JP2021094573A - Welding structure - Google Patents

Welding structure Download PDF

Info

Publication number
JP2021094573A
JP2021094573A JP2019226309A JP2019226309A JP2021094573A JP 2021094573 A JP2021094573 A JP 2021094573A JP 2019226309 A JP2019226309 A JP 2019226309A JP 2019226309 A JP2019226309 A JP 2019226309A JP 2021094573 A JP2021094573 A JP 2021094573A
Authority
JP
Japan
Prior art keywords
plate
test
joined
approach
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226309A
Other languages
Japanese (ja)
Other versions
JP7288197B2 (en
Inventor
鉄平 大川
Teppei Okawa
鉄平 大川
直樹 小田
Naoki Oda
直樹 小田
島貫 広志
Hiroshi Shimanuki
広志 島貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019226309A priority Critical patent/JP7288197B2/en
Publication of JP2021094573A publication Critical patent/JP2021094573A/en
Application granted granted Critical
Publication of JP7288197B2 publication Critical patent/JP7288197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a welded structure excellent in brittle crack propagation stop characteristics.SOLUTION: A welding structure 10 has a T joint part in which a joining member 11 is penetration welded to a member 12 to be joined in a state in which an end surface 11c of the joining member 11 abuts on a surface 12a to be joined of the member 12 to be joined. The joining member 11 has a first surface 11a and a second surface 11b, plate thicknesses of the joining member 11 and the member 12 to be joined are 50.0 mm or more, and shapes of first welding metal and second welding metal formed on the first surface 11a and the second surface 11b satisfy predetermined conditions. By using a test plate taken from the member 12 to be joined and having a surface 12c which is and corresponds to the surface 21a to be joined, a test object having first auxiliary running plate welding metal and second auxiliary running plate welding metal whose shapes satisfy a predetermined condition is formed, and a length of a crack to be developed on the test plate is reduced to a predetermined value or less when the test object is subjected to a quality evaluation test.SELECTED DRAWING: Figure 5

Description

本発明は、コンテナ船等において利用される溶接構造体に関する。 The present invention relates to a welded structure used in a container ship or the like.

大量の貨物を搭載する大型のコンテナ船においては、アッパーデッキ(上甲板)に、貨物の積み下ろしを行うための大きな開口部(ハッチ)が形成されている。また、アッパーデッキ上には、海水の流入防止等のために、ハッチを囲むようにハッチサイドコーミングが設けられている。アッパーデッキおよびハッチサイドコーミングはそれぞれ、複数の鋼板を溶接して構成されている。また、ハッチサイドコーミングは、アッパーデッキ上に溶接されている。 In a large container ship carrying a large amount of cargo, a large opening (hatch) for loading and unloading cargo is formed on the upper deck (upper deck). In addition, hatch side combing is provided on the upper deck so as to surround the hatch in order to prevent the inflow of seawater. The upper deck and hatch side combing are each constructed by welding a plurality of steel plates. Also, the hatch side combing is welded onto the upper deck.

上記のような大型のコンテナ船が海上を航行する際には、波浪によって、船体全体を曲げるような荷重(縦曲げ荷重)が船体に付加される。このような荷重に対して、船体の強度(縦曲げ強度)を十分に確保するために、アッパーデッキおよびハッチサイドコーミングには、高強度の厚肉鋼板が利用されている。 When a large container ship as described above sails over the sea, a load that bends the entire hull (vertical bending load) is applied to the hull due to waves. High-strength thick steel plates are used for the upper deck and hatch side combing in order to sufficiently secure the strength (longitudinal bending strength) of the hull against such a load.

また、上述のように、ハッチサイドコーミングおよびアッパーデッキはそれぞれ、複数の鋼板を溶接した構成を有している。言い換えると、ハッチサイドコーミングおよびアッパーデッキには、鋼板同士を溶接するための複数の溶接部が形成されている。溶接部で発生した亀裂は、溶接部に沿って伝播しやすい。このため、例えば、ハッチサイドコーミングの溶接部において亀裂が発生した場合、その亀裂が溶接部に沿ってアッパーデッキ側に向かって伝播する場合がある。したがって、船体の強度を十分に向上させるためには、ハッチサイドコーミングおよびアッパーデッキが、上記のような亀裂の進展を停止させることができる特性(脆性亀裂伝播停止特性)を有する必要がある。 Further, as described above, the hatch side combing and the upper deck each have a structure in which a plurality of steel plates are welded together. In other words, the hatch side combing and the upper deck are formed with a plurality of welds for welding the steel plates to each other. Cracks generated at the weld tend to propagate along the weld. Therefore, for example, when a crack occurs in the welded portion of the hatch side combing, the crack may propagate toward the upper deck side along the welded portion. Therefore, in order to sufficiently improve the strength of the hull, the hatch side combing and the upper deck need to have the property of stopping the growth of cracks as described above (the brittle crack propagation stopping property).

例えば、特許文献1および2には、脆性亀裂伝播停止特性に関する溶接構造体が開示されている。 For example, Patent Documents 1 and 2 disclose a welded structure relating to brittle crack propagation stopping characteristics.

特開2007−326147号公報Japanese Unexamined Patent Publication No. 2007-326147 特許第5365761号公報Japanese Patent No. 5365761

ところで、ハッチサイドコーミングで発生し、アッパーデッキ側に向かって伝播した亀裂の進展を停止させるためには、これらの部材として、例えば、脆性亀裂伝播停止特性(アレスト性)の指標である−10℃におけるKca値が6000N/mm1.5以上の厚肉鋼板を用いる必要があることが知られている。 By the way, in order to stop the growth of cracks generated by hatchside combing and propagated toward the upper deck side, these members are used, for example, at −10 ° C., which is an index of brittle crack propagation stopping characteristics (arrestability). It is known that it is necessary to use a thick steel plate having a Kca value of 6000 N / mm 1.5 or more.

鋼板のKca値は、WES2815に準拠した温度勾配型ESSO試験により測定されるが、この試験では鋼板の長さまたは幅方向に伝播する亀裂に対するアレスト性を評価するものである。そのため、ハッチサイドコーミングで発生し、アッパーデッキの表面から突入する亀裂に対するアレスト性の評価には本来適していない。 The Kca value of a steel sheet is measured by a temperature gradient type ESSO test based on WES2815, and this test evaluates the arrest property for cracks propagating in the length or width direction of the steel sheet. Therefore, it is not originally suitable for evaluating the arrest property for cracks that occur in hatch side combing and rush from the surface of the upper deck.

そのため、従来、アッパーデッキに用いられる厚鋼板の脆性亀裂伝播停止特性を評価する場合には、大型の試験体を用いた構造モデルアレスト試験(脆性破壊伝播停止試験:試験片に脆性亀裂を人為的に発生させ、脆性亀裂を停止させる性能を評価する試験)が実施されていた。 Therefore, when evaluating the brittle rhagades propagation stop characteristics of thick steel sheets used for upper decks in the past, a structural model arrest test using a large specimen (brittle fracture propagation stop test: brittle cracks are artificially formed on the test piece. A test) was conducted to evaluate the ability to generate brittle cracks and stop brittle cracks.

しかしながら、大型構造アレスト試験を実施するためには、多くの時間と費用とを必要とするため、高い脆性亀裂伝播停止特性を有する厚鋼板の選別が容易でないという問題があった。そのため、より簡易な手法により低コストで優れた脆性亀裂伝播停止特性を有する溶接構造体を得る必要がある。 However, since it takes a lot of time and cost to carry out the large-scale structural arrest test, there is a problem that it is not easy to select a thick steel sheet having high brittle crack propagation stopping characteristics. Therefore, it is necessary to obtain a welded structure having excellent brittle crack propagation stopping characteristics at low cost by a simpler method.

本発明は、このような問題を解決するためになされたものであり、脆性亀裂伝播停止特性に優れた溶接構造体を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a welded structure having excellent brittle crack propagation stopping characteristics.

本発明は、下記の溶接構造体を要旨とする。 The gist of the present invention is the following welded structure.

(1)板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記第1表面および前記被接合面に垂直な断面において、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記第1表面側に形成された第1溶接金属における、前記被接合部材側の溶込み深さs(mm)、および前記第2表面側に形成された第2溶接金属における、前記被接合部材側の溶込み深さs(mm)が下記(iii)および(iv)式を満足し、
前記被接合部材は、下記(a)〜(d)の工程を順に実施する品質評価試験において、下記cおよびcが、下記(xi)および(xii)式を満足するものである、
溶接構造体。
(a)幅方向が前記被接合部材の板厚方向に対応し、幅方向における一方側の面が前記被接合面に対応する試験板であって、板厚がt(mm)、幅がt(mm)、長さが500mmである試験板、ならびに、
板厚がt(mm)、幅が260mm、長さが500mmであり、板厚方向に垂直な第1助走板面および第2助走板面を有し、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、前記第1助走板面側および前記第2助走板面側にそれぞれ前記長さ方向に延びる開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に両側部分溶込み溶接を行い、
前記第1助走板面および前記試験板の前記一方側の面に垂直な断面において、
前記第1助走板面側に形成された第1助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)ならびに、
前記第2助走板面側に形成された第2助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)が、下記(v)〜(x)式を満足し、
板厚がt(mm)、幅が260+t(mm)、長さが500mmの中間試験体を形成する工程。
但し、式中のαおよびdは、それぞれ、前記第1溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)であり、
αおよびdは、それぞれ、前記第2溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)である。
(b)板厚がt(mm)、幅が240−t(mm)、長さが500mmであり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記幅方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行い、
板厚がt(mm)、幅が500mm、長さが500mmの試験体を形成する工程。
(c)前記試験体を用いて、−10℃の試験温度で、予め設定される前記被接合部材の許容応力であるσ(N/mm)を試験応力として付与した状態で、前記助走板の前記ノッチに衝撃荷重を加え、前記第1助走板溶接金属および前記第2助走板溶接金属を介して前記試験板まで亀裂を進展させる工程。
(d)前記試験板の前記一方側の面と、前記第1助走板溶接金属および前記第2助走板溶接金属のそれぞれを介して進展した前記亀裂の先端との、前記幅方向における距離c(mm)およびc(mm)を測定する工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
≦5.0 ・・・(iii)
≦5.0 ・・・(iv)
α−5.0≦β≦α+5.0 ・・・(v)
α−5.0≦β≦α+5.0 ・・・(vi)
≦b≦d+5.0 ・・・(vii)
≦b≦d+5.0 ・・・(viii)
≦r≦s+5.0 ・・・(ix)
≦r≦s+5.0 ・・・(x)
≦r+10.0 ・・・(xi)
≦r+10.0 ・・・(xii)
(1) Welding having a T-joint portion in which the joint member is partially welded to the joint member in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. It's a structure
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
In the cross section perpendicular to the first surface and the surface to be joined,
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s 1 (mm) on the member to be joined side of the first weld metal formed on the first surface side, and the welded metal on the second weld metal formed on the second surface side. The penetration depth s 2 (mm) on the member side satisfies the following equations (iii) and (iv).
The members to be joined, in the quality evaluation test to carry out the following processes (a) ~ (d) in this order, but the following c 1 and c 2 are to satisfy the following (xi) and (xii) equation,
Welded structure.
(A) A test plate whose width direction corresponds to the plate thickness direction of the member to be joined and one surface in the width direction corresponds to the surface to be joined, having a plate thickness of t 1 (mm) and a width of t 1 (mm). A test plate of t 2 (mm), length of 500 mm, and
It has a plate thickness of t 1 (mm), a width of 260 mm, a length of 500 mm, has a first approach plate surface and a second approach plate surface perpendicular to the plate thickness direction, and has a notch on one side in the width direction. A run-up plate is provided, and a groove extending in the length direction is formed on the first run-up plate surface side and the second run-up plate surface side on the other side surface in the width direction.
In a state where the one side surface of the test plate is in contact with the other side surface of the run-up plate, both side partial penetration welding is performed on the groove formed in the run-up plate.
In a cross section perpendicular to the first approach plate surface and the one side surface of the test plate.
In the first approach plate weld metal formed on the first approach plate surface side, an acute angle β 1 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), Partial penetration b 1 (mm) of the joint in the thickness direction of the approach plate , and penetration depth r 1 (mm) on the test plate side, and
In the second approach plate weld metal formed on the second approach plate surface side, an acute angle β 2 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), The partial penetration b 2 (mm) of the joint in the thickness direction of the approach plate, and the penetration depth r 2 (mm) on the test plate side satisfy the following equations (v) to (x). And
A step of forming an intermediate test piece having a plate thickness of t 1 (mm), a width of 260 + t 2 (mm), and a length of 500 mm.
However, α 1 and d 1 in the equation are the acute angle (°) formed by the line passing through the toe and the root on the joint member side and the surface to be joined in the first weld metal, respectively, and the plate. Partial penetration (mm) of the joint in the thickness direction,
α 2 and d 2 are the acute angles (°) formed by the line passing through the toe and the root on the joining member side and the surface to be joined in the second weld metal, and the joint in the plate thickness direction, respectively. Partial penetration (mm).
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm), a width of 240-t 2 (mm), and a length of 500 mm, and having a groove formed on one surface in the width direction. ,
Welding is performed on the groove formed in the adjusting plate in a state where the other side surface of the test plate in the width direction is in contact with the one side surface of the adjusting plate.
A step of forming a test piece having a plate thickness of t 1 (mm), a width of 500 mm, and a length of 500 mm.
(C) Using the test piece, the approach plate is provided with σ (N / mm 2 ), which is a preset allowable stress of the member to be welded, as a test stress at a test temperature of −10 ° C. A step of applying an impact load to the notch of the above to develop a crack to the test plate via the first approach plate weld metal and the second approach plate weld metal.
(D) The distance c 1 in the width direction between the one side surface of the test plate and the tip of the crack extending through each of the first approach plate weld metal and the second approach plate weld metal. A step of measuring (mm) and c 2 (mm).
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s 1 ≤ 5.0 ・ ・ ・ (iii)
s 2 ≤ 5.0 ・ ・ ・ (iv)
α 1 −5.0 ≦ β 1 ≦ α 1 +5.0 ・ ・ ・ (v)
α 2 −5.0 ≦ β 2 ≦ α 2 +5.0 ・ ・ ・ (vi)
d 1 ≤ b 1 ≤ d 1 +5.0 ... (vii)
d 2 ≤ b 2 ≤ d 2 +5.0 ... (viii)
s 1 ≤ r 1 ≤ s 1 +5.0 ... (ix)
s 2 ≤ r 2 ≤ s 2 +5.0 ... (x)
c 1 ≤ r 1 + 10.0 ・ ・ ・ (xi)
c 2 ≤ r 2 + 10.0 ・ ・ ・ (xii)

(2)板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に完全溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記接合部材と前記被接合部材との間に形成された溶接金属における前記被接合部材側の溶込み深さs(mm)が下記(xiii)式を満足し、
前記被接合部材は、下記(a)〜(d)の工程を順に実施する品質評価試験において、下記c(mm)が、下記(xv)式を満足するものである、
溶接構造体。
(a)幅方向が前記被接合部材の板厚方向に対応し、幅方向における一方側の面が前記被接合面に対応する試験板であって、板厚がt(mm)、幅がt(mm)、長さが500mmである試験板、および、
板厚がt(mm)、幅が260mm、長さが500mmであり、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に完全溶込み溶接を行って助走板溶接金属を形成し、
前記助走板溶接金属における前記試験板側の溶込み深さr(mm)が下記(xiv)式を満足し、
板厚がt(mm)、幅が260+t(mm)、長さが500mmの中間試験体を形成する工程。
(b)板厚がt(mm)、幅が240−t(mm)、長さが500mmであり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記板厚方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行い、
板厚がt(mm)、長さが500mm、幅が500mmの試験体を形成する工程。
(c)前記試験体を用いて、−10℃の試験温度で、予め設定される前記被接合部材の許容応力であるσ(N/mm)を試験応力として付与した状態で、前記助走板の前記ノッチに衝撃荷重を加え、前記試験板まで亀裂を進展させる工程。
(d)前記試験板の前記一方側の面と、前記亀裂の先端との、前記幅方向における距離c(mm)を測定する工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
s≦5.0 ・・・(xiii)
s≦r≦s+5.0 ・・・(xiv)
c≦r+10.0 ・・・(xv)
(2) A welded structure having a T-joint portion in which the joint member is completely welded and welded to the joint member in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. The body
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s (mm) on the side to be joined in the weld metal formed between the joint member and the member to be joined satisfies the following equation (xiii).
In the quality evaluation test in which the following steps (a) to (d) are sequentially carried out, the following c (mm) satisfies the following formula (xv).
Welded structure.
(A) A test plate whose width direction corresponds to the plate thickness direction of the member to be joined and one surface in the width direction corresponds to the surface to be joined, having a plate thickness of t 1 (mm) and a width of t 1 (mm). A test plate with t 2 (mm) and a length of 500 mm, and
A run-up plate having a plate thickness of t 1 (mm), a width of 260 mm, and a length of 500 mm, a notch is provided on one side in the width direction, and a groove is formed on the other side surface in the width direction. , Prepare,
With the one side surface of the test plate in contact with the other side surface of the approach plate, complete penetration welding is performed on the groove formed in the approach plate to obtain the approach plate weld metal. Form and
The penetration depth r (mm) on the test plate side of the approach plate weld metal satisfies the following equation (xiv).
A step of forming an intermediate test piece having a plate thickness of t 1 (mm), a width of 260 + t 2 (mm), and a length of 500 mm.
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm), a width of 240-t 2 (mm), and a length of 500 mm, and having a groove formed on one surface in the width direction. ,
Welding is performed on the groove formed in the adjusting plate in a state where the other side surface of the test plate in the plate thickness direction is in contact with the one side surface of the adjusting plate.
A step of forming a test piece having a plate thickness of t 1 (mm), a length of 500 mm, and a width of 500 mm.
(C) Using the test piece, the approach plate is provided with σ (N / mm 2 ), which is a preset allowable stress of the member to be joined, as a test stress at a test temperature of −10 ° C. A step of applying an impact load to the notch of the above to develop a crack to the test plate.
(D) A step of measuring the distance c (mm) between the one side surface of the test plate and the tip of the crack in the width direction.
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s ≦ 5.0 ・ ・ ・ (xiii)
s ≦ r ≦ s + 5.0 ・ ・ ・ (xiv)
c ≦ r + 10.0 ・ ・ ・ (xv)

(3)前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(xvi)および(xvii)式を満足する、
上記(1)または(2)に記載の溶接構造体。
>80.0 ・・・(xvi)
>80.0 ・・・(xvii)
(3) The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (xvi) and (xvii).
The welded structure according to (1) or (2) above.
t 1 > 80.0 ・ ・ ・ (xvi)
t 2 > 80.0 ・ ・ ・ (xvii)

(4)前記被接合部材の降伏応力が400MPa以上、580MPa以下であり、引張強さが510MPa以上、750MPa以下である、
上記(1)から(3)までのいずれかに記載の溶接構造体。
(4) The yield stress of the member to be joined is 400 MPa or more and 580 MPa or less, and the tensile strength is 510 MPa or more and 750 MPa or less.
The welded structure according to any one of (1) to (3) above.

(5)前記被接合部材の−10℃における全厚のKca値が6000N/mm1.5未満である、
上記(1)から(4)までのいずれかに記載の溶接構造体。
(5) The Kca value of the total thickness of the member to be joined at −10 ° C. is less than 6000 N / mm 1.5.
The welded structure according to any one of (1) to (4) above.

本発明によれば、脆性亀裂伝播停止特性に優れた溶接構造体を得ることができる。 According to the present invention, a welded structure having excellent brittle crack propagation stopping characteristics can be obtained.

本発明の一実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on other embodiment of this invention. 溶接構造体の断面図である。It is sectional drawing of the welded structure. 本発明における品質評価試験を説明するための図である。It is a figure for demonstrating the quality evaluation test in this invention. 本発明における品質評価試験を説明するための図である。It is a figure for demonstrating the quality evaluation test in this invention. 試験体の断面図である。It is sectional drawing of the test body. 脆性亀裂伝播試験を説明するための図である。It is a figure for demonstrating the brittle crack propagation test. 構造モデルアレスト試験体の形状を説明するための図である。It is a figure for demonstrating the shape of the structural model arrest test piece. 応用例における厚鋼板の品質評価方法を説明するための図である。It is a figure for demonstrating the quality evaluation method of a thick steel plate in an application example. 応用例における厚鋼板の品質評価方法を説明するための図である。It is a figure for demonstrating the quality evaluation method of a thick steel plate in an application example. 試験体の断面図である。It is sectional drawing of the test body.

本発明者らが上記の課題を解決するために検討を行った結果、以下の知見を得るに至った。 As a result of studies by the present inventors to solve the above problems, the following findings have been obtained.

上述のように、アッパーデッキに用いられる厚鋼板の脆性亀裂伝播停止特性の評価には、大型の試験体を用いた構造モデルアレスト試験が用いられるのが一般的である。しかし、より小さい試験体を用いた中型試験において脆性亀裂伝播停止特性の評価が可能であれば、溶接構造体に用いる厚鋼板の選別が容易になり、低コストで優れた脆性亀裂伝播停止特性を有する溶接構造体を製造することが可能となる。 As described above, the structural model arrest test using a large test piece is generally used to evaluate the brittle crack propagation stopping property of the thick steel sheet used for the upper deck. However, if it is possible to evaluate the brittle crack propagation stop characteristics in a medium-sized test using a smaller test piece, it will be easier to select the thick steel sheet used for the welded structure, and excellent brittle crack propagation stop characteristics will be obtained at low cost. It becomes possible to manufacture a welded structure having a brittleness.

本発明は上記の知見に基づいてなされたものである。以下、本発明の一実施形態に係る溶接構造体について説明する。 The present invention has been made based on the above findings. Hereinafter, the welded structure according to the embodiment of the present invention will be described.

1.溶接構造体の構成
図1は、本発明の一実施形態に係る溶接構造体を示す斜視図である。本実施形態に係る溶接構造体10は、接合部材11および被接合部材12を備えている。接合部材11は板状であり、板厚方向に垂直な第1表面11aおよび第2表面11bを有する。また、被接合部材12は板状であり、接合部材11の端面11cが当接される被接合面12aを有する。
1. 1. Structure of Welded Structure FIG. 1 is a perspective view showing a welded structure according to an embodiment of the present invention. The welded structure 10 according to the present embodiment includes a joining member 11 and a member to be joined 12. The joining member 11 is plate-shaped and has a first surface 11a and a second surface 11b perpendicular to the plate thickness direction. Further, the member to be joined 12 has a plate shape and has a surface to be joined 12a to which the end surface 11c of the member 11 is abutted.

そして、図1に示すように、溶接構造体10は、端面11cが被接合面12aに当接した状態で、接合部材11が被接合部材12に溶接されたT継手部を有する。なお、上記のT継手部を有する溶接構造体には、図1に示すようなT字状の構造体に加えて、例えば、図2および3に示す形状の構造体も含まれる。また、接合部材11には開先が設けられており、開先溶接によって接合されている。 Then, as shown in FIG. 1, the welded structure 10 has a T-joint portion in which the joining member 11 is welded to the joined member 12 in a state where the end surface 11c is in contact with the joined surface 12a. The welded structure having the T-joint portion includes, for example, a structure having a shape shown in FIGS. 2 and 3 in addition to the T-shaped structure as shown in FIG. Further, the joining member 11 is provided with a groove, and the joining member 11 is joined by groove welding.

本発明においては、厚肉の接合部材および被接合部材を対象としており、具体的には、接合部材11の板厚をt(mm)とし、被接合部材12の板厚をt(mm)とした場合に、下記(i)および(ii)式を満足する。接合部材11の板厚t(mm)および被接合部材12の板厚t(mm)は、下記(xvi)および(xvii)式を満足するのが好ましい。tおよびtの上限は特に規定する必要はないが、いずれも例えば200mm、150mm、または120mmとすることができる。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
>80.0 ・・・(xvi)
>80.0 ・・・(xvii)
In the present invention, a thick-walled joint member and a member to be joined are targeted. Specifically, the plate thickness of the joint member 11 is t 1 (mm), and the plate thickness of the member 12 to be joined is t 2 (mm). ), The following equations (i) and (ii) are satisfied. The plate thickness t 1 (mm) of the joining member 11 and the plate thickness t 2 (mm) of the member 12 to be joined preferably satisfy the following equations (xvi) and (xvii). The upper limit of t 1 and t 2 need not be specified, but can be, for example, 200 mm, 150 mm, or 120 mm.
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
t 1 > 80.0 ・ ・ ・ (xvi)
t 2 > 80.0 ・ ・ ・ (xvii)

接合部材11と被接合部材12とは、図1〜図3に示すように、両側部分溶込み溶接によって接合されていてもよいが、図4に示すように、完全溶け込み溶接によって接合されていてもよい。それぞれの場合の溶接構造体の構成についてさらに説明する。 As shown in FIGS. 1 to 3, the joining member 11 and the member 12 to be joined may be joined by partial penetration welding on both sides, but as shown in FIG. 4, they are joined by complete penetration welding. May be good. The configuration of the welded structure in each case will be further described.

(1)両側部分溶込み溶接
図1〜図3に示すように、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合において、溶接構造体10は、第1表面11a側に形成された第1溶接金属13aおよび第2表面11b側に形成された第2溶接金属13bを有する。
(1) Partial Penetration Welding on Both Sides As shown in FIGS. 1 to 3, when the joining member 11 and the member 12 to be joined are joined by partial penetration welding on both sides, the welded structure 10 has a first surface. It has a first weld metal 13a formed on the 11a side and a second weld metal 13b formed on the second surface 11b side.

接合部材11および被接合部材12の接合箇所付近について、図5を用いてさらに詳しく説明する。図5は、溶接構造体10の、第1表面11aおよび被接合面12aに垂直な断面図である。図5においては、図面が煩雑になることを避けるため、ハッチングは付していない。 The vicinity of the joint portion of the joint member 11 and the member to be joined 12 will be described in more detail with reference to FIG. FIG. 5 is a cross-sectional view of the welded structure 10 perpendicular to the first surface 11a and the surface to be joined 12a. In FIG. 5, hatching is not provided in order to avoid complicating the drawings.

図5に示すように、接合部材11および被接合部材12の接合箇所の第1表面11a側には、第1溶接金属13aが形成されている。同様に、第2表面11b側には、第2溶接金属13bが形成されている。 As shown in FIG. 5, the first weld metal 13a is formed on the first surface 11a side of the joining portion of the joining member 11 and the member to be joined 12. Similarly, the second weld metal 13b is formed on the second surface 11b side.

ここで、接合部材11から発生する亀裂は、第1溶接金属13aおよび第2溶接金属13bを経由して被接合部材12に伝播する。すなわち、溶接構造体の脆性亀裂伝播停止特性には、溶接金属の形状が影響を与えることとなる。 Here, the crack generated from the joining member 11 propagates to the joined member 12 via the first weld metal 13a and the second weld metal 13b. That is, the shape of the weld metal affects the brittle crack propagation stopping property of the welded structure.

具体的には、第1溶接金属13aにおける被接合部材12側の溶込み深さs(mm)、および第2溶接金属13bにおける被接合部材12側の溶込み深さs(mm)が下記(iii)および(iv)式を満足するよう制御する必要がある。
≦5.0 ・・・(iii)
≦5.0 ・・・(iv)
Specifically, the penetration depth s 1 (mm) of the first weld metal 13a on the side to be joined 12 and the penetration depth s 2 (mm) of the second weld metal 13b on the side of the member 12 to be joined are. It is necessary to control so as to satisfy the following equations (iii) and (iv).
s 1 ≤ 5.0 ・ ・ ・ (iii)
s 2 ≤ 5.0 ・ ・ ・ (iv)

加えて、溶接構造体の脆性亀裂伝播停止特性を評価する上では、後述する試験体に形成する溶接金属と、溶接構造体に形成する溶接金属との形状を同等にする必要がある。 In addition, in order to evaluate the brittle crack propagation stopping characteristic of the welded structure, it is necessary to make the shapes of the weld metal formed on the test piece described later and the weld metal formed on the welded structure equivalent.

本実施形態においては、後述する鋭角αおよびα、ならびに継手の部分溶込みdおよびdを、溶接金属の形状の指標として用いることとする。具体的には、第1溶接金属13aにおける、接合部材11側の止端とルートとを通る線Lと被接合面12aとがなす鋭角をα(°)とし、第2溶接金属13bにおける、接合部材11側の止端とルートとを通る線Lと被接合面12aとがなす鋭角をα(°)とする。 In this embodiment, the acute angles α 1 and α 2 , which will be described later, and the partial penetration d 1 and d 2 of the joint are used as indicators of the shape of the weld metal. Specifically, in the first weld metal 13a, a line L 1 passing through the toe and the root of the joint member 11 side acute angle and the joining surface 12a and alpha 1 (°), in the second weld metal 13b Let α 2 (°) be the sharp angle formed by the line L 2 passing through the toe on the joining member 11 side and the root and the surface to be joined 12a.

αおよびαの範囲については特に制限する必要はないが、それぞれ下記(xviii)および(xix)式を満足することが好ましい。
30.0≦α≦70.0 ・・・(xviii)
30.0≦α≦70.0 ・・・(xix)
The range of α 1 and α 2 need not be particularly limited, but it is preferable that the following equations (xviii) and (xix) are satisfied, respectively.
30.0 ≤ α 1 ≤ 70.0 ・ ・ ・ (xviii)
30.0 ≤ α 2 ≤ 70.0 ・ ・ ・ (xix)

第1溶接金属13aにおける接合部材11側の止端とは、第1溶接金属13aの外縁と第1表面11aとの交点Aを意味する。また、第1溶接金属13aにおける接合部材11側のルートとは、第1溶接金属13aの外縁と端面11cとの交点Bを意味する。同様に、第2溶接金属13bにおける接合部材11側の止端とは、第2溶接金属13bの外縁と第2表面11bとの交点Aを意味し、第2溶接金属13bにおける接合部材11側のルートとは、第2溶接金属13bの外縁と端面11cとの交点Bを意味する。 The joining member 11 side of the toe in the first weld metal 13a, means an intersection A 1 between the outer edge and the first surface 11a of the first weld metal 13a. Also, the joining member 11 side of the root of the first weld metal 13a, means an intersection B 1 between the outer edge and the end face 11c of the first weld metal 13a. Similarly, the bonding member 11 side of the toe at the second weld metal 13b, means an intersection A 2 between the outer edge and the second surface 11b of the second weld metal 13b, the bonding member 11 side in the second weld metal 13b the root mean an intersection B 2 between the outer edge and the end face 11c of the second weld metal 13b.

さらに、第1溶接金属13aの板厚方向における継手の部分溶込みをd(mm)とし、第2溶接金属13bの板厚方向における継手の部分溶込みをd(mm)とする。継手の部分溶込みdは、第1表面11aと、第1表面11aと平行でかつ接合部材11の板厚方向における第1溶接金属13aの板厚中心側の端部を通る仮想的な面11fとの距離である。また、継手の部分溶込みdは、第2表面11bと、第2表面11bと平行でかつ接合部材11の板厚方向における第2溶接金属13bの板厚中心側の端部を通る仮想的な面11gとの距離である。 Further, the partial penetration of the joint in the plate thickness direction of the first weld metal 13a is d 1 (mm), and the partial penetration of the joint in the plate thickness direction of the second weld metal 13b is d 2 (mm). The partial penetration d 1 of the joint is a virtual surface parallel to the first surface 11a and passing through the end portion of the first weld metal 13a on the plate thickness center side in the plate thickness direction of the joining member 11. It is a distance from 11f. Further, the partial penetration d 2 of the joint is virtually parallel to the second surface 11b and passes through the end portion of the second weld metal 13b on the plate thickness center side in the plate thickness direction of the joining member 11. It is the distance from the surface 11g.

なお、第1溶接金属13aおよび第2溶接金属13bと接合部材11との境界は、目視により容易に判別することが可能である。 The boundaries between the first weld metal 13a and the second weld metal 13b and the joining member 11 can be easily visually identified.

(2)完全溶込み溶接
図4に示すように、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合において、溶接構造体10は、接合部材11と被接合部材12との間に溶接金属13cを有する。
(2) Complete Penetration Welding As shown in FIG. 4, when the joining member 11 and the member 12 to be joined are joined by complete penetration welding, the welded structure 10 is the joining member 11 and the member 12 to be joined. It has a weld metal 13c between and.

接合部材11から発生する亀裂は、溶接金属13cを経由して被接合部材12に伝播する。すなわち、溶接構造体の脆性亀裂伝播停止特性には、溶接金属の形状が影響を与えることとなる。具体的には、溶接金属13cにおける被接合部材12側の溶込み深さs(mm)が下記(xiii)式を満足するよう制御する必要がある。
s≦5.0 ・・・(xiii)
The crack generated from the joining member 11 propagates to the joined member 12 via the weld metal 13c. That is, the shape of the weld metal affects the brittle crack propagation stopping property of the welded structure. Specifically, it is necessary to control the penetration depth s (mm) of the weld metal 13c on the side of the member to be joined 12 so as to satisfy the following equation (xiii).
s ≦ 5.0 ・ ・ ・ (xiii)

加えて、完全溶込み溶接の場合は、接合部材11と被接合部材12とが全面にわたって溶接金属13cによって接合されるため、後述する試験体も完全溶け込み溶接により形成する必要がある。 In addition, in the case of complete penetration welding, since the joining member 11 and the member to be joined 12 are joined by the weld metal 13c over the entire surface, it is necessary to form the test piece described later by complete penetration welding.

2.品質評価試験
本発明者らが行った研究により、後述する中型の品質評価試験によって所定の基準を満足する厚鋼板を被接合部材として用いることで、低コストで優れた脆性亀裂伝播停止特性を有する溶接構造体が得られることを見出した。
2. Quality Evaluation Test According to the research conducted by the present inventors, by using a thick steel plate that satisfies the predetermined criteria by the medium-sized quality evaluation test described later as the member to be welded, it has excellent brittle crack propagation stopping characteristics at low cost. We have found that a welded structure can be obtained.

試験方法について、詳しく説明する。図6および7は、本発明における品質評価試験を説明するための図である。本発明における品質評価試験は、下記(a)〜(d)の工程を順に実施するものである。各工程について、説明する。 The test method will be described in detail. 6 and 7 are diagrams for explaining the quality evaluation test in the present invention. In the quality evaluation test in the present invention, the following steps (a) to (d) are carried out in order. Each process will be described.

(a)第1溶接工程
被接合部材12に用いられる厚鋼板から、板厚がt(mm)、幅がt(mm)、長さが500mmであり、板厚方向における一方側(図6および図7における上側)の面21cが、被接合面12aに対応する試験板21を採取する。すなわち、被接合部材12の板厚の方向が、試験板21の幅方向となる。
(A) First Welding Step From the thick steel plate used for the member 12 to be joined, the plate thickness is t 1 (mm), the width is t 2 (mm), and the length is 500 mm, and one side in the plate thickness direction (FIG. The test plate 21 whose surface 21c (upper side in 6 and FIG. 7) corresponds to the surface to be welded 12a is collected. That is, the direction of the plate thickness of the member 12 to be joined is the width direction of the test plate 21.

板厚がt(mm)、幅が260mm、長さが500mmであり、幅方向における他方側(図6および7における下側)の面22bにおいて、開先が形成された助走板22を用意する。開先の形状および寸法については、後述する溶接によって形成される溶接金属部の形状および寸法が規定を満足するように適宜選択すればよい。 A run-up plate 22 having a plate thickness of t 1 (mm), a width of 260 mm, a length of 500 mm, and a groove formed on the surface 22b on the other side (lower side in FIGS. 6 and 7) in the width direction is prepared. To do. The shape and dimensions of the groove may be appropriately selected so that the shape and dimensions of the weld metal portion formed by welding described later satisfy the specified specifications.

助走板22の材質については特に制限はなく、例えば、熱処理を施して脆化した鋼板を用いることができる。また、助走板22の幅方向における一方側(図6および7における上側)には、ノッチ22aを形成しておく。ノッチの形状については特に制限はないが、図6に示す形状とすることができる。 The material of the approach plate 22 is not particularly limited, and for example, a steel plate embrittled by heat treatment can be used. Further, a notch 22a is formed on one side (upper side in FIGS. 6 and 7) of the approach plate 22 in the width direction. The shape of the notch is not particularly limited, but the shape shown in FIG. 6 can be used.

そして、試験板21の一方側の面21cを、助走板22の他方側の面22bに当接した状態で、開先に溶接を行い、中間試験体を形成する。その後、溶接により生じた余盛については削除することが好ましい。これにより、中間試験体は、板厚がt(mm)、幅が260+t(mm)、長さが500mmの直方体状となる。 Then, in a state where the one side surface 21c of the test plate 21 is in contact with the other side surface 22b of the approach plate 22, welding is performed on the groove to form an intermediate test piece. After that, it is preferable to delete the surplus generated by welding. As a result, the intermediate test piece has a rectangular parallelepiped shape with a plate thickness of t 1 (mm), a width of 260 + t 2 (mm), and a length of 500 mm.

図6は、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合における試験体20の概略図であり、図7は、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合における試験体20の概略図である。 FIG. 6 is a schematic view of the test body 20 when the joining member 11 and the member to be joined 12 are joined by partial penetration welding on both sides, and FIG. 7 shows a complete view of the joining member 11 and the member 12 to be joined. It is the schematic of the test piece 20 in the case of being joined by penetration welding.

接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合においては、試験板21と助走板22とは両側部分溶込み溶接によって接合されている必要がある。加えて、被接合部材12に用いられる厚鋼板から採取された試験板21によって、溶接構造体10の脆性亀裂伝播停止特性の評価を行うためには、試験板21と助走板22との間に形成される溶接金属の形状の制御が重要となる。 When the joining member 11 and the member 12 to be joined are joined by partial penetration welding on both sides, the test plate 21 and the approach plate 22 need to be joined by partial penetration welding on both sides. In addition, in order to evaluate the brittle crack propagation stopping characteristic of the welded structure 10 by the test plate 21 collected from the thick steel plate used for the member 12 to be joined, between the test plate 21 and the approach plate 22. It is important to control the shape of the weld metal formed.

図6に示すように助走板22は、板厚方向に垂直な第1助走板面22cおよび第2助走板面22dを有する。試験板21と助走板22との間に形成される溶接金属の形状について、図8を用いてさらに詳しく説明する。図8は、試験体20の、第1助走板面22cおよび試験板21の一方側の面21cに垂直な断面図である。図8においては、図面が煩雑になることを避けるため、ハッチングは付していない。 As shown in FIG. 6, the approach plate 22 has a first approach plate surface 22c and a second approach plate surface 22d perpendicular to the plate thickness direction. The shape of the weld metal formed between the test plate 21 and the approach plate 22 will be described in more detail with reference to FIG. FIG. 8 is a cross-sectional view of the test body 20 perpendicular to the first approach plate surface 22c and one side surface 21c of the test plate 21. In FIG. 8, hatching is not provided in order to avoid complicating the drawings.

図8に示すように、試験板21および助走板22の接合箇所の第1助走板面22c側には第1助走板溶接金属23aが形成され、第2助走板面22d側には第2助走板溶接金属23bが形成される。 As shown in FIG. 8, the first approach plate weld metal 23a is formed on the first approach plate surface 22c side of the joint portion between the test plate 21 and the approach plate 22, and the second approach plate surface 22d side is the second approach plate. The plate weld metal 23b is formed.

そして、第1助走板溶接金属23aにおける、助走板22側の止端とルートとを通る線Mと試験板21の一方側の面21cとがなす鋭角β(°)および第2助走板溶接金属23bにおける、助走板22側の止端とルートとを通る線Mと試験板21の一方側の面21cとがなす鋭角β(°)は、それぞれ下記(v)および(vi)式を満足する。
α−5.0≦β≦α+5.0 ・・・(v)
α−5.0≦β≦α+5.0 ・・・(vi)
Then, in the first approach plate weld metal 23a, the acute angle β 1 (°) formed by the line M 1 passing through the toe on the approach plate 22 side and the root and the surface 21c on one side of the test plate 21 and the second approach plate. The acute angles β 2 (°) formed by the line M 2 passing through the toe on the approach plate 22 side and the root and the surface 21 c on one side of the test plate 21 in the weld metal 23b are the following (v) and (vi), respectively. Satisfy the formula.
α 1 −5.0 ≦ β 1 ≦ α 1 +5.0 ・ ・ ・ (v)
α 2 −5.0 ≦ β 2 ≦ α 2 +5.0 ・ ・ ・ (vi)

第1助走板溶接金属23aにおける試験板21側の止端とは、第1助走板溶接金属23aの外縁と第1助走板面22cとの交点Cを意味する。また、第1助走板溶接金属23aにおける試験板21側のルートとは、第1助走板溶接金属23aの外縁と助走板22の他方側の面22bとの交点Dを意味する。同様に、第2助走板溶接金属23bにおける試験板21側の止端とは、第2助走板溶接金属23bの外縁と第2助走板面22dとの交点Cを意味し、第2助走板溶接金属23bにおける試験板21側のルートとは、第2助走板溶接金属23bの外縁と助走板22の他方側の面22bとの交点Dを意味する。 The test plate 21 side toe in the first run-up plate weld metal 23a, means an intersection C 1 between the outer edge and the first run-up plate surface 22c of the first run-up plate weld metal 23a. Further, the test plate 21 side route of the first run-up plate weld metal 23a, means an intersection D 1 of the outer edge and the other side surface 22b of the run-up plate 22 of the first run-up plate weld metal 23a. Similarly, the toe of the test plate 21 side in the second run-up plate weld metal 23b, means an intersection C 2 of the outer edge and the second run-up plate surface 22d of the second run-up plate weld metal 23b, the second run-up plate the test plate 21 side root in the weld metal 23b, means an intersection D 2 between the outer edge and the other side surface 22b of the run-up plate 22 of the second run-up plate weld metal 23b.

また、第1助走板溶接金属23aの板厚方向における継手の部分溶込みb(mm)および第2助走板溶接金属23bの板厚方向における継手の部分溶込みb(mm)は、下記(vii)および(viii)式を満足する。
≦b≦d+5.0 ・・・(vii)
≦b≦d+5.0 ・・・(viii)
Further, the partial penetration b 1 (mm) of the joint in the plate thickness direction of the first approach plate weld metal 23a and the partial penetration b 2 (mm) of the joint in the plate thickness direction of the second approach plate weld metal 23b are as follows. Satisfy equations (vii) and (viii).
d 1 ≤ b 1 ≤ d 1 +5.0 ... (vii)
d 2 ≤ b 2 ≤ d 2 +5.0 ... (viii)

継手の部分溶込みbは、第1助走板面22cと、第1助走板面22cと平行でかつ助走板22の板厚方向における第1助走板溶接金属23aの板厚中心側の端部を通る仮想的な面22fとの距離である。また、継手の部分溶込みbは、第2助走板面22dと、第2助走板面22dと平行でかつ助走板22の板厚方向における第2助走板溶接金属23bの板厚中心側の端部を通る仮想的な面22gとの距離である。 The partial penetration b 1 of the joint is parallel to the first approach plate surface 22c and the first approach plate surface 22c, and is the end portion of the first approach plate weld metal 23a on the plate thickness center side in the plate thickness direction of the approach plate 22. It is a distance from a virtual surface 22f passing through. Further, the partial penetration b 2 of the joint is parallel to the second approach plate surface 22d and the second approach plate surface 22d, and is on the plate thickness center side of the second approach plate weld metal 23b in the plate thickness direction of the approach plate 22. It is the distance from the virtual surface 22g passing through the end.

さらに、第1助走板溶接金属23aの試験板21側の溶込み深さr(mm)および第2助走板溶接金属23bの試験板21側の溶込み深さr(mm)は、下記(ix)および(x)式を満足する。
≦r≦s+5.0 ・・・(ix)
≦r≦s+5.0 ・・・(x)
The first approach plate weld metal 23a of the test board 21 side of the penetration depth r 1 (mm) and penetration depth of the test plate 21 side second run-up plate weld metal 23b r 2 (mm), the following Satisfy equations (ix) and (x).
s 1 ≤ r 1 ≤ s 1 +5.0 ... (ix)
s 2 ≤ r 2 ≤ s 2 +5.0 ... (x)

一方、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合においては、試験板21と助走板22とは完全溶込み溶接によって接合されている必要がある。そして、試験板21と助走板22との間に形成された助走板溶接金属23cにおける試験板21側の溶込み深さr(mm)が下記(xiv)式を満足する。
s≦r≦s+5.0 ・・・(xiv)
On the other hand, when the joining member 11 and the member 12 to be joined are joined by complete penetration welding, the test plate 21 and the approach plate 22 need to be joined by complete penetration welding. The penetration depth r (mm) on the test plate 21 side of the approach plate weld metal 23c formed between the test plate 21 and the approach plate 22 satisfies the following equation (xiv).
s ≦ r ≦ s + 5.0 ・ ・ ・ (xiv)

(b)第2溶接工程
板厚がt(mm)、幅が240−t(mm)、長さが500mmであり、幅方向における一方側(図6および7における上側)の面24aにおいて、開先が形成された調整板24を用意する。開先の形状、寸法および形成箇所については特に制限はない。
(B) Second Welding Step The plate thickness is t 1 (mm), the width is 240-t 2 (mm), the length is 500 mm, and the surface 24a on one side (upper side in FIGS. 6 and 7) in the width direction , An adjusting plate 24 having a groove formed therein is prepared. There are no particular restrictions on the shape, dimensions and formation location of the groove.

そして、試験板21の板厚方向における他方側の面21dを、調整板24の一方側の面24aに当接した状態で、開先に溶接を行い、試験体20を形成する。その後、溶接により生じた余盛については削除することが好ましい。これにより、試験体20は、板厚がt(mm)、長さが500mm、幅が500mmの直方体状となる。 Then, the other side surface 21d of the test plate 21 in the plate thickness direction is welded to the groove in a state of being in contact with the one side surface 24a of the adjusting plate 24 to form the test body 20. After that, it is preferable to delete the surplus generated by welding. As a result, the test body 20 has a rectangular parallelepiped shape with a plate thickness of t 1 (mm), a length of 500 mm, and a width of 500 mm.

調整板24は、試験体20の寸法を調整するためのものであるため、溶接方法については特に制限はなく、試験板21と調整板24とは完全溶込み溶接によって接合されていてもよいし、両側部分溶込み溶接によって接合されていてもよい。また、調整板24の材質については特に制限はなく、任意の鋼板を用いることができるが、強度は試験板21に近いものが好ましい。 Since the adjusting plate 24 is for adjusting the dimensions of the test body 20, there is no particular limitation on the welding method, and the test plate 21 and the adjusting plate 24 may be joined by complete penetration welding. , Both sides may be joined by partial penetration welding. The material of the adjusting plate 24 is not particularly limited, and any steel plate can be used, but the strength is preferably close to that of the test plate 21.

(c)脆性亀裂伝播試験工程
試験体20を用いて、−10℃の試験温度で、予め設定される被接合部材12の許容応力であるσ(N/mm)を試験応力として付与した状態で、助走板22に設けられたノッチ22aに衝撃荷重を加え、試験板21まで亀裂を進展させる。
(C) Brittle crack propagation test process A state in which σ (N / mm 2 ), which is a preset allowable stress of the member to be joined 12, is applied as a test stress at a test temperature of −10 ° C. using the test piece 20. Then, an impact load is applied to the notch 22a provided on the approach plate 22 to propagate the crack to the test plate 21.

なお、上記の予め設定される被接合部材の許容応力として、例えば、溶接構造体が船舶用である場合には、被接合部材がアッパーデッキとなる。アッパーデッキの許容応力は、船級協会が定める規則により決められているため、その値を採用すればよい。試験体の温度は所定の試験温度で均一とし、助走板22の温度は特に規定しない。その他の条件については、亀裂が試験板21まで進展する限り制限はないが、WES2815に準拠すればよい。 As the allowable stress of the member to be joined, which is set in advance, for example, when the welded structure is for a ship, the member to be joined is the upper deck. Since the allowable stress of the upper deck is determined by the rules established by the ship class association, that value may be adopted. The temperature of the test piece is made uniform at a predetermined test temperature, and the temperature of the approach plate 22 is not particularly specified. Other conditions are not limited as long as the crack extends to the test plate 21, but WES2815 may be compliant.

図9は、脆性亀裂伝播試験を説明するための図である。図9に示すように、試験体20の長さ方向における両端に治具24a,24bを溶接により接合し、両側から長さ方向に引張応力を付与することで、試験体20に上述した試験応力を付与することができる。 FIG. 9 is a diagram for explaining a brittle crack propagation test. As shown in FIG. 9, jigs 24a and 24b are joined to both ends of the test body 20 in the length direction by welding, and tensile stress is applied from both sides in the length direction to apply the test stress described above to the test body 20. Can be given.

また、本工程においては、少なくとも試験板まで亀裂を進展させる必要があるため、衝撃荷重を付与した際に、助走板または溶接金属で亀裂が停止してしまわないような材質を選択する必要がある。 Further, in this step, since it is necessary to propagate the crack to at least the test plate, it is necessary to select a material so that the crack does not stop at the approach plate or the weld metal when an impact load is applied. ..

(d)脆性亀裂測定工程
上記(a)〜(c)の工程を順に実施した後の試験板21について、亀裂の進展状況を調査する。具体的には、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合においては、試験板21の一方側の面21cと、第1助走板溶接金属23aおよび第2助走板溶接金属23bのそれぞれを介して進展した亀裂の先端との、幅方向における距離c(mm)およびc(mm)を測定する。
(D) Brittle crack measurement step The crack progress state of the test plate 21 after the above steps (a) to (c) are sequentially performed is investigated. Specifically, when the joining member 11 and the member to be joined 12 are joined by partial penetration welding on both sides, the surface 21c on one side of the test plate 21, the first approach plate weld metal 23a, and the second The distances c 1 (mm) and c 2 (mm) in the width direction from the tip of the crack extending through each of the approach plate weld metal 23b are measured.

一方、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合においては、試験板21の一方側の面21cと、助走板溶接金属23cを介して進展した亀裂の先端との、幅方向における距離c(mm)を測定する。 On the other hand, when the joining member 11 and the member 12 to be joined are joined by complete penetration welding, the surface 21c on one side of the test plate 21 and the tip of the crack that has propagated through the approach plate weld metal 23c. Measure the distance c (mm) in the width direction.

本発明に係る溶接構造体10に用いられる被接合部材12は、上述した(a)〜(d)の工程を順に実施する品質評価試験において、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合は、下記(xi)および(xii)式を満足し、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合は、下記(xv)式を満足する必要がある。これにより、優れた脆性亀裂伝播停止特性を有する溶接構造体10が得られる。
≦r+10.0 ・・・(xi)
≦r+10.0 ・・・(xii)
c≦r+10.0 ・・・(xv)
In the quality evaluation test in which the steps (a) to (d) described above are sequentially carried out, the member 12 to be joined used in the welded structure 10 according to the present invention is partially melted on both sides. When the joints are joined by insert welding, the following equations (xi) and (xii) are satisfied, and when the joining member 11 and the member 12 to be joined are joined by complete penetration welding, the following equations (xv) are satisfied. Need to be satisfied. As a result, the welded structure 10 having excellent brittle crack propagation stopping characteristics can be obtained.
c 1 ≤ r 1 + 10.0 ・ ・ ・ (xi)
c 2 ≤ r 2 + 10.0 ・ ・ ・ (xii)
c ≦ r + 10.0 ・ ・ ・ (xv)

3.接合部材の機械的特性
本発明の溶接構造体に用いられる接合部材の機械的特性について、特に制限は設けない。しかし、溶接構造体をコンテナ船等において利用する場合においては、被接合部材の降伏応力は400MPa以上、580MPa以下であるのが好ましく、引張強さは510MPa以上、750MPa以下であるのが好ましい。なお、接合部材の降伏応力は410MPa以上、570MPa以下であるのがより好ましく、引張強さは520MPa以上、740MPa以下であるのがより好ましい。
3. 3. Mechanical Properties of Joining Members There are no particular restrictions on the mechanical properties of the joining members used in the welded structure of the present invention. However, when the welded structure is used in a container ship or the like, the yield stress of the member to be joined is preferably 400 MPa or more and 580 MPa or less, and the tensile strength is preferably 510 MPa or more and 750 MPa or less. The yield stress of the joining member is more preferably 410 MPa or more and 570 MPa or less, and the tensile strength is more preferably 520 MPa or more and 740 MPa or less.

また、コスト的な観点からは、−10℃における全厚のKca値が6000N/mm1.5未満である被接合部材を用いることが好ましい。なお、上記のKca値は、WES2815規格に準拠した温度勾配型ESSO試験により求めることが可能である。 From the viewpoint of cost, it is preferable to use a member to be joined in which the Kca value of the total thickness at −10 ° C. is less than 6000 N / mm 1.5. The Kca value can be obtained by a temperature gradient type ESSO test based on the WES2815 standard.

4.溶接構造体の製造方法
溶接構造体の製造方法について、特に制限は設けないが、例えば、品質評価試験による評価結果が上述した条件を満足する被接合部材を選別する工程と、接合部材を当該被接合部材に溶接する工程を行うことにより、製造することが可能である。
4. Method of manufacturing a welded structure The method of manufacturing a welded structure is not particularly limited. For example, a step of selecting a member to be joined whose evaluation result by a quality evaluation test satisfies the above-mentioned conditions and a step of selecting the member to be joined and the member to be joined are covered. It can be manufactured by performing a process of welding to a joint member.

溶接工程においては、上述の被接合部材の被接合面に接合部材の端面を突き合わせた状態で、端面に沿って溶接することで製造することができる。この際、接合部材の被接合部材側を開先加工しておく。開先加工は、接合部材の端面全体にわたって施してもよいが、被接合部材との接合箇所にのみ施してもよい。 In the welding step, it can be manufactured by welding along the end face of the above-mentioned joint member with the end face of the joint member abutting against the surface to be joined. At this time, the side to be joined of the joining member is grooved. The groove processing may be performed over the entire end face of the joint member, or may be performed only at the joint portion with the member to be joined.

また、溶接方法についても特に制限はなく、CO溶接または被覆アーク溶接(SMAW)等の公知の方法を採用すればよい。また、入熱量は、例えば、0.5kJ/mm以上、3.0kJ/mm以下とすることが好ましい。 Further, the welding method is not particularly limited, and a known method such as CO 2 welding or shielded metal arc welding (SMAW) may be adopted. The amount of heat input is preferably, for example, 0.5 kJ / mm or more and 3.0 kJ / mm or less.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

表1に示す板厚t(mm)を有する各種鋼板を用意した。その後、それぞれの鋼板から、鋼板の板厚方向が試験板の長さ方向となるように、板厚が100(mm)、幅がt(mm)、長さが500mmの試験板を採取した。 Various steel sheets having a plate thickness t (mm) shown in Table 1 were prepared. Then, from each steel plate, a test plate having a plate thickness of 100 (mm), a width of t (mm), and a length of 500 mm was collected so that the plate thickness direction of the steel plate was the length direction of the test plate.

Figure 2021094573
Figure 2021094573

続いて、板厚が100mm、幅が260mm、長さが500mmであり、板厚方向に直交する第1助走板面および第2助走板面を有する助走板を用意した。助走板としては、1200℃で加熱した後に空冷することで脆化させた鋼板を用いた。そして、助走板の長さ方向における一方側には、図6に示す形状のノッチを設けた。助走板の幅方向における他方側の面において、第1助走板面側および第2助走板面側にそれぞれ長さ方向に延びる開先を形成した。 Subsequently, a run-up plate having a plate thickness of 100 mm, a width of 260 mm, and a length of 500 mm and having a first approach plate surface and a second approach plate surface orthogonal to the plate thickness direction was prepared. As the approach plate, a steel plate embrittled by heating at 1200 ° C. and then air-cooling was used. Then, a notch having the shape shown in FIG. 6 is provided on one side of the approach plate in the length direction. On the other side surface in the width direction of the approach plate, grooves extending in the length direction were formed on the first approach plate surface side and the second approach plate surface side, respectively.

そして、試験板の一方側の面を、開先を形成した助走板の他方側の面に当接した状態で、開先に両側部分溶込み溶接または完全溶け込み溶接を行った。溶接条件は表2に示すとおりである。表2における「CO」はCO溶接を意味し、「SMAW」は被覆アーク溶接を意味する。その後、溶接により生じた余盛は削除した。 Then, in a state where one surface of the test plate was in contact with the other surface of the approach plate having the groove formed, both side partial penetration welding or complete penetration welding was performed on the groove. Welding conditions are as shown in Table 2. In Table 2, "CO 2 " means CO 2 welding, and "SMAW" means shielded metal arc welding. After that, the surplus generated by welding was deleted.

Figure 2021094573
Figure 2021094573

さらに、板厚が100mm、幅が240−t(mm)、長さが500mmである調整板を用意した。調整板としては、試験板と同等の強度グレードの鋼板を用いた。調整板の幅方向における一方側の面において、開先を形成した。そして、試験板の他方側の面を、開先を形成した調整板の一方側の面に当接した状態で、開先に両側部分溶込み溶接を行った。その後、溶接により生じた余盛は削除した。これにより、板厚が100mm、長さが500mm、幅が500mmの直方体状の試験体を作製した。 Further, an adjusting plate having a plate thickness of 100 mm, a width of 240-t (mm), and a length of 500 mm was prepared. As the adjusting plate, a steel plate having the same strength grade as the test plate was used. A groove was formed on one side of the adjusting plate in the width direction. Then, in a state where the other side surface of the test plate was in contact with the one side surface of the adjusting plate having the groove formed, both side partial penetration welding was performed on the groove. After that, the surplus generated by welding was deleted. As a result, a rectangular parallelepiped test piece having a plate thickness of 100 mm, a length of 500 mm, and a width of 500 mm was produced.

試験体においては、試験板および助走板の接合箇所の第1助走板面側には第1助走板溶接金属が形成され、第2助走板面側には第2助走板溶接金属が形成された。その後、各試験体を用いて、試験温度は−10℃とし、表2に示す被接合部材の許容応力σ(N/mm)に相当する試験応力を負荷した状態で、助走板の長さ方向における一方側のノッチに衝撃荷重を加え、試験板まで亀裂を進展させた。 In the test body, the first approach plate weld metal was formed on the first approach plate surface side of the joint between the test plate and the approach plate, and the second approach plate weld metal was formed on the second approach plate surface side. .. After that, using each test piece, the test temperature was set to -10 ° C, and the length of the approach plate was applied with the test stress corresponding to the allowable stress σ (N / mm 2) of the member to be joined shown in Table 2. An impact load was applied to the notch on one side in the direction to propagate the crack to the test plate.

試験終了後、試験体に荷重を負荷して強制破断させることで破面出しを実施し、試験板に突入した亀裂の進展状況の調査を行った。その後、試験体の荷重方向の中心位置から左右に200mm離れた位置において、試験板と助走板の溶接金属(第1試験溶接金属および第2試験溶接金属)の断面を切り出した。これらの2カ所の溶接継手断面の写真をデジタルカメラによりそれぞれ撮影し、写真画像から溶接金属の形状を測定し、2カ所の測定結果の平均値を求めた。それらの結果を表2に併せて示す。 After the test was completed, a load was applied to the test piece and forced fracture was performed to expose the fracture surface, and the progress of cracks that rushed into the test plate was investigated. Then, a cross section of the weld metal (first test weld metal and second test weld metal) of the test plate and the approach plate was cut out at a position 200 mm to the left and right from the center position in the load direction of the test piece. Photographs of the cross sections of the welded joints at these two locations were taken with a digital camera, the shape of the weld metal was measured from the photographic images, and the average value of the measurement results at the two locations was calculated. The results are also shown in Table 2.

続いて、各鋼板の板厚の1/4位置から圧延方向に直角な方向にJIS Z 2241:2011に記載の4号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)および全伸び(EL)を測定した。 Subsequently, the No. 4 tensile test piece described in JIS Z 2241: 2011 is collected from a position 1/4 of the thickness of each steel plate in a direction perpendicular to the rolling direction, and a tensile test is performed in accordance with JIS Z 2241: 2011. Yield stress (YS), tensile strength (TS) and total elongation (EL) were measured.

さらに、各鋼板の−10℃における全厚のKca値を、WES2815規格に準拠した温度勾配型ESSO試験により求めた。それらの結果を表1に併せて示す。 Further, the Kca value of the total thickness of each steel sheet at −10 ° C. was determined by a temperature gradient type ESSO test based on the WES2815 standard. The results are also shown in Table 1.

その後、上記の各種鋼板を試験板(被接合部材42)とし、図10に示す構造モデルアレスト試験体を作製して試験を実施した。板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(接合部材41)とし、表3に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体40を作製した。その際、接合部材41に板厚の1/3の深さの両側開先を設け、接合部材41と被接合部材42とを開先溶接により接合した。 Then, the above-mentioned various steel plates were used as test plates (members to be joined 42), and the structural model arrest test piece shown in FIG. 10 was prepared and tested. A welded joint in which a steel plate having a plate thickness of 100 mm was joined by CO 2 welding was used as a run-up welded joint (joining member 41), and a welded structure 40 was produced by CO 2 welding or shielded metal arc welding (SMAW) under the conditions shown in Table 3. At that time, the joining member 41 was provided with grooves on both sides having a depth of 1/3 of the plate thickness, and the joining member 41 and the member to be joined 42 were joined by groove welding.

Figure 2021094573
Figure 2021094573

その後、溶接構造体40のフュージョンライン部46aにノッチ46bを導入した。そして、溶接構造体40を船舶設計温度である−10℃に冷却し、被接合部材42の許容応力であるσ(N/mm)を試験応力として負荷し、ノッチ部近傍だけを−50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性亀裂を発生、伝播させた。 After that, the notch 46b was introduced into the fusion line portion 46a of the welded structure 40. Then, the welded structure 40 is cooled to the ship design temperature of -10 ° C., the allowable stress of the member to be joined 42, σ (N / mm 2 ), is applied as a test stress, and only the vicinity of the notch portion is -50 ° C. It was rapidly cooled to a certain degree, and a brittle crack was generated and propagated by hitting the notch through a wedge.

試験後の構造モデルアレスト試験体を使用し、試験体の荷重方向の中心位置から左右に250mm離れた位置において、接合部材と被接合部材との一方側(第1表面側)および他方側(第2表面側)の溶接金属(第1溶接金属および第2溶接金属)の断面を切り出した。これらの2カ所の溶接継手断面の写真をデジタルカメラによりそれぞれ撮影し、写真画像から溶接金属の形状を測定し、2カ所の測定結果の平均値を使用した。 Structural model after the test Using the arrest test piece, one side (first surface side) and the other side (first surface side) and the other side (first surface side) of the joining member and the member to be joined are located 250 mm to the left and right from the center position in the load direction of the test piece. A cross section of the weld metal (first weld metal and second weld metal) on the two surface sides) was cut out. Photographs of the cross sections of these two welded joints were taken with a digital camera, the shape of the weld metal was measured from the photographic images, and the average value of the measurement results at the two locations was used.

測定された溶接金属の形状、および上記の構造モデルアレスト試験体を用いた試験の結果を表3に併せて示す。脆性亀裂が試験板で停止した場合は「停止」、試験板を破断した場合は「伝播」と判定した。 Table 3 also shows the measured shape of the weld metal and the results of the test using the above-mentioned structural model arrest test piece. When the brittle crack stopped at the test plate, it was judged as "stop", and when the test plate was broken, it was judged as "propagation".

表3から明らかなように、本発明の規定を満足する被接合部材を用いた場合には、優れた脆性亀裂伝播停止特性を得られたのに対して、本発明の規定を満足しない比較例の被接合部材を用いた場合には、脆性亀裂が被接合部材まで伝播する結果となった。 As is clear from Table 3, when a member to be joined that satisfies the provisions of the present invention is used, excellent brittle crack propagation stopping characteristics are obtained, whereas a comparative example that does not satisfy the provisions of the present invention. When the member to be joined was used, the brittle cracks propagated to the member to be joined.

5.厚鋼板の品質評価方法
以上のように、本発明に係る溶接構造体10においては、被接合部材12は、上述した条件での品質評価試験によって評価される。なお、当該品質評価試験は、厚鋼板の品質評価方法として応用可能である。応用例としての厚鋼板の品質評価方法は、以下に記載する(付記1)〜(付記4)によって表現することができる。
5. Quality Evaluation Method for Thick Steel Sheets As described above, in the welded structure 10 according to the present invention, the member 12 to be joined is evaluated by a quality evaluation test under the above-mentioned conditions. The quality evaluation test can be applied as a quality evaluation method for thick steel sheets. The quality evaluation method of the thick steel sheet as an application example can be expressed by the following (Appendix 1) to (Appendix 4).

(付記1)
板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体に用いられ、前記被接合部材となる厚鋼板の品質評価方法であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記第1表面および前記被接合面に垂直な断面において、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記第1表面側に形成された第1溶接金属における、前記被接合部材側の溶込み深さs(mm)、および前記第2表面側に形成された第2溶接金属における、前記被接合部材側の溶込み深さs(mm)が下記(iii)および(iv)式を満足し、
下記(a)〜(d)の工程を備える、
厚鋼板の品質評価方法。
(a)幅方向が前記被接合部材の板厚方向に対応し、幅方向における一方側の面が前記被接合面に対応する試験板であって、板厚がt(mm)、幅がt(mm)、長さが500mmである試験板、ならびに、
板厚がt(mm)であり、板厚方向に垂直な第1助走板面および第2助走板面を有し、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、前記第1助走板面側および前記第2助走板面側にそれぞれ前記長さ方向に延びる開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に両側部分溶込み溶接を行い、
前記第1助走板面および前記試験板の前記一方側の面に垂直な断面において、
前記第1助走板面側に形成された第1助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)ならびに、
前記第2助走板面側に形成された第2助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)が、下記(v)〜(x)式を満足させる工程。
但し、式中のαおよびdは、それぞれ、前記第1溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)であり、
αおよびdは、それぞれ、前記第2溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)である。
(b)板厚がt(mm)であり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記幅方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行う工程。
(c)前記(a)および(b)の工程を経て形成された板厚がt(mm)である試験体を用いて、前記助走板の前記ノッチに衝撃荷重を加え、前記第1助走板溶接金属および前記第2助走板溶接金属を介して前記試験板まで亀裂を進展させる工程。
(d)前記亀裂の進展状況に基づき、前記厚鋼板が脆性亀裂伝播停止特性に優れるか否かの判定を行う工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
≦5.0 ・・・(iii)
≦5.0 ・・・(iv)
α−5.0≦β≦α+5.0 ・・・(v)
α−5.0≦β≦α+5.0 ・・・(vi)
≦b≦d+5.0 ・・・(vii)
≦b≦d+5.0 ・・・(viii)
≦r≦s+5.0 ・・・(ix)
≦r≦s+5.0 ・・・(x)
(Appendix 1)
In a welded structure having a T-joint portion in which the end face of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member and the joint member is partially welded to the joint member on both sides. A method for evaluating the quality of a thick steel plate used as a member to be welded.
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
In the cross section perpendicular to the first surface and the surface to be joined,
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s 1 (mm) on the member to be joined side of the first weld metal formed on the first surface side, and the welded metal on the second weld metal formed on the second surface side. The penetration depth s 2 (mm) on the member side satisfies the following equations (iii) and (iv).
The following steps (a) to (d) are provided.
Quality evaluation method for thick steel sheets.
(A) A test plate whose width direction corresponds to the plate thickness direction of the member to be joined and one surface in the width direction corresponds to the surface to be joined, having a plate thickness of t 1 (mm) and a width of t 1 (mm). A test plate of t 2 (mm), length of 500 mm, and
It has a plate thickness of t 1 (mm), has a first approach plate surface and a second approach plate surface perpendicular to the plate thickness direction, has a notch on one side in the width direction, and has a notch on one side in the width direction. A run-up plate having a groove extending in the length direction formed on the first run-up plate surface side and the second run-up plate surface side, respectively, is prepared.
In a state where the one side surface of the test plate is in contact with the other side surface of the run-up plate, both side partial penetration welding is performed on the groove formed in the run-up plate.
In a cross section perpendicular to the first approach plate surface and the one side surface of the test plate.
In the first approach plate weld metal formed on the first approach plate surface side, an acute angle β 1 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), Partial penetration b 1 (mm) of the joint in the thickness direction of the approach plate , and penetration depth r 1 (mm) on the test plate side, and
In the second approach plate weld metal formed on the second approach plate surface side, an acute angle β 2 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), The partial penetration b 2 (mm) of the joint in the thickness direction of the approach plate, and the penetration depth r 2 (mm) on the test plate side satisfy the following equations (v) to (x). The process of making.
However, α 1 and d 1 in the equation are the acute angle (°) formed by the line passing through the toe and the root on the joint member side and the surface to be joined in the first weld metal, respectively, and the plate. Partial penetration (mm) of the joint in the thickness direction,
α 2 and d 2 are the acute angles (°) formed by the line passing through the toe and the root on the joining member side and the surface to be joined in the second weld metal, and the joint in the plate thickness direction, respectively. Partial penetration (mm).
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm) and having a groove formed on one surface in the width direction.
A step of welding the groove formed on the adjusting plate with the other side surface of the test plate in the width direction in contact with the one side surface of the adjusting plate.
(C) Using a test piece having a plate thickness of t 1 (mm) formed through the steps (a) and (b), an impact load is applied to the notch of the approach plate to apply an impact load to the first approach plate. A step of developing a crack to the test plate via the plate weld metal and the second approach plate weld metal.
(D) A step of determining whether or not the thick steel sheet is excellent in brittle crack propagation stopping characteristics based on the crack growth state.
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s 1 ≤ 5.0 ・ ・ ・ (iii)
s 2 ≤ 5.0 ・ ・ ・ (iv)
α 1 −5.0 ≦ β 1 ≦ α 1 +5.0 ・ ・ ・ (v)
α 2 −5.0 ≦ β 2 ≦ α 2 +5.0 ・ ・ ・ (vi)
d 1 ≤ b 1 ≤ d 1 +5.0 ... (vii)
d 2 ≤ b 2 ≤ d 2 +5.0 ... (viii)
s 1 ≤ r 1 ≤ s 1 +5.0 ... (ix)
s 2 ≤ r 2 ≤ s 2 +5.0 ... (x)

(付記2)
前記(d)の工程において、前記試験板の前記一方側の面と、前記第1助走板溶接金属および前記第2助走板溶接金属のそれぞれを介して進展した前記亀裂の先端との、前記幅方向における距離をc(mm)およびc(mm)とした時に、cおよびcが、下記(xi)および(xii)式を満足する場合に、前記厚鋼板が脆性亀裂伝播停止特性に優れると判定する、
付記1に記載の厚鋼板の品質評価方法。
≦r+10.0 ・・・(xi)
≦r+10.0 ・・・(xii)
(Appendix 2)
In the step (d), the width of the one side surface of the test plate and the tip of the crack extending through each of the first approach plate weld metal and the second approach plate weld metal. When the distances in the directions are c 1 (mm) and c 2 (mm), and c 1 and c 2 satisfy the following equations (xi) and (xii), the thick steel sheet has a brittle crack propagation stop characteristic. Judged to be excellent,
The quality evaluation method for thick steel sheets according to Appendix 1.
c 1 ≤ r 1 + 10.0 ・ ・ ・ (xi)
c 2 ≤ r 2 + 10.0 ・ ・ ・ (xii)

(付記3)
板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に完全溶込み溶接されたT継手部を有する溶接構造体に用いられ、前記被接合部材となる厚鋼板の品質評価方法であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記接合部材と前記被接合部材との間に形成された溶接金属における前記被接合部材側の溶込み深さs(mm)が下記(xiii)式を満足し、
下記(a)〜(d)の工程を備える、
厚鋼板の品質評価方法。
(a)板厚がt(mm)、幅がt(mm)であり、幅方向における一方側の面が、前記被接合面に対応する試験板、および、
板厚がt(mm)であり、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に完全溶込み溶接を行って助走板溶接金属を形成し、
前記助走板溶接金属における前記試験板側の溶込み深さr(mm)が下記(xiv)式を満足させる工程。
(b)板厚がt(mm)であり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記幅方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行う工程。
(c)前記(a)および(b)の工程を経て形成された板厚がt(mm)である試験体を用いて、前記助走板の前記ノッチに衝撃荷重を加え、前記試験板まで亀裂を進展させる工程。
(d)前記亀裂の進展状況に基づき、前記厚鋼板が脆性亀裂伝播停止特性に優れるか否かの判定を行う工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
s≦5.0 ・・・(xiii)
s≦r≦s+5.0 ・・・(xiv)
(Appendix 3)
Used for a welded structure having a T-joint portion in which the joint member is completely welded and welded to the joint member in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. This is a method for evaluating the quality of a thick steel plate to be a member to be welded.
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s (mm) on the side to be joined in the weld metal formed between the joint member and the member to be joined satisfies the following equation (xiii).
The following steps (a) to (d) are provided.
Quality evaluation method for thick steel sheets.
(A) A test plate having a plate thickness of t 1 (mm) and a width of t 2 (mm), and one surface in the width direction corresponding to the surface to be joined, and a test plate.
A run-up plate having a plate thickness of t 1 (mm), having a notch on one side in the width direction and having a groove formed on the other side in the width direction was prepared.
With the one side surface of the test plate in contact with the other side surface of the approach plate, complete penetration welding is performed on the groove formed in the approach plate to obtain the approach plate weld metal. Form and
A step in which the penetration depth r (mm) on the test plate side of the approach plate weld metal satisfies the following equation (xiv).
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm) and having a groove formed on one surface in the width direction.
A step of welding the groove formed on the adjusting plate with the other side surface of the test plate in the width direction in contact with the one side surface of the adjusting plate.
(C) Using a test piece having a plate thickness of t 1 (mm) formed through the steps (a) and (b), an impact load is applied to the notch of the approach plate to reach the test plate. The process of developing a crack.
(D) A step of determining whether or not the thick steel sheet is excellent in brittle crack propagation stopping characteristics based on the crack growth state.
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s ≦ 5.0 ・ ・ ・ (xiii)
s ≦ r ≦ s + 5.0 ・ ・ ・ (xiv)

(付記4)
前記(d)の工程において、前記試験板の前記一方側の面と、前記亀裂の先端との、前記幅方向における距離c(mm)が、下記(xv)式を満足する場合に、前記厚鋼板が脆性亀裂伝播停止特性に優れると判定する、
付記3に記載の厚鋼板の品質評価方法。
c≦r+10.0 ・・・(xv)
(Appendix 4)
In the step (d), when the distance c (mm) between the one side surface of the test plate and the tip of the crack in the width direction satisfies the following equation (xv), the thickness is the same. Judging that the steel sheet has excellent brittle crack propagation stop characteristics,
The quality evaluation method for thick steel sheets according to Appendix 3.
c ≦ r + 10.0 ・ ・ ・ (xv)

応用例における厚鋼板の品質評価方法について説明する。上記の品質評価方法は、溶接構造体に用いられ、被接合部材となる厚鋼板の品質を評価する方法である。品質評価対象となる溶接構造体の構成については、上述のとおりであるため、説明は省略する。 The quality evaluation method of the thick steel sheet in the application example will be described. The above quality evaluation method is a method for evaluating the quality of a thick steel plate used for a welded structure and serving as a member to be joined. Since the configuration of the welded structure to be evaluated for quality is as described above, the description thereof will be omitted.

図11および図12は、応用例における厚鋼板の品質評価方法を説明するための図である。上記の品質評価方法は、下記(a)〜(d)の工程を備える。各工程について、説明する。 11 and 12 are diagrams for explaining a quality evaluation method for a thick steel plate in an application example. The above quality evaluation method includes the following steps (a) to (d). Each process will be described.

(a)第1溶接工程
厚鋼板から試験板31を採取する。試験板31は、幅方向における一方側(図11および図12における上側)の面31cが、被接合面12aに対応する。すなわち、被接合部材12の板厚の方向が、試験板31および後述する試験体30の幅方向となる。
(A) First welding step A test plate 31 is collected from a thick steel plate. The surface 31c on one side (upper side in FIGS. 11 and 12) of the test plate 31 in the width direction corresponds to the surface to be joined 12a. That is, the direction of the plate thickness of the member 12 to be joined is the width direction of the test plate 31 and the test body 30 described later.

試験板31の板厚は接合部材11の板厚と同じであり、すなわちt(mm)である。また、試験板31の幅は被接合部材12となる厚鋼板の板厚と同じであり、すなわちt(mm)である。試験板31の長さについては特に制限はないが、300mm以上、2000mm以下とすることが好ましい。小さすぎると正確な品質の評価が難しくなり、大きすぎると低コストでの品質の評価が行えなくなる場合があるためである。 The plate thickness of the test plate 31 is the same as the plate thickness of the joining member 11, that is, t 1 (mm). Further, the width of the test plate 31 is the same as the plate thickness of the thick steel plate to be the member 12 to be joined, that is, t 2 (mm). The length of the test plate 31 is not particularly limited, but is preferably 300 mm or more and 2000 mm or less. If it is too small, it will be difficult to evaluate the quality accurately, and if it is too large, it may not be possible to evaluate the quality at low cost.

試験板31と同じ厚さであり、同じ長さを有する助走板32を用意する。すなわち、助走板32の厚さはt(mm)である。助走板32の長さは試験板31の長さと同一であるため、300mm以上、2000mm以下とすることが好ましい。また、助走板32の幅は150mm以上、1600mm以下とすることが好ましい。助走板32の幅が小さすぎると、助走板32から試験板31に亀裂が突入する際の駆動力が十分に得られなくなるおそれがあり、大きすぎると低コストでの品質の評価が行えなくなる場合があるためである。 A run-up plate 32 having the same thickness as the test plate 31 and the same length is prepared. That is, the thickness of the approach plate 32 is t 1 (mm). Since the length of the approach plate 32 is the same as the length of the test plate 31, it is preferably 300 mm or more and 2000 mm or less. Further, the width of the approach plate 32 is preferably 150 mm or more and 1600 mm or less. If the width of the approach plate 32 is too small, there is a risk that sufficient driving force will not be obtained when a crack enters the test plate 31 from the approach plate 32, and if it is too large, quality evaluation at low cost will not be possible. Because there is.

また、助走板32の幅方向における他方側(図11および12における下側)の面32bには、開先を形成しておく。開先の形状および寸法については、後述する溶接によって形成される溶接金属部の形状および寸法が規定を満足するように適宜選択すればよい。 Further, a groove is formed on the surface 32b on the other side (lower side in FIGS. 11 and 12) of the approach plate 32 in the width direction. The shape and dimensions of the groove may be appropriately selected so that the shape and dimensions of the weld metal portion formed by welding described later satisfy the specified specifications.

助走板32の材質については特に制限はなく、例えば、熱処理を施して脆化した鋼板、亀裂の進展領域が溶接部である突合せ溶接接手、または亀裂の進展領域を電子ビーム溶接により脆化させた鋼板等を用いることができる。また、助走板32の幅方向における一方側(図11および図12における上側)には、ノッチ32aを形成しておく。ノッチの形状については特に制限はないが、図11に示す形状とすることができる。 The material of the approach plate 32 is not particularly limited. For example, a steel plate embrittled by heat treatment, a butt weld joint in which a crack growth region is a welded portion, or a crack growth region is embrittled by electron beam welding. A steel plate or the like can be used. Further, a notch 32a is formed on one side (upper side in FIGS. 11 and 12) of the approach plate 32 in the width direction. The shape of the notch is not particularly limited, but the shape shown in FIG. 11 can be used.

さらに、助走板32が有する、厚さ方向に直交する一対の表面(第1助走板面22cおよび第2助走板面22d)のうち、一方または両方に図11および図12に示すような、サイドグルーブを形成しておいてもよい。サイドグルーブを有することにより、亀裂がサイドグルーブに沿って進展し、試験板31に突入しやすくなる。なお、図11に示す構成のように、サイドグルーブは、助走板32の幅方向における一方側から他方側まで全ての長さにおいて形成してもよいし、図12に示す構成のように、その一部についてのみ形成してもよい。 Further, one or both of the pair of surfaces (first approach plate surface 22c and second approach plate surface 22d) orthogonal to the thickness direction of the approach plate 32 have side surfaces as shown in FIGS. 11 and 12. A groove may be formed. By having the side groove, the crack grows along the side groove and easily enters the test plate 31. As in the configuration shown in FIG. 11, the side groove may be formed in all lengths from one side to the other side in the width direction of the approach plate 32, or as in the configuration shown in FIG. 12, the side groove may be formed. It may be formed only for a part.

そして、試験板31の幅方向における一方側の面31cを、助走板32の幅方向における他方側(図11および図12における下側)の面32bに当接した状態で、開先に溶接を行う。その後、溶接により生じた余盛については削除することが好ましい。 Then, welding is performed on the groove in a state where the surface 31c on one side in the width direction of the test plate 31 is in contact with the surface 32b on the other side (lower side in FIGS. 11 and 12) of the approach plate 32 in the width direction. Do. After that, it is preferable to delete the surplus generated by welding.

図11は、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合における試験体30の概略図であり、図12は、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合における試験体30の概略図である。 FIG. 11 is a schematic view of the test body 30 when the joining member 11 and the member to be joined 12 are joined by partial penetration welding on both sides, and FIG. 12 shows that the joining member 11 and the member to be joined 12 are completely joined. It is the schematic of the test piece 30 in the case of being joined by penetration welding.

接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合においては、試験板31と助走板32とは両側部分溶込み溶接によって接合されている必要がある。加えて、被接合部材12に用いられる厚鋼板に用いられる厚鋼板から採取された試験板31によって、溶接構造体10の脆性亀裂伝播停止特性の評価を行うためには、試験体30に形成される溶接金属の形状の制御が重要となる。試験体30に形成される溶接金属の形状について、図13を用いてさらに詳しく説明する。図13は、試験体30の、第1助走板面32cおよび試験板31の一方側の面31cに垂直な断面図である。図13においては、図面が煩雑になることを避けるため、ハッチングは付していない。 When the joining member 11 and the member 12 to be joined are joined by partial penetration welding on both sides, the test plate 31 and the approach plate 32 need to be joined by partial penetration welding on both sides. In addition, the test plate 31 collected from the thick steel plate used for the thick steel plate used for the member 12 to be joined is formed on the test body 30 in order to evaluate the brittle crack propagation stopping characteristic of the welded structure 10. It is important to control the shape of the weld metal. The shape of the weld metal formed on the test body 30 will be described in more detail with reference to FIG. FIG. 13 is a cross-sectional view of the test body 30 perpendicular to the first approach plate surface 32c and one side surface 31c of the test plate 31. In FIG. 13, hatching is not provided in order to avoid complicating the drawings.

図13に示すように、試験板31および助走板32の接合箇所の第1助走板面32c側には第1助走板溶接金属33aが形成され、第2助走板面32d側には第2助走板溶接金属33bが形成される。 As shown in FIG. 13, the first approach plate weld metal 33a is formed on the first approach plate surface 32c side of the joint portion between the test plate 31 and the approach plate 32, and the second approach plate surface 32d side is the second approach plate. The plate weld metal 33b is formed.

そして、第1助走板溶接金属33aにおける、助走板32側の止端とルートとを通る線Mと試験板31の一方側の面31cとがなす鋭角β(°)および第2助走板溶接金属33bにおける、助走板32側の止端とルートとを通る線Mと試験板31の一方側の面31cとがなす鋭角β(°)は、それぞれ下記(v)および(vi)式を満足する。
α−5.0≦β≦α+5.0 ・・・(v)
α−5.0≦β≦α+5.0 ・・・(vi)
Then, in the first approach plate weld metal 33a, the acute angle β 1 (°) formed by the line M 1 passing through the toe on the approach plate 32 side and the root and the surface 31c on one side of the test plate 31 and the second approach plate. The acute angles β 2 (°) formed by the line M 2 passing through the toe on the approach plate 32 side and the root and the surface 31 c on one side of the test plate 31 in the weld metal 33b are the following (v) and (vi), respectively. Satisfy the formula.
α 1 −5.0 ≦ β 1 ≦ α 1 +5.0 ・ ・ ・ (v)
α 2 −5.0 ≦ β 2 ≦ α 2 +5.0 ・ ・ ・ (vi)

第1助走板溶接金属33aにおける試験板31側の止端とは、第1助走板溶接金属33aの外縁と第1助走板面32cとの交点Cを意味する。また、第1助走板溶接金属33aにおける試験板31側のルートとは、第1助走板溶接金属33aの外縁と助走板32の他方側の面32bとの交点Dを意味する。同様に、第2助走板溶接金属33bにおける試験板31側の止端とは、第2助走板溶接金属33bの外縁と第2助走板面32dとの交点Cを意味し、第2助走板溶接金属33bにおける試験板31側のルートとは、第2助走板溶接金属33bの外縁と助走板32の他方側の面32bとの交点Dを意味する。 The test plate 31 side toe in the first run-up plate weld metal 33a, means an intersection C 1 between the outer edge and the first run-up plate surface 32c of the first run-up plate weld metal 33a. Further, the test plate 31 side route of the first run-up plate weld metal 33a, means an intersection D 1 of the outer edge and the other side surface 32b of the run-up plate 32 of the first run-up plate weld metal 33a. Similarly, the test plate 31 side toe in the second run-up plate weld metal 33b, means an intersection C 2 of the outer edge and the second run-up plate surface 32d of the second run-up plate weld metal 33b, the second run-up plate the test plate 31 side root in the weld metal 33b, means an intersection D 2 between the outer edge and the other side surface 32b of the run-up plate 32 of the second run-up plate weld metal 33b.

また、第1助走板溶接金属33aの板厚方向における継手の部分溶込みb(mm)および第2助走板溶接金属33bの板厚方向における継手の部分溶込みb(mm)は、下記(vii)および(viii)式を満足する。
≦b≦d+5.0 ・・・(vii)
≦b≦d+5.0 ・・・(viii)
Further, the partial penetration b 1 (mm) of the joint in the plate thickness direction of the first approach plate weld metal 33a and the partial penetration b 2 (mm) of the joint in the plate thickness direction of the second approach plate weld metal 33b are as follows. Satisfy equations (vii) and (viii).
d 1 ≤ b 1 ≤ d 1 +5.0 ... (vii)
d 2 ≤ b 2 ≤ d 2 +5.0 ... (viii)

継手の部分溶込みbは、第1助走板面32cと、第1助走板面32cと平行でかつ助走板32の板厚方向における第1助走板溶接金属33aの板厚中心側の端部を通る仮想的な面32fとの距離である。また、継手の部分溶込みbは、第2助走板面32dと、第2助走板面32dと平行でかつ助走板32の板厚方向における第2助走板溶接金属33bの板厚中心側の端部を通る仮想的な面32gとの距離である。 The partial penetration b 1 of the joint is the end portion of the first approach plate weld metal 33a parallel to the first approach plate surface 32c and the first approach plate surface 32c and in the plate thickness direction of the approach plate 32 on the plate thickness center side. It is a distance from a virtual surface 32f passing through. Further, the partial penetration b 2 of the joint is parallel to the second approach plate surface 32d and the second approach plate surface 32d, and is on the plate thickness center side of the second approach plate weld metal 33b in the plate thickness direction of the approach plate 32. It is the distance from the virtual surface 32g passing through the end.

さらに、第1助走板溶接金属23aの試験板21側の溶込み深さr(mm)および第2助走板溶接金属23bの試験板21側の溶込み深さr(mm)は、下記(ix)および(x)式を満足する。
≦r≦s+5.0 ・・・(ix)
≦r≦s+5.0 ・・・(x)
The first approach plate weld metal 23a of the test board 21 side of the penetration depth r 1 (mm) and penetration depth of the test plate 21 side second run-up plate weld metal 23b r 2 (mm), the following Satisfy equations (ix) and (x).
s 1 ≤ r 1 ≤ s 1 +5.0 ... (ix)
s 2 ≤ r 2 ≤ s 2 +5.0 ... (x)

(b)第2溶接工程
試験板31と同じ厚さであり、同じ長さを有する調整板34を用意する。すなわち、調整板34の厚さはt(mm)である。調整板34の長さは試験板31の長さと同一であるため、300mm以上、2000mm以下とすることが好ましい。また、調整板34は試験体30の幅を調整するためのものであるため、所望の試験体30の幅に応じて、調整板34の幅を決定すればよい。
(B) Second Welding Step An adjusting plate 34 having the same thickness as the test plate 31 and the same length is prepared. That is, the thickness of the adjusting plate 34 is t 1 (mm). Since the length of the adjusting plate 34 is the same as the length of the test plate 31, it is preferably 300 mm or more and 2000 mm or less. Further, since the adjusting plate 34 is for adjusting the width of the test body 30, the width of the adjusting plate 34 may be determined according to the desired width of the test body 30.

また、調整板34の幅方向における一方側(図11および図12における上側)の面34aには、開先を形成しておく。開先の形状、寸法および形成箇所については特に制限はない。 Further, a groove is formed on the surface 34a on one side (upper side in FIGS. 11 and 12) of the adjusting plate 34 in the width direction. There are no particular restrictions on the shape, dimensions and formation location of the groove.

そして、試験板31の板厚方向における他方側の面31dを、調整板34の一方側の面34aに当接した状態で、開先に溶接を行う。その後、溶接により生じた余盛については削除することが好ましい。 Then, welding is performed on the groove in a state where the surface 31d on the other side of the test plate 31 in the plate thickness direction is in contact with the surface 34a on the one side of the adjusting plate 34. After that, it is preferable to delete the surplus generated by welding.

調整板34は、試験体30の寸法を調整するためのものであるため、溶接方法については特に制限はなく、試験板31と調整板34とは完全溶込み溶接によって接合されていてもよいし、両側部分溶込み溶接によって接合されていてもよい。また、調整板34の材質については特に制限はなく、任意の鋼板を用いることができるが、強度は試験板31に近いものが好ましい。 Since the adjusting plate 34 is for adjusting the dimensions of the test body 30, there is no particular limitation on the welding method, and the test plate 31 and the adjusting plate 34 may be joined by complete penetration welding. , Both sides may be joined by partial penetration welding. The material of the adjusting plate 34 is not particularly limited, and any steel plate can be used, but the strength is preferably close to that of the test plate 31.

(c)脆性亀裂伝播試験工程
上記の(a)および(b)の工程を経ることにより、板厚がt(mm)の直方体状の試験体30が得られる。なお、(a)の工程および(b)の工程について順序は問わず、(a)の工程に続いて(b)の工程を行ってもよいし、(b)の工程に続いて(a)の工程を行ってもよい。
(C) Brittle Crack Propagation Test Step By going through the steps (a) and (b) above, a rectangular parallelepiped test piece 30 having a plate thickness of t 1 (mm) can be obtained. The steps (a) and (b) may be performed in any order, and the step (b) may be performed following the step (a), or the step (b) may be followed by the step (a). You may perform the process of.

試験体30の幅については特に制限はないが、300mm以上、2600mm以下とすることが好ましい。また、試験体30の長さは、試験板31および助走板32の長さと同一であるため、300mm以上、2000mm以下とすることが好ましい。 The width of the test body 30 is not particularly limited, but is preferably 300 mm or more and 2600 mm or less. Further, since the length of the test body 30 is the same as the length of the test plate 31 and the approach plate 32, it is preferably 300 mm or more and 2000 mm or less.

さらに、試験板31と調整板34との合計幅と助走板32の幅は同程度とすることが好ましく、助走板32の幅をL(mm)とし、試験体30の幅、すなわち、試験板31、助走板32および調整板34の合計幅をW(mm)とした場合に、0.4≦L/W≦0.7を満足することが好ましい。 Further, the total width of the test plate 31 and the adjusting plate 34 and the width of the approach plate 32 are preferably about the same, the width of the approach plate 32 is L (mm), and the width of the test body 30, that is, the test plate. When the total width of 31, the approach plate 32 and the adjusting plate 34 is W (mm), it is preferable that 0.4 ≦ L / W ≦ 0.7 is satisfied.

そして、試験体30を用いて、所定の試験温度で、所定の試験応力として付与した状態で、助走板32のノッチ32aに衝撃荷重を加え、試験板31まで亀裂を進展させる。試験温度については特に制限はなく、溶接構造体10の使用温度以下とすることが好ましく、例えば、−10℃以下とすることが好ましい。また、試験体30に付与する試験応力についても特に制限はなく、例えば、予め設定される被接合部材12の許容応力であるσ(N/mm)が試験応力となるよう設定してもよい。 Then, using the test body 30, an impact load is applied to the notch 32a of the approach plate 32 in a state where a predetermined test stress is applied at a predetermined test temperature, and a crack is propagated to the test plate 31. The test temperature is not particularly limited and is preferably set to the operating temperature or lower of the welded structure 10, for example, −10 ° C. or lower. Further, the test stress applied to the test body 30 is not particularly limited, and for example, σ (N / mm 2 ), which is a preset allowable stress of the member 12 to be joined, may be set as the test stress. ..

なお、上記の予め設定される被接合部材の許容応力として、例えば、溶接構造体が船舶用である場合には、被接合部材がアッパーデッキとなる。アッパーデッキの許容応力は、船級協会が定める規則により決められているため、その値を採用すればよい。試験体の温度は所定の試験温度で均一とし、助走板の温度は特に規定しない。その他の条件については、WES2815に準拠することが好ましい。 As the allowable stress of the member to be joined, which is set in advance, for example, when the welded structure is for a ship, the member to be joined is the upper deck. Since the allowable stress of the upper deck is determined by the rules established by the ship class association, that value may be adopted. The temperature of the test piece is made uniform at a predetermined test temperature, and the temperature of the approach plate is not particularly specified. For other conditions, it is preferable to comply with WES2815.

また、本工程においては、少なくとも試験板まで亀裂を進展させる必要があるため、衝撃荷重を付与した際に、助走板または溶接金属で亀裂が停止してしまわないような材質を選択する必要がある。 Further, in this step, since it is necessary to propagate the crack to at least the test plate, it is necessary to select a material so that the crack does not stop at the approach plate or the weld metal when an impact load is applied. ..

(d)判定工程
上記(a)〜(c)の工程を順に実施した後の試験板31について、亀裂の進展状況を調査する。そして、当該調査結果に基づいて、厚鋼板が脆性亀裂伝播停止特性に優れるか否かの判定を行う。
(D) Judgment step The state of crack growth is investigated for the test plate 31 after the above steps (a) to (c) are sequentially performed. Then, based on the investigation result, it is determined whether or not the thick steel sheet has excellent brittle crack propagation stopping characteristics.

具体的な判定方法については特に制限はないが、例えば、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合においては、試験板31の一方側の面31cと、第1助走板溶接金属33aおよび第2助走板溶接金属33bのそれぞれを介して進展した亀裂の先端との、幅方向における距離c(mm)およびc(mm)を測定する。 The specific determination method is not particularly limited, but for example, when the joining member 11 and the member to be joined 12 are joined by partial penetration welding on both sides, the surface 31c on one side of the test plate 31 and the surface 31c on one side. The distances c 1 (mm) and c 2 (mm) in the width direction from the tip of the crack extending through each of the first approach plate weld metal 33a and the second approach plate weld metal 33b are measured.

一方、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合においては、試験板31の一方側の面31cと、助走板溶接金属33cを介して進展した亀裂の先端との、幅方向における距離c(mm)を測定する。 On the other hand, when the joining member 11 and the member 12 to be joined are joined by complete penetration welding, the surface 31c on one side of the test plate 31 and the tip of the crack that has propagated through the approach plate weld metal 33c. Measure the distance c (mm) in the width direction.

そして、接合部材11と被接合部材12とが両側部分溶込み溶接によって接合されている場合においては、下記(xi)および(xii)式を満足する場合に、前記厚鋼板が脆性亀裂伝播停止特性に優れると判定し、接合部材11と被接合部材12とが完全溶込み溶接によって接合されている場合においては、下記(xv)式を満足する場合に、前記厚鋼板が脆性亀裂伝播停止特性に優れると判定することができる。
≦r+10.0 ・・・(xi)
≦r+10.0 ・・・(xii)
c≦r+10.0 ・・・(xv)
When the joining member 11 and the member 12 to be joined are joined by partial penetration welding on both sides, the thick steel sheet has a brittle crack propagation stop characteristic when the following equations (xi) and (xii) are satisfied. When the joining member 11 and the member to be joined 12 are joined by complete penetration welding, the thick steel sheet has a brittle crack propagation stop characteristic when the following equation (xv) is satisfied. It can be judged to be excellent.
c 1 ≤ r 1 + 10.0 ・ ・ ・ (xi)
c 2 ≤ r 2 + 10.0 ・ ・ ・ (xii)
c ≦ r + 10.0 ・ ・ ・ (xv)

以上のように、本発明によれば、脆性亀裂伝播停止特性に優れた溶接構造体を得ることができる。 As described above, according to the present invention, it is possible to obtain a welded structure having excellent brittle crack propagation stopping characteristics.

10 溶接構造体
11 接合部材
11a 第1表面
11b 第2表面
11c 端面
11f〜11i 仮想的な面
12 被接合部材
12a 被接合面
13 溶接金属
13a 第1溶接金属
13b 第2溶接金属
13c 溶接金属
20 試験体
21 試験板
21c 一方側の面
22 助走板
22a ノッチ
22b 他方側の面
22c 第1助走板面
22d 第2助走板面
22f,g 仮想的な面
23 試験溶接金属
23a 第1助走板溶接金属
23b 第2助走板溶接金属
23c 助走板溶接金属
24a,b 治具
30 試験体
31 試験板
31c 一方側の面
32 助走板
32a ノッチ
32b 他方側の面
32c 第1助走板面
32d 第2助走板面
32f,g 仮想的な面
33 試験溶接金属
33a 第1助走板溶接金属
33b 第2助走板溶接金属
33c 助走板溶接金属
40 溶接構造体
41 接合部材
42 被接合部材
43 溶接金属
46a フュージョンライン部
46b ノッチ
10 Welded structure 11 Joint member 11a First surface 11b Second surface 11c End surface 11f to 11i Virtual surface 12 Joint member 12a Joint surface 13 Weld metal 13a First weld metal 13b Second weld metal 13c Weld metal 20 Test Body 21 Test plate 21c One side surface 22 Run-up plate 22a Notch 22b The other side surface 22c First run-up plate surface 22d Second run-up plate surface 22f, g Virtual surface 23 Test weld metal 23a First run-up plate weld metal 23b 2nd run-up plate weld metal 23c run-up plate weld metal 24a, b jig 30 test piece 31 test plate 31c one side surface 32 run-up plate 32a notch 32b other side surface 32c 1st run-up plate surface 32d 2nd run-up plate surface 32f , G Virtual surface 33 Test weld metal 33a 1st run-up plate weld metal 33b 2nd run-up plate weld metal 33c Run-up plate weld metal 40 Welded structure 41 Join member 42 Joined member 43 Welded metal 46a Fusion line part 46b Notch

Claims (5)

板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記第1表面および前記被接合面に垂直な断面において、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記第1表面側に形成された第1溶接金属における、前記被接合部材側の溶込み深さs(mm)、および前記第2表面側に形成された第2溶接金属における、前記被接合部材側の溶込み深さs(mm)が下記(iii)および(iv)式を満足し、
前記被接合部材は、下記(a)〜(d)の工程を順に実施する品質評価試験において、下記cおよびcが、下記(xi)および(xii)式を満足するものである、
溶接構造体。
(a)幅方向が前記被接合部材の板厚方向に対応し、幅方向における一方側の面が前記被接合面に対応する試験板であって、板厚がt(mm)、幅がt(mm)、長さが500mmである試験板、ならびに、
板厚がt(mm)、幅が260mm、長さが500mmであり、板厚方向に垂直な第1助走板面および第2助走板面を有し、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、前記第1助走板面側および前記第2助走板面側にそれぞれ前記長さ方向に延びる開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に両側部分溶込み溶接を行い、
前記第1助走板面および前記試験板の前記一方側の面に垂直な断面において、
前記第1助走板面側に形成された第1助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)ならびに、
前記第2助走板面側に形成された第2助走板溶接金属における、前記助走板側の止端とルートとを通る線と前記試験板の前記一方側の面とがなす鋭角β(°)、前記助走板の前記板厚方向における継手の部分溶込みb(mm)、および前記試験板側の溶込み深さr(mm)が、下記(v)〜(x)式を満足し、
板厚がt(mm)、幅が260+t(mm)、長さが500mmの中間試験体を形成する工程。
但し、式中のαおよびdは、それぞれ、前記第1溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)であり、
αおよびdは、それぞれ、前記第2溶接金属における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角(°)、および前記板厚方向における継手の部分溶込み(mm)である。
(b)板厚がt(mm)、幅が240−t(mm)、長さが500mmであり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記幅方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行い、
板厚がt(mm)、幅が500mm、長さが500mmの試験体を形成する工程。
(c)前記試験体を用いて、−10℃の試験温度で、予め設定される前記被接合部材の許容応力であるσ(N/mm)を試験応力として付与した状態で、前記助走板の前記ノッチに衝撃荷重を加え、前記第1助走板溶接金属および前記第2助走板溶接金属を介して前記試験板まで亀裂を進展させる工程。
(d)前記試験板の前記一方側の面と、前記第1助走板溶接金属および前記第2助走板溶接金属のそれぞれを介して進展した前記亀裂の先端との、前記幅方向における距離c(mm)およびc(mm)を測定する工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
≦5.0 ・・・(iii)
≦5.0 ・・・(iv)
α−5.0≦β≦α+5.0 ・・・(v)
α−5.0≦β≦α+5.0 ・・・(vi)
≦b≦d+5.0 ・・・(vii)
≦b≦d+5.0 ・・・(viii)
≦r≦s+5.0 ・・・(ix)
≦r≦s+5.0 ・・・(x)
≦r+10.0 ・・・(xi)
≦r+10.0 ・・・(xii)
A welded structure having a T-joint portion in which the joint member is partially welded to the joint member on both sides in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. There,
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
In the cross section perpendicular to the first surface and the surface to be joined,
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s 1 (mm) on the member to be joined side of the first weld metal formed on the first surface side, and the welded metal on the second weld metal formed on the second surface side. The penetration depth s 2 (mm) on the member side satisfies the following equations (iii) and (iv).
The members to be joined, in the quality evaluation test to carry out the following processes (a) ~ (d) in this order, but the following c 1 and c 2 are to satisfy the following (xi) and (xii) equation,
Welded structure.
(A) A test plate whose width direction corresponds to the plate thickness direction of the member to be joined and one surface in the width direction corresponds to the surface to be joined, having a plate thickness of t 1 (mm) and a width of t 1 (mm). A test plate of t 2 (mm), length of 500 mm, and
It has a plate thickness of t 1 (mm), a width of 260 mm, a length of 500 mm, has a first approach plate surface and a second approach plate surface perpendicular to the plate thickness direction, and has a notch on one side in the width direction. A run-up plate is provided, and a groove extending in the length direction is formed on the first run-up plate surface side and the second run-up plate surface side on the other side surface in the width direction.
In a state where the one side surface of the test plate is in contact with the other side surface of the run-up plate, both side partial penetration welding is performed on the groove formed in the run-up plate.
In a cross section perpendicular to the first approach plate surface and the one side surface of the test plate.
In the first approach plate weld metal formed on the first approach plate surface side, an acute angle β 1 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), Partial penetration b 1 (mm) of the joint in the thickness direction of the approach plate , and penetration depth r 1 (mm) on the test plate side, and
In the second approach plate weld metal formed on the second approach plate surface side, an acute angle β 2 (°) formed by a line passing through a toe and a root on the approach plate side and the one side surface of the test plate. ), The partial penetration b 2 (mm) of the joint in the thickness direction of the approach plate, and the penetration depth r 2 (mm) on the test plate side satisfy the following equations (v) to (x). And
A step of forming an intermediate test piece having a plate thickness of t 1 (mm), a width of 260 + t 2 (mm), and a length of 500 mm.
However, α 1 and d 1 in the equation are the acute angle (°) formed by the line passing through the toe and the root on the joint member side and the surface to be joined in the first weld metal, respectively, and the plate. Partial penetration (mm) of the joint in the thickness direction,
α 2 and d 2 are the acute angles (°) formed by the line passing through the toe and the root on the joining member side and the surface to be joined in the second weld metal, and the joint in the plate thickness direction, respectively. Partial penetration (mm).
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm), a width of 240-t 2 (mm), and a length of 500 mm, and having a groove formed on one surface in the width direction. ,
Welding is performed on the groove formed in the adjusting plate in a state where the other side surface of the test plate in the width direction is in contact with the one side surface of the adjusting plate.
A step of forming a test piece having a plate thickness of t 1 (mm), a width of 500 mm, and a length of 500 mm.
(C) Using the test piece, the approach plate is provided with σ (N / mm 2 ), which is a preset allowable stress of the member to be welded, as a test stress at a test temperature of −10 ° C. A step of applying an impact load to the notch of the above to develop a crack to the test plate via the first approach plate weld metal and the second approach plate weld metal.
(D) The distance c 1 in the width direction between the one side surface of the test plate and the tip of the crack extending through each of the first approach plate weld metal and the second approach plate weld metal. A step of measuring (mm) and c 2 (mm).
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s 1 ≤ 5.0 ・ ・ ・ (iii)
s 2 ≤ 5.0 ・ ・ ・ (iv)
α 1 −5.0 ≦ β 1 ≦ α 1 +5.0 ・ ・ ・ (v)
α 2 −5.0 ≦ β 2 ≦ α 2 +5.0 ・ ・ ・ (vi)
d 1 ≤ b 1 ≤ d 1 +5.0 ... (vii)
d 2 ≤ b 2 ≤ d 2 +5.0 ... (viii)
s 1 ≤ r 1 ≤ s 1 +5.0 ... (ix)
s 2 ≤ r 2 ≤ s 2 +5.0 ... (x)
c 1 ≤ r 1 + 10.0 ・ ・ ・ (xi)
c 2 ≤ r 2 + 10.0 ・ ・ ・ (xii)
板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に完全溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(i)および(ii)式を満足し、
前記接合部材と前記被接合部材との間に形成された溶接金属における前記被接合部材側の溶込み深さs(mm)が下記(xiii)式を満足し、
前記被接合部材は、下記(a)〜(d)の工程を順に実施する品質評価試験において、下記c(mm)が、下記(xv)式を満足するものである、
溶接構造体。
(a)幅方向が前記被接合部材の板厚方向に対応し、幅方向における一方側の面が前記被接合面に対応する試験板であって、板厚がt(mm)、幅がt(mm)、長さが500mmである試験板、および、
板厚がt(mm)、幅が260mm、長さが500mmであり、前記幅方向における一方側にノッチが設けられ、前記幅方向における他方側の面において、開先が形成された助走板、を用意し、
前記試験板の前記一方側の面を、前記助走板の前記他方側の面に当接した状態で、前記助走板に形成された前記開先に完全溶込み溶接を行って助走板溶接金属を形成し、
前記助走板溶接金属における前記試験板側の溶込み深さr(mm)が下記(xiv)式を満足し、
板厚がt(mm)、幅が260+t(mm)、長さが500mmの中間試験体を形成する工程。
(b)板厚がt(mm)、幅が240−t(mm)、長さが500mmであり、前記幅方向における一方側の面において、開先が形成された調整板を用意し、
前記試験板の前記板厚方向における他方側の面を、前記調整板の前記一方側の面に当接した状態で、前記調整板に形成された前記開先に溶接を行い、
板厚がt(mm)、長さが500mm、幅が500mmの試験体を形成する工程。
(c)前記試験体を用いて、−10℃の試験温度で、予め設定される前記被接合部材の許容応力であるσ(N/mm)を試験応力として付与した状態で、前記助走板の前記ノッチに衝撃荷重を加え、前記試験板まで亀裂を進展させる工程。
(d)前記試験板の前記一方側の面と、前記亀裂の先端との、前記幅方向における距離c(mm)を測定する工程。
≧50.0 ・・・(i)
≧50.0 ・・・(ii)
s≦5.0 ・・・(xiii)
s≦r≦s+5.0 ・・・(xiv)
c≦r+10.0 ・・・(xv)
A welded structure having a T-joint portion in which the joint member is completely welded and welded to the joint member in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. hand,
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (i) and (ii).
The penetration depth s (mm) on the side to be joined in the weld metal formed between the joint member and the member to be joined satisfies the following equation (xiii).
In the quality evaluation test in which the following steps (a) to (d) are sequentially carried out, the following c (mm) satisfies the following formula (xv).
Welded structure.
(A) A test plate whose width direction corresponds to the plate thickness direction of the member to be joined and one surface in the width direction corresponds to the surface to be joined, having a plate thickness of t 1 (mm) and a width of t 1 (mm). A test plate with t 2 (mm) and a length of 500 mm, and
A run-up plate having a plate thickness of t 1 (mm), a width of 260 mm, and a length of 500 mm, a notch is provided on one side in the width direction, and a groove is formed on the other side surface in the width direction. , Prepare,
With the one side surface of the test plate in contact with the other side surface of the approach plate, complete penetration welding is performed on the groove formed in the approach plate to obtain the approach plate weld metal. Form and
The penetration depth r (mm) on the test plate side of the approach plate weld metal satisfies the following equation (xiv).
A step of forming an intermediate test piece having a plate thickness of t 1 (mm), a width of 260 + t 2 (mm), and a length of 500 mm.
(B) Prepare an adjusting plate having a plate thickness of t 1 (mm), a width of 240-t 2 (mm), and a length of 500 mm, and having a groove formed on one surface in the width direction. ,
Welding is performed on the groove formed in the adjusting plate in a state where the other side surface of the test plate in the plate thickness direction is in contact with the one side surface of the adjusting plate.
A step of forming a test piece having a plate thickness of t 1 (mm), a length of 500 mm, and a width of 500 mm.
(C) Using the test piece, the approach plate is provided with σ (N / mm 2 ), which is a preset allowable stress of the member to be joined, as a test stress at a test temperature of −10 ° C. A step of applying an impact load to the notch of the above to develop a crack to the test plate.
(D) A step of measuring the distance c (mm) between the one side surface of the test plate and the tip of the crack in the width direction.
t 1 ≧ 50.0 ・ ・ ・ (i)
t 2 ≧ 50.0 ・ ・ ・ (ii)
s ≦ 5.0 ・ ・ ・ (xiii)
s ≦ r ≦ s + 5.0 ・ ・ ・ (xiv)
c ≦ r + 10.0 ・ ・ ・ (xv)
前記接合部材の板厚t(mm)および前記被接合部材の板厚t(mm)が下記(xvi)および(xvii)式を満足する、
請求項1または請求項2に記載の溶接構造体。
>80.0 ・・・(xvi)
>80.0 ・・・(xvii)
The plate thickness t 1 (mm) of the joint member and the plate thickness t 2 (mm) of the joint member satisfy the following equations (xvi) and (xvii).
The welded structure according to claim 1 or 2.
t 1 > 80.0 ・ ・ ・ (xvi)
t 2 > 80.0 ・ ・ ・ (xvii)
前記被接合部材の降伏応力が400MPa以上、580MPa以下であり、引張強さが510MPa以上、750MPa以下である、
請求項1から請求項3までのいずれかに記載の溶接構造体。
The yield stress of the member to be joined is 400 MPa or more and 580 MPa or less, and the tensile strength is 510 MPa or more and 750 MPa or less.
The welded structure according to any one of claims 1 to 3.
前記被接合部材の−10℃における全厚のKca値が6000N/mm1.5未満である、
請求項1から請求項4までのいずれかに記載の溶接構造体。
The Kca value of the total thickness of the member to be joined at −10 ° C. is less than 6000 N / mm 1.5.
The welded structure according to any one of claims 1 to 4.
JP2019226309A 2019-12-16 2019-12-16 Welded structure Active JP7288197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226309A JP7288197B2 (en) 2019-12-16 2019-12-16 Welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226309A JP7288197B2 (en) 2019-12-16 2019-12-16 Welded structure

Publications (2)

Publication Number Publication Date
JP2021094573A true JP2021094573A (en) 2021-06-24
JP7288197B2 JP7288197B2 (en) 2023-06-07

Family

ID=76430025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226309A Active JP7288197B2 (en) 2019-12-16 2019-12-16 Welded structure

Country Status (1)

Country Link
JP (1) JP7288197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007860A1 (en) * 2021-07-26 2023-02-02 日本製鉄株式会社 Welding structure, method for designing same, and method for constructing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326147A (en) * 2006-05-12 2007-12-20 Jfe Steel Kk Welded structure excellent in brittle fracture propagation-stopping characteristics
JP2010236930A (en) * 2009-03-30 2010-10-21 Sumitomo Metal Ind Ltd Method of evaluating brittle crack propagation stop property
JP2012180590A (en) * 2011-02-08 2012-09-20 Jfe Steel Corp Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus
WO2019220681A1 (en) * 2018-05-18 2019-11-21 日本製鉄株式会社 Welded structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326147A (en) * 2006-05-12 2007-12-20 Jfe Steel Kk Welded structure excellent in brittle fracture propagation-stopping characteristics
JP2010236930A (en) * 2009-03-30 2010-10-21 Sumitomo Metal Ind Ltd Method of evaluating brittle crack propagation stop property
JP2012180590A (en) * 2011-02-08 2012-09-20 Jfe Steel Corp Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus
WO2019220681A1 (en) * 2018-05-18 2019-11-21 日本製鉄株式会社 Welded structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007860A1 (en) * 2021-07-26 2023-02-02 日本製鉄株式会社 Welding structure, method for designing same, and method for constructing same
JP7299554B1 (en) 2021-07-26 2023-06-28 日本製鉄株式会社 Welded structures and their design and construction methods

Also Published As

Publication number Publication date
JP7288197B2 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
US7748596B2 (en) Welded structure having excellent resistance to brittle crack propagation and welding method therefor
KR102385019B1 (en) Evaluation method of brittle crack propagation stop performance of thick steel plate
JP2021094573A (en) Welding structure
KR101728362B1 (en) Method for manufacturing thick steel plate having excellent long brittle crack arrestability and thick steel plate
JP7119805B2 (en) Thick steel plate quality evaluation method
JP2021094572A (en) Welding structure
KR102105614B1 (en) Welding structure
JP2008213018A (en) Weld joint and welded structure having excellent crack generation propagation resistance characteristic and method of improving this characteristic
JP2017170467A (en) Welding method and manufacturing method of ship
JP6562190B1 (en) Welded structure
JP2006088184A (en) High heat input butt-welded joint having excellent brittle fracture generation resisting property and method for verifying brittle fracture generation resisting property of high heat input butt-welded joint
Hanji et al. Low-and high-cycle fatigue behavior of load-carrying cruciform joints with incomplete penetration and strength under-match
WO2019220681A1 (en) Welded structure
JP7299554B1 (en) Welded structures and their design and construction methods
JP4767885B2 (en) Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics
KR101032542B1 (en) High heat input butt-welded joint excelling in brittle fracturing resisting performance and method of verifying brittle fracturing resisting performance of high heat input butt-welded joint
JP2013180327A (en) Groove part for corner welding of welding-assembled four face box-shaped cross-sectional member
Tagawa et al. Experimental proof of reverse bending technique for modifying weld residual stress in weld CTOD specimen and comparison of effect with other techniques
Chaudhuri The development of high-resolution crack monitoring methods to investigate the effect of the local weld toe geometry on fatigue crack initiation life
Ranjan Probabilistic strain-based fracture mechanics analysis of weldments
JP5197476B2 (en) Quality control method for brittle crack propagation stopping performance of T-shaped full penetration welded structure
Kanna et al. Reproducibility of Pop-Ins in Fracture Test of Heterogeneous Welds and Numerical Assessment of Crack Arrest
Leng et al. Analysis of the relationship between CTOD toughness and micromechanism of marine steel weld joints
KR102047284B1 (en) Method for quantifiable test of tenacity of welded part of steel plate having taper and welding structure for quantifiable test of steel plate having taper
Wu Fatigue crack propagation behaviour of welded and weld repaired 5083 aluminium alloy joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R151 Written notification of patent or utility model registration

Ref document number: 7288197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151