode facing the pixel electrode through the non-superimposing opening in a plan view, and the insulation is provided. It has a flat portion extending along the in-plane direction of the sex substrate and an inclined portion that superimposes on the non-superimposing opening in a plane and is inclined so as to intersect the in-plane direction of the insulating substrate. The ratio T2 / T1 of the film thickness T1 of the flat portion to the film thickness T2 of the inclined portion may be 0.60 or more and 1.20 or less.

(3)本願明細書に記載の技術に関わる別のアレイ基板は、絶縁性基板と、前記絶縁性基板の上層側に配されたスイッチング素子と、前記スイッチング素子を構成する第1電極と接続される画素電極と、前記画素電極と異なる層に配され、前記画素電極との間でフリンジ電界を形成可能な共通電極と、前記画素電極と前記共通電極との層間に配される層間絶縁膜と、前記画素電極、前記共通電極、及び前記層間絶縁膜を覆う絶縁性の配向膜と、を備え、前記画素電極は、少なくとも前記層間絶縁膜を貫通して前記第1電極と接続されるコンタクト部を有し、前記共通電極は、前記コンタクト部と平面に視て重畳する位置に開口を有しており、前記開口は、平面に視て前記画素電極と重畳する重畳開口部と、前記画素電極と重畳しない非重畳開口部と、に区分され、前記配向膜は、前記非重畳開口部を介して前記画素電極と対向する前記共通電極と平面に視て重畳し、且つ前記絶縁性基板の面内方向に沿って延在する平坦部と、前記非重畳開口部と平面に視て重畳し、且つ前記絶縁性基板の面内方向と交わるように傾斜する傾斜部と、を有し、前記平坦部の膜厚T1と前記傾斜部の膜厚T2との比T2/T1は、0.60以上1.20以下である。 (3) Another array substrate related to the technique described in the present specification is connected to an insulating substrate, a switching element arranged on the upper layer side of the insulating substrate, and a first electrode constituting the switching element. A common electrode arranged on a layer different from the pixel electrode and capable of forming a fringe electric field between the pixel electrodes, and an interlayer insulating film arranged between the pixel electrode and the common electrode. A contact portion comprising the pixel electrode, the common electrode, and an insulating alignment film covering the interlayer insulating film, the pixel electrode penetrating at least the interlayer insulating film and being connected to the first electrode. The common electrode has an opening at a position where it overlaps with the contact portion when viewed in a plane, and the opening has a superposed opening which overlaps with the pixel electrode when viewed in a plane and the pixel electrode. The alignment film is divided into a non-superimposition opening that does not superimpose on the surface of the insulating substrate, and the alignment film is superposed on the common electrode facing the pixel electrode through the non-superimposition opening. The flat portion has a flat portion extending along the inward direction and an inclined portion that superimposes on the non-superimposing opening in a plane and is inclined so as to intersect the in-plane direction of the insulating substrate. The ratio T2 / T1 of the film thickness T1 of the portion to the film thickness T2 of the inclined portion is 0.60 or more and 1.20 or less.

(4)また、上記アレイ基板は、上記(2)又は(3)に加え、前記配向膜が、γ−ブチロラクトン、N−メチルピロドリン、ブチルセロソルブのうち少なくともいずれか1つを含有する有機樹脂材料からなっていてもよい。 (4) Further, the array substrate is an organic resin material in which the alignment film contains at least one of γ-butyrolactone, N-methylpyrodrin, and butyl cellosolve in addition to the above (2) or (3). It may consist of.

(5)また、上記アレイ基板は、上記(1)から(4)のいずれか1つに加え、前記スイッチング素子は薄膜トランジスタであり、前記第1電極はドレイン電極であり、前記画素電極は前記層間絶縁膜の上層側に配されており、前記共通電極は前記層間絶縁膜の下層側に配されていてもよい。 (5) Further, in the array substrate, in addition to any one of the above (1) to (4), the switching element is a thin film transistor, the first electrode is a drain electrode, and the pixel electrode is an interlayer. The common electrode may be arranged on the upper layer side of the insulating film, and the common electrode may be arranged on the lower layer side of the interlayer insulating film.

(6)本願明細書に記載の技術に関わる表示パネルは、上記(1)から(5)のいずれか1つのアレイ基板と、前記アレイ基板と対向配置される対向基板と、前記アレイ基板と前記対向基板との間に挟持される液晶層と、を備える。 (6) The display panel according to the technique described in the present specification includes an array substrate according to any one of (1) to (5) above, an opposing substrate arranged to face the array substrate, and the array substrate and the above. A liquid crystal layer sandwiched between the facing substrate and the liquid crystal layer is provided.

(7)本願明細書に記載の技術に関わる表示装置は、上記(6)の表示パネルと、前記表示パネルに対して光を照射可能な照明装置と、を備える。 (7) The display device related to the technique described in the present specification includes the display panel of (6) above and a lighting device capable of irradiating the display panel with light.

本願明細書に記載の技術によれば、表示不良となる白点の発生を抑制することができる。 According to the technique described in the present specification, it is possible to suppress the occurrence of white spots that cause display defects.

第1実施形態に係る液晶表示装置の斜視図Perspective view of the liquid crystal display device according to the first embodiment 液晶パネルの断面図Cross section of liquid crystal panel 表示画素の等価回路図Equivalent circuit diagram of display pixels アレイ基板の配線構造を示す部分平面図Partial plan view showing the wiring structure of the array board 図4における画素電極及び共通電極の部分拡大図Partially enlarged view of the pixel electrode and the common electrode in FIG. 液晶パネルを図4のA-A線位置で切断した部分断面図Partial cross-sectional view of the liquid crystal panel cut at the AA line position in FIG. 比較例1に係る液晶パネルを図4のA-A線位置で切断した部分断面図Partial cross-sectional view of the liquid crystal panel according to Comparative Example 1 cut at the AA line position in FIG. 比較実験1の実験結果を示す表Table showing the experimental results of Comparative Experiment 1 第2実施形態に係るアレイ基板の配線構造を示す平面図Top view showing the wiring structure of the array board which concerns on 2nd Embodiment 液晶パネルを図9のB-B線位置で切断した部分断面図Partial cross-sectional view of the liquid crystal panel cut at the position BB in FIG. 第2実施形態に係る液晶パネルにおいて、ゲート書き込み期間に液晶層と配向膜との界面に蓄積される電荷を示す図The figure which shows the electric charge which is accumulated in the interface between the liquid crystal layer and the alignment film in the gate writing period in the liquid crystal panel which concerns on 2nd Embodiment. 第2実施形態に係る液晶パネルにおいて、ゲート非書き込み期間に液晶層と配向膜との界面に蓄積される電荷を示す図The figure which shows the electric charge which is accumulated in the interface between the liquid crystal layer and the alignment film in the gate non-writing period in the liquid crystal panel which concerns on 2nd Embodiment. 比較例4に係る液晶パネルにおいて、ゲート書き込み期間に液晶層と配向膜との界面に蓄積される電荷を示す図The figure which shows the electric charge which is accumulated in the interface between the liquid crystal layer and the alignment film in the gate writing period in the liquid crystal panel which concerns on Comparative Example 4. 比較例4に係る液晶パネルにおいて、ゲート非書き込み期間に液晶層と配向膜との界面に蓄積される電荷を示す図The figure which shows the electric charge which is accumulated in the interface between the liquid crystal layer and the alignment film in the gate non-writing period in the liquid crystal panel which concerns on Comparative Example 4. 比較実験2の実験結果を示す表Table showing the experimental results of Comparative Experiment 2

<第1実施形態>
第1実施形態に係る液晶表示装置100(表示装置の一例)について図1から図8を参照して説明する。なお、表以外の各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で共通する方向となるように描かれている。また、+Z軸方向を表側とし、−Z軸方向を裏側とする。
<First Embodiment>
The liquid crystal display device 100 (an example of the display device) according to the first embodiment will be described with reference to FIGS. 1 to 8. The X-axis, Y-axis, and Z-axis are shown in a part of each drawing other than the table, and each axis direction is drawn so as to be a common direction in each drawing. Further, the + Z axis direction is the front side, and the −Z axis direction is the back side.

液晶表示装置100は、図1に示すように、画像を表示可能な液晶パネル10(表示パネルの一例)と、液晶パネル10を駆動するドライバ12と、ドライバ12に対して各種信号を供給するコントロール基板16と、液晶パネル10とコントロール基板16とを電気的に接続するフレキシブル基板14と、液晶パネル10に対して裏側に配されて液晶パネル10に表示のための光を照射する外部光源であるバックライト装置80(照明装置の一例)と、を少なくとも備えている。 As shown in FIG. 1, the liquid crystal display device 100 includes a liquid crystal panel 10 (an example of a display panel) capable of displaying an image, a driver 12 for driving the liquid crystal panel 10, and a control for supplying various signals to the driver 12. A flexible substrate 14 that electrically connects the substrate 16, the liquid crystal panel 10 and the control substrate 16, and an external light source that is arranged on the back side of the liquid crystal panel 10 and irradiates the liquid crystal panel 10 with light for display. It includes at least a backlight device 80 (an example of a lighting device).

液晶パネル10は、図1に示すように、全体として縦長な矩形状をなし、その面内が、画像を表示可能で且つ中央側に配される表示領域(アクティブエリア)AAと、表示領域AAを取り囲む形で外周側に配されて平面に視て枠状(額縁状)をなす非表示領域(ノンアクティブエリア)NAAと、に区分されている。液晶パネル10における短辺方向が各図面のX軸方向と一致し、長辺方向が各図面のY軸方向と一致し、さらには板厚方向がZ軸方向と一致している。なお、図1では、一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。 As shown in FIG. 1, the liquid crystal panel 10 has a vertically long rectangular shape as a whole, and the inside of the liquid crystal panel 10 has a display area (active area) AA capable of displaying an image and arranged on the center side, and a display area AA. It is divided into a non-display area (non-active area) NAA which is arranged on the outer peripheral side in a form surrounding the above and forms a frame shape (frame shape) when viewed on a flat surface. The short side direction of the liquid crystal panel 10 coincides with the X-axis direction of each drawing, the long side direction coincides with the Y-axis direction of each drawing, and the plate thickness direction coincides with the Z-axis direction. In FIG. 1, the alternate long and short dash line represents the outer shape of the display area AA, and the area outside the alternate long and short dash line is the non-display area NAA.

液晶パネル10は、図2に示すように、一対の基板20,30と、液晶層18と、シール部50と、を有する。液晶層18は、両基板20,30間に挟持されており、電界印加に伴って光学特性が変化する物質である液晶分子を含んでいる。シール部50は、液晶層18を取り囲むように非表示領域NAAに配され、両基板20,30間に介在して、液晶層18の厚さ分のセルギャップを維持した状態で液晶層18を封止している。 As shown in FIG. 2, the liquid crystal panel 10 has a pair of substrates 20 and 30, a liquid crystal layer 18, and a sealing portion 50. The liquid crystal layer 18 is sandwiched between the substrates 20 and 30, and contains liquid crystal molecules which are substances whose optical characteristics change with the application of an electric field. The seal portion 50 is arranged in the non-display area NAA so as to surround the liquid crystal layer 18, and is interposed between the two substrates 20 and 30 to maintain the cell gap corresponding to the thickness of the liquid crystal layer 18 and to hold the liquid crystal layer 18. It is sealed.

一対の基板20,30のうち表側がCF基板(カラーフィルター基板、対向基板)20とされ、裏側がアレイ基板(アクティブマトリクス基板、TFT基板)30とされる。CF基板20及びアレイ基板30には、それぞれガラス基板GS(絶縁性基板の一例)の液晶層18側に各種の膜が既知のフォトリソグラフィー法により積層形成されている。両基板20,30の外面側(液晶層18と反対側)には、それぞれ偏光板10C,10Dが貼り付けられている。 Of the pair of substrates 20 and 30, the front side is the CF substrate (color filter substrate, facing substrate) 20 and the back side is the array substrate (active matrix substrate, TFT substrate) 30. On the CF substrate 20 and the array substrate 30, various films are laminated and formed on the liquid crystal layer 18 side of the glass substrate GS (an example of an insulating substrate) by a known photolithography method. Polarizing plates 10C and 10D are attached to the outer surfaces of the substrates 20 and 30 (opposite to the liquid crystal layer 18), respectively.

CF基板20の表示領域AAには、多数個のカラーフィルタがマトリクス状に並んで設けられている。カラーフィルタは、R(赤色),G(緑色),B(青色)の三色の着色膜が所定の順で繰り返し並んで配されている。アレイ基板30において、各着色膜と対向をなす位置には後述する画素電極34がそれぞれ配されている。R,G,Bの3色の各着色膜及びこれらと対向する3つの画素電極34の組によって表示単位である1つの表示画素PXが構成されている。 In the display area AA of the CF substrate 20, a large number of color filters are provided side by side in a matrix. In the color filter, three colored films of R (red), G (green), and B (blue) are repeatedly arranged in a predetermined order. In the array substrate 30, pixel electrodes 34, which will be described later, are arranged at positions facing each colored film. One display pixel PX, which is a display unit, is composed of each of the three colored films of R, G, and B and a set of three pixel electrodes 34 facing the colored films.

アレイ基板30の表示領域AAには、図3に示すように、スイッチング素子であるTFT32及び画素電極34が多数個マトリクス状(行列状)に並んで設けられている。また、TFT32及び画素電極34を取り囲むように、ゲート配線(走査線)36G及びソース配線(データ線、信号線)36Sが格子状に設けられている。TFT32は、ゲート配線36Gに接続されるゲート電極32Gと、ソース配線36Sに接続されるソース電極32Sと、画素電極34に接続されるドレイン電極32D(第1電極の一例)と、を有する。また、TFT32は、一端側がソース電極32Sに、他端側がドレイン電極32Dに接続される半導体膜を有する。TFT32は、ゲート配線36Gに供給されるゲート信号に基づいて駆動される。ゲート信号がゲート閾値電圧以上となるゲート書き込み期間において、ソース配線36Sにソース信号が供給されると、半導体膜からなるチャネルを介してソース電極32Sとドレイン電極32D間に電流が流れ、画素電極34はソース信号に応じた電位に充電される。 As shown in FIG. 3, a large number of TFTs 32 and pixel electrodes 34, which are switching elements, are provided side by side in a matrix in the display area AA of the array substrate 30. Further, the gate wiring (scanning line) 36G and the source wiring (data line, signal line) 36S are provided in a grid pattern so as to surround the TFT 32 and the pixel electrode 34. The TFT 32 has a gate electrode 32G connected to the gate wiring 36G, a source electrode 32S connected to the source wiring 36S, and a drain electrode 32D (an example of the first electrode) connected to the pixel electrode 34. Further, the TFT 32 has a semiconductor film in which one end side is connected to the source electrode 32S and the other end side is connected to the drain electrode 32D. The TFT 32 is driven based on the gate signal supplied to the gate wiring 36G. When the source signal is supplied to the source wiring 36S during the gate writing period when the gate signal is equal to or higher than the gate threshold voltage, a current flows between the source electrode 32S and the drain electrode 32D via a channel made of a semiconductor film, and the pixel electrode 34 Is charged to a potential corresponding to the source signal.

ゲート電極32Gは、図4に示すように、ゲート配線36Gから分岐されており、ゲート配線36GからY軸方向に沿って画素電極34側(上側)に突出している。ソース電極32Sは、ソース配線36Sから分岐されており、X軸方向に沿ってゲート電極32G側(右側)に突出しており、その一部がゲート電極32Gと重畳している。ドレイン電極32Dは、ソース電極32Sに対してX軸方向について間隔を空けて配され、その一部がゲート電極32Gと重畳している。ソース配線36S、ゲート配線36G、ソース電極32S、ドレイン電極32D、及びゲート電極32Gは、銅(Cu)等の金属、合金の単層膜又はこれらの積層膜からなる。半導体膜は、無機絶縁材料からなるゲート絶縁膜を介してゲート電極32Gと重畳するように配されている。半導体膜は、IGZO(Indium Gallium Zinc Oxide)等の酸化物半導体からなる。 As shown in FIG. 4, the gate electrode 32G is branched from the gate wiring 36G and projects from the gate wiring 36G toward the pixel electrode 34 side (upper side) along the Y-axis direction. The source electrode 32S is branched from the source wiring 36S, projects toward the gate electrode 32G side (right side) along the X-axis direction, and a part thereof overlaps with the gate electrode 32G. The drain electrode 32D is arranged at intervals in the X-axis direction with respect to the source electrode 32S, and a part thereof overlaps with the gate electrode 32G. The source wiring 36S, the gate wiring 36G, the source electrode 32S, the drain electrode 32D, and the gate electrode 32G are made of a single layer film of a metal such as copper (Cu) or an alloy, or a laminated film thereof. The semiconductor film is arranged so as to overlap with the gate electrode 32G via a gate insulating film made of an inorganic insulating material. The semiconductor film is made of an oxide semiconductor such as IGZO (Indium Gallium Zinc Oxide).

画素電極34は、図4に示すように、全体として縦長の矩形状をなす。画素電極34は、ITO(Indium Tin Oxide)等の透明電極膜からなり、TFT32より上層側に配されている。画素電極34には、その長辺部に沿って延在しわずかに屈曲した細長状のスリット34Aが3つ開口形成されている。また、画素電極34の一部は、Y軸方向に沿ってドレイン電極32Dに向けて突出し、ドレイン電極32Dと重畳している。画素電極34は、ドレイン電極32Dと重畳する部分にコンタクト部34Bを有する。コンタクト部34Bは、図6に示すように、画素電極34とドレイン電極32Dとの層間(具体的には、後述する層間絶縁膜38及び平坦化膜39)を貫通し、下層側のドレイン電極32Dと接続されている。コンタクト部34Bにより、画素電極34とドレイン電極32Dとの導通が確保されている。 As shown in FIG. 4, the pixel electrode 34 has a vertically long rectangular shape as a whole. The pixel electrode 34 is made of a transparent electrode film such as ITO (Indium Tin Oxide), and is arranged on the upper layer side of the TFT 32. The pixel electrode 34 is formed with three openings of elongated slits 34A extending along its long side and slightly bent. Further, a part of the pixel electrode 34 projects toward the drain electrode 32D along the Y-axis direction and overlaps with the drain electrode 32D. The pixel electrode 34 has a contact portion 34B at a portion that overlaps with the drain electrode 32D. As shown in FIG. 6, the contact portion 34B penetrates between the layers between the pixel electrode 34 and the drain electrode 32D (specifically, the interlayer insulating film 38 and the flattening film 39 described later), and the drain electrode 32D on the lower layer side penetrates. Is connected to. The contact portion 34B ensures the continuity between the pixel electrode 34 and the drain electrode 32D.

また、アレイ基板30の表示領域AAには、共通電極35が概ねベタ状に形成されている。共通電極35は、ITO(Indium Tin Oxide)等の透明電極膜からなる。共通電極35は、図4及び図5に示すように、少なくともコンタクト部34Bと重畳するように開口37を有し、この開口37を除いてベタ状に形成されている。開口37は、共通電極35の開口縁35Aにより画定されており、開口37の外形が開口縁35Aと一致している。開口37、及び後述するコンタクトホールCHにより、画素電極34のコンタクト部34Bが層間を貫通可能となっている。 Further, the common electrode 35 is formed in a substantially solid shape in the display region AA of the array substrate 30. The common electrode 35 is made of a transparent electrode film such as ITO (Indium Tin Oxide). As shown in FIGS. 4 and 5, the common electrode 35 has an opening 37 so as to overlap with at least the contact portion 34B, and is formed in a solid shape except for the opening 37. The opening 37 is defined by the opening edge 35A of the common electrode 35, and the outer shape of the opening 37 coincides with the opening edge 35A. The opening 37 and the contact hole CH described later allow the contact portion 34B of the pixel electrode 34 to penetrate between the layers.

共通電極35は、図6に示すように、層間絶縁膜38を介して画素電極34の下層側に設けられている。共通電極35には基準電位が印加される。層間絶縁膜38は、窒化ケイ素(SiNx)や酸化ケイ素(SiO2)等の無機絶縁材料からなる。ゲート書き込み期間において、画素電極34と共通電極35との間に電位差が生じると、液晶層18には、アレイ基板30の板面(X−Y面)に沿う成分に加えてアレイ基板30の板面に対する法線方向(Z軸方向)の成分を含むフリンジ電界が印加される。このフリンジ電界により液晶層18内の液晶分子の配向状態が変化する。その結果、液晶パネル10を透過する光の透過率が変化し、表示画素PXの表示状態が変化する。液晶表示装置100は、このようにして光の透過率を制御し、多数の表示画素PXによりカラー画像を表現している。 As shown in FIG. 6, the common electrode 35 is provided on the lower layer side of the pixel electrode 34 via the interlayer insulating film 38. A reference potential is applied to the common electrode 35. The interlayer insulating film 38 is made of an inorganic insulating material such as silicon nitride (SiN x ) or silicon oxide (SiO 2). When a potential difference occurs between the pixel electrode 34 and the common electrode 35 during the gate writing period, the liquid crystal layer 18 has a plate of the array substrate 30 in addition to a component along the plate surface (XY plane) of the array substrate 30. A fringe electric field containing a component in the normal direction (Z-axis direction) with respect to the surface is applied. The fringe electric field changes the orientation state of the liquid crystal molecules in the liquid crystal layer 18. As a result, the transmittance of the light transmitted through the liquid crystal panel 10 changes, and the display state of the display pixel PX changes. The liquid crystal display device 100 controls the light transmittance in this way, and expresses a color image by a large number of display pixels PX.

共通電極35の開口37は、図5に示すように、平面に視て画素電極34と重畳する重畳開口部37Aと、画素電極34と重畳しない非重畳開口部37B(図5における網掛部)と、に区分される。非重畳開口部37Bは、画素電極34の外縁の一部と、共通電極35の開口縁35Aの一部によって画定されている。画素電極34の外縁のうち非重畳開口部37Bを画定する部分を画素電極縁34E、共通電極35の開口縁35Aのうち非重畳開口部37Bを画定する部分を共通電極縁35Eとすると、画素電極縁34Eと共通電極縁35Eとは、非重畳開口部37Bを介して互いに対向する部分を含んでいる。非重畳開口部37Bを介して対向する画素電極34(画素電極縁34E)と共通電極35(共通電極縁35E)との距離を電極間距離L1とする。本実施形態に係るアレイ基板30は、電極間距離L1が所定の範囲に設定されている。 As shown in FIG. 5, the openings 37 of the common electrode 35 include a superposed opening 37A that overlaps with the pixel electrode 34 when viewed in a plane, and a non-superimposed opening 37B (shaded portion in FIG. 5) that does not superimpose on the pixel electrode 34. It is divided into ,. The non-superimposing opening 37B is defined by a part of the outer edge of the pixel electrode 34 and a part of the opening edge 35A of the common electrode 35. Assuming that the portion of the outer edge of the pixel electrode 34 that defines the non-overlapping opening 37B is the pixel electrode edge 34E, and the portion of the opening edge 35A of the common electrode 35 that defines the non-overlapping opening 37B is the common electrode edge 35E, the pixel electrode The edge 34E and the common electrode edge 35E include portions facing each other via the non-overlapping opening 37B. The distance between the pixel electrodes 34 (pixel electrode edges 34E) and the common electrodes 35 (common electrode edges 35E) facing each other via the non-superimposition opening 37B is defined as the distance between the electrodes L1. In the array substrate 30 according to the present embodiment, the distance L1 between electrodes is set within a predetermined range.

具体的には、アレイ基板30は、後述する比較実験1の結果で示すように、ガラス基板GSの面内方向(X−Y面内方向)における電極間距離L1を5μm以上10μm未満にすることで、液晶表示装置100に搭載した際に、液晶層18内の液晶分子の配向状態を適切に変化させつつ、表示不良となる白点(他の部分より著しく高輝度の点を含む)が生じないにすることができる。なお、画素電極34及び共通電極35は、図5で示すように、画素電極縁34Eと共通電極縁35Eとが共にY軸方向に延在しつつ、非重畳開口部37Bを介してX軸方向に対向している部分と、画素電極縁34Eと共通電極縁35Eとが共にX軸方向に延在しつつ、非重畳開口部37Bを介してY軸方向に対向している部分とを含んでいる。電極間距離L1は、いずれの対向部分においても5μm以上10μm未満となっている。 Specifically, as shown in the result of Comparative Experiment 1 described later, the array substrate 30 has an inter-electrode distance L1 of 5 μm or more and less than 10 μm in the in-plane direction (XY in-plane direction) of the glass substrate GS. Therefore, when mounted on the liquid crystal display device 100, white spots (including spots having a significantly higher brightness than other portions) are generated, which causes display defects while appropriately changing the orientation state of the liquid crystal molecules in the liquid crystal layer 18. Can be none. In the pixel electrode 34 and the common electrode 35, as shown in FIG. 5, the pixel electrode edge 34E and the common electrode edge 35E both extend in the Y-axis direction, and in the X-axis direction via the non-overlapping opening 37B. The portion facing the Y-axis direction and the portion facing the Y-axis direction through the non-overlapping opening 37B while the pixel electrode edge 34E and the common electrode edge 35E both extend in the X-axis direction are included. There is. The distance L1 between the electrodes is 5 μm or more and less than 10 μm in any of the facing portions.

次に、アレイ基板30の各種の膜の積層構造について説明する。アレイ基板30は、図6に示すように、コンタクト部34B周辺において、ガラス基板GS上に順に、ドレイン電極32D、平坦化膜39、共通電極35、層間絶縁膜38、画素電極34が積層形成されている。そして、アレイ基板30の最上層(液晶層18に最も近い層)には、これら各種の積層膜を覆うように配向膜40が塗布されている。 Next, the laminated structure of various films of the array substrate 30 will be described. As shown in FIG. 6, in the array substrate 30, a drain electrode 32D, a flattening film 39, a common electrode 35, an interlayer insulating film 38, and a pixel electrode 34 are laminated and formed on the glass substrate GS in this order around the contact portion 34B. ing. An alignment film 40 is applied to the uppermost layer (the layer closest to the liquid crystal layer 18) of the array substrate 30 so as to cover these various laminated films.

平坦化膜39は、アクリル樹脂(PMMA等)やポリイミド樹脂等の透明な有機絶縁材料からなり、その膜厚は他の絶縁膜(層間絶縁膜38等)より大きなものとされる。平坦化膜39によりアレイ基板30の表示領域AAの表面が平坦化されている。層間絶縁膜38及び平坦化膜39には、図6に示すように、これらを貫通するコンタクトホールCHが開口形成されている。層間絶縁膜38及び平坦化膜39は、コンタクトホールCHを除いて、表示領域AAにベタ状に形成されている。コンタクトホールCHは、共通電極35の開口37と重畳するように設けられている。コンタクトホールCHに画素電極34が積層されることで、コンタクト部34Bが形成されている。 The flattening film 39 is made of a transparent organic insulating material such as an acrylic resin (PMMA or the like) or a polyimide resin, and its film thickness is larger than that of other insulating films (interlayer insulating film 38 or the like). The surface of the display region AA of the array substrate 30 is flattened by the flattening film 39. As shown in FIG. 6, a contact hole CH penetrating the interlayer insulating film 38 and the flattening film 39 is formed as an opening. The interlayer insulating film 38 and the flattening film 39 are formed in a solid shape in the display region AA except for the contact hole CH. The contact hole CH is provided so as to overlap with the opening 37 of the common electrode 35. The contact portion 34B is formed by laminating the pixel electrode 34 on the contact hole CH.

配向膜40は、アレイ基板30の表示領域AA全域に亘って配されている。配向膜40は、図6に示すように、液晶パネル10の液晶層18に接し、液晶層18に含まれる液晶分子を配向させる。配向膜40は、ポリイミド樹脂等の有機樹脂材料からなり、特定の波長領域の光(例えば紫外線)によって配向される光配向膜とされる。配向膜40は、原材料をフレキソ印刷装置又はインクジェット印刷装置等により塗布することで成膜されている。 The alignment film 40 is arranged over the entire display region AA of the array substrate 30. As shown in FIG. 6, the alignment film 40 is in contact with the liquid crystal layer 18 of the liquid crystal panel 10 and aligns the liquid crystal molecules contained in the liquid crystal layer 18. The alignment film 40 is made of an organic resin material such as a polyimide resin, and is a photoalignment film oriented by light in a specific wavelength region (for example, ultraviolet rays). The alignment film 40 is formed by applying the raw material with a flexographic printing device, an inkjet printing device, or the like.

以上説明したように、アレイ基板30は、ガラス基板GSと、ガラス基板GSの上層側に配されるTFT32と、TFT32を構成するドレイン電極32Dと接続され、ドレイン電極32Dの上層側に配される画素電極34と、画素電極34と異なる層に配され、画素電極34との間でフリンジ電界を形成可能な共通電極35と、画素電極34と共通電極35との層間に配される層間絶縁膜38と、画素電極34、共通電極35、及び層間絶縁膜38を覆う絶縁性の配向膜40と、を備え、画素電極34は、少なくとも層間絶縁膜38を貫通してドレイン電極32Dと接続されるコンタクト部34Bを有し、共通電極35は、コンタクト部34Bと平面に視て重畳する位置に開口37を有しており、開口37は、平面に視て画素電極34と重畳する重畳開口部37Aと、画素電極34と重畳しない非重畳開口部37Bと、に区分され、非重畳開口部37Bを介して対向する画素電極34と共通電極35との電極間距離L1は、ガラス基板GSの面内方向(X-Y面内方向)において5μm以上10μm未満である。 As described above, the array substrate 30 is connected to the glass substrate GS, the TFT 32 arranged on the upper layer side of the glass substrate GS, and the drain electrode 32D constituting the TFT 32, and is arranged on the upper layer side of the drain electrode 32D. An interlayer insulating film arranged between the pixel electrode 34 and a common electrode 35 arranged on a layer different from the pixel electrode 34 and capable of forming a fringe electric field between the pixel electrode 34 and between the pixel electrode 34 and the common electrode 35. 38, a pixel electrode 34, a common electrode 35, and an insulating alignment film 40 covering the interlayer insulating film 38 are provided, and the pixel electrode 34 penetrates at least the interlayer insulating film 38 and is connected to the drain electrode 32D. The common electrode 35 has a contact portion 34B, and the common electrode 35 has an opening 37 at a position where the contact portion 34B is viewed in a plane and overlaps with the pixel electrode 34. And the non-superimposition opening 37B that does not overlap with the pixel electrode 34, and the electrode-to-electrode distance L1 between the pixel electrode 34 and the common electrode 35 facing each other via the non-superimposition opening 37B is in the plane of the glass substrate GS. It is 5 μm or more and less than 10 μm in the direction (in-plane direction of XY).

表示不良となるコンタクトホールCH周辺の白点の発生は、液晶層18に含まれる不純物イオンがフリンジ電界によって液晶層18と配向膜40との界面に蓄積されるようになり、蓄積された不純物イオンの電荷が増大してしまうことに起因する。FFSモードの液晶表示装置100では、画素電極34と共通電極35が共にアレイ基板30に形成されているため、例えば画素電極がアレイ基板に形成され、共通電極がCF基板に形成されるVA(Vertical Alignment)モードの液晶表示装置に比べて、画素電極34と共通電極35との間に強電界が生じやすいものとなっている。コンタクトホールCH周辺において画素電極34と共通電極35との間のフリンジ電界が過度に大きくなると、電荷の蓄積量(帯電量)が増大し、白点として視認されやすくなってしまう。このため、画素電極34と共通電極35との電極間距離L1を、ガラス基板GSの面内方向において5μm以上とすることで、コンタクトホールCH周辺において画素電極34と共通電極35との間のフリンジ電界の強度を緩和することができる。 The occurrence of white spots around the contact hole CH, which causes display defects, is that the impurity ions contained in the liquid crystal layer 18 are accumulated at the interface between the liquid crystal layer 18 and the alignment film 40 by the fringe electric field, and the accumulated impurity ions are accumulated. This is due to the increase in the charge of the liquid crystal. In the FFS mode liquid crystal display device 100, since the pixel electrode 34 and the common electrode 35 are both formed on the array substrate 30, for example, the pixel electrode is formed on the array substrate and the common electrode is formed on the CF substrate. Compared to the liquid crystal display device in the Alignment) mode, a strong electric field is likely to be generated between the pixel electrode 34 and the common electrode 35. If the fringe electric field between the pixel electrode 34 and the common electrode 35 becomes excessively large around the contact hole CH, the amount of accumulated charge (charge amount) increases, and it becomes easy to be visually recognized as a white spot. Therefore, by setting the distance L1 between the pixel electrodes 34 and the common electrodes 35 to 5 μm or more in the in-plane direction of the glass substrate GS, the fringe between the pixel electrodes 34 and the common electrodes 35 is set around the contact hole CH. The strength of the electric field can be relaxed.

図6に、本実施形態に係る液晶パネル10のフリンジ電界の電気力線F1を模式的に示す。また、図7に、比較例1(電極間距離L1が5μm未満の場合)に係る液晶パネルのフリンジ電界の電気力線F2を模式的に示す。図6と図7の電気力線の密度を比較すると、図6の電気力線F1が疎、図7の電気力線F2が密となっている。すなわち、図6のアレイ基板30はフリンジ電界の電界密度が小さく、強度が緩和されていることがわかる。電界が緩和されることにより、液晶層18と配向膜40との界面に蓄積される電荷の蓄積量が減少されるため、白点の発生を抑制可能となる。 FIG. 6 schematically shows the electric lines of force F1 of the fringe electric field of the liquid crystal panel 10 according to the present embodiment. Further, FIG. 7 schematically shows an electric field line F2 of a fringe electric field of a liquid crystal panel according to Comparative Example 1 (when the distance L1 between electrodes is less than 5 μm). Comparing the densities of the electric lines of force of FIGS. 6 and 7, the electric lines of force F1 of FIG. 6 are sparse and the electric lines of force F2 of FIG. 7 are dense. That is, it can be seen that the array substrate 30 in FIG. 6 has a small electric field density of the fringe electric field, and the strength is relaxed. By relaxing the electric field, the amount of electric charge accumulated at the interface between the liquid crystal layer 18 and the alignment film 40 is reduced, so that the generation of white spots can be suppressed.

ただし、画素電極34と共通電極35との電極間距離L1を、ガラス基板GSの面内方向において10μm以上とすると、フリンジ電界の強度が小さくなり過ぎて液晶分子の配向不良による透過率の低下が生じる恐れがある。また、電極間距離L1を10μm以上に大きくするために共通電極35の開口37を広げると、共通電極35の電気抵抗が増大してクロストーク、フリッカー(ちらつき)等が発生する恐れがある。さらに、開口37を広げると、共通電極35に印加される基準電位が不安定になり、その結果、液晶層18への印加電圧にバラつきが生じて、輝度差による横筋ムラ等が発生する恐れがある。このため、電極間距離L1を5μm以上10μm未満とすることで、透過率の低下等を防ぎつつ、白点発生による表示不良を抑制可能となる。 However, if the distance L1 between the pixel electrodes 34 and the common electrodes 35 is 10 μm or more in the in-plane direction of the glass substrate GS, the strength of the fringe electric field becomes too small and the transmittance decreases due to poor alignment of the liquid crystal molecules. May occur. Further, if the opening 37 of the common electrode 35 is widened in order to increase the distance L1 between the electrodes to 10 μm or more, the electrical resistance of the common electrode 35 may increase and crosstalk, flicker, or the like may occur. Further, when the opening 37 is widened, the reference potential applied to the common electrode 35 becomes unstable, and as a result, the voltage applied to the liquid crystal layer 18 may vary, resulting in uneven horizontal streaks due to the difference in brightness. is there. Therefore, by setting the distance L1 between the electrodes to 5 μm or more and less than 10 μm, it is possible to suppress display defects due to the occurrence of white spots while preventing a decrease in transmittance.

<比較実験1>
上記のような作用及び効果を実証するため、比較実験1を行った。比較実験1では、下記の条件において、電極間距離L1が異なる例を実施例1から実施例2、及び比較例1から比較例3とし、これらの実施例及び比較例について白点表示を評価した。比較実験1の結果を図8の表に示す。なお、実施例1から実施例2、及び比較例1から比較例3については、配向膜40の膜厚比T2/T1は0.57とされる。膜厚比T2/T1は、配向膜40の膜厚均一性を示す指標であり、第2実施形態にて詳しく説明する。
<Comparative experiment 1>
Comparative experiment 1 was carried out in order to demonstrate the above-mentioned actions and effects. In Comparative Experiment 1, examples in which the distance L1 between electrodes was different under the following conditions were designated as Example 1 to Example 2 and Comparative Example 1 to Comparative Example 3, and the white point display was evaluated for these Examples and Comparative Examples. .. The results of Comparative Experiment 1 are shown in the table of FIG. In addition, in Example 1 to Example 2 and Comparative Example 1 to Comparative Example 3, the film thickness ratio T2 / T1 of the alignment film 40 is 0.57. The film thickness ratio T2 / T1 is an index showing the film thickness uniformity of the alignment film 40, and will be described in detail in the second embodiment.

<条件>
・ソース信号のレベル:255最大階調(ノーマリーホワイトの白表示)
・画素電極と共通電極間の印加電圧:5Vから8Vの間の範囲
・層間絶縁膜の膜厚:100nmから300nmの範囲
・画素電極の膜厚:40nmから80nmの範囲
・共通電極の膜厚:40nmから100nmの範囲
・平坦化膜の膜厚:2000nmから4000nmの範囲
<Conditions>
-Source signal level: 255 maximum gradation (normally white white display)
-Applied voltage between the pixel electrode and the common electrode: range between 5V and 8V-Interlayer insulation film thickness: 100nm to 300nm film thickness-Pixel electrode film thickness: 40nm to 80nm film thickness: Common electrode film thickness: Range from 40 nm to 100 nm ・ Film thickness of flattening film: Range from 2000 nm to 4000 nm

<白点表示の評価>
実施例及び比較例に係る液晶パネルの試験サンプルを、白点表示がより発生しやすい高温環境(70℃から90℃)に設置して通電を行い、平面サイズ8inch2から12inch2当たりの白点の発生個数を目視により測定した。70℃から90℃の高温環境は、例えば液晶表示装置100を車載用とした場合に、猛暑下の車内温度として想定される。評価は、白点が発生しない場合を◎とし、白点が発生した場合には白点の濃度によって〇又は×とした。白点の濃度が薄く、軽微で表示不良とならない場合には〇、白点の濃度が濃く表示不良となる場合には×と評価した。
<Evaluation of white dot display>
Test samples of the liquid crystal panel according to the examples and comparative examples, the white point display performs energization installed more prone high-temperature environment (70 ° C. from 90 ° C.), white spots per 12inch 2 from the plane size 8inch 2 The number of occurrences of was visually measured. A high temperature environment of 70 ° C. to 90 ° C. is assumed to be the temperature inside the vehicle under intense heat, for example, when the liquid crystal display device 100 is used for an automobile. The evaluation was rated as ⊚ when no white spots were generated, and as 〇 or × depending on the density of the white spots when white spots were generated. It was evaluated as 〇 when the density of white spots was low and was slight and did not cause display defects, and was evaluated as × when the density of white spots was high and display defects occurred.

比較例1から比較例3では、いずれも5個以上の白点が見られた。比較例1及び比較例2では、発生した白点の濃度が濃かったため表示不良となる×と評価した。比較例3は、比較例1及び比較例2に比較して白点の濃度が薄いものが含まれていたが、濃い白点も含まれていたため、全体として×と評価した。実施例1及び実施例2では、白点の発生はなかったため◎と評価した。 In Comparative Examples 1 to 3, 5 or more white spots were observed. In Comparative Example 1 and Comparative Example 2, the density of the generated white spots was high, so that the display was evaluated as x, which resulted in poor display. Comparative Example 3 contained white spots having a lighter density than Comparative Examples 1 and 2, but also contained dark white spots, and was evaluated as x as a whole. In Example 1 and Example 2, no white spots were generated, so the evaluation was ⊚.

<第2実施形態>
第2実施形態に係るアレイ基板130を図9から図13を参照して説明する。第2実施形態では、アレイ基板130において、画素電極34と共通電極135との電極間距離L1が5μm以上10μm未満に限定されておらず、配向膜140の膜厚均一性が所定の範囲に設定されている点が第1実施形態と異なる。なお、上記した第1実施形態と同様の構造、作用及び効果について重複する説明は省略する。
<Second Embodiment>
The array substrate 130 according to the second embodiment will be described with reference to FIGS. 9 to 13. In the second embodiment, in the array substrate 130, the distance L1 between the pixel electrodes 34 and the common electrodes 135 is not limited to 5 μm or more and less than 10 μm, and the film thickness uniformity of the alignment film 140 is set within a predetermined range. The point is different from the first embodiment. It should be noted that duplicate description of the same structure, action and effect as in the first embodiment described above will be omitted.

共通電極135は、図9及び図10に示すように、その開口137の大きさが第1実施形態に比して小さいものとなっている。これにより、非重畳開口部137Bを介して対向する画素電極34と共通電極135との電極間距離L1は5μm未満(例えば2μm)と短い。また、配向膜140は、γ‐ブチロラクトン、N‐メチルピロドリン、又はブチルセロソルブ等を含有する有機樹脂材料からなる。配向膜140がγ‐ブチロラクトン、N‐メチルピロドリン、又はブチルセロソルブのいずれかを含有することで、配向膜140の被塗布層に対するレベリング(段差追従性)を高め、コンタクトホールCH周辺の配向膜140の膜厚の均一性を向上することができる。 As shown in FIGS. 9 and 10, the size of the opening 137 of the common electrode 135 is smaller than that of the first embodiment. As a result, the distance L1 between the pixel electrodes 34 and the common electrode 135 facing each other via the non-superimposed opening 137B is as short as less than 5 μm (for example, 2 μm). The alignment film 140 is made of an organic resin material containing γ-butyrolactone, N-methylpyrodrin, butyl cellosolve, or the like. By containing any of γ-butyrolactone, N-methylpyrodrin, or butyl cellosolve in the alignment film 140, the leveling (step followability) of the alignment film 140 with respect to the layer to be coated is enhanced, and the alignment film 140 around the contact hole CH is enhanced. The uniformity of the film thickness can be improved.

配向膜140のコンタクトホールCH周辺の膜厚均一性は、次に示す2つの膜厚T1,T2の膜厚比T2/T1(膜厚T2を膜厚T1で除算した値)として示される。膜厚T1は、図10に示すように、配向膜140のうち、非重畳開口部137Bを介して画素電極34と対向する共通電極135と平面に視て重畳し、かつガラス基板GSの面内方向(X-Y面内方向)に沿って延在する平坦部141の膜厚とされる。膜厚T2は、配向膜140のうち、非重畳開口部137Bと平面に視て重畳し、かつガラス基板GSの面内方向と交わるように傾斜する傾斜部142の膜厚とされる。 The film thickness uniformity around the contact hole CH of the alignment film 140 is shown as a film thickness ratio T2 / T1 (a value obtained by dividing the film thickness T2 by the film thickness T1) of the following two film thicknesses T1 and T2. As shown in FIG. 10, the film thickness T1 is vertically superimposed on the common electrode 135 facing the pixel electrode 34 through the non-overlapping opening 137B in the alignment film 140, and is in-plane of the glass substrate GS. It is the film thickness of the flat portion 141 extending along the direction (in-plane direction of XY). The film thickness T2 is the film thickness of the inclined portion 142 of the alignment film 140 that is superposed on the non-overlapping opening 137B in a plane view and is inclined so as to intersect the in-plane direction of the glass substrate GS.

本実施形態において、配向膜140は膜厚比T2/T1が0.60以上1.20以下に設定されるように形成されている。このようにすることで、後述する比較実験2の結果で示すように、配向膜140をコンタクトホールCH周辺の形状に沿って濡れムラなく塗布しつつ、表示不良となる白点を抑制できる。なお、平坦部141及び傾斜部142の膜厚にバラつきがある場合、バラつきを含めた膜厚範囲において、膜厚比T2/T1が0.60以上1.20以下となるように形成されているものとされる。 In the present embodiment, the alignment film 140 is formed so that the film thickness ratio T2 / T1 is set to 0.60 or more and 1.20 or less. By doing so, as shown in the result of Comparative Experiment 2 described later, the alignment film 140 can be applied along the shape around the contact hole CH without uneven wetting, and white spots causing display defects can be suppressed. When the film thicknesses of the flat portion 141 and the inclined portion 142 vary, the film thickness ratio T2 / T1 is formed to be 0.60 or more and 1.20 or less in the film thickness range including the variation. It is supposed to be.

既述したように、白点の発生は、液晶層18に含まれる不純物イオンがフリンジ電界によって液晶層18と配向膜140との界面に蓄積され、この不純物イオンの電荷の蓄積量(帯電量)が増大することに起因する。この白点の発生メカニズムについて、図12A及び図13Aを参照して詳しく説明する。配向膜940の膜厚比T2/T1が0.60未満となる場合、具体的には膜厚比T2/T1が0.58の比較例4(図13の表)を一例として想定すると、傾斜部942の膜厚T2は40nmと平坦部141の膜厚T1の70nmより十分小さいものとなる。比較例4に係る液晶パネルにおいて、画素電極34が充電されるゲート書き込み期間には、図12Aで示すように、フリンジ電界によって液晶層18と配向膜940との界面に電荷eが蓄積される。そして、これらの電荷eは、画素電極34が放電されるゲート非書き込み期間には、図12Bで示すように、電荷の再分配(拡散)によって電荷が集まる部分(帯電量が増大する部分)が発生し、これが白点Wとなって視認されてしまう。 As described above, in the generation of white spots, the impurity ions contained in the liquid crystal layer 18 are accumulated at the interface between the liquid crystal layer 18 and the alignment film 140 by the fringe electric field, and the accumulated charge (charge amount) of the impurity ions is generated. Is due to the increase. The mechanism of generating the white spots will be described in detail with reference to FIGS. 12A and 13A. When the film thickness ratio T2 / T1 of the alignment film 940 is less than 0.60, specifically assuming Comparative Example 4 (table of FIG. 13) in which the film thickness ratio T2 / T1 is 0.58, the inclination The film thickness T2 of the portion 942 is 40 nm, which is sufficiently smaller than the film thickness T1 of the flat portion 141, which is 70 nm. In the liquid crystal panel according to Comparative Example 4, during the gate writing period in which the pixel electrode 34 is charged, an electric charge e is accumulated at the interface between the liquid crystal layer 18 and the alignment film 940 by the fringe electric field, as shown in FIG. 12A. Then, as shown in FIG. 12B, these charges e have a portion (a portion where the amount of charge increases) where the charge is collected by redistributing (diffusing) the charge during the gate non-writing period in which the pixel electrode 34 is discharged. It occurs, and this becomes a white spot W and is visually recognized.

これに対して、本実施形態に係る配向膜140は、膜厚比T2/T1は0.60以上であって、傾斜部142と平坦部141の膜厚均一性は比較例4より高い。図11A及び図11Bで示すように、電荷eが液晶層18と配向膜140との界面に蓄積されるが、ゲート非書き込み期間に電荷の再分配(拡散)が起こりにくく、帯電量が増大しにくい。その結果、白点として視認されることが抑制される。ただし、配向膜140の膜厚比T2/T1が1.20を超える値になると、配向膜140がコンタクトホールCHの形状に沿って充填されにくくなり、濡れムラが生じやすくなる恐れがある。従って、膜厚比T2/T1を0.60以上1.20以下とすることで、配向膜140の濡れムラを防ぎつつ、白点発生による表示不良を抑制可能となる。 On the other hand, the alignment film 140 according to the present embodiment has a film thickness ratio T2 / T1 of 0.60 or more, and the film thickness uniformity of the inclined portion 142 and the flat portion 141 is higher than that of Comparative Example 4. As shown in FIGS. 11A and 11B, the electric charge e is accumulated at the interface between the liquid crystal layer 18 and the alignment film 140, but the redistribution (diffusion) of the electric charge is unlikely to occur during the gate non-writing period, and the electric charge amount increases. Hateful. As a result, it is suppressed that it is visually recognized as a white spot. However, when the film thickness ratio T2 / T1 of the alignment film 140 exceeds 1.20, it becomes difficult for the alignment film 140 to be filled along the shape of the contact hole CH, and there is a possibility that uneven wetting is likely to occur. Therefore, by setting the film thickness ratio T2 / T1 to 0.60 or more and 1.20 or less, it is possible to prevent display defects due to the occurrence of white spots while preventing uneven wetting of the alignment film 140.

<比較実験2>
上記のような作用及び効果を実証するため、比較実験2を行った。比較実験2では、配向膜の膜厚比T2/T1が異なる例を実施例3から実施例7、及び比較例4とし、これらの実施例及び比較例について比較実験1と同様の条件及び評価方法によって、白点表示を評価した。比較実験2の結果を図13の表に示す。
<Comparative experiment 2>
Comparative experiment 2 was carried out in order to demonstrate the above-mentioned actions and effects. In the comparative experiment 2, examples in which the film thickness ratio T2 / T1 of the alignment film is different are set as Examples 3 to 7, and Comparative Example 4, and the same conditions and evaluation methods as in Comparative Experiment 1 are applied to these Examples and Comparative Examples. The white dot display was evaluated by. The results of Comparative Experiment 2 are shown in the table of FIG.

比較例4では、5個以上の濃い白点が視認されたため、×と評価した。実施例3及び実施例4では、いずれも白点が5個発生したが、白点の濃度が表示不良とならない程度に薄いため〇と評価した。また、実施例5から実施例7では、白点の発生はなかったため◎と評価した。 In Comparative Example 4, 5 or more dark white spots were visually recognized, so the evaluation was evaluated as x. In both Example 3 and Example 4, 5 white spots were generated, but the density of the white spots was low enough not to cause display defects, so the evaluation was evaluated as 〇. In addition, in Examples 5 to 7, no white spots were generated, so the evaluation was ⊚.

<第3実施形態>
第3実施形態に係るアレイ基板230について説明する。上記した第1実施形態及び第2実施形態と同様の構造、作用及び効果について重複する説明は省略する。アレイ基板230は、第1実施形態と同様に画素電極34と共通電極35との電極間距離L1が5μm以上10μm未満に設定され、且つ第2実施形態と同様に配向膜140の膜厚比が0.60以上1.20以下に設定されているものとされる。このようなアレイ基板230によれば、白点発生による表示不良をより確実に抑制可能となる。
<Third Embodiment>
The array substrate 230 according to the third embodiment will be described. Overlapping description of the same structure, action and effect as those of the first embodiment and the second embodiment described above will be omitted. In the array substrate 230, the distance L1 between the pixel electrodes 34 and the common electrodes 35 is set to 5 μm or more and less than 10 μm as in the first embodiment, and the film thickness ratio of the alignment film 140 is set as in the second embodiment. It is assumed that it is set to 0.60 or more and 1.20 or less. According to such an array substrate 230, it is possible to more reliably suppress display defects due to the occurrence of white spots.

<他の実施形態>
本願明細書に記載の技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other Embodiments>
The techniques described in the present specification are not limited to the embodiments described above and the drawings, and for example, the following embodiments are also included in the technical scope of the present invention.

(1)図示した重畳開口部37Aと非重畳開口部37B,137Bの形状は一例であり、適宜変更可能である。例えば、図5において、非重畳開口部37Bは左右対称な形状をなしているが、左右非対称であっても構わない。また、両開口部の平面サイズの比率も図示に限られず、適宜変更可能である。 (1) The shapes of the superposed openings 37A and the non-superimposed openings 37B and 137B shown in the figure are examples and can be changed as appropriate. For example, in FIG. 5, the non-overlapping opening 37B has a symmetrical shape, but it may be asymmetrical. Further, the ratio of the plane sizes of both openings is not limited to the drawing, and can be changed as appropriate.

(2)画素電極34の形状、スリット34Aの形状及び数は図示に限られず、適宜変更可能である。 (2) The shape of the pixel electrode 34 and the shape and number of the slits 34A are not limited to those shown in the drawing, and can be changed as appropriate.

(3)第2実施形態に係るアレイ基板130において、画素電極34が下層側に、共通電極135が層間絶縁膜38を介して上層側に設けられていても構わない。 (3) In the array substrate 130 according to the second embodiment, the pixel electrode 34 may be provided on the lower layer side, and the common electrode 135 may be provided on the upper layer side via the interlayer insulating film 38.

(4)層間絶縁膜38及び平坦化膜39は、それぞれ2層以上の絶縁膜から構成されていても構わない。 (4) The interlayer insulating film 38 and the flattening film 39 may each be composed of two or more insulating films.

(5)TFT32は、トップゲート型、ボトムゲート型、デュアルゲート型のいずれであっても構わない。 (5) The TFT 32 may be a top gate type, a bottom gate type, or a dual gate type.

(6)液晶パネル10がカラー表示でない場合、CF基板20には、カラーフィルタが設けられていなくても構わない。 (6) When the liquid crystal panel 10 does not display in color, the CF substrate 20 may not be provided with a color filter.

(7)液晶パネル10の全体形状は横長の矩形状、曲線部を含む非矩形状等、他の形状であっても構わない。また、液晶パネル10の平面サイズは限定されず、本明細書に記載の技術は小型から大型の液晶パネル10に対して広く適用可能である。 (7) The overall shape of the liquid crystal panel 10 may be another shape such as a horizontally long rectangular shape or a non-rectangular shape including a curved portion. Further, the plane size of the liquid crystal panel 10 is not limited, and the technique described in the present specification can be widely applied to the small to large liquid crystal panel 10.

10…液晶パネル(表示パネル)、18…液晶層、20…CF基板(対向基板)、30,130,230…アレイ基板、32…TFT(スイッチング素子)、32D…ドレイン電極(第1電極)、34…画素電極、34B…コンタクト部、35,135…共通電極、37,137…開口、37A…重畳開口部、37B,137B…非重畳開口部、38…層間絶縁膜、40,140…配向膜、50…シール部、80…バックライト装置(照明装置)、100…液晶表示装置(表示装置)、141…平坦部、142…傾斜部、GS…ガラス基板(絶縁性基板)、L1…電極間距離 10 ... Liquid crystal panel (display panel), 18 ... Liquid crystal layer, 20 ... CF substrate (opposite substrate), 30,130,230 ... Array substrate, 32 ... TFT (switching element), 32D ... Drain electrode (first electrode), 34 ... pixel electrode, 34B ... contact part, 35,135 ... common electrode, 37,137 ... opening, 37A ... superposed opening, 37B, 137B ... non-superimposed opening, 38 ... interlayer insulating film, 40,140 ... alignment film , 50 ... Seal part, 80 ... Backlight device (lighting device), 100 ... Liquid crystal display device (display device), 141 ... Flat part, 142 ... Inclined part, GS ... Glass substrate (insulating substrate), L1 ... Between electrodes distance

Claims (7)

絶縁性基板と、
前記絶縁性基板の上層側に配されるスイッチング素子と、
前記スイッチング素子を構成する第1電極と接続される画素電極と、
前記画素電極と異なる層に配され、前記画素電極との間でフリンジ電界を形成可能な共通電極と、
前記画素電極と前記共通電極との層間に配される層間絶縁膜と、
前記画素電極、前記共通電極、及び前記層間絶縁膜を覆う絶縁性の配向膜と、を備え、
前記画素電極は、少なくとも前記層間絶縁膜を貫通して前記第1電極と接続されるコンタクト部を有し、
前記共通電極は、前記コンタクト部と平面に視て重畳する位置に開口を有しており、
前記開口は、平面に視て前記画素電極と重畳する重畳開口部と、前記画素電極と重畳しない非重畳開口部と、に区分され、
前記非重畳開口部を介して対向する前記画素電極と前記共通電極との電極間距離は、前記絶縁性基板の面内方向において5μm以上10μm未満であるアレイ基板。
Insulating board and
A switching element arranged on the upper layer side of the insulating substrate and
A pixel electrode connected to a first electrode constituting the switching element,
A common electrode arranged on a layer different from the pixel electrode and capable of forming a fringe electric field with the pixel electrode,
An interlayer insulating film arranged between the pixel electrode and the common electrode,
The pixel electrode, the common electrode, and an insulating alignment film covering the interlayer insulating film are provided.
The pixel electrode has a contact portion that penetrates at least the interlayer insulating film and is connected to the first electrode.
The common electrode has an opening at a position where it superimposes on the contact portion in a plane.
The opening is divided into a superposed opening that overlaps with the pixel electrode when viewed on a plane and a non-superimposed opening that does not superimpose on the pixel electrode.
An array substrate in which the distance between the pixel electrodes facing each other through the non-superimposed opening and the common electrode is 5 μm or more and less than 10 μm in the in-plane direction of the insulating substrate.
前記配向膜は、前記非重畳開口部を介して前記画素電極と対向する前記共通電極と平面に視て重畳し、且つ前記絶縁性基板の面内方向に沿って延在する平坦部と、前記非重畳開口部と平面に視て重畳し、且つ前記絶縁性基板の面内方向と交わるように傾斜する傾斜部と、を有し、
前記平坦部の膜厚T1と前記傾斜部の膜厚T2との比T2/T1は、0.60以上1.20以下である請求項1に記載のアレイ基板。
The alignment film has a flat portion that superimposes on the common electrode facing the pixel electrode through the non-superimposition opening in a plane and extends along the in-plane direction of the insulating substrate, and the flat portion. It has a non-superimposing opening and an inclined portion that superimposes on a plane and is inclined so as to intersect the in-plane direction of the insulating substrate.
The array substrate according to claim 1, wherein the ratio T2 / T1 of the film thickness T1 of the flat portion to the film thickness T2 of the inclined portion is 0.60 or more and 1.20 or less.
絶縁性基板と、
前記絶縁性基板の上層側に配されたスイッチング素子と、
前記スイッチング素子を構成する第1電極と接続される画素電極と、
前記画素電極と異なる層に配され、前記画素電極との間でフリンジ電界を形成可能な共通電極と、
前記画素電極と前記共通電極との層間に配される層間絶縁膜と、
前記画素電極、前記共通電極、及び前記層間絶縁膜を覆う絶縁性の配向膜と、を備え、
前記画素電極は、少なくとも前記層間絶縁膜を貫通して前記第1電極と接続されるコンタクト部を有し、
前記共通電極は、前記コンタクト部と平面に視て重畳する位置に開口を有しており、
前記開口は、平面に視て前記画素電極と重畳する重畳開口部と、前記画素電極と重畳しない非重畳開口部と、に区分され、
前記配向膜は、前記非重畳開口部を介して前記画素電極と対向する前記共通電極と平面に視て重畳し、且つ前記絶縁性基板の面内方向に沿って延在する平坦部と、前記非重畳開口部と平面に視て重畳し、且つ前記絶縁性基板の面内方向と交わるように傾斜する傾斜部と、を有し、
前記平坦部の膜厚T1と前記傾斜部の膜厚T2との比T2/T1は、0.60以上1.20以下であるアレイ基板。
Insulating board and
The switching element arranged on the upper layer side of the insulating substrate and
A pixel electrode connected to a first electrode constituting the switching element,
A common electrode arranged on a layer different from the pixel electrode and capable of forming a fringe electric field with the pixel electrode,
An interlayer insulating film arranged between the pixel electrode and the common electrode,
The pixel electrode, the common electrode, and an insulating alignment film covering the interlayer insulating film are provided.
The pixel electrode has a contact portion that penetrates at least the interlayer insulating film and is connected to the first electrode.
The common electrode has an opening at a position where it superimposes on the contact portion in a plane.
The opening is divided into a superposed opening that overlaps with the pixel electrode when viewed on a plane and a non-superimposed opening that does not superimpose on the pixel electrode.
The alignment film has a flat portion that superimposes on the common electrode facing the pixel electrode through the non-superimposition opening in a plane and extends along the in-plane direction of the insulating substrate, and the flat portion. It has a non-superimposing opening and an inclined portion that superimposes on a plane and is inclined so as to intersect the in-plane direction of the insulating substrate.
An array substrate in which the ratio T2 / T1 of the film thickness T1 of the flat portion to the film thickness T2 of the inclined portion is 0.60 or more and 1.20 or less.
前記配向膜は、γ−ブチロラクトン、N‐メチルピロドリン、ブチルセロソルブのうち少なくともいずれか1つを含有する有機樹脂材料からなる請求項2又は請求項3に記載のアレイ基板。 The array substrate according to claim 2 or 3, wherein the alignment film is made of an organic resin material containing at least one of γ-butyrolactone, N-methylpyrodrin, and butyl cellosolve. 前記スイッチング素子は薄膜トランジスタであり、
前記第1電極はドレイン電極であり、
前記画素電極は前記層間絶縁膜の上層側に配されており、前記共通電極は前記層間絶縁膜の下層側に配されている請求項1から請求項4のいずれか1項に記載のアレイ基板。
The switching element is a thin film transistor.
The first electrode is a drain electrode and
The array substrate according to any one of claims 1 to 4, wherein the pixel electrodes are arranged on the upper layer side of the interlayer insulating film, and the common electrodes are arranged on the lower layer side of the interlayer insulating film. ..
請求項1から請求項5のいずれか1項に記載のアレイ基板と、
前記アレイ基板と対向配置される対向基板と、
前記アレイ基板と前記対向基板との間に挟持される液晶層と、を備える表示パネル。
The array substrate according to any one of claims 1 to 5.
A facing board arranged to face the array board and
A display panel including a liquid crystal layer sandwiched between the array substrate and the facing substrate.
請求項6に記載の表示パネルと、
前記表示パネルに対して光を照射可能な照明装置と、を備える表示装置。
The display panel according to claim 6 and
A display device including a lighting device capable of irradiating the display panel with light.
JP2020184826A 2019-12-12 2020-11-05 Array substrate, display panel, and display device Pending JP2021096462A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962946975P 2019-12-12 2019-12-12
US62/946,975 2019-12-12

Publications (1)

Publication Number Publication Date
JP2021096462A true JP2021096462A (en) 2021-06-24

Family

ID=76431308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184826A Pending JP2021096462A (en) 2019-12-12 2020-11-05 Array substrate, display panel, and display device

Country Status (1)

Country Link
JP (1) JP2021096462A (en)

Similar Documents

Publication Publication Date Title
US6950167B2 (en) Liquid crystal display device
US7791680B2 (en) Display apparatus having an impurity adsorption electrode disposed in a display area
US10564501B2 (en) Active matrix substrate and display panel
US20110075081A1 (en) Liquid crystal display panel
JPWO2008010334A1 (en) Active matrix substrate, liquid crystal panel, display device, television receiver
KR20110101894A (en) Liquid crsytal display
JP2012093665A (en) Liquid crystal display apparatus
TWI432854B (en) Liquid crystal display device and manufacturing method thereof
US9110340B2 (en) Array substrate, liquid crystal panel and liquid crystal display device comprising protrusion electrode parts
US20180246386A1 (en) Liquid crystal display panel and liquid crystal display device
CN104020604A (en) Two-sided transparent display device
JP4952063B2 (en) Horizontal electric field type active matrix liquid crystal display device
KR20080047788A (en) Liquid crystal display
JP4446577B2 (en) Display panel, display device
US10890815B2 (en) Display apparatus
US20140253854A1 (en) Liquid crystal display
US20200110320A1 (en) Display device
US7855771B2 (en) Liquid crystal display panel and active matrix substrate thereof
JP2021096462A (en) Array substrate, display panel, and display device
CN109799662B (en) Liquid crystal display panel
KR101887931B1 (en) Liquid crystal display apparatus and method for manufacturing the same
JP2008039806A (en) Liquid crystal display
WO2014034786A1 (en) Active matrix substrate and liquid crystal display device
KR101446341B1 (en) Array substrate for liquid crystal display and method for manufacturing the same
US11003031B2 (en) Display apparatus