JP2021096148A - Inspection system, inspection device, learning device and program - Google Patents

Inspection system, inspection device, learning device and program Download PDF

Info

Publication number
JP2021096148A
JP2021096148A JP2019227141A JP2019227141A JP2021096148A JP 2021096148 A JP2021096148 A JP 2021096148A JP 2019227141 A JP2019227141 A JP 2019227141A JP 2019227141 A JP2019227141 A JP 2019227141A JP 2021096148 A JP2021096148 A JP 2021096148A
Authority
JP
Japan
Prior art keywords
learning
learning model
inspection
data
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019227141A
Other languages
Japanese (ja)
Other versions
JP7323177B2 (en
Inventor
幸寛 中川
Sachihiro Nakagawa
幸寛 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
System Square Inc
Original Assignee
System Square Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System Square Inc filed Critical System Square Inc
Priority to JP2019227141A priority Critical patent/JP7323177B2/en
Publication of JP2021096148A publication Critical patent/JP2021096148A/en
Application granted granted Critical
Publication of JP7323177B2 publication Critical patent/JP7323177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide an inspection system which can quickly execute additional learning of a learning model for use in inspection.SOLUTION: An inspection device 100 comprises: an electromagnetic wave irradiation unit 111; a transmitted quantity detection unit 113 detecting the data indicating distribution of quantity of electromagnetic wave transmitted through an inspection object W; a learning model storage unit 115 storing a learning model that outputs information indicating the possibility of presence of prescribed abnormality in the inspection object; inspection result output means 116 inputting the transmitted quantity distribution data of the inspection object to the learning model and outputting an inspection result; and learned model receive means 118 receiving a learning model having undergone additional learning from a learning device 200 and storing the received learning model in the learning model storage unit. The learning device comprises a learning data storage unit 212 storing, as learning data, the transmitted quantity distribution data of the inspection object for both cases when prescribed abnormality exists and when it does not exist; and learning means 213 causing the learning model received from the inspection device to be additionally learnt using the learning data.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象物に電磁波を照射することにより得られる透過量の分布データに基づき検査対象物の内部における異常の検査を行う検査システム、検査装置、学習装置及びプログラムに関する。 The present invention relates to an inspection system, an inspection device, a learning device, and a program for inspecting an abnormality inside an inspection object based on distribution data of a transmission amount obtained by irradiating the inspection object with an electromagnetic wave.

検査対象物にX線、紫外線、可視光線、赤外線、又はマイクロ波などの電磁波を照射し透過量を検出すると、検査対象物内の異物の有無や異物の材質等に起因する透過量の強弱の分布が得られる。この強弱の分布がそれぞれの画素の色調(色彩の明暗・濃淡・強弱などの調子)により表現された二次元画像を生成することで、外観からは知りえない検査対象物内部の状況を可視化することができる。 When the inspection target is irradiated with electromagnetic waves such as X-rays, ultraviolet rays, visible rays, infrared rays, or microwaves and the transmitted amount is detected, the strength of the transmitted amount due to the presence or absence of foreign matter in the inspection target and the material of the foreign matter is determined. A distribution is obtained. By generating a two-dimensional image in which this intensity distribution is expressed by the color tone of each pixel (tone of color tone, shade, intensity, etc.), the situation inside the inspection object that cannot be seen from the outside is visualized. be able to.

前述のように透過量の強弱は、検査対象物内の異物の有無や異物の材質等に起因するが、異物と非異物との組み合わせによっては、両者の透過量の差異が非常に小さく、生成された二次元画像からの両者の識別が難しい場合がある。 As described above, the strength of the permeation amount depends on the presence or absence of foreign matter in the inspection object, the material of the foreign matter, etc., but depending on the combination of the foreign matter and the non-foreign matter, the difference in the permeation amount between the two is very small and is generated. It may be difficult to distinguish between the two from the two-dimensional image.

そのような課題の解決策として、近時、機械学習された学習モデルを用いる方法が提案されている。例えば、内部に所定の異常がある検査対象物の透過量の分布データを多数収集して、これらを学習データとして特徴量を抽出し、抽出した特徴量を用いて、当該検査対象物の内部における所定の異常を検出するための学習モデルを生成する。そして、この学習モデルに検査対象物の透過量の分布を示すデータを入力することで、異常の存否を精度よく検出することが可能となる。 As a solution to such a problem, a method using a machine-learned learning model has recently been proposed. For example, a large number of distribution data of the permeation amount of the inspection object having a predetermined abnormality inside are collected, the feature amount is extracted using these as training data, and the extracted feature amount is used inside the inspection object. Generate a learning model to detect a given anomaly. Then, by inputting data showing the distribution of the permeation amount of the inspection object into this learning model, it is possible to accurately detect the presence or absence of an abnormality.

例えば、複数の物品が重なり合っている状態の商品のX線検査画像を学習画像として用いる機械学習を実行し、これにより得られた特徴量を用いて商品をX線検査することで、互いに重なり合うことがある複数の物品を含む商品の検査精度の低下を抑制可能とする検査装置が特許文献1に開示されている。特許文献1に記載の検査装置では、検査装置内のCPU(Central Processing Unit)が機械学習処理を実行する。 For example, by executing machine learning using an X-ray inspection image of a product in which a plurality of articles are overlapped as a learning image and X-ray inspection of the product using the feature amount obtained thereby, the products overlap each other. Patent Document 1 discloses an inspection device capable of suppressing a decrease in inspection accuracy of a product containing a plurality of articles. In the inspection device described in Patent Document 1, a CPU (Central Processing Unit) in the inspection device executes machine learning processing.

学習モデルは、一旦生成したものをそのまま使用し続けることもできるが、新たな学習データを用いて追加学習することで、検出精度をより高めることができる。 The learning model can be used as it is once generated, but the detection accuracy can be further improved by additional learning using new learning data.

特許第6537008号公報Japanese Patent No. 6537008

機械学習処理を検査装置内のCPU(Central Processing Unit)で実行すると、検査装置に具備されるCPUでは一般に処理能力が不十分であり、学習に長い時間を要する。また、これによりCPUが長時間高熱な状態が継続し、CPUや周囲の回路などにダメージが生じるおそれがある。更に、CPUは機械学習処理のみならず、学習データの収集や検査の実行制御を担っているため、機械学習処理の実行中は、他の処理を行えないか著しく処理速度が低下してしまう。 When the machine learning process is executed by the CPU (Central Processing Unit) in the inspection device, the processing capacity of the CPU provided in the inspection device is generally insufficient, and learning takes a long time. Further, this may cause the CPU to continue to be in a high heat state for a long time, resulting in damage to the CPU, surrounding circuits, and the like. Further, since the CPU is responsible for not only the machine learning process but also the collection of learning data and the execution control of the inspection, other processes cannot be performed or the processing speed is significantly reduced during the execution of the machine learning process.

本発明の目的は、学習モデルを用いて行う検査対象物の検査に際し、学習モデルの追加学習を速やかに実行することができ、かつ、検査装置への負荷が小さい検査システム、検査装置、学習装置及びプログラムを提供することにある。 An object of the present invention is an inspection system, an inspection device, and a learning device that can quickly execute additional learning of a learning model and have a small load on the inspection device when inspecting an inspection object using the learning model. And to provide the program.

本発明の検査システムは、検査装置と学習装置とを備える。検査装置は、電磁波を発生し検査対象物に照射する電磁波照射部と、検査対象物を透過した電磁波の透過量の分布データを検出する透過量検出部と、検査対象物の透過量の分布データを入力することで検査対象物における所定の異常の存在可能性を示す情報を出力する学習モデルを予め記憶する学習モデル記憶部と、透過量検出部で検出された検査対象物の透過量の分布データを学習モデルに入力し、出力された情報に基づく検査結果を出力する検査結果出力手段と、学習モデルを送信する学習モデル送信手段と、を備える。学習装置は、検査装置から送信された学習モデルを受信する学習モデル受信手段と、学習データとして、所定の異常がある場合と異常が無い場合の双方の検査対象物の透過量の分布データを記憶する学習データ記憶部と、学習モデル受信手段が受信した学習モデルを、学習データを用いて追加学習させる学習手段と、追加学習済の学習モデルを記憶する学習モデル記憶部と、追加学習済の学習モデルを学習モデル記憶部から読み出して送信する学習済モデル送信手段と、を備える。検査装置は更に、学習装置から追加学習済の学習モデルを受信し、学習モデル記憶部に記憶させる学習済モデル受信手段を備える。 The inspection system of the present invention includes an inspection device and a learning device. The inspection device includes an electromagnetic wave irradiation unit that generates electromagnetic waves and irradiates the inspection target object, a transmission amount detection unit that detects the transmission amount distribution data of the electromagnetic waves transmitted through the inspection target object, and a transmission amount distribution data of the inspection target object. A learning model storage unit that stores in advance a learning model that outputs information indicating the possibility of existence of a predetermined abnormality in the inspection object by inputting, and a distribution of the transmission amount of the inspection object detected by the transmission amount detection unit. It includes a test result output means for inputting data into a learning model and outputting a test result based on the output information, and a learning model transmitting means for transmitting the learning model. The learning device stores the learning model receiving means for receiving the learning model transmitted from the inspection device and the distribution data of the permeation amount of the inspection object both when there is a predetermined abnormality and when there is no abnormality as the learning data. A learning data storage unit for learning, a learning means for additionally learning a learning model received by a learning model receiving means using learning data, a learning model storage unit for storing an additional learning learning model, and additional learning for learning. A trained model transmission means for reading a model from a learning model storage unit and transmitting the model is provided. The inspection device further includes a trained model receiving means that receives the additionally trained learning model from the learning device and stores it in the learning model storage unit.

検査装置が、透過量検出部において収集された学習データ送信する学習データ送信手段を更に備えるとともに、学習装置が、検査装置から送信された学習データを受信し、学習データ記憶部に記憶させる学習データ受信手段を更に備えてもよい。 The inspection device further includes a learning data transmission means for transmitting the learning data collected by the transmission amount detection unit, and the learning device receives the learning data transmitted from the inspection device and stores the learning data in the learning data storage unit. Further receiving means may be provided.

学習データ送信手段が、学習データに所定の異常の有無を示すラベルを付して送信し、学習手段が、ラベルを参照して追加学習を実行してもよい。 The learning data transmitting means may transmit the learning data with a label indicating the presence or absence of a predetermined abnormality, and the learning means may perform additional learning with reference to the label.

本発明の検査装置は、電磁波を発生し検査対象物に照射する電磁波照射部と、検査対象物を透過した電磁波の透過量の分布データを検出する透過量検出部と、検査対象物の透過量の分布データを入力することで検査対象物における所定の異常の存在可能性を示す情報を出力する学習モデルを予め記憶する学習モデル記憶部と、透過量検出部で検出された検査対象物の透過量の分布データを学習モデルに入力し、出力された情報に基づく検査結果を出力する検査結果出力手段と、学習モデルを送信する学習モデル送信手段と、追加学習済の学習モデルを受信し、学習モデル記憶部に記憶させる学習済モデル受信手段と、を備える。 The inspection device of the present invention includes an electromagnetic wave irradiation unit that generates electromagnetic waves and irradiates the inspection object, a transmission amount detection unit that detects distribution data of the transmission amount of the electromagnetic waves that have passed through the inspection object, and a transmission amount of the inspection object. A learning model storage unit that stores in advance a learning model that outputs information indicating the possibility of the existence of a predetermined abnormality in the inspection object by inputting the distribution data of A test result output means that inputs quantity distribution data into a training model and outputs a test result based on the output information, a learning model transmission means that sends a learning model, and a learning model that has been additionally trained are received and trained. A trained model receiving means for storing in a model storage unit is provided.

本発明の学習装置は、学習モデルを受信する学習モデル受信手段と、学習データとして、所定の異常がある場合と異常が無い場合の双方の検査対象物の透過量の分布データを記憶する学習データ記憶部と、学習モデル受信手段が受信した学習モデルを、学習データを用いて追加学習させる学習手段と、追加学習済の学習モデルを記憶する学習モデル記憶部と、追加学習済の学習モデルを学習モデル記憶部から読み出して送信する学習済モデル送信手段と、を備える。 The learning device of the present invention is a learning model receiving means for receiving a learning model, and learning data that stores distribution data of the permeation amount of an inspection object both when there is a predetermined abnormality and when there is no abnormality as learning data. The storage unit, the learning means for additionally learning the learning model received by the learning model receiving means using the learning data, the learning model storage unit for storing the additionally learned learning model, and the learning model for which the additional learning has been completed are learned. A trained model transmission means for reading and transmitting from the model storage unit is provided.

本発明の検査装置及び学習装置の各手段の機能は、プログラムに記述し、コンピュータに実行させることにより実現してもよい。 The functions of each means of the inspection device and the learning device of the present invention may be realized by describing them in a program and causing a computer to execute them.

本発明によれば、学習モデルを用いて行う検査に際し、学習モデルの追加学習を速やかに実行することができ、かつ、検査装置への負荷が小さい検査システム、検査装置、学習装置及びプログラムを提供することができる。 According to the present invention, there is provided an inspection system, an inspection apparatus, a learning apparatus and a program capable of promptly executing additional learning of the learning model and having a small load on the inspection apparatus when performing an inspection using the learning model. can do.

検査システム10の機能構成例を示す図である。It is a figure which shows the functional structure example of the inspection system 10. 各手段の機能をプログラムに記述してコンピュータで実行させることにより実現する検査システム10の構成例を示す図である。It is a figure which shows the configuration example of the inspection system 10 which is realized by describing the function of each means in a program and executing it by a computer.

以下、本発明の実施形態を、図面を参照しつつ説明する。なお、以下の説明及び図面では、同一の機能部には同一の符号を付し、一度説明した機能部については説明を省略するか、必要な範囲で説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description and drawings, the same functional parts are designated by the same reference numerals, and the functional parts once described will be omitted or described to the extent necessary.

図1は、本発明の検査システム10の機能構成例を示す図である。検査システム10は、検査装置100と学習装置200とを備える。検査装置100と学習装置200とはピアツーピア、LAN、WANなど任意のネットワークNWを介して、任意の有線通信方式又は無線通信方式により通信可能に接続される。また、複数の検査装置100で1つの学習装置200を共用してもよい。 FIG. 1 is a diagram showing a functional configuration example of the inspection system 10 of the present invention. The inspection system 10 includes an inspection device 100 and a learning device 200. The inspection device 100 and the learning device 200 are communicably connected by an arbitrary wired communication method or wireless communication method via an arbitrary network NW such as peer-to-peer, LAN, and WAN. Further, one learning device 200 may be shared by a plurality of inspection devices 100.

検査装置100は、電磁波照射部111、搬送部112、透過量検出部113、検出データ記憶部114、学習モデル記憶部115、検査結果出力手段116、学習モデル送信手段117及び学習済モデル受信手段118を備える。 The inspection device 100 includes an electromagnetic wave irradiation unit 111, a transport unit 112, a transmission amount detection unit 113, a detection data storage unit 114, a learning model storage unit 115, an inspection result output means 116, a learning model transmission means 117, and a learned model receiving means 118. To be equipped.

学習装置200は、学習モデル受信手段211、学習データ記憶部212、学習手段213及び学習済モデル送信手段215を備える。 The learning device 200 includes a learning model receiving means 211, a learning data storage unit 212, a learning means 213, and a learned model transmitting means 215.

電磁波照射部111は、搬送部112に載置されて図1におけるY軸方向に搬送される検査対象物Wに、X線、紫外線、可視光線、赤外線などの電磁波を照射する、所定の電磁波照射源である。 The electromagnetic wave irradiation unit 111 irradiates an inspection object W mounted on the transport unit 112 and transported in the Y-axis direction in FIG. 1 with electromagnetic waves such as X-rays, ultraviolet rays, visible rays, and infrared rays. It is the source.

搬送部112は、3次元直交座標系においてXY平面をなす搬送面に載置された検査対象物Wを、Y軸方向に所定の速度で搬送する任意の搬送機構である。搬送部112の具体的な構成方法は任意である。例えば、図1に示すように検査対象物Wを透過した電磁波が透過量検出部113に直接到達するように隙間を開けて配置された2つのベルトコンベアとして構成してもよいし、電磁波透過性の高い1つのベルトコンベアにより構成してもよい。 The transport unit 112 is an arbitrary transport mechanism that transports the inspection object W placed on the transport surface forming the XY plane in the three-dimensional Cartesian coordinate system at a predetermined speed in the Y-axis direction. The specific configuration method of the transport unit 112 is arbitrary. For example, as shown in FIG. 1, it may be configured as two belt conveyors arranged with a gap so that the electromagnetic wave transmitted through the inspection object W directly reaches the transmission amount detection unit 113, or the electromagnetic wave transmission property. It may be composed of one high belt conveyor.

透過量検出部113は、検査対象物Wを透過した電磁波の透過量の分布データを検出する。透過量検出部113の構成方法は任意であり、例えば、X軸方向に並べられた複数の検出素子からなるラインセンサとして構成してもよい。この場合、検査対象物Wからの電磁波の透過量を、搬送部112による搬送速度に応じた周期で、検査対象物Wの全体がラインセンサ上を通過するまで繰り返し検出する。これにより、各周期に検査対象物Wを線状に分割したそれぞれの領域における透過量の分布データが得られ、検査対象物Wがラインセンサ上を通過し始めてから通過し終わるまでの各周期のデータを取得順に配列することで、検査対象物W全体について透過量の分布データを得ることができる。 The transmission amount detection unit 113 detects the distribution data of the transmission amount of the electromagnetic wave transmitted through the inspection object W. The method of configuring the transmission amount detection unit 113 is arbitrary, and may be configured as, for example, a line sensor composed of a plurality of detection elements arranged in the X-axis direction. In this case, the amount of electromagnetic waves transmitted from the inspection target object W is repeatedly detected at a cycle corresponding to the transport speed by the transport unit 112 until the entire inspection target object W passes over the line sensor. As a result, distribution data of the amount of transmission in each region obtained by linearly dividing the inspection object W in each cycle is obtained, and in each cycle from the start of the inspection target W passing on the line sensor to the end of the passage. By arranging the data in the order of acquisition, it is possible to obtain distribution data of the permeation amount for the entire inspection object W.

検出データ記憶部114は、透過量検出部113において検出された検査対象物Wの透過量の分布データが記憶される。 The detection data storage unit 114 stores the distribution data of the permeation amount of the inspection object W detected by the permeation amount detection unit 113.

学習モデル記憶部115は、検査対象物Wの透過量の分布データを入力することで検査対象物Wにおける所定の異常の存在可能性を示す情報を出力する学習モデルが、予め記憶される。予め記憶される学習モデルは、検査装置100において予め生成しておいたものでもよいし、他の装置で生成したものでもよい。 The learning model storage unit 115 stores in advance a learning model that outputs information indicating the possibility of existence of a predetermined abnormality in the inspection object W by inputting distribution data of the permeation amount of the inspection object W. The learning model stored in advance may be one generated in advance in the inspection device 100 or may be generated by another device.

所定の異常としては、例えば、検査対象物Wが包装物である場合における、内部の異物の存在や内容物の形状の異常や内容物のシール部への噛み込み等のほか、検査対象物W自体の形状の異常や割れ・欠け等が挙げられる。 Predetermined abnormalities include, for example, when the inspection target W is a package, the presence of foreign matter inside, an abnormality in the shape of the contents, biting of the contents into the seal portion, and the like, as well as the inspection target W. Abnormal shape of itself, cracks, chips, etc. can be mentioned.

学習モデルは、所定の異常がある検査対象物Wの透過量の分布データを学習データとして、それぞれの画素の色調の相違や、画素間での色調の変化の態様の相違などに基づき、既知の任意の方法で機械学習を行うことにより生成しておく。例えば、教師ありの機械学習においては、所定の異常の有無を示すラベルが付された透過画像データを学習モデルに入力し、学習モデルからそのラベル通りに結果が出力されるようにパラメータを調整するなどの処理を行う。このとき、検出精度がより高い学習モデルを生成するために、学習アルゴリズムに、多層のニューラルネットワークによるディープラーニングの手法を応用してもよい。 The learning model is known based on the difference in the color tone of each pixel and the difference in the mode of change in the color tone between the pixels, using the distribution data of the transmission amount of the inspection object W having a predetermined abnormality as the learning data. It is generated by performing machine learning by any method. For example, in supervised machine learning, transparent image data with a label indicating the presence or absence of a predetermined abnormality is input to the learning model, and the parameters are adjusted so that the learning model outputs the result according to the label. And so on. At this time, in order to generate a learning model with higher detection accuracy, a deep learning method using a multi-layer neural network may be applied to the learning algorithm.

学習モデルから出力する所定の異常の存在可能性を示す情報としては、例えば、所定の異常がある可能性を示す推論値が挙げられる。 As the information indicating the possibility of existence of a predetermined abnormality output from the learning model, for example, an inference value indicating the possibility of a predetermined abnormality can be mentioned.

検査結果出力手段116は、学習モデル記憶部115から読み出した学習モデルに、検出データ記憶部114から読み出した検査対象物Wの透過量の分布データを入力し、出力された検査対象物Wにおける所定の異常の存在可能性を示す情報に基づき、検査結果を出力する。 The inspection result output means 116 inputs the distribution data of the permeation amount of the inspection object W read from the detection data storage unit 114 into the learning model read from the learning model storage unit 115, and determines a predetermined value in the output inspection object W. The inspection result is output based on the information indicating the possibility of the existence of the abnormality.

学習モデルから出力される所定の異常の存在可能性を示す情報が、所定の異常がある可能性を示す推論値である場合、この推論値を所定の閾値と対比することにより所定の異常の存否を特定して検査結果として出力することができる。 When the information indicating the possibility of existence of a predetermined abnormality output from the learning model is an inferred value indicating the possibility of a predetermined abnormality, the existence or nonexistence of the predetermined abnormality is obtained by comparing this inferred value with a predetermined threshold value. Can be specified and output as an inspection result.

具体的には例えば、異常がある可能性が極めて低い場合を0、異常がある可能性が極めて高い場合を1とした0〜1の範囲で推論値を定義し、出力された推論値が一定の値(例えば0.6)以上である場合に異常があると判定することができる。 Specifically, for example, the inference value is defined in the range of 0 to 1 in which the case where the possibility of abnormality is extremely low is 0 and the case where the possibility of abnormality is extremely high is 1, and the output inference value is constant. When it is equal to or more than the value of (for example, 0.6), it can be determined that there is an abnormality.

学習モデル送信手段117は、学習モデル記憶部115から学習モデルを読み出し、学習装置200(学習モデル受信手段211)に向け送信する。 The learning model transmitting means 117 reads a learning model from the learning model storage unit 115 and transmits it to the learning device 200 (learning model receiving means 211).

学習モデル受信手段211は、検査装置100(学習モデル送信手段117)から学習モデルを受信する。 The learning model receiving means 211 receives the learning model from the inspection device 100 (learning model transmitting means 117).

学習データ記憶部212は、学習データとして、所定の異常がある場合と異常が無い場合の双方の検査対象物Wの透過量の分布データを記憶する。記憶する学習データは、多いほど望ましい。なお、学習手段213において教師あり学習をする場合、記憶されている学習データに所定の異常の有無を示すラベルが付されていないときには、利用者による入力などに基づき付しておく。 The learning data storage unit 212 stores the distribution data of the permeation amount of the inspection target W in both the case where there is a predetermined abnormality and the case where there is no abnormality as the learning data. The more learning data to be stored, the more desirable it is. When supervised learning is performed by the learning means 213, if the stored learning data is not labeled with a predetermined abnormality, it is attached based on input by the user or the like.

所定の異常がある場合と異常が無い場合の双方の検査対象物Wの透過量の分布データは、例えば、検査システム10の外部において予め収集されたものを記憶させてもよい。 As the distribution data of the permeation amount of the inspection target W in both the case where there is a predetermined abnormality and the case where there is no abnormality, for example, the distribution data collected in advance outside the inspection system 10 may be stored.

また、検査装置100において、学習データである、所定の異常がある場合と異常が無い場合のそれぞれにおける検査対象物Wの透過量の分布データを収集し、これを学習データ記憶部212に記憶させてもよい。この場合、例えば、学習データ送信手段119を検査装置100に、また、学習データ受信手段216を学習装置200に、それぞれ設ける。 Further, the inspection device 100 collects the distribution data of the permeation amount of the inspection target W in each of the cases where there is a predetermined abnormality and the case where there is no abnormality, which is the learning data, and stores this in the learning data storage unit 212. You may. In this case, for example, the learning data transmitting means 119 is provided in the inspection device 100, and the learning data receiving means 216 is provided in the learning device 200.

学習データ送信手段119は、透過量検出部113でそれぞれ検出され検出データ記憶部114に記憶された、学習データである、所定の異常がある場合と異常が無い場合のそれぞれにおける検査対象物Wの透過量の分布データを、検出データ記憶部114から読み出して学習データ受信手段216に送信する。学習データの送信に際し、所定の異常の有無を示すラベルを付して送信してもよい。 The learning data transmitting means 119 is the learning data detected by the transmission amount detection unit 113 and stored in the detection data storage unit 114. The distribution data of the transmission amount is read from the detection data storage unit 114 and transmitted to the learning data receiving means 216. When transmitting the learning data, it may be transmitted with a label indicating the presence or absence of a predetermined abnormality.

学習データ受信手段216は、学習データ送信手段119から送信された学習データを受信し、学習データ記憶部212に記憶させる。 The learning data receiving means 216 receives the learning data transmitted from the learning data transmitting means 119 and stores it in the learning data storage unit 212.

これにより、検査装置100において、所定の異常がある又は異常が無い検査対象物Wに電磁波照射部111から電磁波を照射して、透過量検出部113において透過量の分布データを検出し、検出データ記憶部114に記憶させ、これを学習データ送信手段119が読み出して送信し、更にこれを学習データ受信手段216が受信して学習データ記憶部212に記憶させることができる。 As a result, in the inspection device 100, the inspection object W having a predetermined abnormality or having no abnormality is irradiated with an electromagnetic wave from the electromagnetic wave irradiation unit 111, and the transmission amount detection unit 113 detects the transmission amount distribution data, and the detection data. It can be stored in the storage unit 114, read by the learning data transmitting means 119 and transmitted, and further received by the learning data receiving means 216 and stored in the learning data storage unit 212.

1つの学習装置200に対して、複数の検査装置100を接続し、いずれかの検査装置100から、所定の異常がある場合と異常が無い場合の検査対象物Wについて透過量の分布データをそれぞれ収集し、学習データ記憶部212に記憶させるように検査システム10を構成してもよい。 A plurality of inspection devices 100 are connected to one learning device 200, and distribution data of the permeation amount is collected from one of the inspection devices 100 for the inspection target W when there is a predetermined abnormality and when there is no abnormality. The inspection system 10 may be configured to collect and store the data in the learning data storage unit 212.

学習手段213は、学習モデル受信手段211が受信した学習モデルを、学習データ記憶部212から読み出した、所定の異常がある場合と異常が無い場合の双方の検査対象物Wについての透過量の分布データを用いて追加学習させ、追加学習済の学習モデルを出力する。追加学習は、透過量の分布データにおけるそれぞれの画素の色調の相違や、画素間での色調の変化の態様の相違などに基づき、既知の任意の機械学習方法により行ってよい。例えば、教師ありの機械学習においては、所定の異常の有無を示すラベルが付された透過画像データを学習モデルに入力し、学習モデルからそのラベル通りに結果が出力されるようにパラメータを調整するなどの処理を行う。このとき、検出精度がより高い学習モデルを生成するために、学習アルゴリズムに、多層のニューラルネットワークによるディープラーニングの手法を応用してもよい。 The learning means 213 reads the learning model received by the learning model receiving means 211 from the learning data storage unit 212, and distributes the amount of permeation for the inspection object W both when there is a predetermined abnormality and when there is no abnormality. Additional learning is performed using the data, and the additional learning training model is output. The additional learning may be performed by any known machine learning method based on the difference in the color tone of each pixel in the transmission amount distribution data, the difference in the mode of the change in the color tone between the pixels, and the like. For example, in supervised machine learning, transparent image data with a label indicating the presence or absence of a predetermined abnormality is input to the learning model, and the parameters are adjusted so that the learning model outputs the result according to the label. And so on. At this time, in order to generate a learning model with higher detection accuracy, a deep learning method using a multi-layer neural network may be applied to the learning algorithm.

学習済モデル記憶部214は、学習手段213が出力した追加学習済の学習モデルを記憶する。追加学習済の学習モデルは、直近に追加学習された学習モデルに加え、過去に追加学習された学習モデルを更に記憶しておいてもよい。 The learned model storage unit 214 stores the additionally learned learning model output by the learning means 213. As the learning model that has been additionally learned, in addition to the learning model that has been additionally learned most recently, the learning model that has been additionally learned in the past may be further stored.

学習済モデル送信手段215は、追加学習済の学習モデルを学習済モデル記憶部214から読み出して検査装置100(学習済モデル受信手段118)に送信する。 The learned model transmitting means 215 reads the additionally learned learning model from the learned model storage unit 214 and transmits it to the inspection device 100 (learned model receiving means 118).

学習済モデル受信手段118は、学習装置200(学習済モデル送信手段215)から追加学習済の学習モデルを受信し、学習モデル記憶部115に記憶させる。 The learned model receiving means 118 receives the additionally learned learning model from the learning device 200 (learned model transmitting means 215) and stores it in the learning model storage unit 115.

検査結果出力手段116は、以後、追加学習済の学習モデルを用いて検査を実行する。 After that, the inspection result output means 116 executes the inspection using the learning model that has been additionally trained.

以上説明した検査装置100及び学習装置200の各手段の機能は、プログラムに記述し、コンピュータに実行させることにより実現してもよい。 The functions of the means of the inspection device 100 and the learning device 200 described above may be realized by describing them in a program and causing a computer to execute them.

図2に、各手段の機能をプログラムに記述してコンピュータで実行させることにより実現する検査システム10(検査装置100及び学習装置200)の構成例を示す。 FIG. 2 shows a configuration example of an inspection system 10 (inspection apparatus 100 and learning apparatus 200) realized by describing the functions of each means in a program and executing them on a computer.

検査装置100は、電磁波照射部111、搬送部112及び透過量検出部113のほか、例えば、入力部121、記憶部122、CPU123、出力部125及び通信部126を備える。 The inspection device 100 includes, in addition to the electromagnetic wave irradiation unit 111, the transport unit 112, and the transmission amount detection unit 113, for example, an input unit 121, a storage unit 122, a CPU 123, an output unit 125, and a communication unit 126.

入力部121は、検査・学習の実行指示の入力、学習データとする検出データの選択入力、学習データへの所定の異常の有無を示す情報の付与、検査・学習に使用する学習モデルの選択入力、検査装置100と学習装置200との間のデータの送受信の指示の入力、及び検査システム10の外部において生成された学習モデルなど検査装置100を機能させるために必要な情報の入力などを行うための任意のインタフェースである。指示入力や選択入力を行うインタフェースは、物理的なスイッチとして構成してもよいし、出力部125としてディスプレイを設けて、入力画面を表示させ、そこにポインティングデバイスやキーボードなどから入力を行うように構成してもよい。 The input unit 121 inputs an execution instruction for inspection / learning, selects and inputs detection data to be training data, adds information indicating the presence or absence of a predetermined abnormality to the training data, and selects and inputs a learning model to be used for inspection / learning. , To input instructions for sending and receiving data between the inspection device 100 and the learning device 200, and to input information necessary for the inspection device 100 to function, such as a learning model generated outside the inspection system 10. Any interface of. The interface for inputting instructions and selecting input may be configured as a physical switch, or a display may be provided as an output unit 125 to display an input screen, and input may be performed from a pointing device, keyboard, or the like. It may be configured.

記憶部122は、検出データ記憶部114及び学習モデル記憶部115の機能を担うとともに、各手段の機能、各部の制御情報、学習装置200の遠隔制御情報等が記述されたプログラムを記憶する任意の記憶手段である。記憶部122には、例えば、磁気ディスク、光ディスクなど等の記憶手段のほか、不揮発性メモリ、揮発性メモリといった半導体メモリ等の記憶手段を採用することができる。 The storage unit 122 takes on the functions of the detection data storage unit 114 and the learning model storage unit 115, and stores an arbitrary program in which the functions of each means, the control information of each unit, the remote control information of the learning device 200, and the like are described. It is a means of memory. For the storage unit 122, for example, in addition to storage means such as magnetic disks and optical disks, storage means such as semiconductor memories such as non-volatile memory and volatile memory can be adopted.

CPU123は、記憶部122に記憶された各手段の機能、各部の制御情報、学習装置200の遠隔制御情報等が記述されたプログラムを実行し、各手段の機能、各部の制御、学習装置200の遠隔制御等を実現する。 The CPU 123 executes a program in which the functions of each means stored in the storage unit 122, the control information of each unit, the remote control information of the learning device 200, and the like are described, and the functions of each means, the control of each unit, and the learning device 200 Realize remote control, etc.

出力部125は、検査や学習の実行などに供する操作画面の表示や、検査結果出力手段116が出力する検査結果の表示、印刷等を行う出力手段である。具体的な構成は出力形態に依存し、例えば操作画面や検査結果を表示する場合は各種ディスプレイとして構成され、印刷する場合は各種印刷機として構成される。 The output unit 125 is an output means for displaying an operation screen used for executing inspection and learning, displaying the inspection result output by the inspection result output means 116, printing, and the like. The specific configuration depends on the output form. For example, when displaying an operation screen or an inspection result, it is configured as various displays, and when printing, it is configured as various printing machines.

通信部126は、学習モデル送信手段117、学習済モデル受信手段118及び学習データ送信手段119の機能実現時や、検査装置100による学習装置200の遠隔制御時において、学習装置200(通信部226)との間で情報を送受する、採用するネットワークNWの形態及び通信方式に応じた通信インタフェースである。 The communication unit 126 is a learning device 200 (communication unit 226) when the functions of the learning model transmitting means 117, the learned model receiving means 118, and the learning data transmitting means 119 are realized, or when the learning device 200 is remotely controlled by the inspection device 100. It is a communication interface according to the form and communication method of the network NW to be adopted, which sends and receives information to and from.

学習装置200は、例えば、入力部221、記憶部222、CPU223及び通信部226を備える。 The learning device 200 includes, for example, an input unit 221, a storage unit 222, a CPU 223, and a communication unit 226.

入力部221は、検査システム10の外部において収集された検査対象物Wの透過量の分布データなど、学習装置200を機能させるために必要な情報等が入力される任意のインタフェースである。 The input unit 221 is an arbitrary interface into which information necessary for operating the learning device 200, such as distribution data of the permeation amount of the inspection object W collected outside the inspection system 10, is input.

記憶部222は、学習データ記憶部212の機能を担うとともに、各手段の機能等が記述されたプログラムを記憶する任意の記憶手段である。記憶部222には、例えば、磁気ディスク、光ディスクなど等の記憶手段のほか、不揮発性メモリ、揮発性メモリといった半導体メモリ等の記憶手段を採用することができる。 The storage unit 222 is an arbitrary storage means that bears the function of the learning data storage unit 212 and stores a program in which the functions and the like of each means are described. For the storage unit 222, for example, in addition to storage means such as magnetic disks and optical disks, storage means such as semiconductor memories such as non-volatile memory and volatile memory can be adopted.

CPU223は、記憶部222に記憶された各手段の機能等が記述されたプログラムを実行し、各手段の機能等を実現する。 The CPU 223 executes a program in which the functions and the like of each means stored in the storage unit 222 are described, and realizes the functions and the like of each means.

通信部226は、学習モデル受信手段211、学習済モデル送信手段215及び学習データ受信手段216の機能実現時や検査装置100からの遠隔制御時において、検査装置100(通信部126)との間で情報を送受する、採用するネットワークNWの形態及び通信方式に応じた通信インタフェースである。 The communication unit 226 communicates with the inspection device 100 (communication unit 126) when the functions of the learning model receiving means 211, the learned model transmitting means 215, and the learning data receiving means 216 are realized or when remote control is performed from the inspection device 100. It is a communication interface that sends and receives information according to the form and communication method of the network NW to be adopted.

なお、学習装置200における学習手段213の機能の実現に際しては、CPUのみで機械学習処理を実行すると一般に処理に時間を要する。そこで、CPU223に加え、並列計算に特化したアーキテクチャを有し、機械学習処理を高速にかつ低負荷で実行可能なGPU(Graphics Processing Unit)224を設け、学習手段213の機能をCPU223とGPU224の連携により実現してもよい。 In order to realize the function of the learning means 213 in the learning device 200, it generally takes time to execute the machine learning process only by the CPU. Therefore, in addition to the CPU 223, a GPU (Graphics Processing Unit) 224, which has an architecture specialized for parallel computing and can execute machine learning processing at high speed and with a low load, is provided, and the functions of the learning means 213 are performed by the CPU 223 and the GPU 224. It may be realized by cooperation.

本発明の検査システム10によれば、学習モデルを用いて行う検査に際し、学習モデルの追加学習を検査装置100とは別の学習装置200において実行するため、機械学習処理の速度を高めることができるとともに、検査装置100における処理への支障の発生や、CPUや周囲の回路へのダメージの発生を防ぐことができる。更に、学習装置200にGPUを設けることで機械学習処理をより高速化することができる。 According to the inspection system 10 of the present invention, when the inspection is performed using the learning model, the additional learning of the learning model is executed by the learning device 200 different from the inspection device 100, so that the speed of the machine learning process can be increased. At the same time, it is possible to prevent the inspection device 100 from interfering with the processing and causing damage to the CPU and surrounding circuits. Further, by providing the GPU in the learning device 200, the machine learning process can be further speeded up.

本発明は、上記の実施形態に限定されるものではない。上記の実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。すなわち、本発明において表現されている技術的思想の範囲内で適宜変更が可能であり、その様な変更や改良を加えた形態も本発明の技術的範囲に含む。 The present invention is not limited to the above embodiments. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention. That is, it can be appropriately changed within the scope of the technical idea expressed in the present invention, and the form in which such a change or improvement is added is also included in the technical scope of the present invention.

10…検査システム
100…検査装置
111…電磁波照射部
112…搬送部
113…透過量検出部
114…検出データ記憶部
115…学習モデル記憶部
116…検査結果出力手段
117…学習モデル送信手段
118…学習済モデル受信手段
119…学習データ送信手段
121、221…入力部
122、222…記憶部
123、223…CPU
125…出力部
126、226…通信部
211…学習モデル受信手段
212…学習データ記憶部
213…学習手段
214…学習済モデル記憶部
215…学習済モデル送信手段
216…学習データ受信手段
224…GPU
NW…ネットワーク
W…検査対象物
10 ... Inspection system 100 ... Inspection device 111 ... Electromagnetic wave irradiation unit 112 ... Transport unit 113 ... Transmission amount detection unit 114 ... Detection data storage unit 115 ... Learning model storage unit 116 ... Inspection result output means 117 ... Learning model transmission means 118 ... Learning Finished model receiving means 119 ... Learning data transmitting means 121, 221 ... Input unit 122, 222 ... Storage unit 123, 223 ... CPU
125 ... Output unit 126 ... Communication unit 211 ... Learning model receiving means 212 ... Learning data storage unit 213 ... Learning means 214 ... Learned model storage unit 215 ... Learned model transmitting means 216 ... Learning data receiving means 224 ... GPU
NW ... Network W ... Inspection target

Claims (6)

電磁波を発生し検査対象物に照射する電磁波照射部と、
前記検査対象物を透過した前記電磁波の透過量の分布データを検出する透過量検出部と、
前記検査対象物の透過量の分布データを入力することで前記検査対象物における所定の異常の存在可能性を示す情報を出力する学習モデルを予め記憶する学習モデル記憶部と、
前記透過量検出部で検出された前記検査対象物の透過量の分布データを前記学習モデルに入力し、出力された前記情報に基づく検査結果を出力する検査結果出力手段と、
前記学習モデルを送信する学習モデル送信手段と、
を備える検査装置と、
前記検査装置から送信された前記学習モデルを受信する学習モデル受信手段と、
学習データとして、前記所定の異常がある場合と異常が無い場合の双方の前記検査対象物の透過量の分布データを記憶する学習データ記憶部と、
前記学習モデル受信手段が受信した前記学習モデルを、前記学習データを用いて追加学習させる学習手段と、
追加学習済の前記学習モデルを記憶する学習モデル記憶部と、
追加学習済の前記学習モデルを前記学習モデル記憶部から読み出して送信する学習済モデル送信手段と、
を備える学習装置と、
を備え、
前記検査装置は、前記学習装置から前記追加学習済の学習モデルを受信し、前記学習モデル記憶部に記憶させる学習済モデル受信手段を更に備える
ことを特徴とする検査システム。
An electromagnetic wave irradiation unit that generates electromagnetic waves and irradiates the inspection object,
A transmission amount detection unit that detects distribution data of the transmission amount of the electromagnetic wave transmitted through the inspection object, and a transmission amount detection unit.
A learning model storage unit that stores in advance a learning model that outputs information indicating the possibility of existence of a predetermined abnormality in the inspection object by inputting distribution data of the permeation amount of the inspection object.
An inspection result output means that inputs the distribution data of the permeation amount of the inspection object detected by the permeation amount detection unit into the learning model and outputs the inspection result based on the output information.
A learning model transmitting means for transmitting the learning model and
With an inspection device equipped with
A learning model receiving means for receiving the learning model transmitted from the inspection device, and
As learning data, a learning data storage unit that stores distribution data of the permeation amount of the inspection object both when there is a predetermined abnormality and when there is no abnormality, and
A learning means for additionally learning the learning model received by the learning model receiving means using the learning data, and
A learning model storage unit that stores the additionally learned learning model,
A trained model transmission means for reading and transmitting the additionally trained learning model from the learning model storage unit,
With a learning device equipped with
With
The inspection system further includes a learned model receiving means that receives the additionally learned learning model from the learning device and stores it in the learning model storage unit.
前記検査装置は、前記透過量検出部において収集された前記学習データを送信する学習データ送信手段を更に備え、
前記学習装置は、前記検査装置から送信された前記学習データを受信し、前記学習データ記憶部に記憶させる学習データ受信手段を更に備える
ことを特徴とする請求項1に記載の検査システム。
The inspection device further includes a learning data transmitting means for transmitting the learning data collected by the permeation amount detecting unit.
The inspection system according to claim 1, wherein the learning device further includes a learning data receiving means that receives the learning data transmitted from the inspection device and stores the learning data in the learning data storage unit.
前記学習データ送信手段は、前記学習データに前記所定の異常の有無を示すラベルを付して送信し、
前記学習手段は、前記ラベルを参照して追加学習を実行する
ことを特徴とする請求項2に記載の検査システム。
The learning data transmitting means transmits the learning data with a label indicating the presence or absence of the predetermined abnormality.
The inspection system according to claim 2, wherein the learning means executes additional learning with reference to the label.
電磁波を発生し検査対象物に照射する電磁波照射部と、
前記検査対象物を透過した前記電磁波の透過量の分布データを検出する透過量検出部と、
前記検査対象物の透過量の分布データを入力することで前記検査対象物における所定の異常の存在可能性を示す情報を出力する学習モデルを予め記憶する学習モデル記憶部と、
前記透過量検出部で検出された前記検査対象物の透過量の分布データを前記学習モデルに入力し、出力された前記情報に基づく検査結果を出力する検査結果出力手段と、
前記学習モデルを送信する学習モデル送信手段と、
追加学習済の学習モデルを受信し、前記学習モデル記憶部に記憶させる学習済モデル受信手段と、
を備える検査装置。
An electromagnetic wave irradiation unit that generates electromagnetic waves and irradiates the inspection object,
A transmission amount detection unit that detects distribution data of the transmission amount of the electromagnetic wave transmitted through the inspection object, and a transmission amount detection unit.
A learning model storage unit that stores in advance a learning model that outputs information indicating the possibility of existence of a predetermined abnormality in the inspection object by inputting distribution data of the permeation amount of the inspection object.
An inspection result output means that inputs the distribution data of the permeation amount of the inspection object detected by the permeation amount detection unit into the learning model and outputs the inspection result based on the output information.
A learning model transmitting means for transmitting the learning model and
A trained model receiving means that receives an additionally trained learning model and stores it in the learning model storage unit,
Inspection device equipped with.
学習モデルを受信する学習モデル受信手段と、
学習データとして、所定の異常がある場合と異常が無い場合の双方の検査対象物の透過量の分布データを記憶する学習データ記憶部と、
前記学習モデル受信手段が受信した前記学習モデルを、前記学習データを用いて追加学習させる学習手段と、
追加学習済の前記学習モデルを記憶する学習モデル記憶部と、
追加学習済の前記学習モデルを前記学習モデル記憶部から読み出して送信する学習済モデル送信手段と、
を備える学習装置。
A learning model receiving means for receiving a learning model,
As training data, a learning data storage unit that stores distribution data of the permeation amount of the inspection object both when there is a predetermined abnormality and when there is no abnormality, and
A learning means for additionally learning the learning model received by the learning model receiving means using the learning data, and
A learning model storage unit that stores the additionally learned learning model,
A trained model transmission means for reading and transmitting the additionally trained learning model from the learning model storage unit,
A learning device equipped with.
コンピュータを、請求項1から5のいずれか1項に記載の各手段として機能させるためのプログラム。
A program for operating a computer as each means according to any one of claims 1 to 5.
JP2019227141A 2019-12-17 2019-12-17 Inspection system, inspection device, learning device and program Active JP7323177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019227141A JP7323177B2 (en) 2019-12-17 2019-12-17 Inspection system, inspection device, learning device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019227141A JP7323177B2 (en) 2019-12-17 2019-12-17 Inspection system, inspection device, learning device and program

Publications (2)

Publication Number Publication Date
JP2021096148A true JP2021096148A (en) 2021-06-24
JP7323177B2 JP7323177B2 (en) 2023-08-08

Family

ID=76431066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019227141A Active JP7323177B2 (en) 2019-12-17 2019-12-17 Inspection system, inspection device, learning device and program

Country Status (1)

Country Link
JP (1) JP7323177B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095217A (en) * 2017-11-17 2019-06-20 ファナック株式会社 Visual inspection device
JP2019159820A (en) * 2018-03-13 2019-09-19 オムロン株式会社 Inspection device, image identification device, identification device, inspection method, and inspection program
JP2019174421A (en) * 2018-03-29 2019-10-10 日本電気株式会社 Selection support device, selection support system, selection support method, and program
JP2019184305A (en) * 2018-04-04 2019-10-24 清水建設株式会社 Learning device, product inspection system, program, method for learning, and method for inspecting product
JPWO2018173121A1 (en) * 2017-03-21 2019-12-12 株式会社Preferred Networks Server apparatus, learned model providing program, learned model providing method, and learned model providing system
JPWO2019159440A1 (en) * 2018-02-14 2020-02-27 株式会社イシダ Inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173121A (en) 2017-03-31 2018-11-08 Ntn株式会社 Rolling bearing
JP6604393B2 (en) 2018-03-08 2019-11-13 日本電気株式会社 Vector processor, operation execution method, program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173121A1 (en) * 2017-03-21 2019-12-12 株式会社Preferred Networks Server apparatus, learned model providing program, learned model providing method, and learned model providing system
JP2019095217A (en) * 2017-11-17 2019-06-20 ファナック株式会社 Visual inspection device
JPWO2019159440A1 (en) * 2018-02-14 2020-02-27 株式会社イシダ Inspection device
JP2019159820A (en) * 2018-03-13 2019-09-19 オムロン株式会社 Inspection device, image identification device, identification device, inspection method, and inspection program
JP2019174421A (en) * 2018-03-29 2019-10-10 日本電気株式会社 Selection support device, selection support system, selection support method, and program
JP2019184305A (en) * 2018-04-04 2019-10-24 清水建設株式会社 Learning device, product inspection system, program, method for learning, and method for inspecting product

Also Published As

Publication number Publication date
JP7323177B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7250331B2 (en) Image generation device, inspection device and learning device
KR20210126163A (en) Inspection device
JP6537008B1 (en) Inspection device
JP2011017694A (en) X-ray inspection device
JP7295568B2 (en) Inspection device and program
JP2021096148A (en) Inspection system, inspection device, learning device and program
JP4902170B2 (en) Inspection system
EP4220142A1 (en) X-ray inspection device and x-ray inspection method
JP2017009319A (en) Inspection device
JP5613359B2 (en) X-ray counter
JP7373840B2 (en) Inspection equipment
JP2009080030A (en) X-ray inspection device
JP2021012107A (en) Inspection apparatus and learning apparatus
WO2021166441A1 (en) Inspection device and program
JP7250301B2 (en) Inspection device, inspection system, inspection method, inspection program and recording medium
EP4224153A1 (en) X-ray inspection apparatus
JP7411984B2 (en) Inspection equipment
WO2018056257A1 (en) Optical inspecting device and optical inspecting system
WO2023017611A1 (en) Learning model generation method, learning model, inspection device, inspection method, and computer program
JP6144584B2 (en) Damage inspection device
JP2018048845A (en) Optical inspection device
JP6757970B2 (en) Optical inspection equipment and optical inspection method
JP2024054011A (en) Inspection Equipment
KR20230058904A (en) Appratus and method for inspecting products by using Lidar
JP2021060913A (en) Inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R150 Certificate of patent or registration of utility model

Ref document number: 7323177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150