JP2021092312A - Pipe joint and manufacturing method thereof - Google Patents

Pipe joint and manufacturing method thereof Download PDF

Info

Publication number
JP2021092312A
JP2021092312A JP2020158468A JP2020158468A JP2021092312A JP 2021092312 A JP2021092312 A JP 2021092312A JP 2020158468 A JP2020158468 A JP 2020158468A JP 2020158468 A JP2020158468 A JP 2020158468A JP 2021092312 A JP2021092312 A JP 2021092312A
Authority
JP
Japan
Prior art keywords
metal
pipe joint
joint
tubular
metal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020158468A
Other languages
Japanese (ja)
Inventor
基樹 若野
Motoki Wakano
基樹 若野
石尾 雅昭
Masaaki Ishio
雅昭 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2021092312A publication Critical patent/JP2021092312A/en
Priority to KR1020210092594A priority Critical patent/KR20220040368A/en
Priority to CN202110807889.4A priority patent/CN114251526A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/007Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints specially adapted for joining pipes of dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/28Making tube fittings for connecting pipes, e.g. U-pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

To provide a pipe joint that has high mechanical strength enduring the repeating of pressure reduction and pressurization even if decreasing wall thickness for reducing size and weight, by sufficiently enlarging a joint area of metallic portions of different materials in the pipe joint within a range of the wall thickness, and that preferably facilitates the construction of piping by brazing or welding; and a manufacturing method thereof.SOLUTION: A pipe joint is equipped with a pipe-shaped first metal portion configured by a first metal, and a pipe-shaped second metal portion configured by a second metal different from the first metal. A pipe-shaped shaft of the first metal portion and a pipe-shaped shaft of the second metal portion are concentric. Between a first end portion on one side and a second end portion on the other side in the concentric axial direction, a surface along the concentric axial direction of the first metal portion and a surface along the concentric axial direction of the second metal portion are bonded by metal diffusion bonding along the concentric axial direction.SELECTED DRAWING: Figure 1

Description

この発明は、例えば、銅管、ステンレス鋼管、低炭素鋼管、ニッケル管、アルミニウム管、チタン管など、材質が異なる金属製の管を組み合わせて配管するのに適する、管継手およびその製造方法に関する。 The present invention relates to a pipe joint and a method for manufacturing the same, which are suitable for piping a combination of metal pipes made of different materials such as a copper pipe, a stainless steel pipe, a low carbon steel pipe, a nickel pipe, an aluminum pipe, and a titanium pipe.

従来から、例えば、銅管、ステンレス鋼管、低炭素鋼管、ニッケル管、アルミニウム管、チタン管など、材質が異なる金属製の管を組み合わせて配管する装置が知られている。例えば、特許文献1には、熱交換器を有する空気調和装置が開示されている。この空気調和装置には、同材質および異材質の金属製の管を組み合わせて配管する構成を含む冷媒配管接合体が用いられている。金属製の管の材料は、例えば、アルミニウム、アルミニウム合金、銅、銅合金、鉄、鉄合金およびステンレス鋼が挙げられている。金属製の管を組み合わせて配管するための接合法は、管継手を用いずに、管同士を直に突き合わせてろう材の融着(ろう接合)によって接合する配管例が挙げられている。 Conventionally, there have been known devices for piping by combining metal pipes made of different materials, such as copper pipes, stainless steel pipes, low carbon steel pipes, nickel pipes, aluminum pipes, and titanium pipes. For example, Patent Document 1 discloses an air conditioner having a heat exchanger. In this air conditioner, a refrigerant pipe joint including a configuration in which metal pipes of the same material and different materials are combined and piped is used. Materials for metal tubes include, for example, aluminum, aluminum alloys, copper, copper alloys, iron, ferroalloys and stainless steel. As a joining method for combining and piping metal pipes, there is an example of piping in which pipes are directly butted against each other and joined by fusion of brazing materials (wax joining) without using a pipe joint.

ろう接合による接合形態には、例えば、一方の管の内周面と他方の管の外周面とを接合する形態(周面接合)、管の肉厚に対して垂直に形成した端面(垂直面)同士を突き合わせて接合する形態(垂直面接合)、管の肉厚に対して斜めに形成した端面(傾斜面)同士を突き合わせて接合する形態(傾斜面接合)、一方の管に肉厚の範囲内で傾斜面を形成し、その傾斜面を他方の外周面に突き合わせて接合する形態(傾斜面接合の変形例)、および、管の端部に形成したフランジ面同士を突き合わせて接合する形態(フランジ面接合)が挙げられている。 The joining form by brazing includes, for example, a form of joining the inner peripheral surface of one pipe and the outer peripheral surface of the other pipe (peripheral surface joining), and an end surface formed perpendicular to the wall thickness of the pipe (vertical surface). ) A form of butt-joining each other (vertical surface joining), a form of butt-joining end faces (inclined surfaces) formed diagonally with respect to the wall thickness of the pipe (inclined surface joining), A form in which an inclined surface is formed within the range and the inclined surface is abutted against the other outer peripheral surface to be joined (a modified example of the inclined surface joining), and a form in which the flange surfaces formed at the end of the pipe are abutted and joined. (Flange surface joint) is mentioned.

異材質の金属製の管の接合を目的として、例えば、特許文献2には、異なる2つの単一材料により構成された異種金属管継手が開示されている。異種金属管継手を用いた配管は、上記のように管同士を直に突き合わせて接合する配管と比べて、管の接合部のコンパクト化を図りつつ管の接合部の接合強度を高めることができる。特許文献2の管継手を構成する材料は、例えば、ステンレス鋼、チタン、アルミニウムなどである。このような異種金属管継手は、ろう接合または溶接によって、それぞれの単一材料と同材質の管(被接合管)に対して、良好な接合状態を得ることができると考えられる。 For the purpose of joining metal pipes of different materials, for example, Patent Document 2 discloses a dissimilar metal pipe joint composed of two different single materials. A pipe using a dissimilar metal pipe joint can increase the joint strength of the pipe joint while making the pipe joint more compact than the pipe that directly abuts and joins the pipes as described above. .. The material constituting the pipe joint of Patent Document 2 is, for example, stainless steel, titanium, aluminum, or the like. It is considered that such a dissimilar metal pipe joint can obtain a good joint state with respect to a pipe (tube to be joined) made of the same material as each single material by brazing or welding.

また、特許文献2の管継手には、管継手の全体の接合強度の向上および管継手の肉厚の適正化を図る目的で、異種金属の接合部において、垂直面接合よりも接合面積が大きくなる傾斜面接合が採用されている。一般に、物体同士の接合強度を高める場合は接合面積を大きくすることが考慮される。したがって、特許文献2の管継手は、垂直面接合でなく、傾斜面接合が選択されている。さらに、管継手の小径化(省スペース化)を図る目的で、管継手の肉厚の範囲内で異材質の金属部同士が傾斜面接合されるように構成されている。特許文献2の管継手は、十分に大きな肉厚のカップ状の深絞り成形体から管継手の形状を削り出す方法で作製されている。管継手の形状の削り出し(切削加工)は、管継手の軸方向の一方端の金属部と他方端の金属部とが異材質になるように構成されるとともに、管継手の肉厚の範囲内で異材質の金属部同士の傾斜面接合となるように、行われている。 Further, in the pipe joint of Patent Document 2, for the purpose of improving the joint strength of the entire pipe joint and optimizing the wall thickness of the pipe joint, the joint area of the dissimilar metal joint is larger than that of the vertical surface joint. An inclined surface joint is adopted. In general, when increasing the bonding strength between objects, it is considered to increase the bonding area. Therefore, for the pipe joint of Patent Document 2, an inclined surface joint is selected instead of a vertical surface joint. Further, for the purpose of reducing the diameter (space saving) of the pipe joint, the metal portions of different materials are joined to each other on an inclined surface within the range of the wall thickness of the pipe joint. The pipe joint of Patent Document 2 is manufactured by a method of carving out the shape of the pipe joint from a cup-shaped deep-drawn molded body having a sufficiently large wall thickness. The shape of the fitting is machined (cutting) so that the metal part at one end and the metal part at the other end in the axial direction of the fitting are made of different materials, and the wall thickness range of the fitting. It is done so that metal parts of different materials are joined to each other on an inclined surface.

特開2015−114082号公報Japanese Unexamined Patent Publication No. 2015-114082 特開平2−134485号公報Japanese Unexamined Patent Publication No. 2-134485

上記した特許文献2の管継手のように、自らの肉厚の範囲内で異材質の金属部同士の傾斜面接合となるように構成された管継手は、小型化や軽量化のために肉厚を小さくすると機械的強さが低下し、減圧と昇圧の繰り返しに耐え切れずに破損することがあった。 Like the pipe joint of Patent Document 2 described above, a pipe joint configured to be an inclined surface joint between metal parts of different materials within the range of its own wall thickness is made of meat for miniaturization and weight reduction. When the thickness was reduced, the mechanical strength was reduced, and the mechanical strength could not withstand repeated depressurization and pressurization, resulting in damage.

この発明の目的は、管継手の内部の異材質の金属部同士の接合面積を肉厚の範囲内で十分に大きくすることにより、減圧と昇圧の繰り返しに耐える高い機械的強さを有し、さらに望ましくは、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる、管継手およびその製造方法を提供することである。 An object of the present invention is to have high mechanical strength to withstand repeated depressurization and pressurization by sufficiently increasing the joint area between metal portions of different materials inside the pipe joint within the range of wall thickness. More preferably, it is to provide a pipe joint and a method for manufacturing the pipe joint, which facilitates the construction of a pipe by brazing or welding (TIG welding, laser welding, electron beam welding, etc.).

本発明者らは、管継手の内部における異材質の金属部同士を管継手の軸心に沿って金属拡散接合させることで上記課題が解決できることを見出し、この発明の構成に想到した。 The present inventors have found that the above problems can be solved by metal diffusion bonding of metal portions of different materials inside the pipe joint along the axis of the pipe joint, and have arrived at the configuration of the present invention.

この発明に係る管継手は、第1金属により構成された管状の第1金属部と、前記第1金属とは異なる第2金属により構成された管状の第2金属部と、を備え、前記第1金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸とが、同心であり、前記同心の軸方向の一方側の第1端部から他方側の第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と、前記第2金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている。 The pipe joint according to the present invention includes a tubular first metal portion made of a first metal and a tubular second metal portion made of a second metal different from the first metal. The tubular shaft of the 1 metal portion and the tubular shaft of the second metal portion are concentric, and the concentric axial direction from the first end on one side to the second end on the other side. In the meantime, the surface of the first metal portion along the concentric axial direction and the surface of the second metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction. ing.

この発明に係る管継手は、さらに、耐食性金属により構成された管状の第1被覆金属部を備え、前記第1被覆金属部の前記管状をなす軸と、前記第1金属部の前記管状をなす軸とが、同心であり、前記第1端部から前記第2端部までの間において、前記第1被覆金属部の前記同心の軸方向に沿う面と、前記第1金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、管継手であってよい。 The pipe joint according to the present invention further includes a tubular first coated metal portion made of a corrosion-resistant metal, and forms the tubular shaft of the first coated metal portion and the tubular portion of the first metal portion. The shafts are concentric, and between the first end portion and the second end portion, the surface of the first coated metal portion along the concentric axial direction and the concentric surface of the first metal portion. The surface along the axial direction may be a pipe joint in which metal diffusion bonding is performed along the concentric axial direction.

この発明に係る管継手は、さらに、耐食性金属により構成された管状の第2被覆金属部を備え、前記第2被覆金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸とが、同心であり、前記第1端部から前記第2端部までの間において、前記第2被覆金属部の前記同心の軸方向に沿う面と、前記第2金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、管継手であってよい。 The pipe joint according to the present invention further includes a tubular second coated metal portion made of a corrosion-resistant metal, and forms the tubular shaft of the second coated metal portion and the tubular portion of the second metal portion. The shafts are concentric, and between the first end portion and the second end portion, the surface of the second coated metal portion along the concentric axial direction and the concentric surface of the second metal portion. The surface along the axial direction may be a pipe joint in which metal diffusion bonding is performed along the concentric axial direction.

この発明に係る管継手は、さらに、前記第1金属および前記第2金属部とは異なる第3金属により構成された管状の中間金属部とを備え、前記第1金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸と、前記中間金属部の前記管状をなす軸とが、同心であり、前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と、前記中間金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合され、前記第2金属部の前記同心の軸方向に沿う面と、前記中間金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、管継手であってよい。 The pipe joint according to the present invention further includes a tubular intermediate metal portion made of the first metal and a third metal different from the second metal portion, and the tubular shaft of the first metal portion. The tubular shaft of the second metal portion and the tubular shaft of the intermediate metal portion are concentric, and the first end to the second end is the first. A surface of the 1 metal portion along the concentric axial direction and a surface of the intermediate metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction, and the second metal portion is said to have the same. It may be a pipe joint in which a surface along the concentric axial direction and a surface of the intermediate metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction.

この発明に係る管継手は、前記第1端部において、前記第1金属部の外周面が前記同心の軸方向に沿って露出している、管継手であってよい。 The pipe joint according to the present invention may be a pipe joint in which the outer peripheral surface of the first metal portion is exposed along the concentric axial direction at the first end portion.

この発明に係る管継手は、前記第2端部において、前記第2金属部の内周面が前記同心の軸方向に沿って露出している、管継手であってよい。 The pipe joint according to the present invention may be a pipe joint in which the inner peripheral surface of the second metal portion is exposed along the concentric axial direction at the second end portion.

この発明に係る管継手は、前記第1端部において、前記中間金属部の外周面が前記同心の軸方向に沿って露出している、管継手であってよい。 The pipe joint according to the present invention may be a pipe joint in which the outer peripheral surface of the intermediate metal portion is exposed along the concentric axial direction at the first end portion.

この発明に係る管継手は、前記第2端部において、前記中間金属部の内周面が前記同心の軸方向に沿って露出している、管継手であってよい。 The pipe joint according to the present invention may be a pipe joint in which the inner peripheral surface of the intermediate metal portion is exposed along the concentric axial direction at the second end portion.

この発明に係る管継手は、前記第1金属部と前記第2金属部とが前記金属拡散接合されている第1接合部は、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第1接合部の前記同心の軸線上に投影した長さをLJ1とするとき、LJ1/LM1≧0.5を満たす、管継手であることが好ましい。 In the pipe joint according to the present invention, the first metal portion in which the first metal portion and the second metal portion are metal diffusion bonded is the length projected on the concentric axis of the first metal portion. was a L M1, when the length projected onto the concentric axis of the first joint portion and L J1, satisfy L J1 / L M1 ≧ 0.5, it is preferred that the pipe joint.

この発明に係る管継手は、前記第1接合部は、前記第1金属部の最小内径をDM1とするとき、LJ1/DM1≧2を満たす、管継手であることが好ましい。 Pipe joint according to the present invention, the first junction, when the minimum inner diameter of the first metal portion and D M1, satisfy L J1 / D M1 ≧ 2, is preferably a pipe joint.

この発明に係る管継手は、前記第1金属部と前記中間金属部とが前記金属拡散接合されている第2接合部は、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第2接合部の前記同心の軸線上に投影した長さをLJ2とするとき、LJ2/LM1≧0.5を満たし、前記第2金属部と前記中間金属部とが前記金属拡散接合されている第3接合部は、前記第2金属部の前記同心の軸線上に投影した長さをLM2とし、前記第3接合部の前記同心の軸線上に投影した長さをLJ3とするとき、LJ3/LM2≧0.5を満たす、管継手であることが好ましい。 In the pipe joint according to the present invention, the second joint portion in which the first metal portion and the intermediate metal portion are metal diffusion-bonded has a length projected on the concentric axis of the first metal portion. When L M1 is defined and the length projected on the concentric axis of the second joint is L J2 , L J2 / L M1 ≧ 0.5 is satisfied, and the second metal portion and the intermediate metal portion are formed. the third joint portion but which is the metal diffusion bonding, the length the said length projected onto the axis of the concentric second metal portion and L M2, projected onto the axis of the concentric of the third joint portion when to the L J3, satisfy L J3 / L M2 ≧ 0.5, it is preferred that the pipe joint is.

この発明に係る管継手は、前記第1金属部の最小内径をDM1とするとき、前記第2接合部はLJ2/DM1≧2を満たし、前記第3接合部はLJ3/DM1≧2を満たす、管継手であることが好ましい。 Pipe joint according to the present invention, when the minimum inner diameter of the first metal portion and D M1, the second joint meet the L J2 / D M1 ≧ 2, the third joint L J3 / D M1 It is preferable that the pipe joint satisfies ≧ 2.

上記した管継手は、以下の製造方法により作製することができる。
この発明に係る管継手の製造方法は、第1金属からなる第1金属板と、前記第1金属とは異なる第2金属からなる第2金属板とを準備し、前記第1金属板と前記第2金属板とを板厚方向に積層した状態で圧延し、前記第1金属と前記第2金属との間に金属拡散が生じるように熱処理し、前記第1金属により構成された平板状の第1金属層と、前記第2金属により構成された平板状の第2金属層とが、前記平板状の板面方向に沿って金属拡散接合されている、クラッド板材を作製する工程と、前記クラッド板材を深絞り成形し、前記第1金属により構成された管状の第1金属部と、前記第2金属により構成された管状の第2金属部と、を備え、前記第1金属部の前記管状をなす軸と前記第2金属部の前記管状をなす軸とが同心であり、前記同心の軸方向の一方側の第1端部から他方側の第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記第2金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する工程と、前記管状部材の前記深絞り成形方向の両端部分を切断し、前記管状部材から前記管状部を切離する工程と、を有する。
The above-mentioned pipe joint can be manufactured by the following manufacturing method.
In the method for manufacturing a pipe joint according to the present invention, a first metal plate made of a first metal and a second metal plate made of a second metal different from the first metal are prepared, and the first metal plate and the above are described. The second metal plate is rolled in a state of being laminated in the plate thickness direction, heat-treated so that metal diffusion occurs between the first metal and the second metal, and a flat plate formed of the first metal is formed. A step of producing a clad plate material in which a first metal layer and a flat plate-shaped second metal layer composed of the second metal are metal-diffuse-bonded along the plate surface direction of the flat plate-like plate. The clad plate material is deeply drawn and provided with a tubular first metal portion made of the first metal and a tubular second metal portion made of the second metal. The tubular shaft and the tubular shaft of the second metal portion are concentric, and the first end on one side of the concentric axial direction to the second end on the other side. A tubular portion including a tubular portion in which a surface of the metal portion along the concentric axial direction and a surface of the second metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction. It includes a step of producing a member and a step of cutting both end portions of the tubular member in the deep drawing molding direction and separating the tubular portion from the tubular member.

この発明に係る管継手の製造方法は、前記クラッド板材を作製する工程では、さらに、耐食性金属からなる第1被覆金属板を準備し、圧延し、熱処理し、前記耐食性金属により構成された平板状の第1被覆金属層と平板状の前記第1金属層とが前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、前記管状部材を作製する工程では、前記クラッド材を深絞り成形し、前記耐食性金属により構成された管状の第1被覆金属部を備え、前記第1金属部の前記管状をなす軸と前記第1被覆金属部の前記管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記第1被覆金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、製造方法であってよい。 In the method for manufacturing a pipe joint according to the present invention, in the step of producing the clad plate material, a first coated metal plate made of a corrosion-resistant metal is further prepared, rolled, heat-treated, and formed into a flat plate formed of the corrosion-resistant metal. In the step of producing a clad plate material in which the first coated metal layer and the flat plate-shaped first metal layer are metal diffusion-bonded along the plate surface direction of the flat plate, and the tubular member is produced, the clad The material is deeply drawn and provided with a tubular first coated metal portion made of the corrosion-resistant metal, and the tubular shaft of the first metal portion and the tubular shaft of the first coated metal portion are formed. Concentric, between the first end and the second end, the surface of the first metal portion along the concentric axial direction and the surface of the first coated metal portion along the concentric axial direction. It may be a manufacturing method for producing a tubular member including a tubular portion, which is metal diffusion-bonded along the concentric axial direction.

この発明に係る管継手の製造方法は、前記クラッド材を作製する工程では、さらに、耐食性金属からなる第2被覆金属板を準備し、圧延し、熱処理し、前記耐食性金属により構成された平板状の第2被覆金属層と平板状の前記第2金属層とが前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、前記管状部材を作製する工程では、前記クラッド板材を深絞り成形し、前記耐食性金属により構成された管状の第2被覆金属部を備え、前記第2金属部の前記管状をなす軸と前記第2被覆金属部の前記管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第2金属部の前記同心の軸方向に沿う面と前記第2被覆金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、製造方法であってよい。 In the method for manufacturing a pipe joint according to the present invention, in the step of producing the clad material, a second coated metal plate made of a corrosion-resistant metal is further prepared, rolled, heat-treated, and formed into a flat plate formed of the corrosion-resistant metal. In the step of producing a clad plate material in which the second coated metal layer and the flat plate-shaped second metal layer are metal diffusion-bonded along the plate surface direction of the flat plate, and the tubular member is produced, the clad The plate material is deeply drawn and provided with a tubular second coated metal portion made of the corrosion-resistant metal, and the tubular shaft of the second metal portion and the tubular shaft of the second coated metal portion are formed. Concentric, between the first end and the second end, the surface of the second metal portion along the concentric axial direction and the surface of the second coated metal portion along the concentric axial direction. It may be a manufacturing method for producing a tubular member including a tubular portion, which is metal diffusion-bonded along the concentric axial direction.

この発明に係る管継手の製造方法は、前記クラッド材を作製する工程では、さらに、前記第1金属および前記第2金属とは異なる第3金属からなる中間金属板を準備し、圧延し、熱処理し、平板状の前記第1金属層と平板状の前記第2金属層との間に前記第3金属により構成された平板状の中間金属層が前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、前記管状部材を作製する工程では、前記クラッド板材を深絞り成形し、前記第3金属により構成された管状の中間金属部を備え、前記第1金属部の前記管状をなす軸と前記第2金属部の前記管状をなす軸と前記中間金属部の管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記中間金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合され、前記第2金属部の前記同心の軸方向に沿う面と前記中間金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、製造方法であってよい。 In the method for manufacturing a pipe joint according to the present invention, in the step of producing the clad material, an intermediate metal plate made of the first metal and a third metal different from the second metal is further prepared, rolled, and heat-treated. Then, between the flat plate-shaped first metal layer and the flat plate-shaped second metal layer, a flat plate-shaped intermediate metal layer composed of the third metal diffuses metal along the flat plate-shaped plate surface direction. In the step of producing the clad plate material to be joined and producing the tubular member, the clad plate material is deeply drawn and provided with a tubular intermediate metal portion composed of the third metal, and the first metal portion is provided. The tubular shaft, the tubular shaft of the second metal portion, and the tubular shaft of the intermediate metal portion are concentric, and the tubular shaft is concentric between the first end portion and the second end portion. The concentric axial surface of the first metal portion and the concentric axial surface of the intermediate metal portion are metal diffusion-bonded along the concentric axial direction, and the concentric surface of the second metal portion is formed. A method for producing a tubular member including a tubular portion, wherein a surface along the axial direction of the metal portion and a surface of the intermediate metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction. May be.

この発明に係る管継手の製造方法は、前記管状部材から切離された前記管状部の前記第1端部において、前記第1金属部の外周面を前記同心の軸方向に沿って露出させる工程を有する、製造方法であってよい。 The method for manufacturing a pipe joint according to the present invention is a step of exposing the outer peripheral surface of the first metal portion along the concentric axial direction at the first end portion of the tubular portion separated from the tubular member. It may be a manufacturing method having.

この発明に係る管継手の製造方法は、前記管状部材から切離された前記管状部の前記第2端部において、前記第2金属部の内周面を前記同心の軸方向に沿って露出させる工程を有する、製造方法であってよい。 In the method for manufacturing a pipe joint according to the present invention, the inner peripheral surface of the second metal portion is exposed along the concentric axial direction at the second end portion of the tubular portion separated from the tubular member. It may be a manufacturing method having a step.

この発明に係る管継手の製造方法は、前記管状部材から切離された前記管状部の前記第1端部において、前記中間金属部の外周面を前記同心の軸方向に沿って露出させる工程を有する、製造方法であってよい。 The method for manufacturing a pipe joint according to the present invention includes a step of exposing the outer peripheral surface of the intermediate metal portion along the concentric axial direction at the first end portion of the tubular portion separated from the tubular member. It may be a manufacturing method having.

この発明に係る管継手の製造方法は、前記管状部材から切離された前記管状部の前記第2端部において、前記中間金属部の内周面を前記同心の軸方向に沿って露出させる工程を有する、製造方法であってよい。 The method for manufacturing a pipe joint according to the present invention is a step of exposing the inner peripheral surface of the intermediate metal portion along the concentric axial direction at the second end portion of the tubular portion separated from the tubular member. It may be a manufacturing method having.

この発明に係る管継手の製造方法は、前記第1金属部と前記第2金属部との前記金属拡散接合されている第1接合部が、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第1接合部の前記同心の軸線上に投影した長さをLJ1とするとき、LJ1/LM1≧0.5を満たすように、前記管状部を形成する、製造方法であることが好ましい。 In the method for manufacturing a pipe joint according to the present invention, the metal diffusion-bonded first joint portion between the first metal portion and the second metal portion is projected onto the concentric axis of the first metal portion. When the length is L M1 and the length projected on the concentric axis of the first joint is L J1 , the tubular portion is formed so as to satisfy L J1 / L M1 ≧ 0.5. It is preferable that it is a manufacturing method.

この発明に係る管継手の製造方法は、前記第1金属部の最小内径をDM1とするとき、前記第1接合部がLJ1/DM1≧2を満たす、製造方法であることが好ましい。 Method for manufacturing a pipe joint according to the present invention, when the minimum inner diameter of the first metal portion and D M1, the first joint portion satisfies L J1 / D M1 ≧ 2, is preferably a production process.

この発明に係る管継手の製造方法は、前記第1金属部と前記中間金属部との前記金属拡散接合されている第2接合部が、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第2接合部の前記同心の軸線上に投影した長さをLJ2とするとき、LJ2/LM1≧0.5を満たし、前記第2金属部と前記中間金属部との前記金属拡散接合されている第3接合部が、前記第2金属部の前記同心の軸線上に投影した長さをLM2とし、前記第3接合部の前記同心の軸線上に投影した長さをLJ3とするとき、LJ3/LM2≧0.5を満たすように、前記管状部を形成する、製造方法であることが好ましい。 In the method for manufacturing a pipe joint according to the present invention, the metal diffusion-bonded second joint portion between the first metal portion and the intermediate metal portion is projected onto the concentric axis of the first metal portion. When the length is L M1 and the length projected on the concentric axis of the second joint is L J2 , L J2 / L M1 ≧ 0.5 is satisfied, and the second metal portion and the intermediate are satisfied. third junction being the metal diffusion bonding with the metal part, a length projected onto the concentric axis of the second metal portion and L M2, on the concentric axis of the third joint portion When the projected length is L J3 , it is preferable to use a manufacturing method in which the tubular portion is formed so as to satisfy L J3 / L M2 ≧ 0.5.

この発明に係る管継手の製造方法は、前記第1金属部の最小内径をDM1とするとき、前記第2接合部がLJ2/DM1≧2を満たし、前記第3接合部がLJ3/DM1≧2を満たすように、前記管状部を形成する、製造方法であることが好ましい。 Method for manufacturing a pipe joint according to the present invention, when the minimum inner diameter of the first metal portion and D M1, the second joint meet the L J2 / D M1 ≧ 2, the third joint portion L J3 It is preferable to use a manufacturing method in which the tubular portion is formed so as to satisfy / D M1 ≧ 2.

この発明によれば、管継手の内部の異材質の金属部同士の接合面積が肉厚の範囲内で十分に大きいため、小型化や軽量化のために肉厚を小さくしても減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。また、この発明に係る管継手は、従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 According to the present invention, since the joint area between metal parts of different materials inside the pipe joint is sufficiently large within the range of the wall thickness, the pressure is reduced and the pressure is increased even if the wall thickness is reduced for miniaturization and weight reduction. A pipe joint having a high mechanical strength that can withstand the repetition of is obtained. Further, in the pipe joint according to the present invention, the joint portion between metal parts of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint, so that brazing joint or welding (TIG welding, laser welding, electron beam welding, etc.) ) Makes it easier to install piping.

この発明に係る管継手の第1構成例を示す図である。It is a figure which shows the 1st structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第1構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 1st structure example of the pipe joint which concerns on this invention. この発明に係る管継手の第1構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 1st structure example of the pipe joint which concerns on this invention. この発明に係る管継手の第1構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 1st structure example of the pipe joint which concerns on this invention. この発明に係る管継手の第2構成例を示す図である。It is a figure which shows the 2nd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第2構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 2nd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第2構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 2nd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第2構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 2nd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第3構成例を示す図である。It is a figure which shows the 3rd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第3構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 3rd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第3構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 3rd structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第3構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 3rd structure example of the pipe joint which concerns on this invention. この発明に係る管継手の第4構成例を示す図である。It is a figure which shows the 4th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第4構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 4th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第4構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 4th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第4構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 4th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例を示す図である。It is a figure which shows the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第4変形例を示す図である。It is a figure which shows the 4th modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第5変形例を示す図である。It is a figure which shows the 5th modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第5構成例の第6変形例を示す図である。It is a figure which shows the 6th modification of the 5th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例を示す図である。It is a figure which shows the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第4変形例を示す図である。It is a figure which shows the 4th modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第5変形例を示す図である。It is a figure which shows the 5th modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第6構成例の第6変形例を示す図である。It is a figure which shows the 6th modification of the 6th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例を示す図である。It is a figure which shows the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第4変形例を示す図である。It is a figure which shows the 4th modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第5変形例を示す図である。It is a figure which shows the 5th modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第7構成例の第6変形例を示す図である。It is a figure which shows the 6th modification of the 7th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例を示す図である。It is a figure which shows the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第1変形例を示す図である。It is a figure which shows the 1st modification of the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第2変形例を示す図である。It is a figure which shows the 2nd modification of the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第3変形例を示す図である。It is a figure which shows the 3rd modification of the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第4変形例を示す図である。It is a figure which shows the 4th modification of the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第5変形例を示す図である。It is a figure which shows the 5th modification of the 8th structural example of the pipe joint which concerns on this invention. この発明に係る管継手の第8構成例の第6変形例を示す図である。It is a figure which shows the 6th modification of the 8th structural example of the pipe joint which concerns on this invention. 管継手の第1構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 1st structural example of a pipe joint. 管継手の第2構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 2nd structural example of a pipe joint. 管継手の第3構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 3rd structural example of a pipe joint. 管継手の第4構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on 4th structural example of a pipe joint. 管継手の第5構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on 5th structural example of a pipe joint. 管継手の第6構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on 6th structural example of a pipe joint. 管継手の第7構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on 7th structural example of a pipe joint. 管継手の第8構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on 8th structural example of a pipe joint. 管継手の第1構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 1st structural example of a pipe joint. 管継手の第1構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 1st structural example of a pipe joint. 管継手の第1構成例に係る製造方法を説明するために示す図である。It is a figure which shows for demonstrating the manufacturing method which concerns on the 1st structural example of a pipe joint. 管継手の第1構成例を用いた異種金属管の配管例を示す図である。It is a figure which shows the piping example of the dissimilar metal pipe using the 1st structural example of a pipe joint. 管継手の第1構成例の第1変形例を用いた異種金属管の配管例を示す図である。It is a figure which shows the piping example of the dissimilar metal pipe using the 1st modification of the 1st configuration example of a pipe joint. 管継手の第1構成例の第3変形例を用いた異種金属管の配管例を示す図である。It is a figure which shows the piping example of the dissimilar metal pipe using the 3rd modification of the 1st configuration example of a pipe joint.

この発明を実施するための形態について、この発明に係る管継手の実施形態となる幾つかの構成例およびその変形例を挙げて、適宜図面を参照して説明する。 The embodiment for carrying out the present invention will be described with reference to the drawings as appropriate, with reference to some configuration examples and modifications thereof which are embodiments of the pipe joint according to the present invention.

<第1構成例>
この発明に係る管継手の一実施形態として、第1構成例を図1に示す。
図1に第1構成例として示す管継手100は、第1金属により構成された管状の第1金属部11と、第1金属とは異なる第2金属により構成された管状の第2金属部12とを備える。管継手100において、第1金属部11の管状をなす軸と、第2金属部12の管状をなす軸とは、同心である。つまり、管状をなす第1金属部11および第2金属部12の軸線P−Pは共通である。そして、同心の軸方向(X方向)の一方側(X1側)の第1端部から他方側(X2側)の第2端部までの間において、第1金属部11の同心の軸方向(X方向)に沿う面と、第2金属部12の同心の軸方向(X方向)に沿う面とが、同心の軸方向(X方向)に沿って金属拡散接合されている。これにより、管状をなす第1金属部11および第2金属部12の接合部(第1接合部B12)となる金属拡散接合部分もまた、管状をなす。
<First configuration example>
As an embodiment of the pipe joint according to the present invention, a first configuration example is shown in FIG.
The pipe joint 100 shown as a first configuration example in FIG. 1 has a tubular first metal portion 11 made of a first metal and a tubular second metal portion 12 made of a second metal different from the first metal. And. In the pipe joint 100, the tubular shaft of the first metal portion 11 and the tubular shaft of the second metal portion 12 are concentric. That is, the axial lines PP of the first metal portion 11 and the second metal portion 12 forming a tubular shape are common. Then, between the first end portion on one side (X1 side) of the concentric axial direction (X direction) and the second end portion on the other side (X2 side), the concentric axial direction of the first metal portion 11 ( A surface along the X direction) and a surface along the concentric axial direction (X direction) of the second metal portion 12 are metal diffusion-bonded along the concentric axial direction (X direction). As a result, the metal diffusion joint portion that becomes the joint portion (first joint portion B12) of the first metal portion 11 and the second metal portion 12 that form a tubular shape also forms a tubular shape.

管継手100は、管継手100の内部である肉厚の範囲内において第1接合部B12が管状をなすことにより、第1接合部B12の面積、すなわち金属拡散接合部分の面積が肉厚の範囲内で十分に大きくなる。そのため、管継手100は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、第1金属部11と第2金属部12との接合面積を肉厚の範囲内で十分に大きくすることができる。ここで、「管状をなす」とは、所定の肉厚を有して、または所定の層をなして、例えば円筒のように、中心軸(軸線)周りに切れ目なく連続して構成されていることを意味する。 In the pipe joint 100, the area of the first joint portion B12, that is, the area of the metal diffusion joint portion is the range of the wall thickness because the first joint portion B12 is tubular within the range of the wall thickness inside the pipe joint 100. It grows large enough within. Therefore, the pipe joint 100 has a wall thickness of the joint area between the first metal portion 11 and the second metal portion 12 as compared with the conventional dissimilar metal pipe joint in which the slanted surface is joined within the wall thickness range of the pipe joint. It can be made large enough within the range of. Here, the term "tubular" means that it has a predetermined wall thickness or forms a predetermined layer and is continuously formed around the central axis (axis), for example, like a cylinder. Means that.

管継手100の内部である肉厚の範囲内において、管状をなす第1接合部B12が金属拡散接合部分であることにより、第1金属部11を構成する第1金属および第2金属部12を構成する第2金属の一部の成分の拡散(金属拡散)により強い密着力が発現される。一般に、金属拡散接合では、母材を溶かす溶接よりも大きな接合面積が確保され、母材を溶かさないろう接合よりも大きな接合強度が確保される。また、物体同士を接合する場合、その接合面積が大きいほど大きな接合強度が得られる。例えば、従来の異種金属管継手(特許文献2参照)は、より大きな接合強度を得るため、管の厚み(肉厚)の範囲内で可能な限りの傾斜接合面にしえ接合面積を大きくする工夫をしている。この観点から、管状をなす第1接合部B12を有する管継手100は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、肉厚の範囲内で十分に大きな面積の金属拡散接合部分(第1接合部B12)による強い密着力を得ることができる。そのため、管継手100は、第1金属部11と第2金属部12との接合強度を十分に大きくすることができる。これにより、管継手100は、第1金属部11と第2金属部12との接合強度が大きいため、小型化や軽量化のために肉厚を小さくしても減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。 Within the wall thickness range inside the pipe joint 100, the tubular first joint portion B12 is a metal diffusion joint portion, so that the first metal and the second metal portion 12 constituting the first metal portion 11 are formed. Strong adhesion is exhibited by diffusion (metal diffusion) of some components of the constituent second metal. In general, metal diffusion bonding secures a larger bonding area than welding that melts the base metal, and secures a larger bonding strength than brazing bonding that does not melt the base metal. Further, when joining objects to each other, the larger the joining area, the greater the joining strength. For example, in the conventional dissimilar metal pipe joint (see Patent Document 2), in order to obtain a larger joint strength, a device for increasing the joint area on the inclined joint surface as much as possible within the range of the pipe thickness (wall thickness). I am doing. From this point of view, the pipe joint 100 having the tubular first joint portion B12 has a wall thickness within the range of the conventional dissimilar metal pipe joint which is joined on an inclined surface within the wall thickness of the pipe joint. A strong adhesion force can be obtained by the metal diffusion joint portion (first joint portion B12) having a sufficiently large area. Therefore, the pipe joint 100 can sufficiently increase the joint strength between the first metal portion 11 and the second metal portion 12. As a result, the pipe joint 100 has a high joint strength between the first metal portion 11 and the second metal portion 12, so that it can withstand repeated depressurization and boosting even if the wall thickness is reduced for miniaturization and weight reduction. Can have mechanical strength.

また、管継手100の機械的強さ向上の観点で、第1金属部11と第2金属部12との間の金属拡散接合部分である第1接合部B12は、第1金属部11の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLM1とし、第1接合部B12の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLJ1とするとき、LJ1/LM1≧0.5を満たすことが好ましい。LJ1/LM1≧0.5を満たすように構成された管継手100は、金属拡散接合により管状をなす第1接合部B12の面積(接合面積)が従来の異種金属管継手よりも十分に大きくなる。そのため、管継手100は、第1金属部1と第2金属部12とのとの接合強度が十分に大きく、十分に実用に足る管継手となる。 Further, from the viewpoint of improving the mechanical strength of the pipe joint 100, the first joint portion B12, which is a metal diffusion joint portion between the first metal portion 11 and the second metal portion 12, is concentric with the first metal portion 11. axis P-P on the projected length, i.e. the length of the length of a line connecting the projected point P1 and the projected point P2 and L M1, projected onto the axis P-P of the concentric first joint B12 That is, when the length of the line segment connecting the projection point P1 and the projection point P2 is L J1 , it is preferable that L J1 / L M1 ≧ 0.5 is satisfied. In the pipe joint 100 configured to satisfy L J1 / L M1 ≧ 0.5, the area (joint area) of the first joint portion B12 formed into a tubular shape by metal diffusion joint is sufficiently larger than that of the conventional dissimilar metal pipe joint. growing. Therefore, the pipe joint 100 has a sufficiently high joint strength between the first metal portion 1 and the second metal portion 12, and is a pipe joint that is sufficiently practical.

同様に、管継手100の機械的強さ向上の観点で、第1金属部11と第2金属部12との間の金属拡散接合部分である第1接合部B12は、第1金属部11の径方向(Z方向)の最小内径をDM1とするとき、LJ1/DM1≧2を満たすことが好ましい。LJ1/DM1≧2を満たすように構成された管継手100は、金属拡散接合により管状をなす第1接合部B12の面積(接合面積)が従来の異種金属管継手よりも十分に大きいため、第1金属部1と第2金属部12との間が十分に実用に足るに大きな接合強度となる。ここで、「最小内径」とは、同径の管継手の場合は基準内径(JIS−B0151:2018参照)を意味し、同心の径違い(異径)の管継手の場合は小径側の基準内径を意味する。 Similarly, from the viewpoint of improving the mechanical strength of the pipe joint 100, the first joint portion B12, which is the metal diffusion joint portion between the first metal portion 11 and the second metal portion 12, is the first metal portion 11. When the minimum inner diameter in the radial direction (Z direction) is D M1 , it is preferable to satisfy L J1 / D M1 ≧ 2. Since the pipe joint 100 configured to satisfy L J1 / D M1 ≧ 2, the area (joint area) of the first joint portion B12 formed into a tubular shape by metal diffusion joint is sufficiently larger than that of the conventional dissimilar metal pipe joint. , The joint strength between the first metal portion 1 and the second metal portion 12 is sufficiently large for practical use. Here, the "minimum inner diameter" means the reference inner diameter (see JIS-B0151: 2018) in the case of a pipe joint having the same diameter, and the reference on the smaller diameter side in the case of a pipe joint having a concentric difference in diameter (different diameter). It means the inner diameter.

管継手100において、第1金属部11を構成する第1金属および第2金属部12を構成する第2金属は、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。例えば、鉄系の材質である、ステンレス鋼(JIS規格のSUS304、SUS316などのオーステナイト系、SUS430などのフェライト系など)、Niを含むFe合金(Fe−Ni系、Fe−Ni−Co系など)、低炭素鋼(JIS規格のSPCD、SPCE、SPCF、SPCGなど)などを用いることができる。また、例えば、非鉄系の材質であるCu(JIS規格のC1020、C1100など)、Cu合金(JIS規格のC2100、C2600、C2680など)、Al(JIS規格のA1050、A1100など)、Al合金(JIS規格のA3003、A5021、A5052、A5086など)、Ni(JIS規格のNW2200、NW2201など)、Ni合金(Ni−Cu系、Ni−Cr系、Ni−Nb系など)、Ti(JIS規格の2種など)、Ti合金(T−Al−V系、Ti−Al−Sn系など)などを用いることができる。 In the pipe joint 100, the first metal constituting the first metal portion 11 and the second metal constituting the second metal portion 12 can be rolled (clad-rolled) in a state where they are laminated in the plate thickness direction. Any material may be used as long as it is a material in which appropriate metal diffusion is generated by heating (heat treatment) after clad rolling. For example, iron-based materials such as stainless steel (JIS standard austenitic stainless steel such as SUS304 and SUS316, ferrite such as SUS430), and Ni-containing Fe alloys (Fe-Ni-based, Fe-Ni-Co-based, etc.) , Low carbon steel (JIS standard SPCD, SPCE, SPCF, SPCG, etc.) and the like can be used. Further, for example, Cu (JIS standard C1020, C1100, etc.), Cu alloy (JIS standard C2100, C2600, C2680, etc.), Al (JIS standard A1050, A1100, etc.), Al alloy (JIS), which are non-ferrous materials, are used. Standards A3003, A5021, A5052, A5086, etc.), Ni (JIS standard NW2200, NW2201 etc.), Ni alloy (Ni-Cu type, Ni-Cr type, Ni-Nb type, etc.), Ti (JIS standard 2 types) Etc.), Ti alloys (T-Al-V type, Ti-Al-Sn type, etc.) and the like can be used.

管継手100を構成する第1金属部11と第2金属部12との組み合わせ、つまり、第1金属と第2金属との組み合わせは、管継手100を介して接合される一方および他方の管の種類に応じて選択することができる。管継手100とこれに接合する管との接合性の観点から、第1金属部11(第1金属)をこれに接合する一方の管と同等の材質とし、第2金属部12(第2金属)をこれに接合する他方の管と同等の材質とすることが好ましい。例えば、一方の管がCu製またはCu合金製の管(銅管)で、他方の管がステンレス鋼製の管(ステンレス鋼管)である場合は、第1金属をCuまたはCu合金として第1金属部11を構成し、第2金属をステンレス鋼として第2金属部12を構成することが好ましい。なお、図1に示す管継手100において、内側の材質がCuまたはCu合金で外側の材質がステンレス鋼の組み合わせであってもよいし、内側の材質がステンレス鋼で外側の材質がCuまたはCu合金の組み合わせであってもよい。 The combination of the first metal portion 11 and the second metal portion 12 constituting the pipe joint 100, that is, the combination of the first metal and the second metal is made of one and the other pipes to be joined via the pipe joint 100. It can be selected according to the type. From the viewpoint of bondability between the pipe joint 100 and the pipe to be joined to the pipe joint 100, the first metal part 11 (first metal) is made of the same material as one of the pipes to be joined to the pipe joint 100, and the second metal part 12 (second metal) is used. ) Is preferably made of the same material as the other pipe to be joined. For example, when one tube is made of Cu or Cu alloy (copper tube) and the other tube is made of stainless steel (stainless steel tube), the first metal is Cu or Cu alloy and the first metal. It is preferable that the second metal portion 12 is formed by forming the portion 11 and using the second metal as stainless steel. In the pipe joint 100 shown in FIG. 1, the inner material may be a combination of Cu or Cu alloy and the outer material may be stainless steel, or the inner material may be stainless steel and the outer material may be Cu or Cu alloy. It may be a combination of.

同様な観点で、管継手100を構成する第1金属部11および第2金属部12は、銅管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることなど、用途に応じて設定することができる。このように、管継手100の第1金属部11(第1金属)および第2金属部12(第2金属)を選定することにより、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 From the same viewpoint, the first metal portion 11 and the second metal portion 12 constituting the pipe joint 100 are made by combining a low carbon steel pipe, an aluminum pipe, a nickel pipe, a titanium pipe, or the like with a copper pipe, or a stainless steel pipe. On the other hand, it can be set according to the application, such as combining a low carbon steel pipe, an aluminum pipe, a nickel pipe, a titanium pipe, and the like. In this way, by selecting the first metal portion 11 (first metal) and the second metal portion 12 (second metal) of the pipe joint 100, a pipe (joint pipe) made of a material suitable for welding can also be used. It is a pipe joint that can be easily joined to a pipe made of a material suitable for brazing (a pipe to be joined) while ensuring an appropriate joining strength.

次に、図1に第1構成例として示す管継手100の製造方法について説明する。
管継手100は、図45に示すようなクラッド板材1を作製する工程と、図53および図54に示すような深絞り成形によって管状部材を作製する工程と、図55に示すような管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。
Next, a method of manufacturing the pipe joint 100 shown as a first configuration example in FIG. 1 will be described.
The pipe joint 100 is composed of a step of manufacturing a clad plate material 1 as shown in FIG. 45, a step of manufacturing a tubular member by deep drawing as shown in FIGS. 53 and 54, and a tubular member as shown in FIG. 55. It can be produced by a manufacturing method having a step of cutting off a tubular portion.

クラッド板材1を作製する工程では、第1金属(例えばCu)からなる第1金属板11と、第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12とを準備し、第1金属板11と第2金属板12とを板厚方向(X方向)に積層した状態で圧延する。そして、第1金属と第2金属との間に金属拡散が生じるような条件で熱処理をする。これにより、第1金属により構成された平板状の第1金属層11と、第2金属により構成された平板状の第2金属層12とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図45に示すようなクラッド板材1を作製する。 In the step of producing the clad plate material 1, a first metal plate 11 made of a first metal (for example, Cu) and a second metal plate 12 made of a second metal (for example, stainless steel or Al) different from the first metal are formed. The first metal plate 11 and the second metal plate 12 are prepared and rolled in a state of being laminated in the plate thickness direction (X direction). Then, the heat treatment is performed under the condition that metal diffusion occurs between the first metal and the second metal. As a result, the flat plate-shaped first metal layer 11 made of the first metal and the flat plate-shaped second metal layer 12 made of the second metal are formed along the flat plate surface direction (X direction). A clad plate material 1 as shown in FIG. 45, which is metal diffusion bonded, is produced.

深絞り成形によって管状部材を作製する工程では、図53および図54に示すように、ポンチ900およびダイス910を用いて、クラッド板材1を第1金属層11側(X2側)から第2金属層12側(X1側)に向かって深絞り成形する。この深絞り成形では、ポンチ900が接触するクラッド板材1の第1金属層11の表面11aが深絞り成形体の内側に位置し、ダイス910が接触するクラッド板材1の第2金属層12の表面12bが深絞り成形体の外側に位置する。このような深絞り成形により、第1金属(例えばCu)により構成された管状の第1金属部11と、第2金属(例えばステンレス鋼またはAl)により構成された管状の第2金属部12と、を備え、第1金属部11の管状をなす軸と、第2金属部12の管状をなす軸とが、同心の軸(図1に示す軸線P−P)であり、同心の軸方向(X方向)の一方側(X1側)の第1端部から他方側(X2側)の第2端部までの間において、第1金属部11の同心の軸方向(図1に示すX方向)に沿う面と、第2金属部12の同心の軸方向(図1に示す軸線P−P)に沿う面とが、同心の軸方向(図1に示すX方向)に沿って金属拡散接合されている管状部を含む、X方向断面がU字状の管状部材を作製する。 In the step of producing the tubular member by deep drawing, as shown in FIGS. 53 and 54, the clad plate material 1 is subjected to the first metal layer 11 side (X2 side) to the second metal layer by using the punch 900 and the die 910. Deep drawing is performed toward the 12 side (X1 side). In this deep drawing, the surface 11a of the first metal layer 11 of the clad plate material 1 with which the punch 900 is in contact is located inside the deep drawing body, and the surface of the second metal layer 12 of the clad plate material 1 with which the die 910 is in contact. 12b is located on the outside of the deep-drawn compact. By such deep drawing, a tubular first metal portion 11 made of a first metal (for example, Cu) and a tubular second metal portion 12 made of a second metal (for example, stainless steel or Al) are formed. , And the tubular shaft of the first metal portion 11 and the tubular shaft of the second metal portion 12 are concentric axes (axis line PP shown in FIG. 1) and are concentric in the axial direction (coordinated axis PP). Concentric axial direction of the first metal portion 11 (X direction shown in FIG. 1) between the first end portion on one side (X1 side) of the X direction) and the second end portion on the other side (X2 side). And the surface of the second metal portion 12 along the concentric axial direction (axis line PP shown in FIG. 1) are metal diffusion-bonded along the concentric axial direction (X direction shown in FIG. 1). A tubular member having a U-shaped cross section in the X direction is produced, including the tubular portion.

管状部材から管状部を切離する工程では、図55に示すように、X方向断面がU字状の管状部材の深絞り成形方向(X方向)の両端部分を、例えば、X1側を線分C1−C1の位置で切断し、X2側を線分C2−C2の位置で切断する。これにより、X方向断面がU字状の管状部材から外観が円筒状の管継手100の形状に対応する管状部が切離され、外観が円筒状の管継手100を作製することができる。 In the step of separating the tubular portion from the tubular member, as shown in FIG. 55, both ends of the tubular member having a U-shaped cross section in the X direction in the deep drawing direction (X direction), for example, the X1 side is a line segment. Cut at the position of C1-C1 and cut at the position of the line segment C2-C2 on the X2 side. As a result, the tubular portion corresponding to the shape of the pipe joint 100 having a cylindrical appearance is separated from the tubular member having a U-shaped cross section in the X direction, and the pipe joint 100 having a cylindrical appearance can be manufactured.

上記の製造方法により作製された管継手100は、管継手100の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手100は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 100 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 100 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 100, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第1構成例の第1変形例>
この発明に係る管継手の一実施形態として、第1構成例の第1変形例を図2に示す。
図2に第1構成例の第1変形例として示す管継手110は、管継手100を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手110は、第1端部の外周側に段差を有する。したがって、管継手110は、管継手100と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手110は、管継手100よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手100と同等の接合強度を得ることができる。
<First modification of the first configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 2 shows a first modification of the first configuration example.
In the pipe joint 110 shown as a first modification of the first configuration example in FIG. 2, the pipe joint 100 is used, and the length of the tubular second metal portion 12 in the axial direction (X direction) is set to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 110 has a step on the outer peripheral side of the first end portion. Therefore, the pipe joint 110 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 100. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 100, the pipe joint 110 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 100 can be obtained. be able to.

なお、管継手110は、第2金属部12および第1接合部B12についての軸方向(X方向)の長さに関する構成以外は管継手100と同様と考えてよい。したがって、管継手110における第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 110 may be considered to be the same as the pipe joint 100 except for the configuration relating to the axial length (X direction) of the second metal portion 12 and the first joint portion B12. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 110 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手110は、クラッド板材1(図45参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手110の製造において、クラッド板材1を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手110の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 110 includes a step of manufacturing a clad plate member 1 (see FIG. 45), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 110, the step of manufacturing the clad plate material 1, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 110, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手110の製造において、第1金属部11の外周面11bを露出させる工程では、管状部材から切離された管状部の第1端部において、第2金属部12の一部を除去して第1金属部11の外周面11bを露出させる。第1金属部11の外周面11bの露出は、切削、研削、化学研磨などの手段により可能である。これにより、X方向断面がU字状の管状部材から切離された管継手100の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手110を作製することができる。 In the step of exposing the outer peripheral surface 11b of the first metal portion 11 in the production of the pipe joint 110, a part of the second metal portion 12 is removed at the first end portion of the tubular portion separated from the tubular member. The outer peripheral surface 11b of the first metal portion 11 is exposed. The outer peripheral surface 11b of the first metal portion 11 can be exposed by means such as cutting, grinding, and chemical polishing. As a result, using a tubular portion corresponding to the shape of the pipe joint 100 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. The pipe joint 110 can be manufactured.

上記の製造方法により作製された管継手110は、管継手110の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手110は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 110 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 110 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 110 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第1構成例の第2変形例>
この発明に係る管継手の一実施形態として、第1構成例の第2変形例を図3に示す。
図3に第1構成例の第2変形例として示す管継手120は、管継手100を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手120は、第2端部の内周側に段差を有する。したがって、管継手120は、管継手100と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手120は、管継手100よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手100と同等の接合強度を得ることができる。
<Second modification of the first configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 3 shows a second modification of the first configuration example.
In the pipe joint 120 shown as a second modification of the first configuration example in FIG. 3, the pipe joint 100 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) is set to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 120 has a step on the inner peripheral side of the second end portion. Therefore, the pipe joint 120 has a ratio of the length (the length of the line segment connecting the projection point P1 and the projection point P2) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 100. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 100, the pipe joint 120 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 100 can be obtained. be able to.

なお、管継手120は、第1金属部11および第1接合部B12についての軸方向(X方向)の長さに関する構成以外は管継手100と同様と考えてよい。したがって、管継手120における第1金属と第2金属の組み合せを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 120 may be considered to be the same as the pipe joint 100 except for the configuration relating to the axial length (X direction) of the first metal portion 11 and the first joint portion B12. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 120 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手120は、クラッド板材1(図45参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手120の製造において、クラッド板材1を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手120の製造において、管継手100と同様の工程に関しては管継手100(第1構成例)に関する説明を参照し、ここでは略す。 The pipe joint 120 includes a step of manufacturing a clad plate member 1 (see FIG. 45), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 120, the step of manufacturing the clad plate material 1, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 120, the description regarding the pipe joint 100 (first configuration example) is referred to for the same process as the pipe joint 100, and is omitted here.

管継手120の製造において、第2金属部12の内周面12aを露出させる工程では、管状部材から切離された管状部の第2端部において、第1金属部11の一部を除去して第2金属部12の内周面12aを露出させる。第2金属部12の内周面12aの露出は、切削、研削、化学研磨などの手段により可能である。これにより、X方向断面がU字状の管状部材から切離された管継手100の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手120を作製することができる。 In the step of exposing the inner peripheral surface 12a of the second metal portion 12 in the production of the pipe joint 120, a part of the first metal portion 11 is removed at the second end portion of the tubular portion separated from the tubular member. The inner peripheral surface 12a of the second metal portion 12 is exposed. The inner peripheral surface 12a of the second metal portion 12 can be exposed by means such as cutting, grinding, and chemical polishing. As a result, a tubular portion corresponding to the shape of the pipe joint 100 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. The pipe joint 120 can be manufactured.

上記の製造方法により作製された管継手120は、管継手120の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手120は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 120 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 120 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 120 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第1構成例の第3変形例>
この発明に係る管継手の一実施形態として、第1構成例の第3変形例を図4に示す。
図4に第1構成例の第3変形例として示す管継手130は、管継手100を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手130は、第1端部の外周側および第2端部の内周側に段差を有する。したがって、管継手130は、管継手100と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手130は、管継手100よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手100と同等の接合強度を得ることができる。
<Third modification example of the first configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 4 shows a third modification of the first configuration example.
In the pipe joint 130 shown as a third modification of the first configuration example in FIG. 4, the pipe joint 100 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 130 has a step on the outer peripheral side of the first end portion and the inner peripheral side of the second end portion. Therefore, the pipe joint 130 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 100. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 100, the pipe joint 130 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 100 can be obtained. be able to.

なお、管継手130は、第1金属部11、第2金属部12および第1接合部B12についての軸方向(X方向)の長さに関する構成以外は管継手100と同様と考えてよい。したがって、管継手130における第1金属と第2金属の組み合せを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 130 may be considered to be the same as the pipe joint 100 except for the configuration relating to the axial length (X direction) of the first metal portion 11, the second metal portion 12, and the first joint portion B12. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 130 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手130は、クラッド板材1(図45参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させるとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手130の製造において、クラッド板材1を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手130の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 130 includes a step of manufacturing a clad plate member 1 (see FIG. 45), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the first metal portion 11 and exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 130, the step of manufacturing the clad plate material 1, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 130, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手130の製造において、第1金属部11の外周面11bを露出させるとともに第2金属部12の内周面12aを露出させる工程では、管状部材から切離された管状部の第1端部において第2金属部12の一部を除去して第1金属部11の外周面11bを露出させるとともに、管状部材から切離された管状部の第2端部において第1金属部11の一部を除去して第2金属部12の内周面12aを露出させる。第1金属部11の外周面11bを露出させる工程は管継手110と同様と考えてよく、第2金属部12の内周面12aの露出させる工程は管継手120と同様と考えてよい。これにより、X方向断面がU字状の管状部材から切離された管継手100の形状に対応する管状部を用いて、外観が略円筒状で第1端部および第2端部の両方に段差を有する、管継手130を作製することができる。 In the manufacturing of the pipe joint 130, in the step of exposing the outer peripheral surface 11b of the first metal portion 11 and exposing the inner peripheral surface 12a of the second metal portion 12, the first end portion of the tubular portion separated from the tubular member In, a part of the second metal part 12 is removed to expose the outer peripheral surface 11b of the first metal part 11, and a part of the first metal part 11 is exposed at the second end of the tubular part separated from the tubular member. Is removed to expose the inner peripheral surface 12a of the second metal portion 12. The step of exposing the outer peripheral surface 11b of the first metal portion 11 may be considered to be the same as that of the pipe joint 110, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 120. As a result, by using a tubular portion corresponding to the shape of the pipe joint 100 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and both the first end portion and the second end portion are formed. A pipe joint 130 having a step can be manufactured.

上記の製造方法により作製された管継手130は、管継手130の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手130は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 130 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 130 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 130 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第2構成例>
この発明に係る管継手の一実施形態として、第2構成例を図5に示す。
図5に第2構成例として示す管継手200は、図1に第1構成例として示す管継手100の第1金属部11の内周面11aに、さらに、耐食性金属により構成された管状の第1被覆金属部13(13IN)を備えるものである。管継手200において、第1被覆金属部13(13IN)の管状をなす軸と、第1金属部11の管状をなす軸とは、同心である。つまり、管状をなす第1被覆金属部13(13IN)および第1金属部11の軸線P−Pは共通である。そして、第1端部(X1側)から第2端部(X2側)までの間において、第1被覆金属部13(13IN)の同心の軸方向(X方向)に沿う面と、第1金属部11の同心の軸方向(X方向)に沿う面とが、同心の軸方向(X方向)に沿って金属拡散接合されている。これにより、管状をなす第1被覆金属部13(13IN)および管状をなす第1金属部11の接合部(第4接合部B13)となる金属拡散接合部分もまた、管状をなす。
<Second configuration example>
A second configuration example is shown in FIG. 5 as an embodiment of the pipe joint according to the present invention.
The pipe joint 200 shown as a second configuration example in FIG. 5 is a tubular first formed of a corrosion-resistant metal on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 100 shown as the first configuration example in FIG. 1 It is provided with a coated metal portion 13 (13 IN). In the pipe joint 200, the tubular shaft of the first coated metal portion 13 (13 IN ) and the tubular shaft of the first metal portion 11 are concentric. That is, the axial lines PP of the first coated metal portion 13 (13 IN ) and the first metal portion 11 forming a tubular shape are common. Then, between the first end portion (X1 side) and the second end portion (X2 side), the surface of the first coated metal portion 13 (13 IN ) along the concentric axial direction (X direction) and the first. The surfaces of the metal portion 11 along the concentric axial direction (X direction) are metal diffusion-bonded along the concentric axial direction (X direction). As a result, the metal diffusion joint portion that becomes the joint portion (fourth joint portion B13) of the tubular first coated metal portion 13 (13 IN) and the tubular first metal portion 11 also forms a tubular shape.

管継手200は、管継手200の内部である肉厚の範囲内において第4接合部B13が管状をなすことにより、第4接合部B13の面積、すなわち金属拡散接合部分の面積が十分に大きくなる。そのため、管継手200は、管継手の肉厚の範囲内で、第1被覆金属部13(13IN)と第1金属部11との接合面積が十分に大きくなる。第4接合部B13の接合面積が十分に大きいことにより、第1被覆金属部13(13IN)と第1金属部11との接合強度を十分に大きくすることができる。したがって、管継手100の第1金属部11の内周面11a側に、さらに、第1被覆金属部13(13IN)を備えた管継手200もまた、管継手100と同等の高い機械的強さを有するものとなる。また、管継手100と同様に、機械的強さ向上の観点で、管継手200は、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。 In the pipe joint 200, the area of the fourth joint B13, that is, the area of the metal diffusion joint portion becomes sufficiently large because the fourth joint B13 forms a tubular shape within the range of the wall thickness inside the pipe joint 200. .. Therefore, in the pipe joint 200, the joint area between the first coated metal portion 13 (13 IN ) and the first metal portion 11 becomes sufficiently large within the range of the wall thickness of the pipe joint. When the joint area of the fourth joint portion B13 is sufficiently large , the joint strength between the first coated metal portion 13 (13 IN ) and the first metal portion 11 can be sufficiently increased. Therefore, the pipe joint 200 provided with the first coated metal portion 13 (13 IN ) on the inner peripheral surface 11a side of the first metal portion 11 of the pipe joint 100 also has a high mechanical strength equivalent to that of the pipe joint 100. Will have. Further, similarly to the pipe joint 100, from the viewpoint of improving the mechanical strength, the pipe joint 200 preferably satisfies L J1 / L M1 ≧ 0.5, and further satisfies L J1 / D M1 ≧ 2. Is preferable.

加えて、管継手200は、管継手100の第1金属部11の内周面11a側に、さらに、管状の第1被覆金属部13(13IN)を設けているため、耐食性金属に制限されない第1金属により構成された管状の第1金属部11の内周面11aが露出する管継手100と比べて、管継手の内側(内周面13a)に高い耐食性を有している。なお、管継手200は、第1被覆金属部13(13IN)および第4接合部B13に係る構成以外は管継手100と同様と考えてよい。したがって、管継手200における第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 In addition, the pipe joint 200 is not limited to the corrosion-resistant metal because the tubular first coated metal portion 13 (13 IN ) is further provided on the inner peripheral surface 11a side of the first metal portion 11 of the pipe joint 100. Compared to the pipe joint 100 in which the inner peripheral surface 11a of the tubular first metal portion 11 made of the first metal is exposed, the inside of the pipe joint (inner peripheral surface 13a) has higher corrosion resistance. The pipe joint 200 may be considered to be the same as the pipe joint 100 except for the configuration related to the first coated metal portion 13 (13 IN) and the fourth joint portion B13. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 200 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手200において、第1被覆金属部13(13IN)と第1金属部11との組み合わせ、つまり、耐食性金属と第1金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第1金属は、管継手100に適用可能な上記した鉄系および非鉄系の材質の中から選択することができる。耐食性金属は、例えば、Ni(JIS規格のNW2200、NW2201など)またはTi(JIS規格の1種、2種など)などを用いることが好ましい。例えば、管継手200の第1金属部11の内周面11aに接合する管が銅管の場合、ろう接合または溶接の際の溶け込みを考慮し、第1金属を銅管と同種のCuまたはCu合金として第1金属部11を構成することが好ましい。そして、耐食性金属を例えばNiまたはNi合金として第1被覆金属部13(13IN)を構成することにより、第1被覆金属部13(13IN)の内周面13aに対して銅管をろう接合または溶接することができる。この場合、第2金属を例えばステンレス鋼として第2金属部12を構成することができる。 In the pipe joint 200, the combination of the first coated metal portion 13 (13 IN ) and the first metal portion 11, that is, the combination of the corrosion-resistant metal and the first metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The first metal can be selected from the above-mentioned iron-based and non-ferrous materials applicable to the pipe joint 100. As the corrosion resistant metal, for example, Ni (JIS standard NW2200, NW2201 or the like) or Ti (JIS standard type 1 or type 2 or the like) is preferably used. For example, when the pipe to be joined to the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 200 is a copper pipe, the first metal is Cu or Cu of the same type as the copper pipe in consideration of penetration at the time of brazing or welding. It is preferable to form the first metal portion 11 as an alloy. Then, by forming the first coated metal portion 13 (13 IN ) with the corrosion-resistant metal as, for example, Ni or a Ni alloy, the copper tube is brazed to the inner peripheral surface 13a of the first coated metal portion 13 (13 IN). Or it can be welded. In this case, the second metal portion 12 can be formed by using, for example, stainless steel as the second metal.

同様な観点で、管継手200を構成する第1金属部11、第2金属部12および第1被覆金属部13(13IN)は、銅管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることなど、用途に応じて設定することができる。このように、管継手200の第1金属部11を構成する第1金属、第2金属部12を構成する第2金属および第1被覆金属部13(13IN)を構成する耐食性金属を適切に選定することにより、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 From the same viewpoint, the first metal portion 11, the second metal portion 12, and the first coated metal portion 13 (13 IN ) constituting the pipe joint 200 are low carbon steel pipe, aluminum pipe, and nickel pipe with respect to the copper pipe. , Titanium pipes and the like can be combined, and low carbon steel pipes, aluminum pipes, nickel pipes, titanium pipes and the like can be combined with stainless steel pipes, which can be set according to the application. As described above, the first metal constituting the first metal portion 11 of the pipe joint 200, the second metal constituting the second metal portion 12, and the corrosion-resistant metal constituting the first coated metal portion 13 (13 IN) are appropriately used. By selecting, it is possible to easily join a pipe made of a material suitable for welding (a pipe to be joined) or a pipe made of a material suitable for brazing (a pipe to be joined) while ensuring an appropriate joining strength. It becomes a pipe joint that can be made.

管継手200を構成する第1被覆金属部13(13IN)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第1被覆金属部13(13IN)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手200の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第1被覆金属部13(13IN)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手100の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The first coated metal portion 13 (13 IN ) constituting the pipe joint 200 preferably has an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this viewpoint, it is preferable that the first coated metal portion 13 (13 IN ) is formed by clad rolling, which can easily form a coated metal layer having a larger wall thickness. Depending on the usage environment of the pipe joint 200, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is formed. 1 It can also be used as a coated metal portion 13 (13 IN). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 100.

管継手200は、クラッド板材2(図46参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手200の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手200の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 200 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 2 (see FIG. 46), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 200, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 200, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手200の製造において、クラッド板材2を作製する工程では、第1金属(例えばCu)からなる第1金属板11と、第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12と、さらに、耐食性金属(例えばNi)からなる第1被覆金属板13とを準備し、第1被覆金属板13と第1金属板11と第2金属板12とを板厚方向(X方向)に積層した状態で圧延する。そして、耐食性金属と第1金属との間および第1金属と第2金属との間に金属拡散が生じるような条件で熱処理をする。これにより、耐食性金属により構成された平板状の第1被覆金属層13と、第1金属により構成された平板状の第1金属層11と、第2金属により構成された平板状の第2金属層12とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図46に示すようなクラッド板材2を作製する。このクラッド板材2を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手200を作製することができる。 In the process of manufacturing the clad plate material 2 in the production of the pipe joint 200, the first metal plate 11 made of the first metal (for example, Cu) and the second metal (for example, stainless steel or Al) different from the first metal are made of the first metal. A second metal plate 12 and a first coated metal plate 13 made of a corrosion-resistant metal (for example, Ni) are prepared, and the thickness of the first coated metal plate 13, the first metal plate 11, and the second metal plate 12 is increased. Roll in a state of being laminated in the direction (X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the corrosion-resistant metal and the first metal and between the first metal and the second metal. As a result, the flat plate-shaped first coated metal layer 13 made of the corrosion-resistant metal, the flat plate-shaped first metal layer 11 made of the first metal, and the flat plate-shaped second metal made of the second metal. A clad plate material 2 as shown in FIG. 46, in which the layer 12 and the layer 12 are metal diffusion-bonded along the plate surface direction (X direction) of a flat plate, is produced. Using this clad plate material 2, a pipe joint 200 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手200は、クラッド板材1を用いて作製される管継手100の第1金属部11の内周面11aに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 200 can also be manufactured by forming a film on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 100 manufactured by using the clad plate material 1 by a plating treatment or the like. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手200は、管継手200の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手200は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 200 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 200 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 200, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第2構成例の第1変形例>
この発明に係る管継手の一実施形態として、第2構成例の第1変形例を図6に示す。
図6に第2構成例の第1変形例として示す管継手210は、管継手200を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手210は、第1端部の外周側に段差を有する。したがって、管継手210は、管継手200と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手210は、管継手200よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手200と同等の接合強度を得ることができる。
<First modification of the second configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 6 shows a first modification of the second configuration example.
In the pipe joint 210 shown as a first modification of the second configuration example in FIG. 6, the pipe joint 200 is used, and the length of the tubular second metal portion 12 in the axial direction (X direction) is set to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 210 has a step on the outer peripheral side of the first end portion. Therefore, the pipe joint 210 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 200. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 200, the pipe joint 210 is made tubular by making adjustments such as increasing the pipe diameter (for example, the reference inner diameter). Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 200 can be obtained. be able to.

なお、管継手210は、第2金属部12および第1接合部B12についての軸方向(X方向)の長さに関する構成以外は管継手200と同様と考えてよい。したがって、管継手210における耐食性金属と第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手200に関する説明を参照し、ここでは略す。 The pipe joint 210 may be considered to be the same as the pipe joint 200 except for the configuration relating to the axial length (X direction) of the second metal portion 12 and the first joint portion B12. Therefore, other configurations including the combination of the corrosion-resistant metal, the first metal, and the second metal in the pipe joint 210 and their actions and effects are referred to the description of the pipe joint 200 and are omitted here.

管継手210は、クラッド板材2(図46参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手210の製造において、クラッド板材2を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手200と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手110と同様と考えてよい。したがって、管継手210の製造において、管継手200および管継手110と同様の工程に関しては管継手200および管継手110に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手200の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手210を作製することができる。 The pipe joint 210 includes a step of manufacturing a clad plate material 2 (see FIG. 46), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 210, the step of manufacturing the clad plate material 2, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 200. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 110. Therefore, in the manufacture of the pipe joint 210, the description of the pipe joint 200 and the pipe joint 110 will be referred to for the same process as the pipe joint 200 and the pipe joint 110, and will be omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 200 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 210 can be manufactured.

上記の製造方法により作製された管継手210は、管継手210の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手210は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 210 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 210 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 210, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第2構成例の第2変形例>
この発明に係る管継手の一実施形態として、第2構成例の第2変形例を図7に示す。
図7に第2構成例の第2変形例として示す管継手220は、管継手200を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手220は、第2端部の内周側に段差を有する。したがって、管継手220は、管継手200と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手220は、管継手200よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手200と同等の接合強度を得ることができる。
<Second modification of the second configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 7 shows a second modification of the second configuration example.
In the pipe joint 220 shown as a second modification of the second configuration example in FIG. 7, the pipe joint 200 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) is set to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 220 has a step on the inner peripheral side of the second end portion. Therefore, the pipe joint 220 has a ratio of the length (the length of the line segment connecting the projection point P1 and the projection point P2) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 200. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 200, the pipe joint 220 is made tubular by making adjustments such as increasing the pipe diameter (for example, the reference inner diameter). Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 200 can be obtained. be able to.

なお、管継手220は、第1金属部11、第1接合部B12、第1被覆金属部13(13IN)および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手200と同様と考えてよい。したがって、管継手220における耐食性金属と第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手200に関する説明を参照し、ここでは略す。 The pipe joint 220 has a configuration other than the axial length (X direction) of the first metal portion 11, the first joint portion B12, the first coated metal portion 13 (13 IN), and the fourth joint portion B13. It may be considered to be the same as the pipe joint 200. Therefore, other configurations including the combination of the corrosion-resistant metal, the first metal, and the second metal in the pipe joint 220 and their actions and effects are referred to the description of the pipe joint 200 and are omitted here.

管継手220は、クラッド板材2(図46参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、同心の軸方向(X方向)の他方側(X2側)の第2端部において、第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手220の製造において、クラッド板材2を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手200と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、第1被覆金属部13(13IN)の一部の除去が加わる以外は、管継手120と同様と考えてよい。したがって、管継手220の製造において、管継手200および管継手120と同様の工程に関しては管継手200および管継手120に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手200の形状に対応する管状部を用いて、外観が円筒形状で第2端部の内周側に段差を有する、管継手220を作製することができる。 The pipe joint 220 includes a step of manufacturing a clad plate material 2 (see FIG. 46), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, concentric axial directions. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion on the other side (X2 side) of the (X direction). In the production of the pipe joint 220, the step of manufacturing the clad plate material 2, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 200, and the second The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 120 except that a part of the first coated metal portion 13 (13 IN) is removed. Therefore, in the manufacture of the pipe joint 220, the same steps as those of the pipe joint 200 and the pipe joint 120 are referred to in the description of the pipe joint 200 and the pipe joint 120, and are omitted here. As a result, the tubular portion corresponding to the shape of the pipe joint 200 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 220 can be manufactured.

上記の製造方法により作製された管継手220は、管継手220の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手220は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 220 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 220 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 220 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第2構成例の第3変形例>
この発明に係る管継手の一実施形態として、第2構成例の第3変形例を図8に示す。
図8に第2構成例の第3変形例として示す管継手230は、管継手200を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手230は、第1端部の外周側および第2端部の内周側に段差を有する。したがって、管継手230は、管継手200と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手230は、管継手200よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手200と同等の接合強度を得ることができる。
<Third modification example of the second configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 8 shows a third modification of the second configuration example.
In the pipe joint 230 shown as a third modification of the second configuration example in FIG. 8, the pipe joint 200 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 230 has a step on the outer peripheral side of the first end portion and the inner peripheral side of the second end portion. Therefore, the pipe joint 230 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 200. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 200, the pipe joint 230 is made tubular by making adjustments such as increasing the pipe diameter (for example, the reference inner diameter). Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 200 can be obtained. be able to.

なお、管継手230は、第1金属部11、第2金属部12、第1接合部B12、第1被覆金属部13(13IN)および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手200と同様と考えてよい。したがって、管継手230における耐食性金属と第1金属と第2金属の組み合せを含む他の構成およびその作用効果などに関しては管継手200に関する説明を参照し、ここでは略す。 The pipe joint 230 is in the axial direction (X direction) of the first metal portion 11, the second metal portion 12, the first joint portion B12, the first coated metal portion 13 (13 IN ), and the fourth joint portion B13. It may be considered to be the same as the pipe joint 200 except for the configuration related to the length. Therefore, other configurations including the combination of the corrosion-resistant metal, the first metal, and the second metal in the pipe joint 230 and their actions and effects are referred to the description of the pipe joint 200 and are omitted here.

管継手230は、クラッド板材2(図46参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有するとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手230の製造において、クラッド板材2を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手200と同様と考えてよく、第1端部において第1金属部11の外周面11bを露出させる工程は、管継手210と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手220と同様と考えてよい。したがって、管継手230の製造において、管継手200、管継手210および管継手220と同様の工程に関しては管継手200、管継手210および管継手220に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手200の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手230を作製することができる。 The pipe joint 230 includes a step of manufacturing a clad plate material 2 (see FIG. 46), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the first metal portion 11 and a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 230, the step of manufacturing the clad plate material 2, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 200. The step of exposing the outer peripheral surface 11b of the first metal portion 11 at the end portion may be considered to be the same as that of the pipe joint 210, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 is the same as that of the pipe joint 220. You can think about it. Therefore, in the manufacture of the pipe joint 230, the same steps as the pipe joint 200, the pipe joint 210 and the pipe joint 220 are referred to in the description of the pipe joint 200, the pipe joint 210 and the pipe joint 220, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 200 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 230 having a step on the inner peripheral side of the pipe joint 230 can be manufactured.

上記の製造方法により作製された管継手230は、管継手230の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手230は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 230 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 230 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 230 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第3構成例>
この発明に係る管継手の一実施形態として、第3構成例を図9に示す。
図9に第3構成例として示す管継手300は、図1に第1構成例として示す管継手100の第2金属部12の外周面12bに、さらに、耐食性金属により構成された管状の第2被覆金属部13(13OUT)を備えるものである。管継手300において、第2被覆金属部13(13OUT)の管状をなす軸と、第2金属部12の管状をなす軸とは、同心である。つまり、管状をなす第2被覆金属部13(13OUT)および第2金属部12の軸線P−Pは共通である。そして、同心の軸方向(X方向)の一方側(X1側)の第1端部から他方側(X2側)の第2端部までの間において、第2被覆金属部13(13OUT)の同心の軸方向(X方向)に沿う面と、第2金属部12の同心の軸方向(X方向)に沿う面とが、同心の軸方向(X方向)に沿って金属拡散接合されている。これにより、管状をなす第2被覆金属部13(13OUT)および管状をなす第2金属部12の接合部(第5接合部B23)となる金属拡散接合部分もまた、管状をなす。
<Third configuration example>
As an embodiment of the pipe joint according to the present invention, a third configuration example is shown in FIG.
The pipe joint 300 shown as a third configuration example in FIG. 9 is a tubular second tubular joint made of a corrosion-resistant metal on the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 100 shown as the first configuration example in FIG. It is provided with a coated metal portion 13 (13 OUT). In the pipe joint 300, the tubular shaft of the second coated metal portion 13 (13 OUT ) and the tubular shaft of the second metal portion 12 are concentric. That is, the axial lines PP of the second coated metal portion 13 (13 OUT ) and the second metal portion 12 forming a tubular shape are common. Then, between the first end portion on one side (X1 side) of the concentric axial direction (X direction) and the second end portion on the other side (X2 side), the second coated metal portion 13 (13 OUT ) A surface along the concentric axial direction (X direction) and a surface along the concentric axial direction (X direction) of the second metal portion 12 are metal diffusion-bonded along the concentric axial direction (X direction). .. As a result, the metal diffusion joint portion that becomes the joint portion (fifth joint portion B23) of the tubular second coated metal portion 13 (13 OUT) and the tubular second metal portion 12 also forms a tubular shape.

管継手300は、管継手300の内部である肉厚の範囲内において、第5接合部B23が管状をなすことにより、第5接合部B23の面積、すなわち金属拡散接合部分の面積が十分に大きくなる。そのため、管継手300は、管継手の肉厚の範囲内で、第2被覆金属部13(13OUT)と第2金属部12との接合面積が十分に大きくなる。第5接合部B23の接合面積が十分に大きいことにより、第2被覆金属部13(13OUT)と第2金属部12との接合強度を十分に大きくすることができる。したがって、管継手100の第2金属部12の外周面12b側に、さらに、第2被覆金属部13(13OUT)を備えた管継手300もまた、管継手100と同等の高い機械的強さを有するものとなる。また、管継手100と同様に、機械的強さ向上の観点で、管継手300は、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。 In the pipe joint 300, the area of the fifth joint portion B23, that is, the area of the metal diffusion joint portion is sufficiently large because the fifth joint portion B23 is tubular within the range of the wall thickness inside the pipe joint 300. Become. Therefore, in the pipe joint 300, the joint area between the second coated metal portion 13 (13 OUT ) and the second metal portion 12 becomes sufficiently large within the range of the wall thickness of the pipe joint. When the joint area of the fifth joint portion B23 is sufficiently large , the joint strength between the second coated metal portion 13 (13 OUT ) and the second metal portion 12 can be sufficiently increased. Therefore, the pipe joint 300 provided with the second coated metal portion 13 (13 OUT ) on the outer peripheral surface 12b side of the second metal portion 12 of the pipe joint 100 also has a high mechanical strength equivalent to that of the pipe joint 100. Will have. Further, similarly to the pipe joint 100, from the viewpoint of improving the mechanical strength, the pipe joint 300 preferably satisfies L J1 / L M1 ≧ 0.5, and further satisfies L J1 / D M1 ≧ 2. Is preferable.

加えて、管継手300は、管継手100の第2金属部12の外周面12b側に、さらに、管状の第2被覆金属部13(13OUT)を設けているため、耐食性金属に制限されない第2金属により構成された管状の第2金属部12の外周面12bが露出する管継手100と比べて、管継手の外側(外周面13b)に高い耐食性を有している。なお、管継手300は、第2被覆金属部13(13OUT)および第5接合部B23に係る構成以外は管継手100と同様と考えてよい。したがって、管継手300における第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 In addition, the pipe joint 300 is not limited to the corrosion-resistant metal because the tubular second coated metal portion 13 (13 OUT ) is further provided on the outer peripheral surface 12b side of the second metal portion 12 of the pipe joint 100. Compared to the pipe joint 100 in which the outer peripheral surface 12b of the tubular second metal portion 12 made of two metals is exposed, it has higher corrosion resistance on the outer side (outer peripheral surface 13b) of the pipe joint. The pipe joint 300 may be considered to be the same as the pipe joint 100 except for the configuration related to the second coated metal portion 13 (13 OUT) and the fifth joint portion B23. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 300 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手300において、第2被覆金属部13(13OUT)と第2金属部12との組み合わせ、つまり、耐食性金属と第2金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第2金属は、管継手100に適用可能な上記した鉄系および非鉄系の材質の中から選択することができる。耐食性金属は、例えば、Ni(JIS規格のNW2200、NW2201など)またはTi(JIS規格の1種、2種など)などを用いることが好ましい。例えば、管継手300の第2金属部12の外周面12bに接合する管が銅管の場合、ろう接合または溶接の際の溶け込みを考慮し、第2金属を銅管と同種のCuまたはCu合金として第2金属部12を構成することが好ましい。そして、耐食性金属を例えばNiまたはNi合金として第2被覆金属部13(13OUT)を構成することにより、第2被覆金属部13(13OUT)の外周面13bに対して銅管をろう接合または溶接することができる。この場合、第1金属を例えばステンレス鋼として第1金属部11を構成することができる。 In the pipe joint 300, the combination of the second coated metal portion 13 (13 OUT ) and the second metal portion 12, that is, the combination of the corrosion-resistant metal and the second metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The second metal can be selected from the above-mentioned iron-based and non-ferrous materials applicable to the pipe joint 100. As the corrosion resistant metal, for example, Ni (JIS standard NW2200, NW2201 or the like) or Ti (JIS standard type 1 or type 2 or the like) is preferably used. For example, when the pipe to be joined to the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 300 is a copper pipe, the second metal is a Cu or Cu alloy of the same type as the copper pipe in consideration of penetration during brazing or welding. It is preferable to form the second metal portion 12 as a base. Then, by forming the second coated metal portion 13 (13 OUT ) with the corrosion resistant metal as, for example, Ni or a Ni alloy, the copper tube is brazed to the outer peripheral surface 13b of the second coated metal portion 13 (13 OUT). Can be welded. In this case, the first metal portion 11 can be formed by using, for example, stainless steel as the first metal.

同様な観点で、管継手300を構成する第1金属部11、第2金属部12および第2被覆金属部13(13OUT)は、銅管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることなど、用途に応じて設定することができる。このように、管継手300の第1金属部11を構成する第1金属、第2金属部12を構成する第2金属および第2被覆金属部13(13OUT)を構成する耐食性金属を適切に選定することにより、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 From the same viewpoint, the first metal portion 11, the second metal portion 12, and the second coated metal portion 13 (13 OUT ) constituting the pipe joint 300 are low carbon steel pipe, aluminum pipe, and nickel pipe with respect to the copper pipe. , Titanium pipes and the like can be combined, and low carbon steel pipes, aluminum pipes, nickel pipes, titanium pipes and the like can be combined with stainless steel pipes, which can be set according to the application. As described above, the first metal constituting the first metal portion 11 of the pipe joint 300, the second metal constituting the second metal portion 12, and the corrosion-resistant metal constituting the second coated metal portion 13 (13 OUT) are appropriately used. By selecting, it is possible to easily join a pipe made of a material suitable for welding (a pipe to be joined) or a pipe made of a material suitable for brazing (a pipe to be joined) while ensuring an appropriate joining strength. It becomes a pipe joint that can be made.

管継手300を構成する第2被覆金属部13(13OUT)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第2被覆金属部13(13OUT)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手300の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第2被覆金属部13(13OUT)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手100の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The second coated metal portion 13 (13 OUT ) constituting the pipe joint 300 preferably has an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this viewpoint, it is preferable that the second coated metal portion 13 (13 OUT ) is formed by clad rolling, which can easily form a coated metal layer having a larger wall thickness. Depending on the usage environment of the pipe joint 300, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is formed. 2 It can also be used as a coated metal portion 13 (13 OUT). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 100.

管継手300は、クラッド板材3(図47参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手300の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手300の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 300 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 3 (see FIG. 47), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 300, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 300, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手300の製造において、クラッド板材3を作製する工程では、第1金属(例えばステンレス鋼またはAl)からなる第1金属板11と、第1金属とは異なる第2金属(例えばCu)からなる第2金属板12と、さらに、耐食性金属(例えばNi)からなる第2被覆金属板13とを準備し、第1金属板11と第2金属板12と第2被覆金属板13とを板厚方向(X方向)に積層した状態で圧延する。そして、第1金属と第2金属との間および第2金属と耐食性金属との間に金属拡散が生じるような条件で熱処理をする。これにより、第1金属により構成された平板状の第1金属層11と、第2金属により構成された平板状の第2金属層12と、耐食性金属により構成された平板状の第2被覆金属層13とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図47に示すようなクラッド板材3を作製する。このクラッド板材3を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手300を作製することができる。 In the process of manufacturing the clad plate material 3 in the production of the pipe joint 300, the first metal plate 11 made of a first metal (for example, stainless steel or Al) and the second metal (for example, Cu) different from the first metal are made. A second metal plate 12 and a second coated metal plate 13 made of a corrosion-resistant metal (for example, Ni) are prepared, and the first metal plate 11, the second metal plate 12, and the second coated metal plate 13 are thickened. Roll in a state of being laminated in the direction (X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the first metal and the second metal and between the second metal and the corrosion-resistant metal. As a result, the flat plate-shaped first metal layer 11 made of the first metal, the flat plate-shaped second metal layer 12 made of the second metal, and the flat plate-shaped second coating metal made of the corrosion-resistant metal. A clad plate material 3 as shown in FIG. 47, in which the layer 13 and the layer 13 are metal diffusion-bonded along the plate surface direction (X direction) of a flat plate, is produced. Using this clad plate material 3, a pipe joint 300 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手300は、クラッド板材1を用いて作製される管継手100の第2金属部12の外周面12bに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 300 can also be manufactured by forming a film on the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 100 manufactured by using the clad plate material 1 by a plating treatment or the like. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手300は、管継手300の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手300は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 300 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 300 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 300, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第3構成例の第1変形例>
この発明に係る管継手の一実施形態として、第3構成例の第1変形例を図10に示す。
図10に第3構成例の第1変形例として示す管継手310は、管継手300を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手310は、第1端部の外周側に段差を有する。したがって、管継手310は、管継手300と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手310は、管継手300よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手300と同等の接合強度を得ることができる。
<First modification of the third configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 10 shows a first modification of the third configuration example.
The pipe joint 310 shown as a first modification of the third configuration example in FIG. 10 uses the pipe joint 300 to set the length of the tubular second metal portion 12 in the axial direction (X direction) to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 310 has a step on the outer peripheral side of the first end portion. Therefore, the pipe joint 310 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 300. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 300, the pipe joint 310 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 300 can be obtained. be able to.

なお、管継手310は、第2金属部12、第1接合部B12、第2被覆金属部13(13OUT)および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手300と同様と考えてよい。したがって、管継手310における第1金属と第2金属と耐食性金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手300に関する説明を参照し、ここでは略す。 The pipe joint 310 has a configuration other than the axial length (X direction) of the second metal portion 12, the first joint portion B12, the second coated metal portion 13 (13 OUT), and the fifth joint portion B23. It may be considered to be the same as the pipe joint 300. Therefore, other configurations including the combination of the first metal, the second metal, and the corrosion-resistant metal in the pipe joint 310, their effects, and the like are referred to in the description of the pipe joint 300 and are omitted here.

管継手310は、クラッド板材3(図47参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、同心の軸方向(X方向)の一方側(X1側)の第1端部において、第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手310の製造において、クラッド板材3を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手300と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、第2被覆金属部13(13OUT)の一部の除去が加わる以外は、管継手110と同様と考えてよい。したがって、管継手310の製造において、管継手300および管継手110と同様の工程に関しては管継手300および管継手110に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手300の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手310を作製することができる。 The pipe joint 310 includes a step of manufacturing a clad plate material 3 (see FIG. 47), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, concentric axial directions. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 at the first end portion on one side (X1 side) of the (X direction). In the production of the pipe joint 310, the step of manufacturing the clad plate material 3, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 300. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 110 except that a part of the second coated metal portion 13 (13 OUT) is removed. Therefore, in the manufacture of the pipe joint 310, the description regarding the pipe joint 300 and the pipe joint 110 will be referred to for the same process as the pipe joint 300 and the pipe joint 110, and will be omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 300 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 310 can be manufactured.

上記の製造方法により作製された管継手310は、管継手310の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手310は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 310 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 310 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 310 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第3構成例の第2変形例>
この発明に係る管継手の一実施形態として、第3構成例の第2変形例を図11に示す。
図11に第3構成例の第2変形例として示す管継手320は、管継手300を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手320は、第2端部の内周側に段差を有する。したがって、管継手320は、管継手300と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手310は、管継手300よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手300と同等の接合強度を得ることができる。
<Second modification of the third configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 11 shows a second modification of the third configuration example.
In the pipe joint 320 shown as a second modification of the third configuration example in FIG. 11, the pipe joint 300 is used to set the length of the tubular first metal portion 11 in the axial direction (X direction) to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 320 has a step on the inner peripheral side of the second end portion. Therefore, the pipe joint 320 has a ratio of the length (the length of the line segment connecting the projection point P1 and the projection point P2) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 300. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 300, the pipe joint 310 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 300 can be obtained. be able to.

なお、管継手320は、第1金属部11および第1接合部B12についての軸方向(X方向)の長さに関する構成以外は管継手300と同様と考えてよい。したがって、管継手320における第1金属と第2金属と耐食性金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手300に関する説明を参照し、ここでは略す。 The pipe joint 320 may be considered to be the same as the pipe joint 300 except for the configuration relating to the axial length (X direction) of the first metal portion 11 and the first joint portion B12. Therefore, other configurations including the combination of the first metal, the second metal, and the corrosion-resistant metal in the pipe joint 320 and their actions and effects are referred to the description of the pipe joint 300 and are omitted here.

管継手320は、クラッド板材3(図47参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、同心の軸方向(X方向)の他方側(X2側)の第2端部において、第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手320の製造において、クラッド板材3を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手300と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手120と同様と考えてよい。したがって、管継手320の製造において、管継手300および管継手120と同様の工程に関しては管継手300および管継手120に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手300の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手320を作製することができる。 The pipe joint 320 includes a step of manufacturing a clad plate material 3 (see FIG. 47), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, concentric axial directions. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion on the other side (X2 side) of the (X direction). In the production of the pipe joint 320, the step of manufacturing the clad plate material 3, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 300. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 120. Therefore, in the manufacture of the pipe joint 320, the same steps as those of the pipe joint 300 and the pipe joint 120 are referred to in the description of the pipe joint 300 and the pipe joint 120, and are omitted here. As a result, a tubular portion corresponding to the shape of the pipe joint 300 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 320 can be manufactured.

上記の製造方法により作製された管継手320は、管継手320の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手320は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 320 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 320 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 320, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第3構成例の第3変形例>
この発明に係る管継手の一実施形態として、第3構成例の第3変形例を図12に示す。
図12に第3構成例の第3変形例として示す管継手330は、管継手300を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手330は、第1端部の外周側および第2端部の内周側に段差を有する。したがって、管継手330は、管継手300と比べて、金属拡散接合されている管状をなす第1接合部B12の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手330は、管継手300よりも第1接合部B12の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第1接合部B12の軸方向(X方向)に沿う面積、すなわち第1金属部11と第2金属部12との接合面積を大きくすることができるため、管継手300と同等の接合強度を得ることができる。
<Third variant of the third configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 12 shows a third modification of the third configuration example.
In the pipe joint 330 shown as a third modification of the third configuration example in FIG. 12, the pipe joint 300 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 330 has a step on the outer peripheral side of the first end portion and the inner peripheral side of the second end portion. Therefore, the pipe joint 330 has a ratio of the length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular first joint portion B12 which is metal diffusion-bonded as compared with the pipe joint 300. Becomes smaller. Considering that the ratio of the length of the first joint B12 is smaller than that of the pipe joint 300, the pipe joint 330 is tubular if, for example, the pipe diameter (for example, the reference inner diameter) is adjusted to be larger. Since the area along the axial direction (X direction) of the first joint portion B12, that is, the joint area between the first metal portion 11 and the second metal portion 12 can be increased, a joint strength equivalent to that of the pipe joint 300 can be obtained. be able to.

なお、管継手330は、第1金属部11、第2金属部12、第1接合部B12、第2被覆金属部13(13OUT)および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手300と同様と考えてよい。したがって、管継手330における第1金属と第2金属の組み合せを含む他の構成およびその作用効果などに関しては管継手300に関する説明を参照し、ここでは略す。 The pipe joint 330 is in the axial direction (X direction) of the first metal portion 11, the second metal portion 12, the first joint portion B12, the second coated metal portion 13 (13 OUT ), and the fifth joint portion B23. It may be considered to be the same as the pipe joint 300 except for the configuration related to the length. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 330 and their actions and effects are referred to the description of the pipe joint 300 and are omitted here.

管継手330は、クラッド板材3(図47参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、同心の軸方向(X方向)の一方側(X1側)の第1端部において第1金属部11の外周面11bを露出させる工程を有するとともに、同心の軸方向(X方向)の他方側(X2側)の第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手330の製造において、クラッド板材3を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手300と同様と考えてよく、第1端部において第1金属部11の外周面11bを露出させる工程は管継手310と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は管継手320と同様と考えてよい。したがって、管継手330の製造において、管継手300、管継手310および管継手320と同様の工程に関しては管継手300、管継手310および管継手320に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手300の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手330を作製することができる。 The pipe joint 330 includes a step of manufacturing a clad plate material 3 (see FIG. 47), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, concentric axial directions. It has a step of exposing the outer peripheral surface 11b of the first metal portion 11 at the first end portion on one side (X1 side) of (X direction), and is concentric with the other side (X2 side) of the axial direction (X direction). It can be manufactured by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 330, the step of manufacturing the clad plate material 3, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 300. The step of exposing the outer peripheral surface 11b of the first metal portion 11 at the end portion may be considered to be the same as that of the pipe joint 310, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 320. Good. Therefore, in the manufacture of the pipe joint 330, the same steps as the pipe joint 300, the pipe joint 310 and the pipe joint 320 are referred to in the description of the pipe joint 300, the pipe joint 310 and the pipe joint 320, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 300 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 330 having a step on the inner peripheral side of the pipe joint 330 can be manufactured.

上記の製造方法により作製された管継手330は、管継手330の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手330は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 330 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 330 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 330 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第4構成例>
この発明に係る管継手の一実施形態として、第4構成例を図13に示す。
図13に第4構成例として示す管継手400は、図1に第1構成例として示す管継手100の第1金属部11の内周面11aに、さらに、耐食性金属により構成された管状の第1被覆金属部13(13IN)を備えるとともに、第2金属部12の外周面12bに、さらに、耐食性金属により構成された管状の第2被覆金属部13(13OUT)を備えるものである。なお、管継手400において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手200と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手300と同じと考えてよい。したがって、管継手400は、管継手200または管継手300と同様に、つまり管継手100と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手100と同様に、機械的強さ向上の観点で、管継手400は、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。
<Fourth configuration example>
A fourth configuration example is shown in FIG. 13 as an embodiment of the pipe joint according to the present invention.
The pipe joint 400 shown as a fourth configuration example in FIG. 13 is a tubular first metal formed of a corrosion-resistant metal on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 100 shown as the first configuration example in FIG. A 1-coated metal portion 13 (13 IN ) is provided, and a tubular second coated metal portion 13 (13 OUT ) made of a corrosion-resistant metal is further provided on the outer peripheral surface 12b of the second metal portion 12. In the pipe joint 400, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 200, and the second coated metal portion 13 (13 OUT ) and the first The configuration of the two metal portions 12 may be considered to be the same as that of the pipe joint 300. Therefore, the fitting 400 can have high mechanical strength to withstand repeated depressurization and boosting like the fitting 200 or the fitting 300, that is, like the fitting 100. Further, similarly to the pipe joint 100, from the viewpoint of improving the mechanical strength, the pipe joint 400 preferably satisfies L J1 / L M1 ≧ 0.5, and further satisfies L J1 / D M1 ≧ 2. Is preferable.

加えて、管継手400は、管継手100の第1金属部11の内周面11aに、さらに、管状の第1被覆金属部13(13IN)を設けるとともに、第2金属部12の外周面12bに、さらに、管状の第2被覆金属部13(13OUT)を設けているため、耐食性金属に限定されない第1金属により構成された管状の第1金属部11の内周面11aが露出するとともに、耐食性金属に制限されない第2金属により構成された管状の第2金属部12の外周面12bが露出する、管継手100と比べて、管継手の内側(内周面13a)および外側(外周面13b)に高い耐食性を有している。なお、管継手400は、第1被覆金属部13(13IN)、第4接合部B13、第2被覆金属部13(13OUT)および第5接合部B23に係る構成以外は管継手100と同じと考えてよい。したがって、管継手400における第1金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手100に関する説明を参照し、ここでは略す。 In addition, the pipe joint 400 is provided with a tubular first coated metal portion 13 (13 IN ) on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 100, and the outer peripheral surface of the second metal portion 12. Since the tubular second coated metal portion 13 (13 OUT ) is further provided on the 12b, the inner peripheral surface 11a of the tubular first metal portion 11 made of the first metal, which is not limited to the corrosion resistant metal, is exposed. At the same time, the outer peripheral surface 12b of the tubular second metal portion 12 made of a second metal not limited to the corrosion resistant metal is exposed. Surface 13b) has high corrosion resistance. The pipe joint 400 is the same as the pipe joint 100 except for the configurations relating to the first coated metal portion 13 (13 IN ), the fourth joint portion B13, the second coated metal portion 13 (13 OUT), and the fifth joint portion B23. You can think of it as. Therefore, other configurations including the combination of the first metal and the second metal in the pipe joint 400 and their actions and effects are referred to the description of the pipe joint 100 and are omitted here.

管継手400において、第1被覆金属部13(13IN)と第1金属部11との組み合わせ、つまり、耐食性金属と第1金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第2被覆金属部13(13OUT)と第2金属部12との組み合わせ、つまり、耐食性金属と第2金属との組み合わせも、同様である。なお、第1金属部11を構成する第1金属、第2金属部12を構成する第2金属、第1被覆金属部13(13IN)を構成する耐食性金属および第2被覆金属部13(13OUT)を構成する耐食性金属の選択は、管継手200および管継手300と同様に行えばよく、管継手200および管継手300に関する説明を参照し、ここでの説明は略す。 In the pipe joint 400, the combination of the first coated metal portion 13 (13 IN ) and the first metal portion 11, that is, the combination of the corrosion-resistant metal and the first metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The same applies to the combination of the second coated metal portion 13 (13 OUT ) and the second metal portion 12, that is, the combination of the corrosion resistant metal and the second metal. The first metal constituting the first metal portion 11, the second metal constituting the second metal portion 12, the corrosion-resistant metal constituting the first coated metal portion 13 (13 IN ), and the second coated metal portion 13 (13). The corrosion-resistant metal constituting OUT) may be selected in the same manner as in the pipe joint 200 and the pipe joint 300, and the description thereof will be omitted with reference to the description regarding the pipe joint 200 and the pipe joint 300.

管継手400を構成する第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手400の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手100の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The first coated metal portion 13 (13 IN ) and the second coated metal portion 13 (13 OUT ) constituting the pipe joint 400 preferably have an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this point of view, the first coated metal portion 13 (13 IN ) and the second coated metal portion 13 (13 OUT ) are formed by clad rolling which can easily form a coating metal layer having a larger wall thickness. Is preferable. Depending on the usage environment of the pipe joint 400, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is formed. It can also be used as the 1-coated metal portion 13 (13 IN ) and the 2nd coated metal portion 13 (13 OUT). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 100.

管継手400は、クラッド板材4(図48参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手400の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手400の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 400 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 4 (see FIG. 48), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 400, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 400, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手400の製造において、クラッド板材4を作製する工程では、第1金属(例えばCu)からなる第1金属板11および第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12と、さらに、耐食性金属(例えばNi)からなる第1被覆金属板13(13IN)および第2被覆金属板13(13OUT)とを準備し、第1被覆金属板13(13IN)と第1金属板11と第2金属板12と第2被覆金属板13(13OUT)とを板厚方向(X方向)に積層した状態で圧延する。そして、耐食性金属と第1金属との間、第1金属と第2金属との間、および、第2金属と耐食性金属との間に、金属拡散が生じるような条件で熱処理をする。これにより、耐食性金属により構成された平板状の第1被覆金属層13(13IN)と、第1金属により構成された平板状の第1金属層11と、第2金属により構成された平板状の第2金属層12と、耐食性金属により構成された平板状の第2被覆金属層13(13OUT)とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図48に示すようなクラッド板材4を作製する。このクラッド板材4を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手400を作製することができる。 In the production of the pipe joint 400, in the step of producing the clad plate material 4, the first metal plate 11 made of the first metal (for example, Cu) and the second metal (for example, stainless steel or Al) different from the first metal are used. The two metal plates 12 and the first coated metal plate 13 (13 IN ) and the second coated metal plate 13 (13 OUT ) made of a corrosion resistant metal (for example, Ni) are prepared, and the first coated metal plate 13 (13) is prepared. IN ), the first metal plate 11, the second metal plate 12, and the second coated metal plate 13 (13 OUT ) are rolled in a state of being laminated in the plate thickness direction (X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the corrosion-resistant metal and the first metal, between the first metal and the second metal, and between the second metal and the corrosion-resistant metal. As a result, the flat plate-shaped first coated metal layer 13 (13 IN ) made of the corrosion-resistant metal, the flat plate-shaped first metal layer 11 made of the first metal, and the flat plate-shaped made of the second metal. The second metal layer 12 and the flat plate-shaped second coated metal layer 13 (13 OUT ) made of corrosion-resistant metal are metal diffusion-bonded along the flat plate surface direction (X direction). A clad plate material 4 as shown in FIG. 48 is produced. Using this clad plate material 4, a pipe joint 400 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手400は、クラッド板材1を用いて作製される管継手100の第1金属部11の内周面11aおよび第2金属部12の外周面12bに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 400 forms a film on the inner peripheral surface 11a of the first metal portion 11 and the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 100 manufactured by using the clad plate material 1 by plating or the like. It can also be produced by the above. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手400は、管継手400の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手400は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 400 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 400 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 400, the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第4構成例の第1変形例>
この発明に係る管継手の一実施形態として、第4構成例の第1変形例を図14に示す。
図14に第4構成例の第1変形例として示す管継手410は、管継手400を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。なお、管継手410において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手210と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手310と同じと考えてよい。したがって、管継手410は、管継手210または管継手310と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手210または管継手310と同様に、機械的強さ向上の観点で、管継手410は、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。
<First modification of the fourth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 14 shows a first modification of the fourth configuration example.
In the pipe joint 410 shown as a first modification of the fourth configuration example in FIG. 14, the pipe joint 400 is used, and the length of the tubular second metal portion 12 in the axial direction (X direction) is set to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. In the pipe joint 410, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 210, and the second coated metal portion 13 (13 OUT ) and the first The configuration of the two metal portions 12 may be considered to be the same as that of the pipe joint 310. Therefore, the fitting 410, like the fitting 210 or the fitting 310, can have high mechanical strength to withstand repeated depressurization and boosting. Further, like the pipe joint 210 or the pipe joint 310, from the viewpoint of improving the mechanical strength, the pipe joint 410 preferably satisfies L J1 / L M1 ≧ 0.5, and further, L J1 / D M1 ≧. It is preferable to satisfy 2.

なお、管継手410は、第2金属部12、第1接合部B12、第2被覆金属部13(13OUT)および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手400と同様と考えてよい。したがって、管継手410における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合わせを含む、他の構成およびその作用効果などに関しては、管継手400に関する説明を参照し、ここでは略す。 The pipe joint 410 has a configuration other than the axial length (X direction) of the second metal portion 12, the first joint portion B12, the second coated metal portion 13 (13 OUT), and the fifth joint portion B23. It may be considered to be the same as the pipe joint 400. Therefore, with respect to other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 410 and its effects and the like, the description of the pipe joint 400 is referred to here. Abbreviated.

管継手410は、クラッド板材4(図48参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手410の製造において、クラッド板材4を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手400と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手310と同様と考えてよい。したがって、管継手410の製造において、管継手400および管継手310と同様の工程に関しては管継手400および管継手310に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手400の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手410を作製することができる。 The pipe joint 410 includes a step of manufacturing a clad plate material 4 (see FIG. 48), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 410, the step of manufacturing the clad plate material 4, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 400. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 310. Therefore, in the manufacture of the pipe joint 410, the description of the pipe joint 400 and the pipe joint 310 will be referred to and omitted here for the same process as the pipe joint 400 and the pipe joint 310. As a result, using a tubular portion corresponding to the shape of the pipe joint 400 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 410 can be manufactured.

上記の製造方法により作製された管継手410は、管継手410の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手410は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 410 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 410 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 410 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第4構成例の第2変形例>
この発明に係る管継手の一実施形態として、第4構成例の第2変形例を図15に示す。
図15に第4構成例の第2変形例として示す管継手420は、管継手400を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。なお、管継手420において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手220と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手320と同じと考えてよい。したがって、管継手420は、管継手220または管継手320と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手220または管継手320と同様に、機械的強さ向上の観点で、管継手420は、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。
<Second modification of the fourth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 15 shows a second modification of the fourth configuration example.
In the pipe joint 420 shown as a second modification of the fourth configuration example in FIG. 15, the pipe joint 400 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) is set to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. In the pipe joint 420, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 220, and the second coated metal portion 13 (13 OUT ) and the first The configuration of the two metal portions 12 may be considered to be the same as that of the pipe joint 320. Therefore, the fitting 420, like the fitting 220 or the fitting 320, can have high mechanical strength to withstand repeated depressurization and boosting. Further, similarly to the pipe joint 220 or the pipe joint 320, from the viewpoint of improving the mechanical strength, the pipe joint 420 preferably satisfies L J1 / L M1 ≧ 0.5, and further, L J1 / D M1 ≧. It is preferable to satisfy 2.

なお、管継手420は、第1金属部11、第1接合部B12、第1被覆金属部13(13IN)および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手400と同様と考えてよい。したがって、管継手420における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合わせを含む、他の構成およびその作用効果などに関しては、管継手400に関する説明を参照し、ここでは略す。 The pipe joint 420 has a configuration other than the axial length (X direction) of the first metal portion 11, the first joint portion B12, the first coated metal portion 13 (13 IN), and the fourth joint portion B13. It may be considered to be the same as the pipe joint 400. Therefore, with respect to other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 420 and its effects and the like, the description of the pipe joint 400 is referred to here. Abbreviated.

管継手420は、クラッド板材4(図48参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手420の製造において、クラッド板材4を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手400と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手320と同様と考えてよい。したがって、管継手420の製造において、管継手400および管継手320と同様の工程に関しては管継手400および管継手320に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手400の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手420を作製することができる。 The pipe joint 420 includes a step of manufacturing a clad plate material 4 (see FIG. 48), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 420, the step of manufacturing the clad plate material 4, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 400. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 320. Therefore, in the manufacture of the pipe joint 420, the description regarding the pipe joint 400 and the pipe joint 320 is referred to and omitted here for the same process as the pipe joint 400 and the pipe joint 320. As a result, a tubular portion corresponding to the shape of the pipe joint 400 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 420 can be manufactured.

上記の製造方法により作製された管継手420は、管継手420の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手420は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 420 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 420 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, since the pipe joint 420 is less likely to be damaged at the joint portion between metal portions of different materials as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, brazing joint or It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第4構成例の第3変形例>
この発明に係る管継手の一実施形態として、第4構成例の第3変形例を図16に示す。
図16に第4構成例の第3変形例として示す管継手430は、管継手400を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。なお、管継手430において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手230と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手330と同じと考えてよい。したがって、管継手430は、管継手230または管継手330と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手430は、管継手230または管継手330と同様に、機械的強さ向上の観点で、LJ1/LM1≧0.5を満たすことが好ましく、さらに、LJ1/DM1≧2を満たすことが好ましい。
<Third modification of the fourth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 16 shows a third modification of the fourth configuration example.
In the pipe joint 430 shown as a third modification of the fourth configuration example in FIG. 16, the pipe joint 400 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. In the pipe joint 430, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 230, and the second coated metal portion 13 (13 OUT ) and the first The configuration of the two metal portions 12 may be considered to be the same as that of the pipe joint 330. Therefore, the fitting 430, like the fitting 230 or the fitting 330, can have high mechanical strength to withstand repeated depressurization and boosting. Further, like the pipe joint 230 or the pipe joint 330, the pipe joint 430 preferably satisfies L J1 / L M1 ≧ 0.5 from the viewpoint of improving mechanical strength, and further, L J1 / D M1 ≧. It is preferable to satisfy 2.

なお、管継手430は、第1金属部11、第2金属部12、第1接合部B12、第1被覆金属部13(13IN)、第4接合部B13、第2被覆金属部13(13OUT)および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手400と同様と考えてよい。したがって、管継手430における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合せを含む、他の構成およびその作用効果などに関しては、管継手400に関する説明を参照し、ここでは略す。 The pipe joint 430 includes a first metal portion 11, a second metal portion 12, a first joint portion B12, a first coated metal portion 13 (13 IN ), a fourth joint portion B13, and a second coated metal portion 13 (13). It may be considered to be the same as the pipe joint 400 except for the configuration regarding the length in the axial direction (X direction) of the OUT) and the fifth joint B23. Therefore, for other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 430 and their effects, etc., refer to the description of the pipe joint 400, and here Abbreviated.

管継手430は、クラッド板材4(図48参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有するとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手430の製造において、クラッド板材4を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手400と同様と考えてよく、第1端部において第1金属部11の外周面11bを露出させる工程は管継手410と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は管継手420と同様と考えてよい。したがって、管継手430の製造において、管継手400、管継手410および管継手420と同様の工程に関しては管継手400、管継手410および管継手420に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手400の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手430を作製することができる。 The pipe joint 430 includes a step of manufacturing a clad plate material 4 (see FIG. 48), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the first metal portion 11 and a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 430, the step of manufacturing the clad plate material 4, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 400. The step of exposing the outer peripheral surface 11b of the first metal portion 11 at the end portion may be considered to be the same as that of the pipe joint 410, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 420. Good. Therefore, in the manufacture of the pipe joint 430, the same steps as those of the pipe joint 400, the pipe joint 410 and the pipe joint 420 are referred to the description of the pipe joint 400, the pipe joint 410 and the pipe joint 420, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 400 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 430 having a step on the inner peripheral side of the pipe joint 430 can be manufactured.

上記の製造方法により作製された管継手430は、管継手430の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手430は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 430 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 430 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 430 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例>
この発明に係る管継手の一実施形態として、第5構成例を図17に示す。
図17に第5構成例として示す管継手500は、図1に第1構成例として示す管継手100の第1金属部11と第2金属部12との間に中間金属部14を設けたものである。管継手500は、第1金属により構成された管状の第1金属部11と、第1金属とは異なる第2金属により構成された管状の第2金属部12と、第1金属および第2金属とは異なる第3金属により構成された管状の中間金属部14と、を備える。管継手500において、第1金属部11の管状をなす軸と、第2金属部12の管状をなす軸と、中間金属部14の管状をなす軸とは、同心である。つまり、管状をなす第1金属部11、第2金属部12および中間金属部14の軸線P−Pは共通である。そして、同心の軸方向(X方向)の一方側(X1側)の第1端部から他方側(X2側)の第2端部までの間において、第1金属部11の同心の軸方向(X方向)に沿う面と、中間金属部14の同心の軸方向(X方向)に沿う面とが、同心の軸方向(X方向)に沿って金属拡散接合され、中間金属部14の同心の軸方向(X方向)に沿う面と、第2金属部12の同心の軸方向(X方向)に沿う面とが、同心の軸方向(X方向)に沿って金属拡散接合されている。この構成により、管状をなす第1金属部11と管状をなす中間金属部14との接合部(第2接合部B14)となる金属拡散接合部分もまた、管状をなし、管状をなす第2金属部12と管状をなす中間金属部14との接合部(第3接合部B24)となる金属拡散接合部分もまた、管状をなす。
<Fifth configuration example>
A fifth configuration example is shown in FIG. 17 as an embodiment of the pipe joint according to the present invention.
The pipe joint 500 shown as a fifth configuration example in FIG. 17 has an intermediate metal portion 14 provided between the first metal portion 11 and the second metal portion 12 of the pipe joint 100 shown as the first configuration example in FIG. Is. The pipe joint 500 includes a tubular first metal portion 11 made of a first metal, a tubular second metal portion 12 made of a second metal different from the first metal, and a first metal and a second metal. It includes a tubular intermediate metal portion 14 made of a third metal different from the above. In the pipe joint 500, the tubular shaft of the first metal portion 11, the tubular shaft of the second metal portion 12, and the tubular shaft of the intermediate metal portion 14 are concentric. That is, the axial lines PP of the tubular first metal portion 11, the second metal portion 12, and the intermediate metal portion 14 are common. Then, between the first end portion on one side (X1 side) of the concentric axial direction (X direction) and the second end portion on the other side (X2 side), the concentric axial direction of the first metal portion 11 ( The surface along the X direction) and the surface along the concentric axial direction (X direction) of the intermediate metal portion 14 are metal diffusion-bonded along the concentric axial direction (X direction), and the concentric surfaces of the intermediate metal portion 14 are joined. A surface along the axial direction (X direction) and a surface along the concentric axial direction (X direction) of the second metal portion 12 are metal diffusion-bonded along the concentric axial direction (X direction). With this configuration, the metal diffusion joint portion that becomes the joint portion (second joint portion B14) between the tubular first metal portion 11 and the tubular intermediate metal portion 14 also forms a tubular and tubular second metal. The metal diffusion joint portion that becomes the joint portion (third joint portion B24) between the portion 12 and the intermediate metal portion 14 that forms a tubular shape also forms a tubular shape.

管継手500は、管継手500の内部である肉厚の範囲内において、第2接合部B14および第3接合部B24がともに管状をなすことにより、第2接合部B14および第3接合部B24の面積、すなわち金属拡散接合部分の面積が肉厚の範囲内で十分に大きくなる。そのため、管継手500は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、第1金属部11と中間金属部14との接合面積および中間金属部14と第2金属部12との接合面積が肉厚の範囲内で十分に大きくなる。第2接合部B14および第3接合部B24の接合面積が十分に大きいことにより、第1金属部11と中間金属部14との接合強度および第2金属部12と中間金属部14との接合強度を十分に大きくすることができる。また、管状をなす第2接合部B14および第3接合部B24がともに金属拡散接合部分であることにより、第1金属部11を構成する第1金属、中間金属部14を構成する第3金属および第2金属部12を構成する第2金属の一部の成分の拡散(金属拡散)により強い密着力が発現される。これにより、管継手500は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、小型化や軽量化のために肉厚を小さくしても減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。 In the pipe joint 500, the second joint portion B14 and the third joint portion B24 are both tubular within the range of the wall thickness inside the pipe joint 500, so that the second joint portion B14 and the third joint portion B24 are formed. The area, that is, the area of the metal diffusion joint portion becomes sufficiently large within the range of the wall thickness. Therefore, the pipe joint 500 has a joint area between the first metal portion 11 and the intermediate metal portion 14 and an intermediate metal portion as compared with a conventional dissimilar metal pipe joint in which an inclined surface is joined within the thickness range of the pipe joint. The joint area between the 14 and the second metal portion 12 becomes sufficiently large within the range of the wall thickness. Since the joint area of the second joint portion B14 and the third joint portion B24 is sufficiently large, the joint strength between the first metal portion 11 and the intermediate metal portion 14 and the joint strength between the second metal portion 12 and the intermediate metal portion 14 Can be made large enough. Further, since both the tubular second joint portion B14 and the third joint portion B24 are metal diffusion joint portions, the first metal constituting the first metal portion 11, the third metal constituting the intermediate metal portion 14, and the like. Strong adhesion is exhibited by diffusion (metal diffusion) of a part of the second metal constituting the second metal portion 12. As a result, the pipe joint 500 can be depressurized even if the wall thickness is reduced in order to reduce the size and weight as compared with the conventional dissimilar metal pipe joint in which the pipe joint 500 is joined on an inclined surface within the wall thickness range of the pipe joint. It can have high mechanical strength to withstand repeated pressurization.

また、管継手500の機械的強さ向上の観点で、第1金属部11の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLM1とし、第2接合部B14の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLJ2とするとき、第1金属部11と中間金属部14とが金属拡散接合されている第2接合部B14はLJ2/LM1≧0.5を満たすことが好ましく、第2金属部12の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLM2とし、第3接合部B24の同心の軸線P−P上に投影した長さ、すなわち投影点P1と投影点P2とを結ぶ線分の長さをLJ3とするとき、第2金属部12と中間金属部14とが金属拡散接合されている第3接合部B24はLJ3/LM2≧0.5を満たすことが好ましい。LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすように構成された管継手500は、金属拡散接合により管状をなす第2接合部B14および第3接合部B24の面積(接合面積)が従来の異種金属管継手よりも十分に大きくなる。そのため、管継手500は、第1金属部1と第2金属部12との接合強度が十分に大きく、十分に実用に足る管継手となる。 Further, from the viewpoint of improving the mechanical strength of the pipe joint 500, the length projected on the concentric axis PP of the first metal portion 11, that is, the length of the line segment connecting the projection point P1 and the projection point P2. Is L M1, and when the length projected on the concentric axis PP of the second junction B14, that is, the length of the line segment connecting the projection point P1 and the projection point P2 is L J2 , the first metal The second joint portion B14 in which the portion 11 and the intermediate metal portion 14 are metal diffusion bonded preferably satisfies L J2 / L M1 ≧ 0.5, and is on the concentric axis PP of the second metal portion 12. projected length, i.e. a projection point P1 the length of a line connecting the projection point P2 and L M2, concentric axis P-P on the projected length of the third joint portion B24, i.e. the projected point P1 When the length of the line segment connecting the projection point P2 is L J3 , the third joint portion B24 in which the second metal portion 12 and the intermediate metal portion 14 are metal diffusion bonded is L J3 / L M2 ≧ 0. It is preferable to satisfy 5. The pipe joint 500 configured to satisfy L J2 / L M1 ≥ 0.5 and L J3 / L M2 ≥ 0.5 is a second joint B14 and a third joint formed into a tubular shape by metal diffusion joint. The area (joint area) of B24 is sufficiently larger than that of the conventional dissimilar metal pipe joint. Therefore, the pipe joint 500 has a sufficiently high joint strength between the first metal portion 1 and the second metal portion 12, and is a pipe joint that is sufficiently practical.

同様に、管継手500の機械的強さ向上の観点で、第1金属部11の径方向(Z方向)の最小内径をDM1とするとき、第2接合部B14はLJ2/DM1≧2を満たし、第3接合部B24はLJ3/DM1≧2を満たすことが好ましい。LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすように構成された管継手500は、金属拡散接合により管状をなす第2接合部B14および第3接合部B24の面積(接合面積)が従来の異種金属管継手よりも十分に大きくなる、そのため、管継手500は、第1金属部1と第2金属部12との接合強度が十分に大きく、十分に実用に足る管継手となる。 Similarly, in terms of mechanical strength improvement of the pipe joint 500, when the minimum inner diameter in the radial direction of the first metal portion 11 (Z-direction) and D M1, the second connecting portion B14 L J2 / D M1 ≧ It is preferable that 2 is satisfied and the third joint B24 satisfies L J3 / D M1 ≧ 2. The pipe joint 500 configured to satisfy L J2 / D M1 ≧ 2 and L J3 / D M1 ≧ 2 has the area of the second joint B14 and the third joint B24 which are tubular by metal diffusion joint ( The joint area) is sufficiently larger than that of the conventional dissimilar metal pipe joint. Therefore, in the pipe joint 500, the joint strength between the first metal portion 1 and the second metal portion 12 is sufficiently large, and the pipe is sufficiently practical. It becomes a joint.

管継手500では、管状の第1金属部11と管状の第2金属部12との間に、管状の中間金属部14が設けられ、第1金属部11と第2金属部12との間の金属拡散が中間金属部14により妨げられている。したがって、第1金属部11を構成する第1金属と第2金属部12を構成する第2金属とが金属拡散によって脆い金属間化合物を生成しやすい組み合わせである場合、中間金属部14を構成する第3金属と第1金属とが脆い金属間化合物を生成しにくく、第3金属と第2金属とが脆い金属間化合物を生成しにくい組み合わせにすることにより、第1金属部11と中間金属部14との接合強度および中間金属部14と第2金属部12との接合強度を十分に大きくすることができる。 In the pipe joint 500, a tubular intermediate metal portion 14 is provided between the tubular first metal portion 11 and the tubular second metal portion 12, and between the first metal portion 11 and the second metal portion 12. Metal diffusion is hindered by the intermediate metal portion 14. Therefore, when the first metal constituting the first metal portion 11 and the second metal constituting the second metal portion 12 are a combination that easily forms a brittle intermetal compound by metal diffusion, the intermediate metal portion 14 is formed. By making a combination in which the third metal and the first metal are less likely to form a brittle intermetal compound and the third metal and the second metal are less likely to form a brittle intermetal compound, the first metal portion 11 and the intermediate metal portion are formed. The joint strength with 14 and the joint strength between the intermediate metal portion 14 and the second metal portion 12 can be sufficiently increased.

例えば、脆い金属間化合物を生成しやすい、CuまたはCu合金と、AlまたはAl合金との組み合わせによる管継手としたい場合は、NiまたはNi合金などにより構成される中間金属部14を設けるのが好ましい。この場合、図17に示す管継手500において、内側(第1金属部11)の材質をCuまたはCu合金、中間(中間金属部14)の材質をNiまたはNi合金、外側(第2金属部12)の材質をAlまたはAl合金の組み合わせにすることができる。また、内側の材質と外側の材質を入れ替えた構成にもできる。このように構成することにより、管継手500は、管継手100と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができるし、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 For example, when it is desired to form a pipe joint made of a combination of Cu or Cu alloy and Al or Al alloy, which easily generate a brittle intermetallic compound, it is preferable to provide an intermediate metal portion 14 made of Ni or Ni alloy or the like. .. In this case, in the pipe joint 500 shown in FIG. 17, the material of the inner side (first metal part 11) is Cu or Cu alloy, the material of the middle (intermediate metal part 14) is Ni or Ni alloy, and the outer material (second metal part 12). ) Can be a combination of Al or Al alloy. In addition, the inner material and the outer material can be interchanged. With such a configuration, the pipe joint 500 can have high mechanical strength to withstand repeated depressurization and pressurization like the pipe joint 100, and the pipe made of a material suitable for welding (bonded pipe). ), And a pipe made of a material suitable for brazing (a pipe to be joined), it is a pipe joint that can be easily joined while ensuring an appropriate joining strength.

管継手500において、第1金属部11を構成する第1金属、中間金属部14を構成する第3金属および第2金属部12を構成する第2金属は、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。管継手500を構成する第1金属部11(第1金属)と第2金属部12(第2金属)の組み合わせは、管継手100と同様に、管継手500を介して接合される一方および他方の管の種類に応じて選択することができる。第1金属および第2金属としては、管継手100に適用可能な上記した鉄系および非鉄系の材質の中から選択することができる。第3金属としては、例えば、Ni(JIS規格のNW2200、NW2201など)などを用いることが好ましい。 In the pipe joint 500, the first metal constituting the first metal portion 11, the third metal constituting the intermediate metal portion 14, and the second metal constituting the second metal portion 12 are laminated with each other in the plate thickness direction. Any material can be used as long as it can be rolled in (clad rolling) and causes appropriate metal diffusion by heating (heat treatment) after clad rolling. The combination of the first metal portion 11 (first metal) and the second metal portion 12 (second metal) constituting the pipe joint 500 is one and the other joined via the pipe joint 500 as in the pipe joint 100. It can be selected according to the type of pipe. The first metal and the second metal can be selected from the above-mentioned iron-based and non-ferrous materials applicable to the pipe joint 100. As the third metal, for example, Ni (JIS standard NW2200, NW2201, etc.) is preferably used.

管継手500は、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手500の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手500の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 500 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 5 (see FIG. 49), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 500, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 500, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

クラッド板材5を作製する工程では、第1金属(例えばCu)からなる第1金属板11と、第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12と、第1金属および第2金属とは異なる第3金属(例えばNi)からなる中間金属板14とを準備し、第1金属板11と中間金属板14と第2金属板12とを板厚方向(X方向)に積層した状態で圧延する。そして、第1金属と第3金属との間および第2金属と第3金属との間に、金属拡散が生じるような条件で熱処理をする。これにより、第1金属により構成された平板状の第1金属層11と、第3金属により構成された平板状の中間金属層14と、第2金属により構成された平板状の第2金属層12とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図49に示すようなクラッド板材5を作製する。このクラッド板材5を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手500を作製することができる。 In the step of producing the clad plate material 5, a first metal plate 11 made of a first metal (for example, Cu) and a second metal plate 12 made of a second metal (for example, stainless steel or Al) different from the first metal are used. An intermediate metal plate 14 made of a third metal (for example, Ni) different from the first metal and the second metal is prepared, and the first metal plate 11, the intermediate metal plate 14, and the second metal plate 12 are arranged in the plate thickness direction (for example, Ni). Roll in a state of being laminated in the X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the first metal and the third metal and between the second metal and the third metal. As a result, the flat plate-shaped first metal layer 11 made of the first metal, the flat plate-shaped intermediate metal layer 14 made of the third metal, and the flat plate-shaped second metal layer made of the second metal. A clad plate material 5 as shown in FIG. 49, which is metal diffusion-bonded to and 12 along the plate surface direction (X direction), is produced. Using this clad plate material 5, a pipe joint 500 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

上記の製造方法により作製された管継手500は、管継手500の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手500は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 500 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 500 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 500, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第1変形例>
この発明に係る管継手の一実施形態として、第5構成例の第1変形例を図18に示す。
図18に第5構成例の第1変形例として示す管継手510は、管継手500を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手510は、第1端部の外周側に段差を有する。したがって、管継手510は、管継手500と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手510は、管継手500よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手500と同等の接合強度を得ることができる。
<First modification of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 18 shows a first modification of the fifth configuration example.
In the pipe joint 510 shown as a first modification of the fifth configuration example in FIG. 18, the pipe joint 500 is used, and the length of the tubular second metal portion 12 in the axial direction (X direction) is set to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 510 has a step on the outer peripheral side of the first end portion. Therefore, the pipe joint 510 has a length of a tubular second joint B14 (the length of a line segment connecting the projection point P2 and the projection point P3) and a second joint, as compared with the pipe joint 500. The ratio of the length of the three-joint portion B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes small. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 500, the pipe joint 510 is adjusted by, for example, increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 500 can be obtained.

なお、管継手510は、第2金属部12、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手500と同様と考えてよい。したがって、管継手510における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 The pipe joint 510 is the same as the pipe joint 500 except for the configuration relating to the axial length (X direction) of the second metal portion 12, the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. You can think about it. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 510 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手510は、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手510の製造において、クラッド板材5を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、中間金属部14の一部の除去が加わる以外は、管継手110と同様と考えてよい。したがって、管継手510の製造において、管継手500および管継手110と同様の工程に関しては管継手500および管継手110に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手510を作製することができる。 The pipe joint 510 includes a step of manufacturing a clad plate material 5 (see FIG. 49), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 510, the step of manufacturing the clad plate material 5, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 500. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 110 except that a part of the intermediate metal portion 14 is removed. Therefore, in the production of the pipe joint 510, the description regarding the pipe joint 500 and the pipe joint 110 is referred to for the same process as the pipe joint 500 and the pipe joint 110, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 510 can be manufactured.

上記の製造方法により作製された管継手510は、管継手510の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手510は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 510 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 510 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 510, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第2変形例>
この発明に係る管継手の一実施形態として、第5構成例の第2変形例を図19に示す。
図19に第5構成例の第2変形例として示す管継手520は、管継手500を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手520は、第2端部の内周側に段差を有する。したがって、管継手520は、管継手500と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手520は、管継手500よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手500と同等の接合強度を得ることができる。
<Second modification of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 19 shows a second modification of the fifth configuration example.
In the pipe joint 520 shown as a second modification of the fifth configuration example in FIG. 19, the pipe joint 500 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) is set to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 520 has a step on the inner peripheral side of the second end portion. Therefore, the pipe joint 520 has a length of a tubular second joint B14 (the length of a line segment connecting the projection point P1 and the projection point P2) and a second joint, as compared with the pipe joint 500. 3 The ratio of the length of the joint B24 (the length of the line segment connecting the projection point P1 and the projection point P2) becomes smaller. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 500, the pipe joint 520 is adjusted by, for example, increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 500 can be obtained.

なお、管継手520は、第1金属部11、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手500と同様と考えてよい。したがって、管継手520における第1金属と第3金属と第2金属との組み合せを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 The pipe joint 520 is the same as the pipe joint 500 except for the configuration relating to the axial length (X direction) of the first metal portion 11, the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. You can think about it. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 520 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手520は、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手520の製造において、クラッド板材5を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、中間金属部14の一部の除去が加わる以外は、管継手120と同様と考えてよい。したがって、管継手520の製造において、管継手500および管継手120と同様の工程に関しては管継手500および管継手120に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手520を作製することができる。 The pipe joint 520 includes a step of manufacturing a clad plate material 5 (see FIG. 49), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 520, the step of manufacturing the clad plate material 5, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 500. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 120 except that a part of the intermediate metal portion 14 is removed. Therefore, in the manufacture of the pipe joint 520, the same steps as those of the pipe joint 500 and the pipe joint 120 are referred to in the description of the pipe joint 500 and the pipe joint 120, and are omitted here. As a result, a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 520 can be manufactured.

上記の製造方法により作製された管継手520は、管継手520の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手520は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 520 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 520 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 520 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第3変形例>
この発明に係る管継手の一実施形態として、第5構成例の第3変形例を図20に示す。
図20に第5構成例の第3変形例として示す管継手530は、管継手500を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手530は、第1端部の外周側および第2端部の内周側に段差を有する。したがって、管継手530は、管継手500と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手530は、管継手500よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手500と同等の接合強度を得ることができる。
<Third variant of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 20 shows a third modification of the fifth configuration example.
In the pipe joint 530 shown as a third modification of the fifth configuration example in FIG. 20, the pipe joint 500 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 530 has a step on the outer peripheral side of the first end portion and the inner peripheral side of the second end portion. Therefore, the pipe joint 530 has a length (the length of the line segment connecting the projection point P2 and the projection point P3) of the tubular second joint portion B14 which is metal diffusion-bonded as compared with the pipe joint 500. The ratio of the length of the three-joint portion B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes small. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 500, the pipe joint 530 is adjusted by, for example, increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 500 can be obtained.

なお、管継手530は、第1金属部11、第2金属部12、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手500と同様と考えてよい。したがって、管継手530における第1金属と第3金属と第2金属との組み合せを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 The pipe joint 530 has a configuration other than the axial length (X direction) of the first metal portion 11, the second metal portion 12, the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. It may be considered to be the same as the pipe joint 500. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 530 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手530は、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させるとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手530の製造において、クラッド板材5を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、第1端部において第1金属部11の外周面11bを露出させる工程は管継手510と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は管継手520と同様と考えてよい。したがって、管継手530の製造において、管継手500、管継手510および管継手520と同様の工程に関しては管継手500、管継手510および管継手520に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手530を作製することができる。 The pipe joint 530 includes a step of manufacturing a clad plate material 5 (see FIG. 49), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the first metal portion 11 and exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 530, the step of manufacturing the clad plate material 5, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 500. The step of exposing the outer peripheral surface 11b of the first metal portion 11 at the end portion may be considered to be the same as that of the pipe joint 510, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 520. Good. Therefore, in the manufacture of the pipe joint 530, the same steps as the pipe joint 500, the pipe joint 510 and the pipe joint 520 will be referred to with reference to the description of the pipe joint 500, the pipe joint 510 and the pipe joint 520, and will be omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 530 having a step on the inner peripheral side of the pipe can be manufactured.

上記の製造方法により作製された管継手530は、管継手530の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手530は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 530 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 530 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 530 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第4変形例>
この発明に係る管継手の一実施形態として、第5構成例の第4変形例を図21に示す。
図21に第5構成例の第4変形例として示す管継手540は、管継手500を用いて管継手510を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手540において、中間金属部14および第2接合部B14についての軸方向(X方向)の長さに関する構成以外は管継手510と同様と考えてよい。したがって、管継手540における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手510に関する説明を参照し、ここでは略す。
<Fourth modification of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 21 shows a fourth modification of the fifth configuration example.
The pipe joint 540 shown as a fourth modification of the fifth configuration example in FIG. 21 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 510 is manufactured using the pipe joint 500. The pipe joint 540 may be considered to be the same as the pipe joint 510 except for the configuration relating to the axial length (X direction) of the intermediate metal portion 14 and the second joint portion B14. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 540 and their actions and effects are referred to the description of the pipe joint 510 and are omitted here.

管継手540は、管継手510を作製する際に、第2金属部12の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手540の製造において、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、中間金属部14の外周面14bを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手510と同様と考えてよい。したがって、管継手540の製造において、管継手500および管継手510と同様の工程に関しては管継手500および管継手510に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出する、管継手540を作製することができる。 The pipe joint 540 can be manufactured by a manufacturing method in which a part of the second metal portion 12 is removed and the intermediate metal portion 14 is left when the pipe joint 510 is manufactured. In the production of the pipe joint 540, the step of manufacturing the clad plate material 5 (see FIG. 49), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 500. The step of exposing the outer peripheral surface 14b of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 510 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 540, the same steps as those of the pipe joint 500 and the pipe joint 510 are referred to in the description of the pipe joint 500 and the pipe joint 510, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 540 can be manufactured while exposing the outer peripheral surface 14b of the intermediate metal portion 14.

上記の製造方法により作製された管継手540は、管継手540の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手540は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 540 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 540 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 540 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第5変形例>
この発明に係る管継手の一実施形態として、第5構成例の第5変形例を図22に示す。
図22に第5構成例の第5変形例として示す管継手550は、管継手500を用いて管継手520を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手550において、中間金属部14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手520と同様と考えてよい。したがって、管継手550における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手520に関する説明を参照し、ここでは略す。
<Fifth variant of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 22 shows a fifth modification of the fifth configuration example.
The pipe joint 550 shown as a fifth modification of the fifth configuration example in FIG. 22 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 520 is manufactured using the pipe joint 500. The pipe joint 550 may be considered to be the same as the pipe joint 520 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 550, their actions and effects, and the like are referred to the description of the pipe joint 520 and are omitted here.

管継手550は、管継手520を作製する際に、第1金属部11の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手550の製造において、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、中間金属部14の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手520と同様と考えてよい。したがって、管継手550の製造において、管継手500および管継手520と同様の工程に関しては管継手500および管継手520に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手550を作製することができる。 The pipe joint 550 can be manufactured by a manufacturing method in which a part of the first metal portion 11 is removed and the intermediate metal portion 14 is left when the pipe joint 520 is manufactured. In the production of the pipe joint 550, the step of manufacturing the clad plate material 5 (see FIG. 49), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 500. The step of exposing the inner peripheral surface 14a of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 520 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 550, the same process as the pipe joint 500 and the pipe joint 520 is referred to in the description of the pipe joint 500 and the pipe joint 520, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is cylindrical and there is a step on the inner peripheral side of the second end portion. A pipe joint 550 can be manufactured while exposing the inner peripheral surface 14a of the intermediate metal portion 14.

上記の製造方法により作製された管継手550は、管継手550の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手550は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 550 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 550 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 550 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第5構成例の第6変形例>
この発明に係る管継手の一実施形態として、第5構成例の第6変形例を図23に示す。
図23に第5構成例の第6変形例として示す管継手560は、管継手500を用いて管継手530を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手560において、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手530と同様と考えてよい。したがって、管継手560における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手530に関する説明を参照し、ここでは略す。
<Sixth variant of the fifth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 23 shows a sixth modification of the fifth configuration example.
The pipe joint 560 shown as a sixth modification of the fifth configuration example in FIG. 23 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 530 is manufactured by using the pipe joint 500. The pipe joint 560 may be considered to be the same as the pipe joint 530 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 560 and their actions and effects are referred to the description of the pipe joint 530 and are omitted here.

管継手560は、管継手530を作製する際に、第1金属部11および第2金属部12の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手560の製造において、クラッド板材5(図49参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手500と同様と考えてよく、中間金属部14の外周面14bおよび内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手530と同様と考えてよい。したがって、管継手560の製造において、管継手500および管継手530と同様の工程に関しては管継手500および管継手530に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手500の形状に対応する管状部を用いて、外観が略円筒状で、第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出するとともに、第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手560を作製することができる。 The pipe joint 560 can be manufactured by a manufacturing method in which a part of the first metal portion 11 and the second metal portion 12 is removed and the intermediate metal portion 14 is left when the pipe joint 530 is manufactured. In the production of the pipe joint 560, the step of manufacturing the clad plate material 5 (see FIG. 49), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 500. The step of exposing the outer peripheral surface 14b and the inner peripheral surface 14a of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 530 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 560, the same steps as those of the pipe joint 500 and the pipe joint 530 are referred to in the description of the pipe joint 500 and the pipe joint 530, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 500 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and there is a step on the outer peripheral side of the first end portion. It is possible to manufacture a pipe joint 560 in which the outer peripheral surface 14b of the intermediate metal portion 14 is exposed and the inner peripheral surface 14a of the intermediate metal portion 14 is exposed while having a step on the inner peripheral side of the second end portion. it can.

上記の製造方法により作製された管継手560は、管継手560の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手560は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 560 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 560 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 560, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例>
この発明に係る管継手の一実施形態として、第6構成例を図24に示す。
図24に第6構成例として示す管継手600は、図17に第5構成例として示す管継手500の第1金属部11の内周面11aに、さらに、耐食性金属により構成された管状の第1被覆金属部13(13IN)を備えるものである。管継手600において、第1金属部11と第1被覆金属部13(13IN)との組み合わせに係る構成は、図5に第2構成例として示す管継手200と同様と考えてよい。したがって、管継手600における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500および管継手200に関する説明を参照し、ここでは略す。
<6th configuration example>
A sixth configuration example is shown in FIG. 24 as an embodiment of the pipe joint according to the present invention.
The pipe joint 600 shown as a sixth configuration example in FIG. 24 is a tubular first metal formed of a corrosion-resistant metal on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 500 shown as a fifth configuration example in FIG. 1 It is provided with a coated metal portion 13 (13 IN). In the pipe joint 600, the configuration related to the combination of the first metal portion 11 and the first coated metal portion 13 (13 IN ) may be considered to be the same as the pipe joint 200 shown as the second configuration example in FIG. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 600 and their actions and effects are referred to the description of the pipe joint 500 and the pipe joint 200, and are omitted here.

管継手600は、管継手600の内部である肉厚の範囲内において第4接合部B13が管状をなすことにより、第4接合部B13の面積、すなわち金属拡散接合部分の面積が十分に大きくなる。そのため、管継手600は、管継手の肉厚の範囲内で、第1被覆金属部13(13IN)と第1金属部11との接合面積が十分に大きくなる。第4接合部B13の接合面積が十分に大きいことにより、第1被覆金属部13(13IN)と第1金属部11との接合強度を十分に大きくすることができる。したがって、管継手500の第1金属部11の内周面11a側に、さらに、第1被覆金属部13(13IN)を備えた管継手600もまた、管継手500と同様の高い機械的強さを有するものとなる。また、管継手500と同様に、機械的強さ向上の観点で、管継手600は、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。 In the pipe joint 600, the area of the fourth joint B13, that is, the area of the metal diffusion joint portion becomes sufficiently large because the fourth joint B13 forms a tubular shape within the range of the wall thickness inside the pipe joint 600. .. Therefore, in the pipe joint 600, the joint area between the first coated metal portion 13 (13 IN ) and the first metal portion 11 becomes sufficiently large within the range of the wall thickness of the pipe joint. When the joint area of the fourth joint portion B13 is sufficiently large , the joint strength between the first coated metal portion 13 (13 IN ) and the first metal portion 11 can be sufficiently increased. Therefore, the pipe joint 600 provided with the first coated metal portion 13 (13 IN ) on the inner peripheral surface 11a side of the first metal portion 11 of the pipe joint 500 also has the same high mechanical strength as the pipe joint 500. Will have. Further, similarly to the pipe joint 500, from the viewpoint of improving the mechanical strength, the pipe joint 600 preferably satisfies L J2 / L M1 ≥ 0.5 and preferably L J3 / L M2 ≥ 0.5. Further, it is preferable that L J2 / D M1 ≧ 2 is satisfied and L J3 / D M1 ≧ 2 is satisfied.

加えて、管継手600は、管継手500の第1金属部11の内周面11a側に、さらに、管状の第1被覆金属部13(13IN)を設けているため、耐食性金属に制限されない第1金属により構成された管状の第1金属部11の内周面11aが露出する管継手500と比べて、管継手の内側(内周面13a)に高い耐食性を有している。なお、管継手600は、第1被覆金属部13(13IN)および第4接合部B13に係る構成以外は管継手500と同様と考えてよい。したがって、管継手600における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 In addition, the pipe joint 600 is not limited to the corrosion-resistant metal because the tubular first coated metal portion 13 (13 IN ) is further provided on the inner peripheral surface 11a side of the first metal portion 11 of the pipe joint 500. Compared to the pipe joint 500 in which the inner peripheral surface 11a of the tubular first metal portion 11 made of the first metal is exposed, the inside of the pipe joint (inner peripheral surface 13a) has higher corrosion resistance. The pipe joint 600 may be considered to be the same as the pipe joint 500 except for the configuration related to the first coated metal portion 13 (13 IN) and the fourth joint portion B13. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 600 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手600において、第1被覆金属部13(13IN)と第1金属部11との組み合わせ、つまり、耐食性金属と第1金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第1金属は、管継手600に適用可能な上記した鉄系および非鉄系の材質の中から選択することができる。耐食性金属は、例えば、Ni(JIS規格のNW2200、NW2201など)またはTi(JIS規格の1種、2種など)などを用いることが好ましい。例えば、管継手600の第1金属部11の内周面11aに接合する管が銅管の場合、ろう接合または溶接の際の溶け込みを考慮し、第1金属を銅管と同種のCuまたはCu合金として第1金属部11を構成することが好ましい。そして、耐食性金属を例えばNiまたはNi合金として第1被覆金属部13(13IN)を構成することにより、第1被覆金属部13(13IN)の内周面13aに対して銅管をろう接合または溶接することができる。この場合、第2金属を例えばステンレス鋼として第2金属部12を構成することができる。 In the pipe joint 600, the combination of the first coated metal portion 13 (13 IN ) and the first metal portion 11, that is, the combination of the corrosion resistant metal and the first metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The first metal can be selected from the above-mentioned iron-based and non-ferrous materials applicable to the pipe joint 600. As the corrosion resistant metal, for example, Ni (JIS standard NW2200, NW2201 or the like) or Ti (JIS standard type 1 or type 2 or the like) is preferably used. For example, when the pipe to be joined to the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 600 is a copper pipe, the first metal is Cu or Cu of the same type as the copper pipe in consideration of penetration at the time of brazing or welding. It is preferable to form the first metal portion 11 as an alloy. Then, by forming the first coated metal portion 13 (13 IN ) with the corrosion-resistant metal as, for example, Ni or a Ni alloy, the copper tube is brazed to the inner peripheral surface 13a of the first coated metal portion 13 (13 IN). Or it can be welded. In this case, the second metal portion 12 can be formed by using, for example, stainless steel as the second metal.

同様な観点で、管継手600を構成する第1金属部11、第2金属部12および第1被覆金属部13(13IN)は、銅管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることなど、用途に応じて設定することができる。このように、管継手600の第1金属部11を構成する第1金属、第2金属部12を構成する第2金属および第1被覆金属部13(13IN)を構成する耐食性金属を適切に選定することにより、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 From the same viewpoint, the first metal portion 11, the second metal portion 12, and the first coated metal portion 13 (13 IN ) constituting the pipe joint 600 are low carbon steel pipe, aluminum pipe, and nickel pipe with respect to the copper pipe. , Titanium pipes and the like can be combined, and low carbon steel pipes, aluminum pipes, nickel pipes, titanium pipes and the like can be combined with stainless steel pipes, which can be set according to the application. As described above, the first metal constituting the first metal portion 11 of the pipe joint 600, the second metal constituting the second metal portion 12, and the corrosion-resistant metal constituting the first coated metal portion 13 (13 IN) are appropriately used. By selecting, it is possible to easily join a pipe made of a material suitable for welding (a pipe to be joined) or a pipe made of a material suitable for brazing (a pipe to be joined) while ensuring an appropriate joining strength. It becomes a pipe joint that can be made.

管継手600を構成する第1被覆金属部13(13IN)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第1被覆金属部13(13IN)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手600の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第1被覆金属部13(13IN)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手600の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The first coated metal portion 13 (13 IN ) constituting the pipe joint 600 preferably has an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this viewpoint, it is preferable that the first coated metal portion 13 (13 IN ) is formed by clad rolling, which can easily form a coated metal layer having a larger wall thickness. Depending on the usage environment of the pipe joint 600, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is used. 1 It can also be used as a coated metal portion 13 (13 IN). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 600.

管継手600は、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手600の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手600の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 600 can be manufactured by a manufacturing method including a step of manufacturing a clad plate member 6 (see FIG. 50), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 600, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 600, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手600の製造において、クラッド板材6を作製する工程では、第1金属(例えばCu)からなる第1金属板11、第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12と、第1金属および第2金属とは異なる第3金属(例えばNi)からなる中間金属板14と、さらに、耐食性金属(例えばNi)からなる第1被覆金属板13とを準備し、第1被覆金属板13と第1金属板11と中間金属板14と第2金属板12とを板厚方向(X方向)に積層した状態で圧延する。そして、耐食性金属と第1金属との間、第1金属と第3金属との間および第3金属と第2金属との間に金属拡散が生じるような条件で熱処理をする。これにより、耐食性金属により構成された平板状の第1被覆金属層13と、第1金属により構成された平板状の第1金属層11と、第3金属により構成された平板状の中間金属板14と、第2金属により構成された平板状の第2金属層12とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図50に示すようなクラッド板材6を作製する。このクラッド板材6を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手600を作製することができる。 In the production of the pipe joint 600, in the step of producing the clad plate material 6, the first metal plate 11 made of a first metal (for example, Cu) and the second metal (for example, stainless steel or Al) different from the first metal are used. A two metal plate 12, an intermediate metal plate 14 made of a third metal (for example, Ni) different from the first metal and the second metal, and a first coated metal plate 13 made of a corrosion resistant metal (for example, Ni) are prepared. Then, the first coated metal plate 13, the first metal plate 11, the intermediate metal plate 14, and the second metal plate 12 are rolled in a laminated state in the plate thickness direction (X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the corrosion-resistant metal and the first metal, between the first metal and the third metal, and between the third metal and the second metal. As a result, the flat plate-shaped first coated metal layer 13 made of the corrosion-resistant metal, the flat plate-shaped first metal layer 11 made of the first metal, and the flat plate-shaped intermediate metal plate made of the third metal. A clad plate material 6 as shown in FIG. 50, in which 14 and a flat plate-shaped second metal layer 12 composed of a second metal are metal-diffuse-bonded along the plate-shaped plate surface direction (X direction). To make. Using this clad plate material 6, a pipe joint 600 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手600は、クラッド板材5を用いて作製される管継手500の第1金属部11の内周面11aに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 600 can also be manufactured by forming a film on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 500 manufactured by using the clad plate material 5 by a plating treatment or the like. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手600は、管継手600の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手600は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 600 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 600 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 600, as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, the joint portion between the metal portions of different materials is less likely to be damaged. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第1変形例>
この発明に係る管継手の一実施形態として、第6構成例の第1変形例を図25に示す。
図25に第6構成例の第1変形例として示す管継手610は、管継手600を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手610は、第1端部の外周側に段差を有するとともに、管状をなす中間金属部14の軸方向(X方向)の長さが管状をなす第1金属部11の軸方向(X方向)の長さよりも小さい。したがって、管継手610は、管継手600と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手610は、管継手600よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手600と同等の接合強度を得ることができる。
<First modification of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 25 shows a first modification of the sixth configuration example.
In the pipe joint 610 shown as a first modification of the sixth configuration example in FIG. 25, the pipe joint 600 is used to set the length of the tubular second metal portion 12 in the axial direction (X direction) to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 610 has a step on the outer peripheral side of the first end portion, and the axial length (X direction) of the tubular intermediate metal portion 14 is the axial direction of the tubular first metal portion 11. It is smaller than the length in the X direction). Therefore, the pipe joint 610 has a length of a tubular second joint B14 (the length of a line segment connecting the projection point P2 and the projection point P3) and a second joint, as compared with the pipe joint 600. The ratio of the length of the three-joint portion B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes small. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 600, the pipe joint 610 is adjusted by, for example, increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 600 can be obtained.

なお、管継手610は、第2金属部12、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手600と同様と考えてよく、第1金属部11と第1被覆金属部13(13IN)との組み合わせに係る構成は、図6に第2構成例の第1変形例として示す管継手210と同様と考えてよい。したがって、管継手610における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手600および管継手210に関する説明を参照し、ここでは略す。 The pipe joint 610 is the same as the pipe joint 600 except for the configuration relating to the axial length (X direction) of the second metal portion 12, the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. It may be considered that the configuration related to the combination of the first metal portion 11 and the first coated metal portion 13 (13 IN ) is the same as the pipe joint 210 shown as the first modification of the second configuration example in FIG. Good. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 610, their effects, and the like will be omitted here with reference to the description of the pipe joint 600 and the pipe joint 210.

管継手610は、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手610の製造において、クラッド板材6を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手510と同様と考えてよい。したがって、管継手610の製造において、管継手600および管継手510と同様の工程に関しては管継手600および管継手510に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手610を作製することができる。 The pipe joint 610 includes a step of manufacturing a clad plate material 6 (see FIG. 50), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 610, the step of manufacturing the clad plate material 6, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 600. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 510. Therefore, in the manufacture of the pipe joint 610, the same steps as those of the pipe joint 600 and the pipe joint 510 are referred to in the description of the pipe joint 600 and the pipe joint 510, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 610 can be manufactured.

上記の製造方法により作製された管継手610は、管継手610の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手610は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 610 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 610 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 610 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第2変形例>
この発明に係る管継手の一実施形態として、第6構成例の第2変形例を図26に示す。
図26に第6構成例の第2変形例として示す管継手620は、管継手600を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手620は、第2端部の内周側に段差を有するとともに、管状をなす中間金属部14の軸方向(X方向)の長さが管状をなす第2金属部12の軸方向(X方向)の長さよりも小さい。したがって、管継手620は、管継手600と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手620は、管継手600よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手600と同等の接合強度を得ることができる。
<Second modification of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 26 shows a second modification of the sixth configuration example.
In the pipe joint 620 shown as a second modification of the sixth configuration example in FIG. 26, the pipe joint 600 is used to set the length of the tubular first metal portion 11 in the axial direction (X direction) to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 620 has a step on the inner peripheral side of the second end portion, and the axial length (X direction) of the tubular intermediate metal portion 14 is the axial direction of the tubular second metal portion 12. It is smaller than the (X direction) length. Therefore, the pipe joint 620 has a length of a tubular second joint B14 (the length of a line segment connecting the projection point P1 and the projection point P2) and a second joint, as compared with the pipe joint 600. 3 The ratio of the length of the joint B24 (the length of the line segment connecting the projection point P1 and the projection point P2) becomes smaller. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 600, the pipe joint 620 is adjusted by, for example, increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 600 can be obtained.

なお、管継手620は、第1金属部11、中間金属部14、第2接合部B14、第3接合部B24および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手600と同様と考えてよく、第1金属部11と第1被覆金属部13(13IN)との組み合わせに係る構成は、図7に第2構成例の第2変形例として示す管継手220と同様と考えてよい。したがって、管継手620における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手600および管継手220に関する説明を参照し、ここでは略す。 The pipe joint 620 has a configuration other than the axial length (X direction) of the first metal portion 11, the intermediate metal portion 14, the second joint portion B14, the third joint portion B24, and the fourth joint portion B13. It can be considered to be the same as the pipe joint 600, and the configuration relating to the combination of the first metal portion 11 and the first coated metal portion 13 (13 IN ) is shown in FIG. 7 as a second modification of the second configuration example. It can be considered the same as 220. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 620, their effects, and the like will be omitted here with reference to the description of the pipe joint 600 and the pipe joint 220.

管継手620は、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手620の製造において、クラッド板材6を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、第1被覆金属部13(13IN)の一部の除去が加わる以外は、管継手520と同様と考えてよい。したがって、管継手620の製造において、管継手600および管継手520と同様の工程に関しては管継手600および管継手520に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手620を作製することができる。 The pipe joint 620 includes a step of manufacturing a clad plate material 6 (see FIG. 50), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 620, the step of manufacturing the clad plate material 6, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 600. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 520 except that a part of the first coated metal portion 13 (13 IN) is removed. Therefore, in the manufacture of the pipe joint 620, the same process as the pipe joint 600 and the pipe joint 520 is referred to in the description of the pipe joint 600 and the pipe joint 520, and is omitted here. As a result, a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 620 can be manufactured.

上記の製造方法により作製された管継手620は、管継手620の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手620は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 620 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 620 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 620, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第3変形例>
この発明に係る管継手の一実施形態として、第6構成例の第3変形例を図27に示す。
図27に第6構成例の第3変形例として示す管継手630は、管継手600を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手630は、第1端部において、外周側に段差を有するとともに、管状をなす中間金属部14を有さず、管状をなす第1金属部11の外周面11bが露出し、第2端部において、内周側に段差を有するとともに、管状をなす中間金属部14を有さず、管状をなす第2金属部12の内周面12aが露出している。したがって、管継手630は、管継手600と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手630は、管継手600よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手600と同等の接合強度を得ることができる。
<Third modification of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 27 shows a third modification of the sixth configuration example.
In the pipe joint 630 shown as a third modification of the sixth configuration example in FIG. 27, the pipe joint 600 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 630 has a step on the outer peripheral side at the first end portion, does not have the tubular intermediate metal portion 14, and the outer peripheral surface 11b of the tubular first metal portion 11 is exposed. At the two ends, the inner peripheral surface 12a of the tubular second metal portion 12 is exposed without having the tubular intermediate metal portion 14 and having a step on the inner peripheral side. Therefore, as compared with the pipe joint 600, the pipe joint 630 has the length (the length of the line segment connecting the projection point P2 and the projection point P3) and the second joint portion B14 which are tubular and are metal diffusion-bonded. 3 The ratio of the length of the joint B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes smaller. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 600, the pipe joint 630 is adjusted by increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 600 can be obtained.

なお、管継手630は、第1金属部11、第2金属部12、中間金属部14、第1被覆金属部13(13IN)、第2接合部14、第3接合部B24および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手600と同様と考えてよく、第1金属部11と第1被覆金属部13(13IN)との組み合わせに係る構成は、図8に第2構成例の第3変形例として示す管継手230と同様と考えてよい。したがって、管継手630における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手600および管継手230に関する説明を参照し、ここでは略す。 The pipe joint 630 includes a first metal portion 11, a second metal portion 12, an intermediate metal portion 14, a first coated metal portion 13 (13 IN ), a second joint portion 14, a third joint portion B24, and a fourth joint. It can be considered to be the same as the pipe joint 600 except for the configuration relating to the axial length (X direction) of the portion B13, and the configuration relating to the combination of the first metal portion 11 and the first coated metal portion 13 (13 IN) is , It may be considered to be the same as the pipe joint 230 shown as the third modification of the second configuration example in FIG. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 630, their effects, and the like will be omitted here with reference to the description of the pipe joint 600 and the pipe joint 230.

管継手630は、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第12金属部11の外周面11bを露出させる工程を有するとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する、製造方法により作製することができる。なお、管継手630の製造において、クラッド板材6を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手610と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手620と同様と考えてよい。したがって、管継手630の製造において、管継手600、管継手610および管継手620と同様の工程に関しては管継手600、管継手610および管継手620に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手630を作製することができる。 The pipe joint 630 includes a step of manufacturing a clad plate material 6 (see FIG. 50), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the 12th metal portion 11 and a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 630, the step of manufacturing the clad plate material 6, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 600. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 610, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 620. Therefore, in the manufacture of the fitting 630, the same steps as those of the fitting 600, the fitting 610 and the fitting 620 will be referred to and omitted here with reference to the description of the fitting 600, the fitting 610 and the fitting 620. As a result, using a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 630 having a step on the inner peripheral side of the pipe can be manufactured.

上記の製造方法により作製された管継手630は、管継手630の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手630は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 630 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 630 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 630, the joint portion between the metal parts of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第4変形例>
この発明に係る管継手の一実施形態として、第6構成例の第4変形例を図28に示す。
図28に第6構成例の第4変形例として示す管継手640は、管継手600を用いて管継手610を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手640において、中間金属部14および第2接合部B14についての軸方向(X方向)の長さに関する構成以外は管継手610と同様と考えてよい。したがって、管継手640における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手610に関する説明を参照し、ここでは略す。
<Fourth modification of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 28 shows a fourth modification of the sixth configuration example.
The pipe joint 640 shown as a fourth modification of the sixth configuration example in FIG. 28 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 610 is manufactured by using the pipe joint 600. The pipe joint 640 may be considered to be the same as the pipe joint 610 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the second joint portion B14. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 640 and their actions and effects are referred to the description of the pipe joint 610 and are omitted here.

管継手640は、管継手610を作製する際に、第2金属部12の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手640の製造において、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、中間金属部14の外周面14bを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手610と同様と考えてよい。したがって、管継手640の製造において、管継手600および管継手610と同様の工程に関しては管継手600および管継手610に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出する、管継手640を作製することができる。 The pipe joint 640 can be manufactured by a manufacturing method in which a part of the second metal portion 12 is removed and the intermediate metal portion 14 is left when the pipe joint 610 is manufactured. In the production of the pipe joint 640, the step of manufacturing the clad plate material 6 (see FIG. 50), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 600. The step of exposing the outer peripheral surface 14b of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 610 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the fitting 640, the same steps as those of the fitting 600 and the fitting 610 are referred to in the description of the fitting 600 and the fitting 610, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 640 can be manufactured while exposing the outer peripheral surface 14b of the intermediate metal portion 14.

上記の製造方法により作製された管継手640は、管継手640の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手640は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 640 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 640 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 640 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第5変形例>
この発明に係る管継手の一実施形態として、第6構成例の第5変形例を図29に示す。
図29に第6構成例の第5変形例として示す管継手650は、管継手600を用いて管継手620を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手650において、中間金属部14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手620と同様と考えてよい。したがって、管継手650における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手620に関する説明を参照し、ここでは略す。
<Fifth variant of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 29 shows a fifth modification of the sixth configuration example.
The pipe joint 650 shown as a fifth modification of the sixth configuration example in FIG. 29 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 620 is manufactured by using the pipe joint 600. The pipe joint 650 may be considered to be the same as the pipe joint 620 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 650, their actions and effects, and the like are referred to the description of the pipe joint 620 and are omitted here.

管継手650は、管継手620を作製する際に、第1被覆金属部13(13IN)の一部および第1金属部11の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手650の製造において、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、中間金属部14の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手620と同様と考えてよい。したがって、管継手650の製造において、管継手600および管継手620と同様の工程に関しては管継手600および管継手620に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手650を作製することができる。 The pipe joint 650 is manufactured by a manufacturing method in which a part of the first coated metal portion 13 (13 IN ) and a part of the first metal portion 11 are removed and an intermediate metal portion 14 is left when the pipe joint 620 is manufactured. Can be made. In the production of the pipe joint 650, the step of manufacturing the clad plate material 6 (see FIG. 50), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 600. The step of exposing the inner peripheral surface 14a of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 620 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 650, the same steps as those of the pipe joint 600 and the pipe joint 620 are referred to in the description of the pipe joint 600 and the pipe joint 620, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is cylindrical and the inner peripheral side of the second end has a step. A pipe joint 650 can be manufactured while exposing the inner peripheral surface 14a of the intermediate metal portion 14.

上記の製造方法により作製された管継手650は、管継手650の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手650は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 650 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 650 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 650 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第6構成例の第6変形例>
この発明に係る管継手の一実施形態として、第6構成例の第6変形例を図30に示す。
図30に第6構成例の第6変形例として示す管継手660は、管継手600を用いて管継手630を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手660において、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手630と同様と考えてよい。したがって、管継手660における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手630に関する説明を参照し、ここでは略す。
<Sixth modification of the sixth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 30 shows a sixth modification of the sixth configuration example.
The pipe joint 660 shown as a sixth modification of the sixth configuration example in FIG. 30 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 630 is manufactured by using the pipe joint 600. The pipe joint 660 may be considered to be the same as the pipe joint 630 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 660 and their actions and effects are referred to the description of the pipe joint 630 and are omitted here.

管継手660は、管継手630を作製する際に、第1金属部11の一部、第2金属部12の一部および第1被覆金属部13(13IN)の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手660の製造において、クラッド板材6(図50参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手600と同様と考えてよく、中間金属部14の第1端部の外周面14bおよび第2端部の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手630と同様と考えてよい。したがって、管継手660の製造において、管継手600および管継手630と同様の工程に関しては管継手600および管継手630に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手600の形状に対応する管状部を用いて、外観が略円筒状で、第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出するとともに、第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手660を作製することができる。 In the pipe joint 660, when the pipe joint 630 was manufactured, a part of the first metal part 11, a part of the second metal part 12, and a part of the first coated metal part 13 (13 IN ) were removed, and the intermediate part was removed. It can be produced by a manufacturing method that leaves the metal portion 14. In the production of the pipe joint 660, the step of manufacturing the clad plate material 6 (see FIG. 50), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 600. The step of exposing the outer peripheral surface 14b of the first end portion and the inner peripheral surface 14a of the second end portion of the intermediate metal portion 14 may be the same as that of the pipe joint 630 except that the intermediate metal portion 14 is left without being removed. You can think of it as the same. Therefore, in the production of the pipe joint 660, the same process as the pipe joint 600 and the pipe joint 630 is referred to in the description of the pipe joint 600 and the pipe joint 630, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 600 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and there is a step on the outer peripheral side of the first end portion. It is possible to manufacture a pipe joint 660 in which the outer peripheral surface 14b of the intermediate metal portion 14 is exposed and the inner peripheral surface 14a of the intermediate metal portion 14 is exposed while having a step on the inner peripheral side of the second end portion. it can.

上記の製造方法により作製された管継手660は、管継手660の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手660は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 660 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 660 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 660, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例>
この発明に係る管継手の一実施形態として、第7構成例を図31に示す。
図31に第7構成例として示す管継手700は、図17に第5構成例として示す管継手500の第2金属部12の外周面12bに、さらに、耐食性金属により構成された管状の第2被覆金属部13(13OUT)を備えるものである。管継手700において、第2金属部12と第2被覆金属部13(13OUT)との組み合わせに係る構成は、図9に第3構成例として示す管継手300と同様と考えてよい。したがって、管継手700における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500および管継手300に関する説明を参照し、ここでは略す。
<7th configuration example>
A seventh configuration example is shown in FIG. 31 as an embodiment of the pipe joint according to the present invention.
The pipe joint 700 shown as a seventh configuration example in FIG. 31 is a tubular second tubular joint made of a corrosion-resistant metal on the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 500 shown as a fifth configuration example in FIG. It is provided with a coated metal portion 13 (13 OUT). In the pipe joint 700, the configuration relating to the combination of the second metal portion 12 and the second coated metal portion 13 (13 OUT ) may be considered to be the same as that of the pipe joint 300 shown as the third configuration example in FIG. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 700 and their actions and effects are referred to the description of the pipe joint 500 and the pipe joint 300, and are omitted here.

管継手700は、管継手700の内部である肉厚の範囲内において第5接合部B23が管状をなすことにより、第5接合部B23の面積、すなわち金属拡散接合部分の面積が十分に大きくなる。そのため、管継手700は、管継手の肉厚の範囲内で、第2被覆金属部13(13OUT)と第2金属部12との接合面積が十分に大きくなる。第5接合部B23の接合面積が十分に大きいことにより、第2被覆金属部13(13OUT)と第2金属部12との接合強度を十分に大きくすることができる。したがって、管継手500の第2金属部12の外周面12b側に、さらに、第2被覆金属部13(13OUT)を備えた管継手700もまた、管継手500と同様の高い機械的強さを有するものとなる。また、管継手500と同様に、機械的強さ向上の観点で、管継手700は、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。 In the pipe joint 700, the area of the fifth joint B23, that is, the area of the metal diffusion joint portion is sufficiently large because the fifth joint B23 is tubular within the range of the wall thickness inside the pipe joint 700. .. Therefore, in the pipe joint 700, the joint area between the second coated metal portion 13 (13 OUT ) and the second metal portion 12 becomes sufficiently large within the range of the wall thickness of the pipe joint. When the joint area of the fifth joint portion B23 is sufficiently large , the joint strength between the second coated metal portion 13 (13 OUT ) and the second metal portion 12 can be sufficiently increased. Therefore, the pipe joint 700 provided with the second coated metal portion 13 (13 OUT ) on the outer peripheral surface 12b side of the second metal portion 12 of the pipe joint 500 also has the same high mechanical strength as the pipe joint 500. Will have. Further, similarly to the pipe joint 500, from the viewpoint of improving the mechanical strength, the pipe joint 700 preferably satisfies L J2 / L M1 ≥ 0.5 and preferably L J3 / L M2 ≥ 0.5. Further, it is preferable that L J2 / D M1 ≧ 2 is satisfied and L J3 / D M1 ≧ 2 is satisfied.

加えて、管継手700は、管継手500の第2金属部12の外周面12b側に、さらに、管状の第2被覆金属部13(13OUT)を設けているため、耐食性金属に制限されない第2金属により構成された管状の第2金属部12の外周面12bが露出する管継手500と比べて、管継手の外側(外周面13b)に高い耐食性を有している。なお、管継手700は、第2被覆金属部13(13OUT)および第5接合部B23に係る構成以外は管継手500と同様と考えてよい。したがって、管継手700における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 In addition, the pipe joint 700 is not limited to the corrosion-resistant metal because the tubular second coated metal portion 13 (13 OUT ) is further provided on the outer peripheral surface 12b side of the second metal portion 12 of the pipe joint 500. Compared to the pipe joint 500 in which the outer peripheral surface 12b of the tubular second metal portion 12 made of two metals is exposed, the outer side (outer peripheral surface 13b) of the pipe joint has higher corrosion resistance. The pipe joint 700 may be considered to be the same as the pipe joint 500 except for the configuration related to the second coated metal portion 13 (13 OUT) and the fifth joint portion B23. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 700 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手700において、第2被覆金属部13(13OUT)と第2金属部12との組み合わせ、つまり、耐食性金属と第2金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第2金属は、管継手700に適用可能な上記した鉄系および非鉄系の材質の中から選択することができる。耐食性金属は、例えば、Ni(JIS規格のNW2200、NW2201など)またはTi(JIS規格の1種、2種など)などを用いることが好ましい。例えば、管継手700の第2金属部12の外周面12bに接合する管が銅管の場合、ろう接合または溶接の際の溶け込みを考慮し、第2金属を銅管と同種のCuまたはCu合金として第2金属部12を構成することが好ましい。そして、耐食性金属を例えばNiまたはNi合金として第2被覆金属部13(13OUT)を構成することにより、第2被覆金属部13(13OUT)の外周面13bに対して銅管をろう接合または溶接することができる。この場合、第1金属を例えばステンレス鋼として第1金属部11を構成することができる。 In the pipe joint 700, the combination of the second coated metal portion 13 (13 OUT ) and the second metal portion 12, that is, the combination of the corrosion resistant metal and the second metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The second metal can be selected from the above-mentioned iron-based and non-ferrous materials applicable to the pipe joint 700. As the corrosion resistant metal, for example, Ni (JIS standard NW2200, NW2201 or the like) or Ti (JIS standard type 1 or type 2 or the like) is preferably used. For example, when the pipe to be joined to the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 700 is a copper pipe, the second metal is a Cu or Cu alloy of the same type as the copper pipe in consideration of penetration during brazing or welding. It is preferable to form the second metal portion 12 as a base. Then, by forming the second coated metal portion 13 (13 OUT ) with the corrosion resistant metal as, for example, Ni or a Ni alloy, the copper tube is brazed to the outer peripheral surface 13b of the second coated metal portion 13 (13 OUT). Can be welded. In this case, the first metal portion 11 can be formed by using, for example, stainless steel as the first metal.

同様な観点で、管継手700を構成する第1金属部11、第2金属部12および第2被覆金属部13(13OUT)は、銅管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることなど、用途に応じて設定することができる。このように、管継手700の第1金属部11を構成する第1金属、第2金属部12を構成する第2金属および第2被覆金属部13(13OUT)を構成する耐食性金属を適切に選定することにより、溶接が好適な材質の管(被接合管)にも、ろう接合が好適な材質の管(被接合管)にも、適切な接合強度を確保しつつ容易に接合することができる管継手となる。 From the same viewpoint, the first metal portion 11, the second metal portion 12, and the second coated metal portion 13 (13 OUT ) constituting the pipe joint 700 are a low carbon steel pipe, an aluminum pipe, and a nickel pipe with respect to the copper pipe. , Titanium pipes and the like can be combined, and low carbon steel pipes, aluminum pipes, nickel pipes, titanium pipes and the like can be combined with stainless steel pipes, which can be set according to the application. As described above, the first metal constituting the first metal portion 11 of the pipe joint 700, the second metal constituting the second metal portion 12, and the corrosion-resistant metal constituting the second coated metal portion 13 (13 OUT) are appropriately used. By selecting, it is possible to easily join a pipe made of a material suitable for welding (a pipe to be joined) or a pipe made of a material suitable for brazing (a pipe to be joined) while ensuring an appropriate joining strength. It becomes a pipe joint that can be made.

管継手700を構成する第2被覆金属部13(13OUT)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第2被覆金属部13(13OUT)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手700の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第2被覆金属部13(13OUT)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手700の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The second coated metal portion 13 (13 OUT ) constituting the pipe joint 700 preferably has an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this viewpoint, it is preferable that the second coated metal portion 13 (13 OUT ) is formed by clad rolling, which can easily form a coated metal layer having a larger wall thickness. Depending on the usage environment of the pipe joint 700, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is used. 2 It can also be used as a coated metal portion 13 (13 OUT). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 700.

管継手700は、クラッド板材7(図51参照)を作製する工程、管状部を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手700の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手700の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 700 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 7 (see FIG. 51), a step of manufacturing a tubular portion, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 700, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 700, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手700の製造において、クラッド板材7を作製する工程では、第1金属(例えばステンレス鋼またはAl)からなる第1金属板11と、第1金属とは異なる第2金属(例えばCu)からなる第2金属板12と、第1金属および第2金属とは異なる第3金属(例えばNi)からなる中間金属板14と、さらに、耐食性金属(例えばNi)からなる第2被覆金属板13とを準備し、第1金属板11と中間金属板14と第2金属板12と第2被覆金属板13とを板厚方向(X方向)に積層した状態で圧延する。そして、第1金属と第3金属との間、第3金属と第2金属との間および第2金属と耐食性金属との間に金属拡散が生じるような条件で熱処理をする。これにより、第1金属により構成された平板状の第1金属層11と、第3金属により構成された平板状の中間金属板14と、第2金属により構成された平板状の第2金属層12と、耐食性金属により構成された平板状の第2被覆金属層13とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図51に示すようなクラッド板材7を作製する。このクラッド板材7を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手700を作製することができる。 In the process of manufacturing the clad plate material 7 in the production of the pipe joint 700, the first metal plate 11 made of a first metal (for example, stainless steel or Al) and the second metal (for example, Cu) different from the first metal are formed. A second metal plate 12, an intermediate metal plate 14 made of a third metal (for example, Ni) different from the first metal and the second metal, and a second coated metal plate 13 made of a corrosion resistant metal (for example, Ni) are further formed. The first metal plate 11, the intermediate metal plate 14, the second metal plate 12, and the second coated metal plate 13 are prepared and rolled in a state of being laminated in the plate thickness direction (X direction). Then, the heat treatment is performed under conditions such that metal diffusion occurs between the first metal and the third metal, between the third metal and the second metal, and between the second metal and the corrosion-resistant metal. As a result, the flat plate-shaped first metal layer 11 made of the first metal, the flat plate-shaped intermediate metal plate 14 made of the third metal, and the flat plate-shaped second metal layer made of the second metal. A clad plate material 7 as shown in FIG. 51, in which the plate 12 and the flat plate-shaped second coated metal layer 13 made of a corrosion-resistant metal are metal diffusion-bonded along the plate surface direction (X direction) of the flat plate. To make. Using this clad plate material 7, a pipe joint 700 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手700は、クラッド板材5を用いて作製される管継手500の第2金属部12の外周面12bに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 700 can also be manufactured by forming a film on the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 500 manufactured by using the clad plate material 5 by a plating treatment or the like. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手700は、管継手700の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手700は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 700 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 700 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 700, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第1変形例>
この発明に係る管継手の一実施形態として、第7構成例の第1変形例を図32に示す。
図32に第7構成例の第1変形例として示す管継手710は、管継手700を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。つまり、第2金属部12の軸線P−P上に投影した投影点P2と投影点P3とを結ぶ線分の長さが、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さよりも小さい。また、管継手710は、第1端部の外周側に段差を有するとともに、管状をなす中間金属部14の軸方向(X方向)の長さが管状をなす第1金属部11の軸方向(X方向)の長さよりも小さい。したがって、管継手710は、管継手600と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手710は、管継手700よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手700と同等の接合強度を得ることができる。
<First modification of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 32 shows a first modification of the seventh configuration example.
In the pipe joint 710 shown as a first modification of the seventh configuration example in FIG. 32, the pipe joint 700 is used to set the length of the tubular second metal portion 12 in the axial direction (X direction) to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. That is, the length of the line segment connecting the projection point P2 projected on the axis PP of the second metal portion 12 and the projection point P3 is the projection point P1 projected on the axis PP of the first metal portion 11. It is smaller than the length of the line segment connecting the projection point P2 and the projection point P2. Further, the pipe joint 710 has a step on the outer peripheral side of the first end portion, and the axial length (X direction) of the tubular intermediate metal portion 14 is the axial direction of the tubular first metal portion 11. It is smaller than the length in the X direction). Therefore, the pipe joint 710 has a length of a tubular second joint B14 (the length of a line segment connecting the projection point P2 and the projection point P3) and a second joint, as compared with the pipe joint 600. The ratio of the length of the three-joint portion B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes small. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 700, the pipe joint 710 is adjusted by increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 700 can be obtained.

なお、管継手710は、第2金属部12、中間金属部14、第2被覆金属部13(13OUT)、第2接合部B14、第3接合部B24および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手700と同様と考えてよく、第2金属部12と第2被覆金属部13(13OUT)との組み合わせに係る構成は、図10に第3構成例の第1変形例として示す管継手310と同様と考えてよい。したがって、管継手710における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手700および管継手310に関する説明を参照し、ここでは略す。 The pipe joint 710 has an axial direction with respect to the second metal portion 12, the intermediate metal portion 14, the second coated metal portion 13 (13 OUT ), the second joint portion B14, the third joint portion B24, and the fifth joint portion B23. It can be considered to be the same as the pipe joint 700 except for the configuration relating to the length in the (X direction), and the configuration relating to the combination of the second metal portion 12 and the second coated metal portion 13 (13 OUT) is shown in FIG. It may be considered to be the same as the pipe joint 310 shown as the first modification of the configuration example. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 710, their effects, and the like will be omitted here with reference to the description of the pipe joint 700 and the pipe joint 310.

管継手710は、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手710の製造において、クラッド板材7を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、第2被覆金属部13(13OUT)の一部の除去が加わる以外は、管継手510と同様と考えてよい。したがって、管継手710の製造において、管継手700および管継手510と同様の工程に関しては管継手700および管継手510に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手710を作製することができる。 The pipe joint 710 includes a step of manufacturing a clad plate material 7 (see FIG. 51), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 710, the step of manufacturing the clad plate material 7, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 700. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 510 except that a part of the second coated metal portion 13 (13 OUT) is removed. Therefore, in the manufacture of the pipe joint 710, the same steps as those of the pipe joint 700 and the pipe joint 510 are referred to in the description of the pipe joint 700 and the pipe joint 510, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 710 can be manufactured.

上記の製造方法により作製された管継手710は、管継手710の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手710は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 710 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 710 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 710, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第2変形例>
この発明に係る管継手の一実施形態として、第7構成例の第2変形例を図33に示す。
図33に第7構成例の第2変形例として示す管継手720は、管継手700を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さが、第2金属部12の軸線P−P上に投影した投影点P1と投影点P3とを結ぶ線分の長さよりも小さい。また、管継手720は、第2端部の内周側に段差を有するとともに、管状をなす中間金属部14の軸方向(X方向)の長さが管状をなす第2金属部12の軸方向(X方向)の長さよりも小さい。したがって、管継手720は、管継手700と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P1と投影点P2とを結ぶ線分の長さ)の割合が小さくなる。管継手720は、管継手700よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手700と同等の接合強度を得ることができる。
<Second modification of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 33 shows a second modification of the seventh configuration example.
In the pipe joint 720 shown as a second modification of the seventh configuration example in FIG. 33, the pipe joint 700 is used to set the length of the tubular first metal portion 11 in the axial direction (X direction) to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 is the projection point P1 projected on the axis PP of the second metal portion 12. It is smaller than the length of the line segment connecting the projection point P3 and the projection point P3. Further, the pipe joint 720 has a step on the inner peripheral side of the second end portion, and the axial length (X direction) of the tubular intermediate metal portion 14 is the axial direction of the tubular second metal portion 12. It is smaller than the (X direction) length. Therefore, as compared with the pipe joint 700, the pipe joint 720 has the length (the length of the line segment connecting the projection point P1 and the projection point P2) and the second joint portion B14 which are tubular and are metal diffusion-bonded. 3 The ratio of the length of the joint B24 (the length of the line segment connecting the projection point P1 and the projection point P2) becomes smaller. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 700, the pipe joint 720 is adjusted by increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 700 can be obtained.

なお、管継手720は、第1金属部11、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手700と同様と考えてよく、第2金属部12と第2被覆金属部13(13OUT)との組み合わせに係る構成は、図11に第3構成例の第2変形例として示す管継手320と同様と考えてよい。したがって、管継手720における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手700および管継手320に関する説明を参照し、ここでは略す。 The pipe joint 720 is the same as the pipe joint 700 except for the configuration relating to the axial length (X direction) of the first metal portion 11, the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. It may be considered that the configuration related to the combination of the second metal portion 12 and the second coated metal portion 13 (13 OUT ) is the same as the pipe joint 320 shown as the second modification of the third configuration example in FIG. Good. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 720, their effects, and the like will be omitted here with reference to the description of the pipe joint 700 and the pipe joint 320.

管継手720は、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手720の製造において、クラッド板材7を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手520と同様と考えてよい。したがって、管継手720の製造において、管継手700および管継手520と同様の工程に関しては管継手700および管継手520に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手720を作製することができる。 The pipe joint 720 includes a step of manufacturing a clad plate material 7 (see FIG. 51), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 720, the step of manufacturing the clad plate material 7, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 700. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 520. Therefore, in the production of the pipe joint 720, the same process as the pipe joint 700 and the pipe joint 520 is referred to in the description of the pipe joint 700 and the pipe joint 520, and is omitted here. As a result, a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 720 can be manufactured.

上記の製造方法により作製された管継手720は、管継手720の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手720は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 720 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 720 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 720 is brazed or brazed because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第3変形例>
この発明に係る管継手の一実施形態として、第7構成例の第3変形例を図34に示す。
図34に第7構成例の第3変形例として示す管継手730は、管継手700を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。つまり、第1金属部11の軸線P−P上に投影した投影点P1と投影点P2とを結ぶ線分の長さと、第2金属部12の軸線P−P上に投影した投影点P3と投影点P4とを結ぶ線分の長さとが、略同等である。また、管継手730は、第1端部において、外周側に段差を有するとともに、管状をなす中間金属部14を有さず、管状をなす第1金属部11の外周面11bが露出し、第2端部において、内周側に段差を有するとともに、管状をなす中間金属部14を有さず、管状をなす第2金属部12の内周面12aが露出している。したがって、管継手730は、管継手700と比べて、金属拡散接合されている管状をなす第2接合部B14の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)および第3接合部B24の長さ(投影点P2と投影点P3とを結ぶ線分の長さ)の割合が小さくなる。管継手730は、管継手700よりも第2接合部B14および第3接合部B24の長さの割合が小さくなることを考慮し、例えば、管径(例えば基準内径)を大きくするなどの調整をすれば、管状をなす第2接合部B14および第3接合部B24の軸方向(X方向)に沿う面積、すなわち第1金属部11と中間金属部14との接合面積および第2金属部12と中間金属部14との接合面積を大きくすることができるため、管継手700と同等の接合強度を得ることができる。
<Third modification of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 34 shows a third modification of the seventh configuration example.
In the pipe joint 730 shown as a third modification of the seventh configuration example in FIG. 34, the pipe joint 700 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. That is, the length of the line segment connecting the projection point P1 projected on the axis PP of the first metal portion 11 and the projection point P2 and the projection point P3 projected on the axis PP of the second metal portion 12 The length of the line segment connecting the projection point P4 is substantially the same. Further, the pipe joint 730 has a step on the outer peripheral side at the first end portion and does not have the tubular intermediate metal portion 14, and the outer peripheral surface 11b of the tubular first metal portion 11 is exposed. At the two ends, the inner peripheral surface 12a of the tubular second metal portion 12 is exposed without having the tubular intermediate metal portion 14 and having a step on the inner peripheral side. Therefore, as compared with the pipe joint 700, the pipe joint 730 has the length (the length of the line segment connecting the projection point P2 and the projection point P3) and the second joint portion B14 which are tubular and are metal diffusion-bonded. The ratio of the length of the three-joint portion B24 (the length of the line segment connecting the projection point P2 and the projection point P3) becomes small. Considering that the ratio of the lengths of the second joint B14 and the third joint B24 is smaller than that of the pipe joint 700, the pipe joint 730 is adjusted by increasing the pipe diameter (for example, the reference inner diameter). Then, the area along the axial direction (X direction) of the second joint portion B14 and the third joint portion B24 forming a tubular shape, that is, the joint area between the first metal portion 11 and the intermediate metal portion 14 and the second metal portion 12 Since the joint area with the intermediate metal portion 14 can be increased, a joint strength equivalent to that of the pipe joint 700 can be obtained.

なお、管継手730は、第1金属部11、第2金属部12、中間金属部14、第2被覆金属部13(13OUT)、第2接合部B14、第3接合部B24および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手700と同様と考えてよく、第2金属部12と第2被覆金属部13(13OUT)との組み合わせに係る構成は、図12に第3構成例の第3変形例として示す管継手330と同様と考えてよい。したがって、管継手730における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては、管継手700および管継手330に関する説明を参照し、ここでは略す。 The pipe joint 730 includes a first metal portion 11, a second metal portion 12, an intermediate metal portion 14, a second coated metal portion 13 (13 OUT ), a second joint portion B14, a third joint portion B24, and a fifth joint. It can be considered to be the same as the pipe joint 700 except for the configuration relating to the axial length (X direction) of the portion B23, and the configuration relating to the combination of the second metal portion 12 and the second coated metal portion 13 (13 OUT) is , It may be considered to be the same as the pipe joint 330 shown as the third modification of the third configuration example in FIG. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 730, their effects, and the like will be omitted here with reference to the description of the pipe joint 700 and the pipe joint 330.

管継手730は、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第12金属部11の外周面11bを露出させる工程を有するとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する、製造方法により作製することができる。なお、管継手730の製造において、クラッド板材7を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手710と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手720と同様と考えてよい。したがって、管継手730の製造において、管継手700、管継手710および管継手720と同様の工程に関しては管継手700、管継手710および管継手720に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手730を作製することができる。 The pipe joint 730 includes a step of manufacturing a clad plate material 7 (see FIG. 51), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the 12th metal portion 11 and a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 730, the step of manufacturing the clad plate material 7, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 700. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 710, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 720. Therefore, in the manufacture of the pipe joint 730, the same steps as the pipe joint 700, the pipe joint 710 and the pipe joint 720 will be referred to and omitted here with reference to the description of the pipe joint 700, the pipe joint 710 and the pipe joint 720. As a result, using a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 730 having a step on the inner peripheral side of the pipe joint 730 can be manufactured.

上記の製造方法により作製された管継手730は、管継手730の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手730は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 730 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 730 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 730, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第4変形例>
この発明に係る管継手の一実施形態として、第7構成例の第4変形例を図35に示す。
図35に第7構成例の第4変形例として示す管継手740は、管継手700を用いて管継手710を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手740において、中間金属部14および第2接合部B14についての軸方向(X方向)の長さに関する構成以外は管継手710と同様と考えてよい。したがって、管継手740における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手710に関する説明を参照し、ここでは略す。
<Fourth modification of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 35 shows a fourth modification of the seventh configuration example.
The pipe joint 740 shown as a fourth modification of the seventh configuration example in FIG. 35 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 710 is manufactured by using the pipe joint 700. The pipe joint 740 may be considered to be the same as the pipe joint 710 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the second joint portion B14. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 740 and their actions and effects are referred to the description of the pipe joint 710 and are omitted here.

管継手740は、管継手710を作製する際に、第2被覆金属部13(13OUT)の一部および第2金属部12の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手740の製造において、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、中間金属部14の外周面14bを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手710と同様と考えてよい。したがって、管継手740の製造において、管継手700および管継手710と同様の工程に関しては管継手700および管継手710に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出する、管継手740を作製することができる。 The pipe joint 740 is manufactured by a manufacturing method in which a part of the second coated metal portion 13 (13 OUT ) and a part of the second metal portion 12 are removed and an intermediate metal portion 14 is left when the pipe joint 710 is manufactured. Can be made. In the production of the pipe joint 740, the step of manufacturing the clad plate material 7 (see FIG. 51), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 700. The step of exposing the outer peripheral surface 14b of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 710 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 740, the same steps as the pipe joint 700 and the pipe joint 710 are referred to in the description of the pipe joint 700 and the pipe joint 710, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and there is a step on the outer peripheral side of the first end portion. A pipe joint 740 can be manufactured while exposing the outer peripheral surface 14b of the intermediate metal portion 14.

上記の製造方法により作製された管継手740は、管継手740の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手740は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 740 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 740 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 740, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第5変形例>
この発明に係る管継手の一実施形態として、第7構成例の第5変形例を図36に示す。
図36に第7構成例の第5変形例として示す管継手750は、管継手700を用いて管継手720を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手750において、中間金属部14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手720と同様と考えてよい。したがって、管継手750における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手720に関する説明を参照し、ここでは略す。
<Fifth variant of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 36 shows a fifth modification of the seventh configuration example.
The pipe joint 750 shown as a fifth modification of the seventh configuration example in FIG. 36 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 720 is manufactured by using the pipe joint 700. The pipe joint 750 may be considered to be the same as the pipe joint 720 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 750 and their actions and effects are referred to the description of the pipe joint 720 and are omitted here.

管継手750は、管継手720を作製する際に、第1金属部11の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手750の製造において、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、中間金属部14の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手720と同様と考えてよい。したがって、管継手750の製造において、管継手700および管継手720と同様の工程に関しては管継手700および管継手720に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手750を作製することができる。 The pipe joint 750 can be manufactured by a manufacturing method in which a part of the first metal portion 11 is removed and the intermediate metal portion 14 is left when the pipe joint 720 is manufactured. In the production of the pipe joint 750, the step of manufacturing the clad plate material 7 (see FIG. 51), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 700. The step of exposing the inner peripheral surface 14a of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 720 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 750, the same process as the pipe joint 700 and the pipe joint 720 is referred to in the description of the pipe joint 700 and the pipe joint 720, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is cylindrical and there is a step on the inner peripheral side of the second end portion. A pipe joint 750 can be manufactured while exposing the inner peripheral surface 14a of the intermediate metal portion 14.

上記の製造方法により作製された管継手750は、管継手750の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手750は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 750 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 750 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 750, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第7構成例の第6変形例>
この発明に係る管継手の一実施形態として、第7構成例の第6変形例を図37に示す。
図37に第7構成例の第6変形例として示す管継手760は、管継手700を用いて管継手730を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手760において、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手730と同様と考えてよい。したがって、管継手760における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手730に関する説明を参照し、ここでは略す。
<Sixth variant of the seventh configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 37 shows a sixth modification of the seventh configuration example.
The pipe joint 760 shown as a sixth modification of the seventh configuration example in FIG. 37 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 730 is manufactured by using the pipe joint 700. The pipe joint 760 may be considered to be the same as the pipe joint 730 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 760 and their actions and effects are referred to the description of the pipe joint 730 and are omitted here.

管継手760は、管継手730を作製する際に、第1金属部11の一部、第2金属部12の一部および第2被覆金属部13(13OUT)の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手760の製造において、クラッド板材7(図51参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手700と同様と考えてよく、中間金属部14の第1端部の外周面14bおよび第2端部の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手730と同様と考えてよい。したがって、管継手760の製造において、管継手700および管継手730と同様の工程に関しては管継手700および管継手730に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手700の形状に対応する管状部を用いて、外観が略円筒状で、第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出するとともに、第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手760を作製することができる。 When the pipe joint 760 is manufactured, a part of the first metal part 11, a part of the second metal part 12, and a part of the second coated metal part 13 (13 OUT ) are removed, and the middle part is removed. It can be manufactured by a manufacturing method that leaves the metal portion 14. In the production of the pipe joint 760, the step of manufacturing the clad plate material 7 (see FIG. 51), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 700. The step of exposing the outer peripheral surface 14b of the first end portion and the inner peripheral surface 14a of the second end portion of the intermediate metal portion 14 may be the same as that of the pipe joint 730 except that the intermediate metal portion 14 is left without being removed. You can think of it as the same. Therefore, in the production of the pipe joint 760, the same process as the pipe joint 700 and the pipe joint 730 is referred to in the description of the pipe joint 700 and the pipe joint 730, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 700 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and there is a step on the outer peripheral side of the first end portion. It is possible to manufacture a pipe joint 760 in which the outer peripheral surface 14b of the intermediate metal portion 14 is exposed and the inner peripheral surface 14a of the intermediate metal portion 14 is exposed while having a step on the inner peripheral side of the second end portion. it can.

上記の製造方法により作製された管継手760は、管継手760の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手760は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 760 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 760 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 760, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例>
この発明に係る管継手の一実施形態として、第8構成例を図38に示す。
図38に第8構成例として示す管継手800は、図17に第5構成例として示す管継手500の第1金属部11の内周面11aに、さらに、耐食性金属により構成された管状の第1被覆金属部13(13IN)を備えるとともに、第2金属部12の外周面12bに、さらに、耐食性金属により構成された管状の第2被覆金属部13(13OUT)を備えるものである。なお、管継手800において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手600と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手700と同じと考えてよい。したがって、管継手800は、管継手600または管継手700と同様に、つまり管継手500と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手500と同様に、機械的強さ向上の観点で、管継手800は、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。
<8th configuration example>
An eighth configuration example is shown in FIG. 38 as an embodiment of the pipe joint according to the present invention.
The pipe joint 800 shown as an eighth configuration example in FIG. 38 is a tubular first metal formed of a corrosion-resistant metal on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 500 shown as a fifth configuration example in FIG. A 1-coated metal portion 13 (13 IN ) is provided, and a tubular second coated metal portion 13 (13 OUT ) made of a corrosion-resistant metal is further provided on the outer peripheral surface 12b of the second metal portion 12. In the pipe joint 800, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 600, and the second coated metal portion 13 (13 OUT ) and the first The configuration of the two metal portions 12 may be considered to be the same as that of the pipe joint 700. Therefore, the fitting 800 can have high mechanical strength to withstand repeated depressurization and boosting like the fitting 600 or the fitting 700, that is, like the fitting 500. Further, similarly to the pipe joint 500, from the viewpoint of improving the mechanical strength, the pipe joint 800 preferably satisfies L J2 / L M1 ≥ 0.5 and preferably L J3 / L M2 ≥ 0.5. Further, it is preferable that L J2 / D M1 ≧ 2 is satisfied and L J3 / D M1 ≧ 2 is satisfied.

加えて、管継手800は、管継手500の第1金属部11の内周面11aに、さらに、管状の第1被覆金属部13(13IN)を設けるとともに、第2金属部12の外周面12bに、さらに、管状の第2被覆金属部13(13OUT)を設けているため、耐食性金属に限定されない第1金属により構成された管状の第1金属部11の内周面11aが露出するとともに、耐食性金属に限定されない第2金属により構成された管状の第2金属部12の外周面12bが露出する、管継手500と比べて、管継手の内側(内周面13a)および外側(外周面13b)に高い耐食性を有している。なお、管継手800は、第1被覆金属部13(13IN)、第2被覆金属部13(13OUT)、第4接合部B13および第5接合部B23に係る構成以外は管継手500と同様と考えてよい。したがって、管継手800における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手500に関する説明を参照し、ここでは略す。 In addition, the pipe joint 800 is provided with a tubular first coated metal portion 13 (13 IN ) on the inner peripheral surface 11a of the first metal portion 11 of the pipe joint 500, and the outer peripheral surface of the second metal portion 12. Since the tubular second coated metal portion 13 (13 OUT ) is further provided on the 12b, the inner peripheral surface 11a of the tubular first metal portion 11 made of the first metal, which is not limited to the corrosion resistant metal, is exposed. At the same time, the outer peripheral surface 12b of the tubular second metal portion 12 made of a second metal not limited to the corrosion resistant metal is exposed. Surface 13b) has high corrosion resistance. The pipe joint 800 is the same as the pipe joint 500 except for the configurations relating to the first coated metal portion 13 (13 IN ), the second coated metal portion 13 (13 OUT ), the fourth joint portion B13, and the fifth joint portion B23. You can think of it as. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 800 and their actions and effects are referred to the description of the pipe joint 500 and are omitted here.

管継手800において、第1被覆金属部13(13IN)と第1金属部11との組み合わせ、つまり、耐食性金属と第1金属との組み合わせは、互いを板厚方向に積層した状態での圧延(クラッド圧延)が可能で、クラッド圧延後の加熱(熱処理)により適度な金属拡散が生じる材質であればよい。第2被覆金属部13(13OUT)と第2金属部12との組み合わせ、つまり、耐食性金属と第2金属との組み合わせも、同様である。なお、第1金属部11を構成する第1金属、第2金属部12を構成する第2金属、第1被覆金属部13(13IN)を構成する耐食性金属および第2被覆金属部13(13OUT)を構成する耐食性金属の選択は、管継手600および管継手700と同様に行えばよく、管継手600および管継手700に関する説明を参照し、ここでの説明は略す。 In the pipe joint 800, the combination of the first coated metal portion 13 (13 IN ) and the first metal portion 11, that is, the combination of the corrosion-resistant metal and the first metal is rolled in a state where they are laminated in the plate thickness direction. Any material that can be clad-rolled and that causes appropriate metal diffusion by heating (heat treatment) after clad-rolling may be used. The same applies to the combination of the second coated metal portion 13 (13 OUT ) and the second metal portion 12, that is, the combination of the corrosion resistant metal and the second metal. The first metal constituting the first metal portion 11, the second metal constituting the second metal portion 12, the corrosion-resistant metal constituting the first coated metal portion 13 (13 IN ), and the second coated metal portion 13 (13). The corrosion-resistant metal constituting OUT) may be selected in the same manner as for the pipe joint 600 and the pipe joint 700, and the description thereof will be omitted with reference to the description regarding the pipe joint 600 and the pipe joint 700.

管継手800を構成する第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)は、適度な耐食性を得るために、適度に大きい肉厚を有することが好ましい。この観点で、第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)は、より大きな肉厚の被覆金属層を容易に形成することができるクラッド圧延によって形成されていることが好ましい。なお、管継手800の使用環境などに応じて、一般的にクラッド圧延によるよりも肉厚が小さい、ニッケルめっき層、ニッケルリンめっき層、ニッケルクロムめっき層またはアルマイト層などの耐食性を有する皮膜を第1被覆金属部13(13IN)および第2被覆金属部13(13OUT)として用いることもできる。この場合、深絞り成形による皮膜の損傷リスクを考慮し、管継手500の形状に形成した後にめっき処理などを行って、皮膜を形成することが好ましい。 The first coated metal portion 13 (13 IN ) and the second coated metal portion 13 (13 OUT ) constituting the pipe joint 800 preferably have an appropriately large wall thickness in order to obtain an appropriate corrosion resistance. From this point of view, the first coated metal portion 13 (13 IN ) and the second coated metal portion 13 (13 OUT ) are formed by clad rolling which can easily form a coating metal layer having a larger wall thickness. Is preferable. Depending on the usage environment of the pipe joint 800, a film having corrosion resistance such as a nickel plating layer, a nickel phosphorus plating layer, a nickel chrome plating layer, or an alumite layer, which is generally smaller in wall thickness than that obtained by clad rolling, is formed. It can also be used as the 1-coated metal portion 13 (13 IN ) and the 2nd coated metal portion 13 (13 OUT). In this case, in consideration of the risk of damage to the film due to deep drawing, it is preferable to form the film by performing plating treatment or the like after forming the shape of the pipe joint 500.

管継手800は、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有する製造方法により作製することができる。なお、管継手800の製造において、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手100と同様と考えてよい。したがって、管継手800の製造において、管継手100と同様の工程に関しては管継手100に関する説明を参照し、ここでは略す。 The pipe joint 800 can be manufactured by a manufacturing method including a step of manufacturing a clad plate material 8 (see FIG. 52), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member. In the production of the pipe joint 800, the step of manufacturing the tubular member and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 100. Therefore, in the production of the pipe joint 800, the description regarding the pipe joint 100 is referred to for the same process as the pipe joint 100, and is omitted here.

管継手800の製造において、クラッド板材8を作製する工程では、第1金属(例えばCu)からなる第1金属板11および第1金属とは異なる第2金属(例えばステンレス鋼またはAl)からなる第2金属板12と、第1金属および第2金属とは異なる第3金属(例えばNi)からなる中間金属板14と、さらに、耐食性金属(例えばNi)からなる第1被覆金属板13(13IN)および第2被覆金属板13(13OUT)とを準備し、第1被覆金属板13(13IN)と第1金属板11と中間金属板14と第2金属板12と第2被覆金属板13(13OUT)とを板厚方向(X方向)に積層した状態で圧延する。そして、耐食性金属と第1金属との間、第1金属と第3金属との間、第3金属と第2金属との間、および、第2金属と耐食性金属との間に、金属拡散が生じるような条件で熱処理をする。これにより、耐食性金属により構成された平板状の第1被覆金属層13(13IN)と、第1金属により構成された平板状の第1金属層11と、第3金属により構成された平板状の中間金属板14と、第2金属により構成された平板状の第2金属層12と、耐食性金属により構成された平板状の第2被覆金属層13(13OUT)とが、平板状の板面方向(X方向)に沿って金属拡散接合されている、図52に示すようなクラッド板材8を作製する。このクラッド板材8を用いて、管継手100と同様に、深絞り成形によって管状部材を作製する工程および管状部材から管状部を切離する工程により、外観が円筒状の管継手800を作製することができる。 In the production of the pipe joint 800, in the step of producing the clad plate material 8, the first metal plate 11 made of the first metal (for example, Cu) and the second metal (for example, stainless steel or Al) different from the first metal are used. The two metal plates 12, the intermediate metal plate 14 made of a third metal (for example, Ni) different from the first metal and the second metal, and the first coated metal plate 13 (13 IN) made of a corrosion resistant metal (for example, Ni). ) And the second coated metal plate 13 (13 OUT ), the first coated metal plate 13 (13 IN ), the first metal plate 11, the intermediate metal plate 14, the second metal plate 12, and the second coated metal plate. 13 (13 OUT ) is rolled in a state of being laminated in the plate thickness direction (X direction). Then, metal diffusion occurs between the corrosion-resistant metal and the first metal, between the first metal and the third metal, between the third metal and the second metal, and between the second metal and the corrosion-resistant metal. Heat treatment is performed under the conditions that occur. As a result, the flat plate-shaped first coated metal layer 13 (13 IN ) made of the corrosion-resistant metal, the flat plate-shaped first metal layer 11 made of the first metal, and the flat plate-shaped made of the third metal. The intermediate metal plate 14, the flat plate-shaped second metal layer 12 made of the second metal, and the flat plate-shaped second coated metal layer 13 (13 OUT ) made of the corrosion-resistant metal are flat plates. A clad plate material 8 as shown in FIG. 52, which is metal diffusion bonded along the plane direction (X direction), is produced. Using this clad plate material 8, a pipe joint 800 having a cylindrical appearance is manufactured by a step of manufacturing a tubular member by deep drawing and a step of separating the tubular portion from the tubular member, similarly to the pipe joint 100. Can be done.

なお、管継手800は、クラッド板材5を用いて作製される管継手500の第1金属部11の内周面11aおよび第2金属部12の外周面12bに、めっき処理などにより皮膜を形成することによっても作製することができる。この場合の皮膜は、用途に応じて選定することができ、ニッケルめっき皮膜、クロムめっき皮膜、ニッケルクロムめっき皮膜、あるいはアルマイト皮膜などが好ましく、皮膜の多層化も可能である。 The pipe joint 800 forms a film on the inner peripheral surface 11a of the first metal portion 11 and the outer peripheral surface 12b of the second metal portion 12 of the pipe joint 500 manufactured by using the clad plate material 5 by plating or the like. It can also be produced by the above. The film in this case can be selected according to the application, and a nickel plating film, a chrome plating film, a nickel chrome plating film, an alumite film, or the like is preferable, and the film can be multi-layered.

上記の製造方法により作製された管継手800は、管継手800の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手800は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 800 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 800 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 800, as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, the joint portion between the metal portions of different materials is less likely to be damaged. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第1変形例>
この発明に係る管継手の一実施形態として、第8構成例の第1変形例を図39に示す。
図39に第8構成例の第1変形例として示す管継手810は、管継手800を用いて、管状をなす第2金属部12の軸方向(X方向)の長さを、管状をなす第1金属部11の軸方向(X方向)の長さよりも小さくしたものである。なお、管継手810において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手610と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手710と同じと考えてよい。したがって、管継手810は、管継手610または管継手710と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手610または管継手710と同様に、機械的強さ向上の観点で、管継手810は、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。
<First modification of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 39 shows a first modification of the eighth configuration example.
The pipe joint 810 shown as a first modification of the eighth configuration example in FIG. 39 uses the pipe joint 800 to set the length of the tubular second metal portion 12 in the axial direction (X direction) to be tubular. 1 The length of the metal portion 11 in the axial direction (X direction) is smaller than the length. In the pipe joint 810, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 610, and the second coated metal portion 13 (13 OUT ) and the first 2 The configuration of the metal portion 12 may be considered to be the same as that of the pipe joint 710. Therefore, the fitting 810, like the fitting 610 or the fitting 710, can have high mechanical strength to withstand repeated depressurization and boosting. Further, similarly to the pipe joint 610 or the pipe joint 710, from the viewpoint of improving the mechanical strength, the pipe joint 810 satisfies L J2 / L M1 ≧ 0.5 and L J3 / L M2 ≧ 0.5. It is preferable that L J2 / D M1 ≧ 2 and L J3 / D M1 ≧ 2 are satisfied.

なお、管継手810は、第2金属部12、中間金属部14、第2被覆金属部13(13OUT)、第2接合部B14、第3接合部B24および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手800と同様と考えてよい。したがって、管継手810における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合わせを含む、他の構成およびその作用効果などに関しては、管継手800に関する説明を参照し、ここでは略す。 The pipe joint 810 has an axial direction with respect to the second metal portion 12, the intermediate metal portion 14, the second coated metal portion 13 (13 OUT ), the second joint portion B14, the third joint portion B24, and the fifth joint portion B23. It may be considered to be the same as the pipe joint 800 except for the configuration related to the length (X direction). Therefore, for other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 810, and their effects and effects, refer to the description of the pipe joint 800, and here, refer to the description of the pipe joint 800. Abbreviated.

管継手810は、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有する製造方法により作製することができる。なお、管継手810の製造において、クラッド板材8を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は、管継手710と同様と考えてよい。したがって、管継手810の製造において、管継手800および管継手710と同様の工程に関しては管継手800および管継手710に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手800の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有する、管継手810を作製することができる。 The pipe joint 810 includes a step of manufacturing a clad plate material 8 (see FIG. 52), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method including a step of exposing the outer peripheral surface 11b of the first metal portion 11 in the above. In the production of the pipe joint 810, the step of manufacturing the clad plate material 8, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 800. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 710. Therefore, in the production of the pipe joint 810, the same steps as the pipe joint 800 and the pipe joint 710 are referred to in the description of the pipe joint 800 and the pipe joint 710, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 800 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and a step is provided on the outer peripheral side of the first end portion. A pipe joint 810 can be manufactured.

上記の製造方法により作製された管継手810は、管継手810の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手810は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 810 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 810 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 810, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第2変形例>
この発明に係る管継手の一実施形態として、第8構成例の第2変形例を図40に示す。
図40に第8構成例の第2変形例として示す管継手820は、管継手800を用いて、管状をなす第1金属部11の軸方向(X方向)の長さを、管状をなす第2金属部12の軸方向(X方向)の長さよりも小さくしたものである。なお、管継手820において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手620と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手720と同じと考えてよい。したがって、管継手820は、管継手620または管継手720と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手620または管継手720と同様に、機械的強さ向上の観点で、管継手820は、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。
<Second modification of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 40 shows a second modification of the eighth configuration example.
In the pipe joint 820 shown as a second modification of the eighth configuration example in FIG. 40, the pipe joint 800 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) is set to be tubular. 2 The length of the metal portion 12 in the axial direction (X direction) is smaller than that of the metal portion 12. In the pipe joint 820, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 620, and the second coated metal portion 13 (13 OUT ) and the first 2 The configuration of the metal portion 12 may be considered to be the same as that of the pipe joint 720. Therefore, the fitting 820, like the fitting 620 or the fitting 720, can have high mechanical strength to withstand repeated depressurization and boosting. Further, similarly to the pipe joint 620 or the pipe joint 720, from the viewpoint of improving the mechanical strength, the pipe joint 820 satisfies L J2 / L M1 ≧ 0.5 and L J3 / L M2 ≧ 0.5. It is preferable that L J2 / D M1 ≧ 2 and L J3 / D M1 ≧ 2 are satisfied.

なお、管継手820は、第1金属部11、中間金属部14、第1被覆金属部13(13IN)、第2接合部B14、第3接合部B24および第4接合部B13についての軸方向(X方向)の長さに関する構成以外は管継手800と同様と考えてよい。したがって、管継手820における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合わせを含む、他の構成およびその作用効果などに関しては、管継手800に関する説明を参照し、ここでは略す。 The pipe joint 820 has an axial direction with respect to the first metal portion 11, the intermediate metal portion 14, the first coated metal portion 13 (13 IN ), the second joint portion B14, the third joint portion B24, and the fourth joint portion B13. It may be considered to be the same as the pipe joint 800 except for the configuration regarding the length (in the X direction). Therefore, for other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 820, and their effects and effects, refer to the description of the pipe joint 800, and here, refer to the description of the pipe joint 800. Abbreviated.

管継手820は、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手820の製造において、クラッド板材8を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は、管継手620と同様と考えてよい。したがって、管継手820の製造において、管継手800および管継手620と同様の工程に関しては管継手800および管継手620に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手800の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有する、管継手820を作製することができる。 The pipe joint 820 includes a step of manufacturing a clad plate material 8 (see FIG. 52), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, a second end portion. It can be produced by a manufacturing method including a step of exposing the inner peripheral surface 12a of the second metal portion 12 in the above. In the production of the pipe joint 820, the step of manufacturing the clad plate material 8, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 800. The step of exposing the inner peripheral surface 12a of the metal portion 12 may be considered to be the same as that of the pipe joint 620. Therefore, in the production of the pipe joint 820, the same process as the pipe joint 800 and the pipe joint 620 is referred to in the description of the pipe joint 800 and the pipe joint 620, and is omitted here. As a result, a tubular portion corresponding to the shape of the pipe joint 800 whose cross section in the X direction is separated from the U-shaped tubular member is used, and the appearance is cylindrical and has a step on the inner peripheral side of the second end portion. A pipe joint 820 can be manufactured.

上記の製造方法により作製された管継手820は、管継手820の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手820は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 820 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 820 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 820, the joint portion between the metal parts of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第3変形例>
この発明に係る管継手の一実施形態として、第8構成例の第3変形例を図41に示す。
図41に第8構成例の第3変形例として示す管継手830は、管継手800を用いて、管状をなす第1金属部11の軸方向(X方向)の長さと、管状をなす第2金属部12の軸方向(X方向)の長さとを、略同等にしたものである。なお、管継手830において、第1被覆金属部13(13IN)と第1金属部11とに係る構成は管継手630と同じと考えてよく、第2被覆金属部13(13OUT)と第2金属部12とに係る構成は管継手730と同じと考えてよい。したがって、管継手830は、管継手630または管継手730と同様に、減圧と昇圧の繰り返しに耐える高い機械的強さを有することができる。また、管継手430は、管継手630または管継手730と同様に、機械的強さ向上の観点で、LJ2/LM1≧0.5を満たし、LJ3/LM2≧0.5を満たすことが好ましく、さらに、LJ2/DM1≧2を満たし、LJ3/DM1≧2を満たすことが好ましい。
<Third modification of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 41 shows a third modification of the eighth configuration example.
In the pipe joint 830 shown as a third modification of the eighth configuration example in FIG. 41, the pipe joint 800 is used, and the length of the tubular first metal portion 11 in the axial direction (X direction) and the tubular second metal portion 11 are formed. The length of the metal portion 12 in the axial direction (X direction) is substantially the same. In the pipe joint 830, the configuration of the first coated metal portion 13 (13 IN ) and the first metal portion 11 may be considered to be the same as that of the pipe joint 630, and the second coated metal portion 13 (13 OUT ) and the first 2 The configuration of the metal portion 12 may be considered to be the same as that of the pipe joint 730. Therefore, the fitting 830, like the fitting 630 or the fitting 730, can have high mechanical strength to withstand repeated depressurization and boosting. Further, the pipe joint 430, like the pipe joint 630 or the pipe joint 730 , satisfies L J2 / L M1 ≥ 0.5 and L J3 / L M2 ≥ 0.5 from the viewpoint of improving mechanical strength. It is preferable that L J2 / D M1 ≧ 2 and L J3 / D M1 ≧ 2 are satisfied.

なお、管継手830は、第1金属部11、第2金属部12、中間金属部14、第1被覆金属部13(13IN)、第2被覆金属部13(13OUT)、第2接合部B14、第3接合部B24、第4接合部B13および第5接合部B23についての軸方向(X方向)の長さに関する構成以外は管継手800と同様と考えてよい。したがって、管継手830における第1金属と耐食性金属との組み合わせおよび第2金属と耐食性金属との組み合わせを含む、他の構成およびその作用効果などに関しては、管継手800に関する説明を参照し、ここでは略す。 The pipe joint 830 includes a first metal portion 11, a second metal portion 12, an intermediate metal portion 14, a first coated metal portion 13 (13 IN ), a second coated metal portion 13 (13 OUT ), and a second joint portion. It may be considered to be the same as the pipe joint 800 except for the configuration regarding the axial length (X direction) of B14, the third joint B24, the fourth joint B13, and the fifth joint B23. Therefore, with respect to other configurations including the combination of the first metal and the corrosion-resistant metal and the combination of the second metal and the corrosion-resistant metal in the pipe joint 830 and their effects and the like, the description of the pipe joint 800 is referred to here. Abbreviated.

管継手830は、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程と、を有し、加えて、第1端部において第1金属部11の外周面11bを露出させる工程を有するとともに、第2端部において第2金属部12の内周面12aを露出させる工程を有する製造方法により作製することができる。なお、管継手830の製造において、クラッド板材8を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、第1金属部11の外周面11bを露出させる工程は管継手810と同様と考えてよく、第2金属部12の内周面12aを露出させる工程は管継手820と同様と考えてよい。したがって、管継手830の製造において、管継手800、管継手810および管継手820と同様の工程に関しては管継手800、管継手810および管継手820に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手800の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側および第2端部の内周側に段差を有する、管継手830を作製することができる。 The pipe joint 830 includes a step of manufacturing a clad plate material 8 (see FIG. 52), a step of manufacturing a tubular member, and a step of separating the tubular portion from the tubular member, and in addition, the first end portion. It can be produced by a manufacturing method having a step of exposing the outer peripheral surface 11b of the first metal portion 11 and a step of exposing the inner peripheral surface 12a of the second metal portion 12 at the second end portion. In the production of the pipe joint 830, the step of manufacturing the clad plate material 8, the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member may be considered to be the same as those of the pipe joint 800. The step of exposing the outer peripheral surface 11b of the metal portion 11 may be considered to be the same as that of the pipe joint 810, and the step of exposing the inner peripheral surface 12a of the second metal portion 12 may be considered to be the same as that of the pipe joint 820. Therefore, in the manufacture of the pipe joint 830, the same steps as those of the pipe joint 800, the pipe joint 810 and the pipe joint 820 are referred to in the description of the pipe joint 800, the pipe joint 810 and the pipe joint 820, and are omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 800 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical, and the outer peripheral side and the second end portion of the first end portion are used. A pipe joint 830 having a step on the inner peripheral side of the pipe joint 830 can be manufactured.

上記の製造方法により作製された管継手830は、管継手830の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手830は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 830 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 830 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 830, the joint portion between the metal parts of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, so that the pipe joint is brazed or joined. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第4変形例>
この発明に係る管継手の一実施形態として、第8構成例の第4変形例を図42に示す。
図42に第8構成例の第4変形例として示す管継手840は、管継手800を用いて管継手810を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手840において、中間金属部14および第2接合部B14についての軸方向(X方向)の長さに関する構成以外は管継手810と同様と考えてよい。したがって、管継手840における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手810に関する説明を参照し、ここでは略す。
<Fourth modification of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 42 shows a fourth modification of the eighth configuration example.
The pipe joint 840 shown as a fourth modification of the eighth configuration example in FIG. 42 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 810 is manufactured using the pipe joint 800. The pipe joint 840 may be considered to be the same as the pipe joint 810 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the second joint portion B14. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 840 and their actions and effects are referred to the description of the pipe joint 810 and are omitted here.

管継手840は、管継手810を作製する際に、第2被覆金属部13(13OUT)および第2金属部12の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手840の製造において、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、中間金属部14の外周面14bを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手810と同様と考えてよい。したがって、管継手840の製造において、管継手800および管継手810と同様の工程に関しては管継手800および管継手810に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離され管継手800の形状に対応する管状部を用いて、外観が略円筒状で第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出する、管継手840を作製することができる。 The pipe joint 840 is manufactured by a manufacturing method in which a part of the second coated metal portion 13 (13 OUT ) and the second metal portion 12 is removed and the intermediate metal portion 14 is left when the pipe joint 810 is manufactured. Can be done. In the production of the pipe joint 840, the step of manufacturing the clad plate material 8 (see FIG. 52), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 800. The step of exposing the outer peripheral surface 14b of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 810 except that the intermediate metal portion 14 is left without being removed. Therefore, in the production of the pipe joint 840, the same process as the pipe joint 800 and the pipe joint 810 is referred to in the description of the pipe joint 800 and the pipe joint 810, and is omitted here. As a result, the tubular portion whose cross section in the X direction is separated from the U-shaped tubular member and corresponds to the shape of the pipe joint 800 is used, and the appearance is substantially cylindrical with a step on the outer peripheral side of the first end portion. A pipe joint 840 can be manufactured in which the outer peripheral surface 14b of the intermediate metal portion 14 is exposed.

上記の製造方法により作製された管継手840は、管継手840の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手840は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 840 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 840 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 840, as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range, the joint portion between the metal portions of different materials is less likely to be damaged. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第5変形例>
この発明に係る管継手の一実施形態として、第8構成例の第5変形例を図43に示す。
図43に第8構成例の第5変形例として示す管継手850は、管継手800を用いて管継手820を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手850において、中間金属部14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手820と同様と考えてよい。したがって、管継手850における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手820に関する説明を参照し、ここでは略す。
<Fifth variant of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 43 shows a fifth modification of the eighth configuration example.
The pipe joint 850 shown as a fifth modification of the eighth configuration example in FIG. 43 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 820 is manufactured by using the pipe joint 800. The pipe joint 850 may be considered to be the same as the pipe joint 820 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14 and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 850, their action effects, and the like are referred to the description of the pipe joint 820 and are omitted here.

管継手850は、管継手820を作製する際に、第1金属部11の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手850の製造において、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、中間金属部14の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手820と同様と考えてよい。したがって、管継手850の製造において、管継手800および管継手820と同様の工程に関しては管継手800および管継手820に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手800の形状に対応する管状部を用いて、外観が円筒状で第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手850を作製することができる。 The pipe joint 850 can be manufactured by a manufacturing method in which a part of the first metal portion 11 is removed and the intermediate metal portion 14 is left when the pipe joint 820 is manufactured. In the production of the pipe joint 850, the step of manufacturing the clad plate material 8 (see FIG. 52), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 800. The step of exposing the inner peripheral surface 14a of the intermediate metal portion 14 may be considered to be the same as that of the pipe joint 820 except that the intermediate metal portion 14 is left without being removed. Therefore, in the manufacture of the pipe joint 850, the same process as the pipe joint 800 and the pipe joint 820 is referred to in the description of the pipe joint 800 and the pipe joint 820, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 800 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is cylindrical and there is a step on the inner peripheral side of the second end portion. A pipe joint 850 can be manufactured while exposing the inner peripheral surface 14a of the intermediate metal portion 14.

上記の製造方法により作製された管継手850は、管継手850の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手850は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 850 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 850 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, the pipe joint 850 is brazing or brazing because the joint portion between metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range of the pipe joint. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<第8構成例の第6変形例>
この発明に係る管継手の一実施形態として、第8構成例の第6変形例を図44に示す。
図44に第8構成例の第6変形例として示す管継手860は、管継手800を用いて管継手830を作製する際に、中間金属部14を除去せずに残した構成に対応する。管継手860において、中間金属部14、第2接合部B14および第3接合部B24についての軸方向(X方向)の長さに関する構成以外は管継手830と同様と考えてよい。したがって、管継手860における第1金属と第3金属と第2金属との組み合わせを含む他の構成およびその作用効果などに関しては管継手830に関する説明を参照し、ここでは略す。
<Sixth variant of the eighth configuration example>
As an embodiment of the pipe joint according to the present invention, FIG. 44 shows a sixth modification of the eighth configuration example.
The pipe joint 860 shown as a sixth modification of the eighth configuration example in FIG. 44 corresponds to a configuration in which the intermediate metal portion 14 is left without being removed when the pipe joint 830 is manufactured by using the pipe joint 800. The pipe joint 860 may be considered to be the same as the pipe joint 830 except for the configuration regarding the axial length (X direction) of the intermediate metal portion 14, the second joint portion B14, and the third joint portion B24. Therefore, other configurations including the combination of the first metal, the third metal, and the second metal in the pipe joint 860 and their actions and effects are referred to the description of the pipe joint 830 and are omitted here.

管継手860は、管継手830を作製する際に、第1金属部11、第2金属部12および第2被覆金属部13(13OUT)の一部を除去し、中間金属部14を残す、製造方法により作製することができる。なお、管継手860の製造において、クラッド板材8(図52参照)を作製する工程、管状部材を作製する工程、および、管状部材から管状部を切離する工程は、管継手800と同様と考えてよく、中間金属部14の第1端部の外周面14bおよび第2端部の内周面14aを露出させる工程は、中間金属部14を除去せずに残すこと以外は、管継手830と同様と考えてよい。したがって、管継手860の製造において、管継手800および管継手830と同様の工程に関しては管継手800および管継手830に関する説明を参照し、ここでは略す。これにより、X方向断面がU字状の管状部材から切離された管継手800の形状に対応する管状部を用いて、外観が略円筒状で、第1端部の外周側に段差を有しつつ中間金属部14の外周面14bが露出するとともに、第2端部の内周側に段差を有しつつ中間金属部14の内周面14aが露出する、管継手860を作製することができる。 When the pipe joint 860 is manufactured, the pipe joint 860 removes a part of the first metal portion 11, the second metal portion 12, and the second coated metal portion 13 (13 OUT ), leaving the intermediate metal portion 14. It can be produced by a manufacturing method. In the production of the pipe joint 860, the step of manufacturing the clad plate material 8 (see FIG. 52), the step of manufacturing the tubular member, and the step of separating the tubular portion from the tubular member are considered to be the same as those of the pipe joint 800. The step of exposing the outer peripheral surface 14b of the first end portion and the inner peripheral surface 14a of the second end portion of the intermediate metal portion 14 may be the same as that of the pipe joint 830 except that the intermediate metal portion 14 is left without being removed. You can think of it as the same. Therefore, in the production of the pipe joint 860, the same process as the pipe joint 800 and the pipe joint 830 is referred to in the description of the pipe joint 800 and the pipe joint 830, and is omitted here. As a result, using a tubular portion corresponding to the shape of the pipe joint 800 whose cross section in the X direction is separated from the U-shaped tubular member, the appearance is substantially cylindrical and there is a step on the outer peripheral side of the first end portion. It is possible to manufacture a pipe joint 860 in which the outer peripheral surface 14b of the intermediate metal portion 14 is exposed and the inner peripheral surface 14a of the intermediate metal portion 14 is exposed while having a step on the inner peripheral side of the second end portion. it can.

上記の製造方法により作製された管継手860は、管継手860の内部の異材質の金属部同士の接合面積が肉厚の範囲内で従来の異種金属管継手よりも十分に大きいため、減圧と昇圧の繰り返しに耐える高い機械的強さを有する管継手が得られる。そして、管継手860は、管継手の肉厚の範囲内で傾斜面接合されている従来の異種金属管継手と比べて、異材質の金属部同士の接合部分が破損しにくいため、ろう接合または溶接(TIG溶接、レーザー溶接、電子ビーム溶接など)による配管の施工が容易になる。 The pipe joint 860 manufactured by the above manufacturing method is depressurized because the joint area between metal parts of different materials inside the pipe joint 860 is sufficiently larger than that of the conventional dissimilar metal pipe joint within the wall thickness range. A pipe joint having high mechanical strength that can withstand repeated pressurization can be obtained. Further, in the pipe joint 860, the joint portion between the metal portions of different materials is less likely to be damaged as compared with the conventional dissimilar metal pipe joint in which the pipe joint is joined on an inclined surface within the wall thickness range. It facilitates the construction of piping by welding (TIG welding, laser welding, electron beam welding, etc.).

<上記以外の変形例>
この発明は、上記した第1構成例(管継手100)乃至第8構成例(管継手800)およびそれらの変形例として挙げた、同心で同径の管継手への適用に限定されない。この発明は、基準内径が異なる2つの管を接続可能な同心で径違いの管継手にも適用可能である。この発明は、軸方向(X方向)の一方側(X1側)の第1端部または他方側(X2側)の第2端部が適度に拡径されたレジューサ形状などの管継手にも適用可能である。
<Modifications other than the above>
The present invention is not limited to the application to the concentric and concentric pipe joints mentioned above as the first configuration example (pipe joint 100) to the eighth configuration example (pipe joint 800) and their modifications. The present invention is also applicable to concentric pipe joints having different diameters, which can connect two pipes having different reference inner diameters. The present invention is also applied to a pipe joint having a reducer shape in which the first end on one side (X1 side) in the axial direction (X direction) or the second end on the other side (X2 side) is appropriately enlarged in diameter. It is possible.

<管継手の配管例>
上記した管継手100(第1構成例)乃至管継手800(第8構成例)およびそれらの変形例を用いて、互いに材質が異なる2つの管を接合することができる。この場合、2つの管の組み合わせは多様であるが、例えば、銅管に対して、低炭素鋼管、ステンレス鋼管、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることや、ステンレス鋼管に対して、低炭素鋼管、アルミニウム管、ニッケル管、チタン管などを組み合わせることができる。
<Piping example of pipe fittings>
Two pipes made of different materials can be joined to each other by using the pipe joint 100 (first configuration example) to the pipe joint 800 (eighth configuration example) and their modifications. In this case, the combination of the two pipes is various. For example, a low carbon steel pipe, a stainless steel pipe, a low carbon steel pipe, an aluminum pipe, a nickel pipe, a titanium pipe, etc. can be combined with a copper pipe, or a stainless steel pipe can be used. On the other hand, low carbon steel pipes, aluminum pipes, nickel pipes, titanium pipes and the like can be combined.

例えば、図56に示すように、管継手100(第1構成例)のX1側(第1端部側)において、管50(例えば、銅管、アルミニウム管など)のX2側の外周面50bと、この管50とのろう接合性(例えば、りん銅ろうなど)が良い第1金属(例えば、C1020、A5052など)により構成された第1金属部11の内周面11aとを、ろう接合により接合部C50の位置で接合することができる。そして、管継手100のX2側(第2端部側)において、管51(例えば、ステンレス鋼管など)のX1側の内周面51aと、この管51との溶接性(例えば、電子ビーム溶接など)が良い第2金属(例えば、SUS304など)により構成された第2金属部12の外周面12bとを、溶接により接合部C51の位置で接合することができる。これにより、管継手100を用いて、互いに材質の異なる、管50(例えば、銅管、アルミニウム管など)と管51(例えば、ステンレス鋼管など)とを接合することができる。 For example, as shown in FIG. 56, on the X1 side (first end side) of the pipe joint 100 (first configuration example), with the outer peripheral surface 50b on the X2 side of the pipe 50 (for example, a copper pipe, an aluminum pipe, etc.). The inner peripheral surface 11a of the first metal portion 11 made of a first metal (for example, C1020, A5052, etc.) having good brazing bondability (for example, phosphor copper brazing) to the pipe 50 is joined by brazing. It can be joined at the position of the joint portion C50. Then, on the X2 side (second end side) of the pipe joint 100, the weldability (for example, electron beam welding) between the inner peripheral surface 51a on the X1 side of the pipe 51 (for example, a stainless steel pipe) and the pipe 51 is formed. ) Is good (for example, SUS304), and the outer peripheral surface 12b of the second metal portion 12 can be joined at the position of the joint portion C51 by welding. Thereby, the pipe 50 (for example, copper pipe, aluminum pipe, etc.) and the pipe 51 (for example, stainless steel pipe, etc.), which are made of different materials, can be joined by using the pipe joint 100.

また、例えば、図57に示すように、管継手110(第1構成例の第2変形例)のX1側(第1端部側)において、管52(例えば、銅管、アルミニウム管など)のX2側の内周面52aと、この管52とのろう接合性(例えば、りん銅ろうなど)が良い第1金属(例えば、C1020、A5052など)により構成された第1金属部11の外周面11bとを、ろう接合により接合部C52の位置で接合することができる。そして、管継手110のX2側(第2端部側)において、管51(例えば、ステンレス銅管など)のX1側の内周面51aと、この管51との溶接性(例えば、電子ビーム溶接など)が良い第2金属(例えば、SUS304など)により構成された第2金属部12の外周面12bとを、溶接により接合することができる。これにより、管継手110を用いて、互いに材質の異なる、管52(例えば、銅管、アルミニウム管など)と管51(例えば、ステンレス鋼管など)とを接合することができる。 Further, for example, as shown in FIG. 57, on the X1 side (first end side) of the pipe joint 110 (second modification of the first configuration example), the pipe 52 (for example, a copper pipe, an aluminum pipe, etc.) The outer peripheral surface of the first metal portion 11 made of a first metal (for example, C1020, A5052, etc.) having good brazing bondability (for example, phosphor copper brazing) between the inner peripheral surface 52a on the X2 side and the pipe 52. 11b can be joined at the position of the joining portion C52 by brazing. Then, on the X2 side (second end side) of the pipe joint 110, the weldability (for example, electron beam welding) between the inner peripheral surface 51a on the X1 side of the pipe 51 (for example, a stainless copper pipe) and the pipe 51 is welded. The outer peripheral surface 12b of the second metal portion 12 made of a second metal (for example, SUS304 or the like) having a good quality (such as) can be joined by welding. Thereby, the pipe 52 (for example, copper pipe, aluminum pipe, etc.) and the pipe 51 (for example, stainless steel pipe, etc.), which are made of different materials, can be joined by using the pipe joint 110.

また、例えば、図58に示すように、管継手130(第1構成例の第3変形例)のX1側(第1端部側)において、管52(例えば、銅管、アルミニウム管など)のX2側の内周面52aと、この管52とのろう接合性(例えば、りん銅ろうなど)が良い第1金属(例えば、C1020、A5052など)により構成された第1金属部11の外周面11bとを、ろう接合により接合部C52の位置で接合することができる。そして、管継手130のX2側(第2端部側)において、管53(例えば、ステンレス銅管など)のX1側の外周面53bと、この管53との溶接性(例えば、電子ビーム溶接など)が良い第2金属(例えば、SUS304など)により構成された第2金属部12の内周面12aとを、溶接により接合することができる。これにより、管継手130を用いて、互いに材質の異なる、管52(例えば、銅管、アルミニウム管など)と管53(例えば、ステンレス鋼管など)とを接合することができる。 Further, for example, as shown in FIG. 58, on the X1 side (first end side) of the pipe joint 130 (third modification of the first configuration example), the pipe 52 (for example, a copper pipe, an aluminum pipe, etc.) The outer peripheral surface of the first metal portion 11 made of a first metal (for example, C1020, A5052, etc.) having good brazing bondability (for example, phosphor copper brazing) between the inner peripheral surface 52a on the X2 side and the pipe 52. 11b can be joined at the position of the joining portion C52 by brazing. Then, on the X2 side (second end side) of the pipe joint 130, the weldability (for example, electron beam welding) between the outer peripheral surface 53b on the X1 side of the pipe 53 (for example, a stainless copper pipe) and the pipe 53 is formed. ) Is good (for example, SUS304), and the inner peripheral surface 12a of the second metal portion 12 can be joined by welding. Thereby, the pipe 52 (for example, copper pipe, aluminum pipe, etc.) and the pipe 53 (for example, stainless steel pipe, etc.), which are made of different materials, can be joined by using the pipe joint 130.

互いに材質の異なる管を配管する場合、それぞれの管の形状に応じて、上記した管継手100、管継手110および管継手130以外の管継手を用いることができる。また、例えば、管継手120(第1構成例の第2変形例)を用いることができる。また、例えば、さらに、耐食性金属(例えば、NW2200、NW2201など)により構成された被覆金属部13を備える、管継手200(第2構成例)およびそれらの変形例となる管継手210乃至管継手230、管継手300(第3構成例)およびそれらの変形例となる管継手310乃至管継手330、および、管継手400(第4構成例)およびそれらの変形例となる管継手410乃至管継手430を用いることができる。また、例えば、第1金属部11と第2金属部12との間に第3金属(例えば、NW2200、NW2201など)により構成された中間金属部14を備える、管継手500(第5構成例)およびそれらの変形例となる管継手510乃至管継手560を用いることができる。また、例えば、中間金属部14に加えて、さらに、耐食性金属(例えば、NW2200、NW2201など)により構成された被覆金属部13を備える、管継手600(第6構成例)およびそれらの変形例となる管継手610乃至管継手660、管継手700(第7構成例)およびそれらの変形例となる管継手710乃至管継手760、および、管継手800(第8構成例)およびそれらの変形例となる管継手810乃至管継手860を用いることができる。 When pipes made of different materials are piped, pipe joints other than the pipe joint 100, the pipe joint 110 and the pipe joint 130 described above can be used according to the shape of each pipe. Further, for example, a pipe joint 120 (a second modification of the first configuration example) can be used. Further, for example, a pipe joint 200 (second configuration example) having a coated metal portion 13 made of a corrosion-resistant metal (for example, NW2200, NW2201 or the like) and a pipe joint 210 to 230 as a modification thereof. , Pipe fitting 300 (third configuration example) and pipe joint 310 to pipe joint 330 which is a modification of them, and pipe joint 400 (fourth configuration example) and pipe joint 410 to pipe joint 430 which is a modification of them. Can be used. Further, for example, a pipe joint 500 (fifth configuration example) including an intermediate metal portion 14 composed of a third metal (for example, NW2200, NW2201 or the like) between the first metal portion 11 and the second metal portion 12. And the pipe joint 510 to the pipe joint 560 which is a modification of them can be used. Further, for example, in addition to the intermediate metal portion 14, a pipe joint 600 (sixth configuration example) having a coated metal portion 13 composed of a corrosion resistant metal (for example, NW2200, NW2201 and the like) and a modified example thereof. Pipe fittings 610 to 660, pipe fittings 700 (seventh configuration example) and pipe joints 710 to 760 which are modifications thereof, pipe joints 800 (eighth configuration example) and their modifications. A pipe joint 810 to a pipe joint 860 can be used.

1、2、3、4、5、6、7、8:クラッド板材
11:第1金属部(第1金属板、第1金属層)
12:第2金属部(第2金属板、第2金属層)
13:被覆金属部(被覆金属板、被覆金属層)
14:中間金属部(第3金属板、第3金属層
50、51、52、53:管(被接合管)
100、110、120、130:管継手
200、210、220、230:管継手
300、310、320、330:管継手
400、410、420、430:管継手
500、510、520、530、540、550、560:管継手
600、610、620、630、640、650、660:管継手
700、710、720、730、740、750、760:管継手
800、810、820、830、840、850、860:管継手
900:ポンチ
910:ダイス
1, 2, 3, 4, 5, 6, 7, 8: Clad plate material 11: First metal part (first metal plate, first metal layer)
12: Second metal part (second metal plate, second metal layer)
13: Coating metal part (coating metal plate, coating metal layer)
14: Intermediate metal part (third metal plate, third metal layer 50, 51, 52, 53: pipe (joint pipe)
100, 110, 120, 130: Pipe fittings 200, 210, 220, 230: Pipe fittings 300, 310, 320, 330: Pipe fittings 400, 410, 420, 430: Pipe fittings 500, 510, 520, 530, 540, 550, 560: Pipe fittings 600, 610, 620, 630, 640, 650, 660: Pipe fittings 700, 710, 720, 730, 740, 750, 760: Pipe fittings 800, 810, 820, 830, 840, 850, 860: Pipe fitting 900: Punch 910: Die

Claims (24)

第1金属により構成された管状の第1金属部と、前記第1金属とは異なる第2金属により構成された管状の第2金属部と、を備え、
前記第1金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸とが、同心であり、
前記同心の軸方向の一方側の第1端部から他方側の第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と、前記第2金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、管継手。
A tubular first metal portion made of a first metal and a tubular second metal portion made of a second metal different from the first metal are provided.
The tubular shaft of the first metal portion and the tubular shaft of the second metal portion are concentric.
Between the first end on one side of the concentric axial direction and the second end on the other side, the concentric surface of the first metal portion along the concentric axial direction and the concentric surface of the second metal portion. A pipe joint in which a surface along the axial direction of the metal is diffusely joined along the concentric axial direction.
さらに、耐食性金属により構成された管状の第1被覆金属部を備え、
前記第1被覆金属部の前記管状をなす軸と、前記第1金属部の前記管状をなす軸とが、同心であり、
前記第1端部から前記第2端部までの間において、前記第1被覆金属部の前記同心の軸方向に沿う面と、前記第1金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、請求項1に記載の管継手。
Further, a tubular first coated metal portion made of a corrosion resistant metal is provided.
The tubular shaft of the first metal portion and the tubular shaft of the first metal portion are concentric.
Between the first end portion and the second end portion, a surface of the first coated metal portion along the concentric axial direction and a surface of the first metal portion along the concentric axial direction are formed. The pipe joint according to claim 1, wherein the metal diffusion joint is formed along the concentric axial direction.
さらに、耐食性金属により構成された管状の第2被覆金属部を備え、
前記第2被覆金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸とが、同心であり、
前記第1端部から前記第2端部までの間において、前記第2被覆金属部の前記同心の軸方向に沿う面と、前記第2金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、請求項1または2に記載の管継手。
Further, a tubular second coated metal portion made of a corrosion resistant metal is provided.
The tubular shaft of the second metal portion and the tubular shaft of the second metal portion are concentric.
Between the first end portion and the second end portion, a surface of the second coated metal portion along the concentric axial direction and a surface of the second metal portion along the concentric axial direction are formed. The pipe joint according to claim 1 or 2, which is metal diffusion-bonded along the concentric axial direction.
さらに、前記第1金属および前記第2金属部とは異なる第3金属により構成された管状の中間金属部とを備え、
前記第1金属部の前記管状をなす軸と、前記第2金属部の前記管状をなす軸と、前記中間金属部の前記管状をなす軸とが、同心であり、
前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と、前記中間金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合され、前記第2金属部の前記同心の軸方向に沿う面と、前記中間金属部の前記同心の軸方向に沿う面とが、前記同心の軸方向に沿って金属拡散接合されている、請求項1乃至3のいずれか1項に記載の管継手。
Further, it is provided with a tubular intermediate metal portion made of the first metal and a third metal different from the second metal portion.
The tubular shaft of the first metal portion, the tubular shaft of the second metal portion, and the tubular shaft of the intermediate metal portion are concentric.
Between the first end and the second end, the concentric axial surface of the first metal portion and the concentric axial surface of the intermediate metal portion are concentric. The metal diffusion-bonded along the axial direction of the metal portion, and the concentric axial surface of the second metal portion and the concentric axial surface of the intermediate metal portion are along the concentric axial direction. The pipe joint according to any one of claims 1 to 3, which is metal diffusion bonded.
前記第1端部において、前記第1金属部の外周面が前記同心の軸方向に沿って露出している、請求項1乃至4のいずれか1項に記載の管継手。 The pipe joint according to any one of claims 1 to 4, wherein the outer peripheral surface of the first metal portion is exposed along the concentric axial direction at the first end portion. 前記第2端部において、前記第2金属部の内周面が前記同心の軸方向に沿って露出している、請求項1乃至5のいずれか1項に記載の管継手。 The pipe joint according to any one of claims 1 to 5, wherein the inner peripheral surface of the second metal portion is exposed along the concentric axial direction at the second end portion. 前記第1端部において、前記中間金属部の外周面が前記同心の軸方向に沿って露出している、請求項4に記載の管継手。 The pipe joint according to claim 4, wherein the outer peripheral surface of the intermediate metal portion is exposed along the concentric axial direction at the first end portion. 前記第2端部において、前記中間金属部の内周面が前記同心の軸方向に沿って露出している、請求項4に記載の管継手。 The pipe joint according to claim 4, wherein the inner peripheral surface of the intermediate metal portion is exposed along the concentric axial direction at the second end portion. 前記第1金属部と前記第2金属部とが前記金属拡散接合されている第1接合部は、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第1接合部の前記同心の軸線上に投影した長さをLJ1とするとき、LJ1/LM1≧0.5を満たす、請求項1、2、3、5および6のいずれか1項に記載の管継手。 First junction between the first metal part and the second metal portion is the metal diffusion bonding, a length projected onto the concentric axis of the first metal part and L M1, the first The invention according to any one of claims 1, 2, 3, 5 and 6, wherein L J1 / L M1 ≥ 0.5 is satisfied when the length of the joint projected on the concentric axis is L J1. Pipe fittings. 前記第1接合部は、前記第1金属部の最小内径をDM1とするとき、LJ1/DM1≧2を満たす、請求項9に記載の管継手。 Said first junction, when said minimum inner diameter of the first metal portion and D M1, satisfy L J1 / D M1 ≧ 2, the pipe joint of claim 9. 前記第1金属部と前記中間金属部とが前記金属拡散接合されている第2接合部は、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第2接合部の前記同心の軸線上に投影した長さをLJ2とするとき、LJ2/LM1≧0.5を満たし、前記第2金属部と前記中間金属部とが前記金属拡散接合されている第3接合部は、前記第2金属部の前記同心の軸線上に投影した長さをLM2とし、前記第3接合部の前記同心の軸線上に投影した長さをLJ3とするとき、LJ3/LM2≧0.5を満たす、請求項4、7および8のいずれか1項に記載の管継手。 The second junction and the first metal part and the intermediate metal part is the metal diffusion bonding, a length projected onto the first metal portion of the concentric axis and L M1, the second joint When the length projected on the concentric axis of the portion is L J2 , L J2 / L M1 ≧ 0.5 is satisfied, and the second metal portion and the intermediate metal portion are metal diffusion-bonded. the third joint portion, when the length projected onto the concentric axis of the second metal portion and L M2, a length projected onto the axis of the concentric of the third joint portion is L J3, The pipe joint according to any one of claims 4, 7 and 8, which satisfies L J3 / L M2 ≥ 0.5. 前記第1金属部の最小内径をDM1とするとき、前記第2接合部はLJ2/DM1≧2を満たし、前記第3接合部はLJ3/DM1≧2を満たす、請求項11に記載の管継手。 Claim 11 that when the minimum inner diameter of the first metal portion is D M1 , the second joint portion satisfies L J2 / D M1 ≧ 2, and the third joint portion satisfies L J3 / D M1 ≧ 2. Pipe fittings described in. 第1金属からなる第1金属板と、前記第1金属とは異なる第2金属からなる第2金属板とを準備し、前記第1金属板と前記第2金属板とを板厚方向に積層した状態で圧延し、前記第1金属と前記第2金属との間に金属拡散が生じるように熱処理し、前記第1金属により構成された平板状の第1金属層と、前記第2金属により構成された平板状の第2金属層とが、前記平板状の板面方向に沿って金属拡散接合されている、クラッド板材を作製する工程と、
前記クラッド板材を深絞り成形し、前記第1金属により構成された管状の第1金属部と、前記第2金属により構成された管状の第2金属部と、を備え、前記第1金属部の前記管状をなす軸と前記第2金属部の前記管状をなす軸とが同心であり、前記同心の軸方向の一方側の第1端部から他方側の第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記第2金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する工程と、
前記管状部材の前記深絞り成形方向の両端部分を切断し、前記管状部材から前記管状部を切離する工程と、
を有する、管継手の製造方法。
A first metal plate made of a first metal and a second metal plate made of a second metal different from the first metal are prepared, and the first metal plate and the second metal plate are laminated in the plate thickness direction. It is rolled in this state, heat-treated so that metal diffusion occurs between the first metal and the second metal, and the flat plate-shaped first metal layer composed of the first metal and the second metal are used. A step of producing a clad plate material in which the formed flat plate-shaped second metal layer is metal diffusion-bonded along the plate surface direction of the flat plate-like plate.
The clad plate material is deeply drawn and provided with a tubular first metal portion made of the first metal and a tubular second metal portion made of the second metal. The tubular shaft and the tubular shaft of the second metal portion are concentric, and the concentric axial direction from the first end on one side to the second end on the other side is the same. Including a tubular portion in which a surface of the first metal portion along the concentric axial direction and a surface of the second metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction. The process of making tubular members and
A step of cutting both ends of the tubular member in the deep drawing direction and separating the tubular portion from the tubular member.
A method of manufacturing a pipe fitting.
前記クラッド板材を作製する工程では、さらに、耐食性金属からなる第1被覆金属板を準備し、圧延し、熱処理し、前記耐食性金属により構成された平板状の第1被覆金属層と平板状の前記第1金属層とが前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、
前記管状部材を作製する工程では、前記クラッド材を深絞り成形し、前記耐食性金属により構成された管状の第1被覆金属部を備え、前記第1金属部の前記管状をなす軸と前記第1被覆金属部の前記管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記第1被覆金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、請求項13に記載の管継手の製造方法。
In the step of producing the clad plate material, a first coated metal plate made of a corrosion-resistant metal is further prepared, rolled, and heat-treated, and a flat plate-shaped first coated metal layer made of the corrosion-resistant metal and the flat plate-shaped metal plate are described. A clad plate material in which the first metal layer is metal diffusion-bonded along the flat plate surface direction is produced.
In the step of producing the tubular member, the clad material is deeply drawn and provided with a tubular first coated metal portion made of the corrosion-resistant metal, and the tubular shaft of the first metal portion and the first metal portion. The tubular shaft of the metal coating is concentric, and the concentric axial surface of the first metal and the first coating between the first end and the second end. The method for manufacturing a pipe joint according to claim 13, wherein a tubular member including a tubular portion in which the concentric axial surfaces of the metal portion are metal diffusion-bonded along the concentric axial direction is produced. ..
前記クラッド材を作製する工程では、さらに、耐食性金属からなる第2被覆金属板を準備し、圧延し、熱処理し、前記耐食性金属により構成された平板状の第2被覆金属層と平板状の前記第2金属層とが前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、
前記管状部材を作製する工程では、前記クラッド板材を深絞り成形し、前記耐食性金属により構成された管状の第2被覆金属部を備え、前記第2金属部の前記管状をなす軸と前記第2被覆金属部の前記管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第2金属部の前記同心の軸方向に沿う面と前記第2被覆金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、請求項13または14に記載の管継手の製造方法。
In the step of producing the clad material, a second coated metal plate made of a corrosion-resistant metal is further prepared, rolled, and heat-treated to form a flat plate-shaped second coated metal layer made of the corrosion-resistant metal and the flat plate-shaped metal plate. A clad plate material in which the second metal layer is metal diffusion-bonded along the flat plate surface direction is produced.
In the step of producing the tubular member, the clad plate material is deeply drawn, provided with a tubular second coated metal portion made of the corrosion-resistant metal, and the tubular shaft of the second metal portion and the second metal portion. The tubular shaft of the metal coating is concentric, and between the first end and the second end, the concentric axial surface of the second metal and the second coating The pipe joint according to claim 13 or 14, wherein a tubular member including a tubular portion in which the concentric axial surfaces of the metal portion are metal diffusion-bonded along the concentric axial direction is produced. Production method.
前記クラッド材を作製する工程では、さらに、前記第1金属および前記第2金属とは異なる第3金属からなる中間金属板を準備し、圧延し、熱処理し、平板状の前記第1金属層と平板状の前記第2金属層との間に前記第3金属により構成された平板状の中間金属層が前記平板状の板面方向に沿って金属拡散接合されているクラッド板材を作製し、
前記管状部材を作製する工程では、前記クラッド板材を深絞り成形し、前記第3金属により構成された管状の中間金属部を備え、前記第1金属部の前記管状をなす軸と前記第2金属部の前記管状をなす軸と前記中間金属部の管状をなす軸とが同心であり、前記第1端部から前記第2端部までの間において、前記第1金属部の前記同心の軸方向に沿う面と前記中間金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合され、前記第2金属部の前記同心の軸方向に沿う面と前記中間金属部の前記同心の軸方向に沿う面とが前記同心の軸方向に沿って金属拡散接合されている、管状部を含む、管状部材を作製する、請求項13乃至15のいずれか1項に記載の管継手の製造方法。
In the step of producing the clad material, an intermediate metal plate made of the first metal and a third metal different from the second metal is further prepared, rolled, and heat-treated to form a flat plate-shaped first metal layer. A clad plate material in which a flat plate-shaped intermediate metal layer composed of the third metal is metal-diffused-bonded to the flat plate-shaped second metal layer along the plate surface direction of the flat plate is produced.
In the step of producing the tubular member, the clad plate material is deeply drawn, provided with a tubular intermediate metal portion made of the third metal, and the tubular shaft of the first metal portion and the second metal. The tubular shaft of the portion and the tubular shaft of the intermediate metal portion are concentric, and the concentric axial direction of the first metal portion between the first end portion and the second end portion. The surface along the center and the surface of the intermediate metal portion along the concentric axial direction are metal diffusion-bonded along the concentric axial direction, and the surface of the second metal portion along the concentric axial direction and the intermediate metal The invention according to any one of claims 13 to 15, wherein a tubular member including a tubular portion, wherein the concentric axial surfaces of the portion are metal diffusion-bonded along the concentric axial direction is produced. How to manufacture pipe joints.
前記管状部材から切離された前記管状部の前記第1端部において、前記第1金属部の外周面を前記同心の軸方向に沿って露出させる工程を有する、請求項13乃至16のいずれか1項に記載の管継手の製造方法。 Any of claims 13 to 16, comprising a step of exposing the outer peripheral surface of the first metal portion along the concentric axial direction at the first end portion of the tubular portion separated from the tubular member. The method for manufacturing a pipe joint according to item 1. 前記管状部材から切離された前記管状部の前記第2端部において、前記第2金属部の内周面を前記同心の軸方向に沿って露出させる工程を有する、請求項13乃至17のいずれか1項に記載の管継手の製造方法。 Any of claims 13 to 17, comprising a step of exposing the inner peripheral surface of the second metal portion along the concentric axial direction at the second end portion of the tubular portion separated from the tubular member. The method for manufacturing a pipe joint according to item 1. 前記管状部材から切離された前記管状部の前記第1端部において、前記中間金属部の外周面を前記同心の軸方向に沿って露出させる工程を有する、請求項16に記載の管継手の製造方法。 The pipe joint according to claim 16, further comprising a step of exposing the outer peripheral surface of the intermediate metal portion along the concentric axial direction at the first end portion of the tubular portion separated from the tubular member. Production method. 前記管状部材から切離された前記管状部の前記第2端部において、前記中間金属部の内周面を前記同心の軸方向に沿って露出させる工程を有する、請求項16に記載の管継手の製造方法。 The pipe joint according to claim 16, further comprising a step of exposing the inner peripheral surface of the intermediate metal portion along the concentric axial direction at the second end portion of the tubular portion separated from the tubular member. Manufacturing method. 前記第1金属部と前記第2金属部との前記金属拡散接合されている第1接合部が、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第1接合部の前記同心の軸線上に投影した長さをLJ1とするとき、LJ1/LM1≧0.5を満たすように、前記管状部を形成する、請求項13、14、15、17および18のいずれか1項に記載の管継手の製造方法。 It said first junction being the metal diffusion bonding between the first metal part and the second metal portion, a length projected onto the concentric axis of the first metal part and L M1, the first when the length projected onto the axis of the concentric joint and L J1, to satisfy L J1 / L M1 ≧ 0.5, to form the tubular part, according to claim 13,14,15,17 The method for manufacturing a pipe joint according to any one of 18 and 18. 前記第1金属部の最小内径をDM1とするとき、前記第1接合部がLJ1/DM1≧2を満たす、請求項21に記載の管継手の製造方法。 The method for manufacturing a pipe joint according to claim 21, wherein when the minimum inner diameter of the first metal portion is D M1 , the first joint portion satisfies L J1 / D M1 ≧ 2. 前記第1金属部と前記中間金属部との前記金属拡散接合されている第2接合部が、前記第1金属部の前記同心の軸線上に投影した長さをLM1とし、前記第2接合部の前記同心の軸線上に投影した長さをLJ2とするとき、LJ2/LM1≧0.5を満たし、前記第2金属部と前記中間金属部との前記金属拡散接合されている第3接合部が、前記第2金属部の前記同心の軸線上に投影した長さをLM2とし、前記第3接合部の前記同心の軸線上に投影した長さをLJ3とするとき、LJ3/LM2≧0.5を満たすように、前記管状部を形成する、請求項16、19および20のいずれか1項に記載の管継手の製造方法。 Second junction being the metal diffusion bonding between the the first metal portion intermediate metal section, a length projected onto the concentric axis of the first metal part and L M1, the second joint When the length projected on the concentric axis of the portion is L J2 , L J2 / L M1 ≧ 0.5 is satisfied, and the metal diffusion joint between the second metal portion and the intermediate metal portion is performed. when the third joint, that the length projected onto the concentric axis of the second metal portion and L M2, a length projected onto the axis of the concentric of the third joint portion is L J3, The method for manufacturing a pipe joint according to any one of claims 16, 19 and 20, wherein the tubular portion is formed so as to satisfy L J3 / L M2 ≧ 0.5. 前記第1金属部の最小内径をDM1とするとき、前記第2接合部がLJ2/DM1≧2を満たし、前記第3接合部がLJ3/DM1≧2を満たすように、前記管状部を形成する、請求項23に記載の管継手の製造方法。

When the minimum inner diameter of the first metal portion is D M1 , the second joint portion satisfies L J2 / D M1 ≧ 2, and the third joint portion satisfies L J3 / D M1 ≧ 2. The method for manufacturing a pipe joint according to claim 23, which forms a tubular portion.

JP2020158468A 2019-12-09 2020-09-23 Pipe joint and manufacturing method thereof Pending JP2021092312A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210092594A KR20220040368A (en) 2019-12-09 2021-07-15 Pipe joint and method for manufacturing thereof
CN202110807889.4A CN114251526A (en) 2019-12-09 2021-07-16 Pipe joint and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019221918 2019-12-09
JP2019221918 2019-12-09

Publications (1)

Publication Number Publication Date
JP2021092312A true JP2021092312A (en) 2021-06-17

Family

ID=76312217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158468A Pending JP2021092312A (en) 2019-12-09 2020-09-23 Pipe joint and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2021092312A (en)
KR (1) KR20220040368A (en)
CN (1) CN114251526A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115162824B (en) * 2022-09-07 2023-01-31 中化二建集团有限公司 Installation and construction method of carbonization tower

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823933A (en) * 1954-09-21 1958-02-18 Charles E Hickman Refrigerating system and method of making the same
JPS5084439A (en) * 1973-11-30 1975-07-08
JPS5024259B1 (en) * 1968-05-27 1975-08-14
JPS5428255A (en) * 1977-08-05 1979-03-02 Asahi Chem Ind Co Ltd Hastelloy-clad steellplate with superior dendability and its manufacture
JPH02207989A (en) * 1989-02-06 1990-08-17 Toshiba Corp Production of clad material
JPH05317983A (en) * 1992-04-20 1993-12-03 Sumitomo Metal Ind Ltd Deep drawing method for metal clad plate
JPH06114571A (en) * 1992-10-09 1994-04-26 Hitachi Cable Ltd Production of clad pipe
JPH0825063A (en) * 1994-07-12 1996-01-30 Sumitomo Metal Ind Ltd Production of different material pipe joint
JPH11319970A (en) * 1998-05-21 1999-11-24 Nisshin Steel Co Ltd Ferritic stainless steel/aluminum clad plate excellent in deep drawability
JP2002367799A (en) * 2001-06-05 2002-12-20 Nippon Steel Corp Manufacturing method of superconducting clad molding body and superconducting clad molding body manufactured by the method
CN203131248U (en) * 2013-03-04 2013-08-14 宝鸡市巨成钛业有限责任公司 Dedicated titanium-copper composite transition joint
JP2014185793A (en) * 2013-03-22 2014-10-02 Hitachi Metals Ltd Heat pipe and composite material for heat pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134485A (en) 1988-11-10 1990-05-23 Sumitomo Metal Ind Ltd Manufacturing pipe fittings of different metals
JP2015114082A (en) 2013-12-13 2015-06-22 ダイキン工業株式会社 Refrigerant pipeline connection body and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823933A (en) * 1954-09-21 1958-02-18 Charles E Hickman Refrigerating system and method of making the same
JPS5024259B1 (en) * 1968-05-27 1975-08-14
JPS5084439A (en) * 1973-11-30 1975-07-08
JPS5428255A (en) * 1977-08-05 1979-03-02 Asahi Chem Ind Co Ltd Hastelloy-clad steellplate with superior dendability and its manufacture
JPH02207989A (en) * 1989-02-06 1990-08-17 Toshiba Corp Production of clad material
JPH05317983A (en) * 1992-04-20 1993-12-03 Sumitomo Metal Ind Ltd Deep drawing method for metal clad plate
JPH06114571A (en) * 1992-10-09 1994-04-26 Hitachi Cable Ltd Production of clad pipe
JPH0825063A (en) * 1994-07-12 1996-01-30 Sumitomo Metal Ind Ltd Production of different material pipe joint
JPH11319970A (en) * 1998-05-21 1999-11-24 Nisshin Steel Co Ltd Ferritic stainless steel/aluminum clad plate excellent in deep drawability
JP2002367799A (en) * 2001-06-05 2002-12-20 Nippon Steel Corp Manufacturing method of superconducting clad molding body and superconducting clad molding body manufactured by the method
CN203131248U (en) * 2013-03-04 2013-08-14 宝鸡市巨成钛业有限责任公司 Dedicated titanium-copper composite transition joint
JP2014185793A (en) * 2013-03-22 2014-10-02 Hitachi Metals Ltd Heat pipe and composite material for heat pipe

Also Published As

Publication number Publication date
CN114251526A (en) 2022-03-29
KR20220040368A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
US3610290A (en) Metal laminates and tubing embodying such laminates
JP2021092312A (en) Pipe joint and manufacturing method thereof
JPS60164089A (en) Method of incorporating titanium lined double pipe and titanium pipe plate
EP1329279B1 (en) Friction welding of a reinforcing element on a thin walled member with an interlayer member interposed between
JP5489382B2 (en) Pipe manufacturing method
JP5633205B2 (en) Joining method and joining structure of aluminum tube and copper tube, and heat exchanger having this joining structure
JP2012000645A (en) Joining method of aluminum pipe and copper pipe, joining structure and heat exchanger having the joining structure
JPH0224197B2 (en)
JP5057161B2 (en) Manufacturing method of welded joint
WO2008103122A1 (en) Method of manufacturing a component and use of said method
JPH06155030A (en) Joined clad plate and its manufacture
JP2707852B2 (en) Manufacturing method of double metal tube
JPH06114571A (en) Production of clad pipe
JP2001269712A (en) Metallic clad tube and its manufacturing method
JPH11290939A (en) Manufacture of long double metallic tube
JP2015529563A (en) System for the production of clad materials using resistance seam welding
JPH0647179B2 (en) Method for manufacturing dissimilar metal pipe fittings
RU2194909C1 (en) Method of manufacture of pipe line unit and pipe line unit used for realization of this method
JP2000343210A (en) Double structure tube and its production
JP2533131B2 (en) Method for producing metal jacket for metal hollow O-ring
JP3959387B2 (en) Joining method and joining structure of aluminum metal pipe and iron metal pipe
JPS6018230A (en) Formation of bent pipe
JPH03207575A (en) Circumferential welding method for double pipes
JP4357788B2 (en) Butt butt welding method
JPH04182023A (en) Manufacture of clad metallic tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314