JP2021093328A - Load resistance device - Google Patents

Load resistance device Download PDF

Info

Publication number
JP2021093328A
JP2021093328A JP2019224355A JP2019224355A JP2021093328A JP 2021093328 A JP2021093328 A JP 2021093328A JP 2019224355 A JP2019224355 A JP 2019224355A JP 2019224355 A JP2019224355 A JP 2019224355A JP 2021093328 A JP2021093328 A JP 2021093328A
Authority
JP
Japan
Prior art keywords
load resistance
resistors
resistance device
resistor
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019224355A
Other languages
Japanese (ja)
Other versions
JP6831603B1 (en
Inventor
裕 作山
Yutaka Sakuyama
裕 作山
淳 大森
Atsushi Omori
淳 大森
一郎 宗像
Ichiro Munakata
一郎 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo System Co Ltd
Original Assignee
Toyo System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo System Co Ltd filed Critical Toyo System Co Ltd
Priority to JP2019224355A priority Critical patent/JP6831603B1/en
Application granted granted Critical
Publication of JP6831603B1 publication Critical patent/JP6831603B1/en
Publication of JP2021093328A publication Critical patent/JP2021093328A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a load resistance device capable of miniaturizing a whole of the device.SOLUTION: A load resistance device contains: a box-shaped housing; two end part electrodes which are respectively supported by an upper end and a lower end of the housing, and to which a positive electrode and a negative electrode of a charging battery are respectively connected; and a plurality of resistance body groups that includes a plurality of resistance bodies made of a plate-like metal electrically connected with each other in parallel, and is electrically connected in series between the two end part electrodes. Each resistance body is made of a stainless steel.SELECTED DRAWING: Figure 3

Description

本発明は、負荷試験を行うための負荷抵抗装置に関する。 The present invention relates to a load resistance device for performing a load test.

リチウムイオン電池等の二次電池又はこの二次電池を複数有した電池パック(組電池)は、充電されて繰り返し使用され、種々の電源として広く普及している。二次電池の高容量化に伴い、二次電池の安全性試験として負荷試験である外部短絡試験が一般的に行われるようになってきた。 A secondary battery such as a lithium ion battery or a battery pack (combined battery) having a plurality of these secondary batteries is charged and repeatedly used, and is widely used as various power sources. As the capacity of secondary batteries has increased, external short-circuit tests, which are load tests, have become common as safety tests for secondary batteries.

外部短絡試験は、二次電池の外部で短絡させ、発火、破裂する場合の誤使用や安全使用を想定した試験であり、正極端子及び負極端子を外部抵抗装置に接続して、過大負荷電流によって二次電池が、発火又は破裂しないことを確認する試験である。 The external short-circuit test is a test that assumes misuse or safe use when the secondary battery is short-circuited outside and ignites or explodes. The positive and negative terminals are connected to an external resistance device, and an excessive load current is applied. This is a test to confirm that the secondary battery does not ignite or explode.

図8に外部短絡試験を行うための試験回路の一例を示す。この試験回路は、試験対象としての二次電池100と外部短絡試験装置101と負荷抵抗装置102とを含む。外部短絡試験装置101は試験回路を開閉するための開閉手段103を有し、試験回路において二次電池100と負荷抵抗装置102と開閉手段103とは直列接続されている。外部短絡試験は、フル充電された二次電池について予め外部短絡を実行して、二次電池の保護機能や二次電池外部の保護回路による安全性を確認する試験であり、例えば、図9の表に示す規格が知られている。 FIG. 8 shows an example of a test circuit for performing an external short circuit test. This test circuit includes a secondary battery 100 as a test target, an external short-circuit test device 101, and a load resistance device 102. The external short-circuit test device 101 has an opening / closing means 103 for opening / closing the test circuit, and the secondary battery 100, the load resistance device 102, and the opening / closing means 103 are connected in series in the test circuit. The external short-circuit test is a test in which an external short-circuit is performed in advance on a fully charged secondary battery to confirm the safety function of the secondary battery and the safety of the external protection circuit of the secondary battery. For example, FIG. The standards shown in the table are known.

この二次電池の外部短絡条件としては負荷抵抗値(外部抵抗)では数mΩ〜100mΩと規定されている。そこで、規定の負荷抵抗値を実現するために、例えば、図10に示すような、抵抗素子として比較的サイズの大きいホーロー抵抗器を複数実装する負荷抵抗装置(以下、ホーロー抵抗負荷装置と称する)102Hが一般的に使用される。ホーロー抵抗器の各々は、両端子間の金属線抵抗体を碍子管に巻いてホーロー被覆で固定した構造を有しており、比較的サイズ、外観寸法が大きく重いものであり、更に、高価である。 As an external short-circuit condition for this secondary battery, the load resistance value (external resistance) is defined as several mΩ to 100 mΩ. Therefore, in order to realize the specified load resistance value, for example, a load resistance device (hereinafter referred to as a hollow resistance load device) in which a plurality of enamel resistors having a relatively large size as resistance elements are mounted as shown in FIG. 102H is commonly used. Each of the enamel resistors has a structure in which a metal wire resistor between both terminals is wound around an insulator tube and fixed with an enamel coating, and is relatively large in size, external dimensions, heavy, and expensive. is there.

外部短絡試験用のホーロー抵抗負荷装置は、筐体の内部に複数のホーロー抵抗器を組み合わせて目的の規定抵抗値を構成する為に、試験する二次電池のバッテリ容量の増加に応じてホーロー抵抗器を増やすので装置全体として高額で重量も大きな負荷抵抗装置となっていた。また、ホーロー抵抗負荷装置では、ホーロー抵抗器の増加に応じて、ホーロー抵抗器空冷用の多くの送風機が必要となり、装置筐体のサイズを大きくせざるを得ない。 Hollow resistance load devices for external short-circuit tests combine multiple hollow resistors inside the housing to form the desired specified resistance value, so that the hollow resistance increases as the battery capacity of the secondary battery to be tested increases. Since the number of devices is increased, the device as a whole is a load resistance device that is expensive and heavy. Further, in the enamel resistance load device, as the number of enamel resistors increases, many blowers for air cooling of the enamel resistors are required, and the size of the device housing must be increased.

本発明は、このような課題を解決するためになされたものであって、装置全体が小型化できる負荷抵抗装置を提供することを目的の一例とする。 The present invention has been made to solve such a problem, and an example of the present invention is to provide a load resistance device in which the entire device can be miniaturized.

本発明の負荷抵抗装置は、充電池の負荷試験を行うための負荷抵抗装置であって、
箱形の筐体と、
前記筐体の上端及び下端にそれぞれ支持され、それぞれに充電池の正極と負極が接続される2つの端部電極と、
互いに電気的に並列に接続された板状の金属からなる複数の抵抗体を有し、前記2つの端部電極間で互いに電気的に直列に接続されている複数の抵抗体群と、
を含み、
前記抵抗体はステンレス鋼材からなること、を特徴とする。
The load resistance device of the present invention is a load resistance device for performing a load test of a rechargeable battery.
With a box-shaped housing
Two end electrodes that are supported by the upper and lower ends of the housing and to which the positive and negative electrodes of the rechargeable battery are connected, respectively.
A group of resistors made of plate-shaped metal electrically connected in parallel with each other and electrically connected in series with each other between the two end electrodes.
Including
The resistor is characterized by being made of a stainless steel material.

本発明によれば、ステンレス鋼材からなる短冊状すなわち板状抵抗体(以下、ステンレス板抵抗体ともいう)の複数を並列及び直列に配置して目的抵抗値を構成するように配設したので、負荷抵抗装置の筐体内で発熱する抵抗体の設置スペース効率が向上し、装置筐体を小型化できかつ安価に実現できる。 According to the present invention, a plurality of strip-shaped or plate-shaped resistors made of stainless steel (hereinafter, also referred to as stainless steel plate resistors) are arranged in parallel and in series so as to form a target resistance value. The efficiency of the installation space of the resistor that generates heat in the housing of the load resistance device is improved, and the device housing can be miniaturized and realized at low cost.

本実施例の負荷抵抗装置の扉を閉めた正面状態を示す斜視図である。It is a perspective view which shows the front state which closed the door of the load resistance device of this Example. 本実施例の負荷抵抗装置の正面の扉を除去して扉開口から見た抵抗体群の状態を示す斜視図である。It is a perspective view which shows the state of the resistor group seen from the door opening by removing the door in front of the load resistance device of this Example. 本発明に係る実施例の負荷抵抗装置1を説明する機能ブロック図である。It is a functional block diagram explaining the load resistance apparatus 1 of the Example which concerns on this invention. 本実施例の負荷抵抗装置におけるステンレス板抵抗体のステンレス鋼材の種類及びステンレス鋼材以外の金属の特性の例を表す図である。It is a figure which shows the example of the type of the stainless steel material of the stainless steel plate resistor and the characteristic of the metal other than the stainless steel material in the load resistance apparatus of this Example. 本実施例の負荷抵抗装置におけるステンレス板抵抗体(図5B)をステンレス鋼板(図5A)から製造する工程の一例を説明する概略斜視図である。It is a schematic perspective view explaining an example of the process of manufacturing the stainless steel plate resistor (FIG. 5B) from the stainless steel plate (FIG. 5A) in the load resistance apparatus of this Example. 本実施例の負荷抵抗装置の内部の上段の端部電極の近傍における抵抗体群のユニットの一部の2個の状態をそれぞれ示す斜視図である。It is a perspective view which shows the two states of a part of the unit of a resistor group in the vicinity of the end electrode of the upper stage inside the load resistance apparatus of this Example, respectively. 本実施例の負荷抵抗装置の内部の下段の端部電極の近傍における抵抗体群のユニットの一部の2個の状態をそれぞれ示す斜視図である。It is a perspective view which shows the two states of a part of the unit of a resistor group in the vicinity of the lower end electrode inside the load resistance apparatus of this Example, respectively. 外部短絡試験を行うための試験回路の一例を示す結線図である。It is a wiring diagram which shows an example of the test circuit for performing an external short circuit test. 外部短絡試験の規格を説明する表である。It is a table explaining the standard of an external short circuit test. 抵抗素子として比較的サイズの大きいホーロー抵抗器を複数実装する負荷抵抗装置を示す斜視図である。It is a perspective view which shows the load resistance apparatus which mounts a plurality of relatively large enamel resistors as a resistance element.

以下、本発明の実施例の負荷抵抗装置を、図面を参照しながら説明する。なお、本実施例は本発明の一例であって、これにより本発明が限定されるものではない。 Hereinafter, the load resistance device according to the embodiment of the present invention will be described with reference to the drawings. It should be noted that the present embodiment is an example of the present invention, and the present invention is not limited thereto.

図1は本実施例の負荷抵抗装置1の観音開きの扉DRを閉めた正面状態を示す斜視図であり、図2は当該負荷抵抗装置1の正面の扉DRを除去して扉開口から見た抵抗体群2Gの状態を示す斜視図であり、図3は当該負荷抵抗装置1を説明する機能ブロック図である。 FIG. 1 is a perspective view showing a front state in which the double door DR of the load resistance device 1 of the present embodiment is closed, and FIG. 2 is a view from the door opening with the front door DR of the load resistance device 1 removed. It is a perspective view which shows the state of the resistor group 2G, and FIG. 3 is a functional block diagram explaining the load resistance device 1.

図1に示すように、負荷抵抗装置1は外形が直方体である箱形の筐体10を有している。筐体10の側面下方(下方側板)には吸気口INLが設けられており、上面には排気口OTLが設けられている。吸気口INL及び排気口OTLには、それぞれ金属ネットパネルNPが装着されている。上述したように、筐体10には、前面に観音開きの扉DRが設けられている。負荷抵抗装置1においては、この観音開きの扉DRを開くことで内部の装置部分にアクセスすることが可能である。 As shown in FIG. 1, the load resistance device 1 has a box-shaped housing 10 having a rectangular parallelepiped outer shape. An intake port INL is provided on the lower side surface (lower side plate) of the housing 10, and an exhaust port OTL is provided on the upper surface. A metal net panel NP is attached to each of the intake port INL and the exhaust port OTL. As described above, the housing 10 is provided with a double door DR on the front surface. In the load resistance device 1, it is possible to access the internal device portion by opening the double door DR.

筐体10の前面の上部、具体的には観音開きの扉DRの上の部分には、接続される外部短絡試験装置(図示せず)から通電を受けている場合に点灯する受電ランプLPが装備されている。 The upper part of the front surface of the housing 10, specifically the upper part of the double door DR, is equipped with a power receiving lamp LP that lights up when energized from a connected external short-circuit test device (not shown). Has been done.

図2及び図3に示すように、負荷抵抗装置1は、筐体10内部に支持、収容された複数の抵抗体群2Gを有している。抵抗体群2Gの各々は、互いに電気的に並列に接続された複数の板状の抵抗体2を有している。すなわち、抵抗体2の各々は短冊形状を有している。抵抗体2の各々は、ステンレス鋼板(後述する)から構成されている。 As shown in FIGS. 2 and 3, the load resistance device 1 has a plurality of resistor groups 2G supported and housed inside the housing 10. Each of the resistors group 2G has a plurality of plate-shaped resistors 2 electrically connected in parallel with each other. That is, each of the resistors 2 has a strip shape. Each of the resistors 2 is made of a stainless steel plate (described later).

図2に示すように、負荷抵抗装置1において、筐体10内のフレームの桁材11上に上下2段それぞれに指示された抵抗体群2Gの8ユニット(合計16ユニット)が筐体10内に収納されている。2つの端部電極4は、筐体10の上段及び下段に支持金具12によりそれぞれ支持され、2つの端部電極4の間で16ユニットが直列接続されている。 As shown in FIG. 2, in the load resistance device 1, 8 units (16 units in total) of the resistor group 2G instructed in each of the upper and lower two stages on the girder member 11 of the frame in the housing 10 are inside the housing 10. It is stored in. The two end electrodes 4 are supported by support metal fittings 12 on the upper and lower stages of the housing 10, and 16 units are connected in series between the two end electrodes 4.

図3に示すように、複数の抵抗体群2Gの各々は、銅(Cu)からなる2つの中継電極3を有し、2つの中継電極3の間に複数の抵抗体2が電気的に並列に接続されている。複数の抵抗体群2Gは2つの中継電極3の電気接続部3aを介して互いに接続されている。すなわち、複数の抵抗体群2Gは、2つの端部電極4の間で互いに電気的に直列に接続されている。2つの端部電極4は、外部短絡試験装置101の充電池の正極と負極にそれぞれ接続される。 As shown in FIG. 3, each of the plurality of resistor groups 2G has two relay electrodes 3 made of copper (Cu), and the plurality of resistors 2 are electrically parallel to each other between the two relay electrodes 3. It is connected to the. The plurality of resistor groups 2G are connected to each other via the electrical connection portion 3a of the two relay electrodes 3. That is, the plurality of resistor groups 2G are electrically connected in series with each other between the two end electrodes 4. The two end electrodes 4 are connected to the positive electrode and the negative electrode of the rechargeable battery of the external short-circuit test device 101, respectively.

図2に示すように、上段及び下段の直列8ユニットの端部電極4の反対側の端部(電気接続部)は銅からなる接続板3aaにより接続され、これにより、16ユニットの抵抗体群2Gが2つの端部電極4間で電気的に直列に接続される。 As shown in FIG. 2, the opposite end (electrical connection portion) of the end electrode 4 of the upper and lower series 8 units is connected by a connecting plate 3aa made of copper, whereby a resistor group of 16 units is connected. 2G is electrically connected in series between the two end electrodes 4.

図2に示すように、中継電極3と電気接続部3aは、筐体10内のフレームの桁材11に複数の支持金具12を介して固定されている。上下のU字管状部材U1、U2の中継電極3と電気接続部3aは、ステンレス板抵抗体2を保持する保持手段としても機能する。支持金具12は、耐熱絶縁碍子等の絶縁ブッシュを介して桁材11とは絶縁されて固定される。 As shown in FIG. 2, the relay electrode 3 and the electrical connection portion 3a are fixed to the girder member 11 of the frame in the housing 10 via a plurality of support metal fittings 12. The relay electrodes 3 and the electrical connection portion 3a of the upper and lower U-shaped tubular members U1 and U2 also function as holding means for holding the stainless steel plate resistor 2. The support metal fitting 12 is insulated and fixed from the girder member 11 via an insulating bush such as a heat-resistant insulating insulator.

図2に示すように、負荷抵抗装置1は、ステンレス板抵抗体2から発生するジュール熱を排気するための送風機22を内部上端に備える。抵抗体(抵抗体群2G)の空冷のために、送風機22を設けて温度上昇を抑える。送風機22は、筐体の内部の上端だけでなく上下端に配置されていてもよい。送風機22の排風量は、温度センサ(図示せず)により排気温度を監視することにより制御されてもよい。 As shown in FIG. 2, the load resistance device 1 includes a blower 22 at the upper end of the inside for exhausting Joule heat generated from the stainless plate resistor 2. A blower 22 is provided for air cooling of the resistor (resistor group 2G) to suppress the temperature rise. The blower 22 may be arranged not only at the upper end inside the housing but also at the upper and lower ends. The exhaust amount of the blower 22 may be controlled by monitoring the exhaust temperature with a temperature sensor (not shown).

また、図2に示す負荷抵抗装置1の扉開口の上部縁部には扉センサDSが、同右側縁部には漏電遮断器BKが設けられている。 Further, a door sensor DS is provided on the upper edge of the door opening of the load resistance device 1 shown in FIG. 2, and an earth leakage breaker BK is provided on the right edge of the door opening.

扉センサDSは、図1に示すように負荷抵抗装置1の観音開きの扉DRを閉めた状態で受電ランプLPが点灯して通電している場合に、扉DRが開かれたこと(内部にアクセス可能となること)を感知して、扉開信号を、外部短絡試験装置(図示せず)の停止インターロック回路へ送信する。 As shown in FIG. 1, the door sensor DS has opened the door DR (access to the inside) when the power receiving lamp LP is lit and energized with the double door DR of the load resistance device 1 closed. Detecting what is possible) and transmitting a door open signal to the stop interlock circuit of an external short circuit tester (not shown).

漏電遮断器BKは、送風機22等のオンオフ又は漏電を感知して、漏電遮断器のオフ信号(送風機停止信号)を、制御部(図示せず)を介して外部短絡試験装置(図示せず)の停止インターロック回路へ送信する。 The earth leakage breaker BK detects the on / off or electric leakage of the blower 22 or the like, and sends an off signal (blower stop signal) of the earth leakage breaker to an external short-circuit test device (not shown) via a control unit (not shown). Send to the stop interlock circuit.

外部短絡試験装置の停止インターロック回路は、扉センサDSや漏電遮断器BK等の保護装置からの所定信号に応じて、試験システムを自動的に停止させる。 Stop of the external short-circuit test device The interlock circuit automatically stops the test system in response to a predetermined signal from a protective device such as a door sensor DS or an earth leakage breaker BK.

[ステンレス板抵抗体]
図4は本実施例の負荷抵抗装置1におけるステンレス鋼板からなる抵抗体2(ステンレス板抵抗体)のステンレス鋼材の種類及びステンレス鋼材以外の金属の特性の例を表す表1及び表2を示す図である。
[Stainless steel plate resistor]
FIG. 4 is a diagram showing Tables 1 and 2 showing examples of the types of stainless steel materials and the characteristics of metals other than stainless steel materials of the resistor 2 (stainless steel plate resistor) made of stainless steel plate in the load resistance device 1 of this embodiment. Is.

表1は、ステンレス鋼 (SUS:Steel Use Stainless)の金属組織別分類の「フェライト系」「オーステナイト系」「二相系(オーステナイト・フェライト系)」「マルテンサイト系」「析出硬化系」等の内の「フェライト系」「オーステナイト系」「二相系」の特性を示す。表2は、「オーステナイト系」のSUS304とこれ以外の他の金属(アルミニウム、銅、鉄)の特性を示す。 Table 1 shows the classification of stainless steel (SUS: Steel Use Stainless) by metal structure, such as "ferrite type", "austenitic type", "duplex type (austenitic ferrite type)", "martensite type", and "precipitation hardening type". The characteristics of "ferrite-based", "austenitic-based", and "two-phase-based" are shown. Table 2 shows the characteristics of "austenitic" SUS304 and other metals (aluminum, copper, iron).

抵抗体の金属材料として、SUS304は有利な素材である。なぜならば、図4に示されるように、SUS304は他の金属より体積抵抗率が大きく、更に、体積抵抗率の温度変化が他の金属より小さいからである。この特性によりSUS304の板材は発熱しても抵抗値変化が小さいゆえに、試験目的から安定な負荷抵抗として好ましく用いられる。なお、熱伝導率について、SUS304は他の金属より劣るが、板状の平面発熱体とした場合、ステンレス板抵抗体2が空冷フィンとして機能するので、冷却するには支障にはならない。さらに、ステンレス板抵抗体2には、SUS304以外に非磁性の「オーステナイト系」SUSが好ましく用いられる。 As the metal material of the resistor, SUS304 is an advantageous material. This is because, as shown in FIG. 4, SUS304 has a larger volume resistivity than other metals, and the temperature change of the volume resistivity is smaller than that of other metals. Due to this characteristic, the plate material of SUS304 has a small change in resistance value even if it generates heat, and therefore is preferably used as a stable load resistance for the purpose of testing. Although SUS304 is inferior to other metals in terms of thermal conductivity, in the case of a plate-shaped flat heating element, the stainless steel plate resistor 2 functions as an air-cooled fin, so that there is no problem in cooling. Further, as the stainless steel plate resistor 2, a non-magnetic "austenitic" SUS is preferably used in addition to the SUS304.

ステンレス板抵抗体2は体積抵抗率の温度変化率が低いので、温度上昇によっても抵抗値があまり変わらない。また、ステンレス板抵抗体2は、市販のステンレス鋼板からシート抵抗に基づいて切り出すことで抵抗体形状の設計や製造が容易であるので、省スペース、コスト低減、放熱性向上の観点からも好ましい。 Since the stainless steel plate resistor 2 has a low rate of change in volume resistivity, the resistance value does not change much even when the temperature rises. Further, the stainless plate resistor 2 is preferable from the viewpoint of space saving, cost reduction, and improvement of heat dissipation because it is easy to design and manufacture the shape of the resistor by cutting it out from a commercially available stainless steel plate based on the sheet resistance.

ステンレス板抵抗体2の設計は、放電時の総エネルギー、ステンレス板抵抗体2の温度上昇、温度上昇の上限規定、ステンレス板抵抗体2の長方体形状、原材料のステンレス鋼板のシート抵抗等を勘案して行われる。 The design of the stainless plate resistor 2 includes the total energy during discharge, the temperature rise of the stainless plate resistor 2, the upper limit of the temperature rise, the rectangular shape of the stainless plate resistor 2, the sheet resistance of the raw material stainless steel plate, etc. It is done in consideration.

図5は本実施例の負荷抵抗装置1におけるステンレス板抵抗体2(図5B)をステンレス鋼板(図5A)から製造する工程の一例を説明する概略斜視図である。 FIG. 5 is a schematic perspective view illustrating an example of a process of manufacturing the stainless steel plate resistor 2 (FIG. 5B) from the stainless steel plate (FIG. 5A) in the load resistance device 1 of the present embodiment.

シート抵抗Rsを有する原材料のステンレス鋼板(体積抵抗率ρ、長さL、幅W、板厚D、(L>W>D))を、例えば目標設計負荷抵抗値(例えば、R=8mΩの電気抵抗値)に基づき作成する。そして、例えば同一形状のステンレス板抵抗体2を得るためにレーザー加工機、シャーリング機械等のせん断機械により、当該鋼板を縦L/m、横W/nに等分割して、複数(m×n個)のステンレス板抵抗体2(各々長さl、幅w、板厚d、(l=L/m>w=W/n>D)に小分けする。そして、装置筐体内に収納できるように、n個の1群のステンレス板抵抗体2(すなわち抵抗体群2Gである1個のユニット)を幅方向に並べて並列に電気接続して、そのm個のユニット2Gを直列に電気接続すれば、目標の負荷抵抗値の負荷抵抗装置が得られる。例えば、図3に示すように、6個の1群のステンレス板抵抗体2を幅方向に並べて並列に電気接続して抵抗体群2Gの1ユニットとし、抵抗体群2Gの16個のユニットを直列に電気接続すれば、所定の負荷抵抗値の負荷抵抗装置が得られる。 A raw material stainless steel sheet having sheet resistance Rs (volume resistivity ρ, length L, width W, plate thickness D, (L> W> D)) is, for example, an electricity with a target design load resistance value (for example, R = 8 mΩ). Create based on resistance value). Then, for example, in order to obtain a stainless steel plate resistor 2 having the same shape, the steel plate is equally divided into vertical L / m and horizontal W / n by a shearing machine such as a laser processing machine or a shirring machine, and a plurality of (m × n). It is subdivided into stainless steel plate resistors 2 (length l, width w, plate thickness d, (l = L / m> w = W / n> D), respectively) so that they can be stored in the apparatus housing. If n groups of stainless steel plate resistors 2 (that is, one unit that is a group of resistors 2G) are arranged in the width direction and electrically connected in parallel, and the m units 2G are electrically connected in series. A load resistance device having a target load resistance value can be obtained. For example, as shown in FIG. 3, six groups of stainless steel plate resistors 2 are arranged in the width direction and electrically connected in parallel to form a resistor group 2G. If 16 units of the resistor group 2G are electrically connected in series as one unit, a load resistance device having a predetermined load resistance value can be obtained.

長方体であるステンレス鋼板の電気抵抗値Rとその寸法(長方体の長辺の長さをL、幅をW、板厚D)とシート抵抗Rsとの関係は、
R=(ρ・L)/(d・W)=Rs・L/W
である。板厚Dのステンレス鋼板のシート抵抗Rsが既知であれば、ステンレス鋼板の幅Wの値とステンレス鋼板の長さLの値を上記関係式に代入することにより、そのステンレス鋼板の実際の長さ方向の電気抵抗値Rを算出できる。
The relationship between the electrical resistance value R of a rectangular parallelepiped stainless steel plate and its dimensions (the length of the long side of the rectangular parallelepiped is L, the width is W, and the plate thickness is D) and the sheet resistance Rs is
R = (ρ · L) / (d · W) = Rs · L / W
Is. If the sheet resistance Rs of a stainless steel sheet having a plate thickness D is known, the actual length of the stainless steel sheet can be obtained by substituting the value of the width W of the stainless steel sheet and the value of the length L of the stainless steel sheet into the above relational expression. The electric resistance value R in the direction can be calculated.

[負荷抵抗装置内のステンレス板抵抗体の分割配置]
図6及び図7は、負荷抵抗装置1の内部の上段及び下段の端部電極4の近傍における抵抗体群2Gのユニットの一部の2個の状態をそれぞれ示す斜視図である。
[Divided arrangement of stainless steel plate resistors in the load resistance device]
6 and 7 are perspective views showing two states of a part of the unit of the resistor group 2G in the vicinity of the upper and lower end electrodes 4 inside the load resistance device 1, respectively.

図6に示すように、上段の抵抗体群2Gの6個のステンレス板抵抗体2はそれらの長辺が互いに離れ平行にかつ両端部を揃えて配置されて、各ステンレス板抵抗体2の両端部が2本の平行な板状銅板の中継電極3の側面にボルト締結されている。抵抗体2の各々は短冊形状を有しており、抵抗体群2Gの各々において、抵抗体2は当該短冊形状の短手方向に沿って列をなして配列されている。 As shown in FIG. 6, the six stainless steel plate resistors 2 of the upper resistor group 2G are arranged so that their long sides are separated from each other and parallel to each other and both ends are aligned, and both ends of each stainless steel plate resistor 2 are arranged. The portions are bolted to the side surfaces of the relay electrodes 3 of two parallel plate-shaped copper plates. Each of the resistors 2 has a strip shape, and in each of the resistor groups 2G, the resistors 2 are arranged in a row along the short direction of the strip shape.

ステンレス板抵抗体2はボルト締結で物理的に固着されることにより、中継電極3に支持される。なお、物理的固着は密着した嵌め込み等でもよい。ステンレス板抵抗体2のステンレス鋼材は、イオン化列に当てはめると銅(Cu)と同程度のイオン化傾向であるので、接触腐食には支障にはならない。 The stainless steel plate resistor 2 is supported by the relay electrode 3 by being physically fixed by bolting. The physical fixation may be a close fitting or the like. Since the stainless steel material of the stainless plate resistor 2 has an ionization tendency similar to that of copper (Cu) when applied to the ionization column, it does not hinder contact corrosion.

上述のように、複数の抵抗体2は、複数の抵抗体群2Gの各々において複数の抵抗体2の各々の短手方向に沿って列をなして配列されており、2つの中継電極3の各々は、複数の抵抗体群2Gの各々において、複数の抵抗体2の長手方向の端部同士を接続している。複数の抵抗体群2Gは、抵抗体2の板面と垂直な方向に沿って互いに重なるように配列されている。 As described above, the plurality of resistors 2 are arranged in a row along the lateral side of each of the plurality of resistors 2 in each of the plurality of resistor groups 2G, and the two relay electrodes 3 are arranged. Each connects the longitudinal ends of the plurality of resistors 2 in each of the plurality of resistor groups 2G. The plurality of resistor groups 2G are arranged so as to overlap each other along the direction perpendicular to the plate surface of the resistor 2.

中継電極3は、電気接続部3aにより隣り合う一対の中継電極同士と一体的に形成された銅からなるU字管状部材U1、U2の一部となっている。上方のU字管状部材U1では、中継電極3の対向する側面に6個のステンレス板抵抗体2の上端が隣の6個のステンレス板抵抗体2と向かい合うように配置される。下方のU字管状部材U2では、中継電極3の対向しない反対側の側面に6個のステンレス板抵抗体2の下端が隣の6個のステンレス板抵抗体2と共に中継電極3を挟むように配置される。すなわち、複数の抵抗体群2Gのうちの隣り合う抵抗体群2Gの中継電極3同士は電気接続部3aによって一体的に結合されたU字管状部材U1又はU2を形成している。 The relay electrode 3 is a part of U-shaped tubular members U1 and U2 made of copper integrally formed with a pair of relay electrodes adjacent to each other by the electrical connection portion 3a. In the upper U-shaped tubular member U1, the upper ends of the six stainless steel plate resistors 2 are arranged on the opposite side surfaces of the relay electrode 3 so as to face the adjacent six stainless steel plate resistors 2. In the lower U-shaped tubular member U2, the lower ends of the six stainless steel plate resistors 2 are arranged on the opposite side surfaces of the relay electrode 3 so as to sandwich the relay electrode 3 together with the adjacent six stainless steel plate resistors 2. Will be done. That is, the relay electrodes 3 of the adjacent resistor groups 2G among the plurality of resistor groups 2G form a U-shaped tubular member U1 or U2 integrally connected by the electrical connection portion 3a.

上下のU字管状部材U1、U2の中継電極3と電気接続部3aにより、6個のステンレス板抵抗体2を並列に電気接続した抵抗体群2Gの8ユニットが直列に電気接続される。 Eight units of the resistor group 2G, in which six stainless steel plate resistors 2 are electrically connected in parallel, are electrically connected in series by the relay electrodes 3 of the upper and lower U-shaped tubular members U1 and U2 and the electrical connection portion 3a.

下方のU字管状部材U2の電気接続部3aには、銅からなる放熱板HSが固着されている。下方の放熱板HSにより、上方のU字管状部材U1の電気接続部3aと同等の放熱効果を確保している。 A heat radiating plate HS made of copper is fixed to the electrical connection portion 3a of the lower U-shaped tubular member U2. The lower heat dissipation plate HS ensures the same heat dissipation effect as the electrical connection portion 3a of the upper U-shaped tubular member U1.

図7に示すように、下段の抵抗体群2Gの6個のステンレス板抵抗体2もそれらの長辺が互いに離れ平行にかつ両端部を揃えて配置されて、各ステンレス板抵抗体2の両端部が2本の平行な板状の中継電極3の側面にボルト締結されている。図7に示す下段の抵抗体群2Gにおいても、U字管状部材U1、U2の中継電極3と電気接続部3aは、図6と同様に、6個のステンレス板抵抗体2を並列に電気接続した抵抗体群2Gの8ユニットが直列に電気接続される。但し、U字管状部材U1、U2の位置は、図6に示す上段のものと上下反対である。 As shown in FIG. 7, the six stainless steel plate resistors 2 of the lower resistor group 2G are also arranged so that their long sides are separated from each other and parallel to each other and both ends are aligned, and both ends of each stainless steel plate resistor 2 are arranged. The portions are bolted to the side surfaces of the two parallel plate-shaped relay electrodes 3. Also in the lower resistor group 2G shown in FIG. 7, the relay electrodes 3 of the U-shaped tubular members U1 and U2 and the electrical connection portion 3a electrically connect six stainless plate resistors 2 in parallel as in FIG. Eight units of the resistor group 2G are electrically connected in series. However, the positions of the U-shaped tubular members U1 and U2 are upside down from those in the upper row shown in FIG.

本実施例によれば、抵抗素子としてステンレス板抵抗体を用いて構成することで以下の効果が得られる。ステンレス板抵抗体は放熱板としての放熱効率が高いので、装置全体が放熱しやすい(送風機の数を減少できる)。ステンレス板抵抗体は温度抵抗率特性が安定しているので、目標抵抗値設計が容易となる。ステンレス鋼材が汎用であるので、装置材料費が安価に実現できる。ステンレス板抵抗体が板状のため装置組立が容易となる。ステンレス板抵抗体が板状のため、ホーロー抵抗負荷装置より軽量でメンテナンス性の高い高電力用負荷抵抗装置が実現できる。特に、抵抗材料の金属としてステンレス系(SUS304等)を選ぶことで負荷抵抗値の安定性、耐腐食性等の耐候性、コストメリットがホーロー抵抗負荷装置より優位になる。 According to this embodiment, the following effects can be obtained by using a stainless steel plate resistor as the resistance element. Since the stainless steel plate resistor has high heat dissipation efficiency as a heat dissipation plate, it is easy for the entire device to dissipate heat (the number of blowers can be reduced). Since the stainless steel plate resistor has stable temperature resistivity characteristics, it is easy to design the target resistance value. Since stainless steel is a general-purpose material, equipment material costs can be realized at low cost. Since the stainless steel plate resistor is plate-shaped, it is easy to assemble the device. Since the stainless steel plate resistor is plate-shaped, it is possible to realize a load resistance device for high power that is lighter and more maintainable than the enamel resistance load device. In particular, by selecting a stainless steel type (SUS304 or the like) as the metal of the resistance material, the stability of the load resistance value, the weather resistance such as corrosion resistance, and the cost merit are superior to the enamel resistance load device.

なお、上記実施例の負荷抵抗装置は、二次電池の外部短絡試験の他に、燃料電池の評価試験、バッテリの容量試験、発電機の定期評価試験、非常用発電機の定期試験、発電余剰電力の熱変換試験システム、開閉器の寿命試験、リレーの寿命試験等の負荷試験を行うためのデバイスとして使用され得る。 In addition to the external short-circuit test of the secondary battery, the load resistance device of the above embodiment includes a fuel cell evaluation test, a battery capacity test, a generator periodic evaluation test, an emergency generator periodic test, and a power surplus. It can be used as a device for performing load tests such as a thermal conversion test system for electric power, a life test of a switch, and a life test of a relay.

1 負荷抵抗装置
2 ステンレス板抵抗体
2G 抵抗体群
3 中継電極
3a 電気接続部
10 筐体
11 桁材
12 支持金具
22 送風機
U1、U2 U字管状部材
HS 放熱板
1 Load resistance device 2 Stainless steel plate resistor 2G Resistor group 3 Relay electrode 3a Electrical connection part 10 Housing 11 Girder material 12 Support bracket 22 Blower U1, U2 U-shaped tubular member HS Heat dissipation plate

本発明の負荷抵抗装置は、充電池の負荷試験を行うための負荷抵抗装置であって、
箱形の筐体と、
前記筐体の上及び下にそれぞれ支持され、それぞれに充電池の正極と負極が接続される2つの端部電極と、
互いに電気的に並列に接続された板状の金属からなる複数の抵抗体を有し、前記2つの端部電極間で互いに電気的に直列に接続されている複数の抵抗体群と、
を含み、
前記抵抗体はステンレス鋼材からなること、を特徴とする。
The load resistance device of the present invention is a load resistance device for performing a load test of a rechargeable battery.
With a box-shaped housing
The housing being respectively supported on the stage and a lower stage on the, and two end electrodes which positive and negative electrodes of the rechargeable battery in each of which is connected,
A group of resistors made of plate-shaped metal electrically connected in parallel with each other and electrically connected in series with each other between the two end electrodes.
Including
The resistor is characterized by being made of a stainless steel material.

Claims (6)

充電池の負荷試験を行うための負荷抵抗装置であって、
箱形の筐体と、
前記筐体の上端及び下端にそれぞれ支持され、それぞれに充電池の正極と負極が接続される2つの端部電極と、
互いに電気的に並列に接続された板状の金属からなる複数の抵抗体を有し、前記2つの端部電極間で互いに電気的に直列に接続されている複数の抵抗体群と、
を含み、
前記抵抗体はステンレス鋼材からなること、を特徴とする負荷抵抗装置。
A load resistance device for performing load tests on rechargeable batteries.
With a box-shaped housing
Two end electrodes that are supported by the upper and lower ends of the housing and to which the positive and negative electrodes of the rechargeable battery are connected, respectively.
A group of resistors made of plate-shaped metal electrically connected in parallel with each other and electrically connected in series with each other between the two end electrodes.
Including
A load resistance device characterized in that the resistor is made of a stainless steel material.
前記複数の抵抗体群の各々は、金属からなる2つの中継電極を有し、前記2つの中継電極間に前記複数の抵抗体が電気的に接続されており、前記複数の抵抗体群は前記2つの中継電極を介して互いに接続されていることを特徴とする請求項1に記載の負荷抵抗装置。 Each of the plurality of resistor groups has two relay electrodes made of metal, and the plurality of resistors are electrically connected between the two relay electrodes, and the plurality of resistor groups are described as described above. The load resistance device according to claim 1, wherein the load resistance device is connected to each other via two relay electrodes. 前記複数の抵抗体の各々は短冊形状を有し、前記複数の抵抗体は、前記複数の抵抗体群の各々において前記複数の抵抗体の各々の短手方向に沿って列をなして配列されており、前記2つの中継電極の各々は、前記複数の抵抗体群の各々において、前記複数の抵抗体の長手方向の端部同士を接続していることを特徴とする請求項2に記載の負荷抵抗装置。 Each of the plurality of resistors has a strip shape, and the plurality of resistors are arranged in a row in each of the plurality of resistor groups along the lateral direction of each of the plurality of resistors. The second aspect of claim 2, wherein each of the two relay electrodes connects the ends of the plurality of resistors in the longitudinal direction in each of the plurality of resistors. Load resistance device. 前記複数の抵抗体群は、前記複数の抵抗体の各々の板面と垂直な方向に沿って互いに重なるように配列されおり、前記複数の抵抗体群のうちの隣り合う抵抗体群の中継電極同士は電気接続部によって一体的に結合されたU字管状部材を形成していることを特徴とする請求項3に記載の負荷抵抗装置。 The plurality of resistor groups are arranged so as to overlap each other along a direction perpendicular to the plate surface of each of the plurality of resistors, and relay electrodes of adjacent resistor groups among the plurality of resistor groups. The load resistance device according to claim 3, wherein the U-shaped tubular members are integrally connected to each other by an electrical connection portion. 前記U字管状部材の前記電気接続部には、放熱板が固着されていることを特徴とする請求項4に記載の負荷抵抗装置。 The load resistance device according to claim 4, wherein a heat radiating plate is fixed to the electrical connection portion of the U-shaped tubular member. 前記筐体に設けられ前記複数の抵抗体群に向けて送風を行う送風機を有することを特徴とする請求項1乃至5のいずれか1つに記載の負荷抵抗装置。 The load resistance device according to any one of claims 1 to 5, further comprising a blower provided in the housing and blowing air toward the plurality of resistors.
JP2019224355A 2019-12-12 2019-12-12 Load resistor Active JP6831603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224355A JP6831603B1 (en) 2019-12-12 2019-12-12 Load resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224355A JP6831603B1 (en) 2019-12-12 2019-12-12 Load resistor

Publications (2)

Publication Number Publication Date
JP6831603B1 JP6831603B1 (en) 2021-02-17
JP2021093328A true JP2021093328A (en) 2021-06-17

Family

ID=74562457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019224355A Active JP6831603B1 (en) 2019-12-12 2019-12-12 Load resistor

Country Status (1)

Country Link
JP (1) JP6831603B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878201A (en) * 1994-09-01 1996-03-22 Akashi Denki Kk Resistance element
JP2003059701A (en) * 2001-08-21 2003-02-28 Akashi Denki Kk Method of manufacturing resistive material
JP2012189936A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Cooling system and projector
JP2014137337A (en) * 2013-01-18 2014-07-28 Akashi Denki Kk Load testing device of high voltage power generator
JP2015108605A (en) * 2013-12-06 2015-06-11 三菱電機株式会社 Outside short circuit testing apparatus and outside short circuit testing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878201A (en) * 1994-09-01 1996-03-22 Akashi Denki Kk Resistance element
JP2003059701A (en) * 2001-08-21 2003-02-28 Akashi Denki Kk Method of manufacturing resistive material
JP2012189936A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Cooling system and projector
JP2014137337A (en) * 2013-01-18 2014-07-28 Akashi Denki Kk Load testing device of high voltage power generator
JP2015108605A (en) * 2013-12-06 2015-06-11 三菱電機株式会社 Outside short circuit testing apparatus and outside short circuit testing method

Also Published As

Publication number Publication date
JP6831603B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US9786894B2 (en) Battery pack
US9478776B2 (en) Battery pack having housing with inlet opening and closing device
KR100920207B1 (en) Power Switching Module for Battery Module Assembly
US20130122341A1 (en) Battery of accumulators of easy design and assembly
JP5501763B2 (en) Equally distributed bus and medium or large battery pack using it
KR101371212B1 (en) Battery module and cell-cartridge for battery module
JP5772885B2 (en) Battery system
EP3128574A1 (en) Circuit board for secondary battery and battery pack comprising same
CN111033878B (en) Battery module and battery pack
EP2722911A2 (en) Soldering connector, and batter module and battery pack including same
WO2011135762A1 (en) Battery module
RU2561069C2 (en) Horn-gap arrester with deion chamber
CN102763241A (en) Cell module
KR20230145281A (en) Battery Module Having Heat Shielding Function
WO2018192071A1 (en) Lithium battery module connection structure having self-protection function, and connection method
JP6831603B1 (en) Load resistor
CN108370007B (en) Battery module case, battery module, battery pack, battery and method for manufacturing the same
CN208422970U (en) A kind of battery pack for preventing thermal failure from spreading
JP6182151B2 (en) Power storage device
JP3224790U (en) Storage battery and storage battery system
CN109390505B (en) Electricity storage device
EP3624217A1 (en) Battery module and battery pack
CN109004111A (en) A kind of battery pack for preventing thermal failure from spreading
KR20140059901A (en) Energy storage system including switch for safety
JP3670907B2 (en) Assembled battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201007

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6831603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150