JP2021091362A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2021091362A
JP2021091362A JP2019224642A JP2019224642A JP2021091362A JP 2021091362 A JP2021091362 A JP 2021091362A JP 2019224642 A JP2019224642 A JP 2019224642A JP 2019224642 A JP2019224642 A JP 2019224642A JP 2021091362 A JP2021091362 A JP 2021091362A
Authority
JP
Japan
Prior art keywords
tire
block
width direction
circumferential direction
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019224642A
Other languages
Japanese (ja)
Other versions
JP7420541B2 (en
Inventor
彩 里井
Aya Satoi
彩 里井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2019224642A priority Critical patent/JP7420541B2/en
Publication of JP2021091362A publication Critical patent/JP2021091362A/en
Application granted granted Critical
Publication of JP7420541B2 publication Critical patent/JP7420541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a pneumatic tire that can make both a drainage performance and a dry performance compatible at a high level.SOLUTION: A pneumatic tire comprises: a plurality of inclined grooves 1 which is formed at intervals in a tire circumferential direction and obliquely extended toward one side in a tire circumferential direction, from a center part in a tire width direction of a tread surface toward outside in the tire width direction; and inclined land parts 2 partitioned by the inclined grooves 1. The inclined land part 2 is partitioned into a center block 3, a quarter block 4 and a shoulder block 5, which are arranged from a center part in the tire width direction toward outside in the tire width direction in this order. In an area corresponding to 30-70% of a grounding half-width, ranging from a center line of the tread surface to outside in the tire width direction, a groove depth of the inclined groove 1 gradually increases toward inside in the tire width direction. A length L3 in the tire circumferential direction of the center block 3 is larger than a width W3 as a length in the tire width direction of the center block 3 thereof.SELECTED DRAWING: Figure 3

Description

本開示は、空気入りタイヤに関する。 The present disclosure relates to pneumatic tires.

特許文献1,2には、それぞれ、トレッド面のタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側へ傾斜して延びる傾斜溝と、その傾斜溝などで区画された複数のブロックとを備えた空気入りタイヤが記載されている。かかる傾斜溝が設けられていることにより、タイヤ幅方向外側への排水効率が高められる。 Patent Documents 1 and 2 describe, respectively, an inclined groove extending from the central portion of the tread surface in the tire width direction toward the outside in the tire width direction toward one side in the tire circumferential direction, and a plurality of inclined grooves defined by the inclined groove and the like. Pneumatic tires with blocks are listed. By providing such an inclined groove, the drainage efficiency to the outside in the tire width direction is enhanced.

特許文献2に記載のタイヤは、接地端に向かって傾斜溝の溝深さを小さくすることにより、排水性能とドライ性能(乾燥した路面での操縦安定性能や制動性能)との両立を図っている。しかし、トレッド面のタイヤ幅方向中央部で溝深さが大きいためにブロックの剛性が低下する傾向にあり、ドライ性能が十分に発揮されない恐れがある。かかる傾向は、特にブロックパターンで且つ多数のサイプが形成されている場合に顕著である。 The tire described in Patent Document 2 aims to achieve both drainage performance and dry performance (steering stability performance and braking performance on a dry road surface) by reducing the groove depth of the inclined groove toward the ground contact end. There is. However, since the groove depth is large in the central portion of the tread surface in the tire width direction, the rigidity of the block tends to decrease, and the dry performance may not be sufficiently exhibited. This tendency is particularly remarkable when the block pattern is formed and a large number of sipes are formed.

特開2017−1617号公報JP-A-2017-1617 特開2016−578号公報Japanese Unexamined Patent Publication No. 2016-578

本開示の目的は、排水性能とドライ性能とを高次元で両立できる空気入りタイヤを提供することにある。 An object of the present disclosure is to provide a pneumatic tire that can achieve both drainage performance and dry performance at a high level.

本開示の空気入りタイヤは、タイヤ周方向に間隔を置いて複数形成され、トレッド面のタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側へ傾斜して延びる傾斜溝と、前記傾斜溝によって区画された傾斜陸部と、を備え、前記傾斜陸部は、センターブロック、クオーターブロック及びショルダーブロックに区画され、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって配置されており、前記トレッド面のセンターラインからタイヤ幅方向外側に接地半幅の30〜70%の領域で、前記傾斜溝の溝深さがタイヤ幅方向内側に向けて大きくなっており、前記センターブロックのタイヤ周方向の長さが、前記センターブロックのタイヤ幅方向の長さよりも大きい。 A plurality of pneumatic tires of the present disclosure are formed at intervals in the tire circumferential direction, and an inclined groove extending from the central portion of the tread surface in the tire width direction toward the outside in the tire width direction toward one side in the tire circumferential direction. The inclined land portion is provided with an inclined land portion partitioned by the inclined groove, and the inclined land portion is divided into a center block, a quarter block and a shoulder block, and is arranged in this order from the central portion in the tire width direction to the outside in the tire width direction. In the region of 30 to 70% of the ground contact half width from the center line of the tread surface to the outside in the tire width direction, the groove depth of the inclined groove increases toward the inside in the tire width direction, and the center block The length of the center block in the tire circumferential direction is larger than the length of the center block in the tire width direction.

本開示の空気入りタイヤのトレッド面の一例を示す平面展開図Plane development view showing an example of the tread surface of the pneumatic tire of the present disclosure. 空気入りタイヤのタイヤ子午線半断面図Tire meridian semi-cross section of pneumatic tires 図1のトレッドパターンの一部を抽出して示す平面図Top view showing a part of the tread pattern of FIG. 1 extracted. 図3のX部を示す拡大図Enlarged view showing part X of FIG. 図3のY部を示す拡大図Enlarged view showing the Y part of FIG.

以下、本開示の一実施形態について、図面を参照しながら説明する。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings.

図1は、本実施形態の空気入りタイヤPT(以下、単に「タイヤPT」ともいう)が備えるトレッド面Trの平面展開図である。図1の上下方向がタイヤ周方向に相当し、図1の左右方向がタイヤ幅方向に相当する。図1に示すように、トレッド面Trに形成されているトレッドパターンは、ブロックパターンである。 FIG. 1 is a plan view of a tread surface Tr included in the pneumatic tire PT of the present embodiment (hereinafter, also simply referred to as “tire PT”). The vertical direction in FIG. 1 corresponds to the tire circumferential direction, and the horizontal direction in FIG. 1 corresponds to the tire width direction. As shown in FIG. 1, the tread pattern formed on the tread surface Tr is a block pattern.

本実施形態の空気入りタイヤPTは、回転方向が指定された回転方向指定型タイヤである。図面では、回転方向を矢印RDで示している。回転方向の指定は、例えば、タイヤPTのサイドウォール部の外表面に、回転方向を示す表示(例えば、矢印)を付すことにより行われる。 The pneumatic tire PT of the present embodiment is a rotation direction designation type tire in which the rotation direction is designated. In the drawing, the direction of rotation is indicated by an arrow RD. The rotation direction is specified, for example, by attaching a display (for example, an arrow) indicating the rotation direction to the outer surface of the sidewall portion of the tire PT.

空気入りタイヤPTは、タイヤ周方向に間隔を置いて複数形成された傾斜溝1と、その傾斜溝1によって区画された傾斜陸部2とを備える。傾斜溝1は、トレッド面Trのタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側CD1へ傾斜して延びる。タイヤ周方向一方側CD1は、回転方向RDの後方側に相当する。傾斜陸部2は、センターブロック3、クオーターブロック4及びショルダーブロック5に区画され、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって配置されている。センターブロック3、クオーターブロック4及びショルダーブロック5は、それぞれ平面視で四角形(四辺形)をなすが、これに限られない。 The pneumatic tire PT includes a plurality of inclined grooves 1 formed at intervals in the tire circumferential direction, and an inclined land portion 2 partitioned by the inclined grooves 1. The inclined groove 1 extends from the central portion of the tread surface Tr in the tire width direction toward the outside in the tire width direction toward the CD1 on one side in the tire circumferential direction. The CD1 on one side in the tire circumferential direction corresponds to the rear side in the rotation direction RD. The inclined land portion 2 is divided into a center block 3, a quarter block 4, and a shoulder block 5, and is arranged in this order from the central portion in the tire width direction to the outside in the tire width direction. The center block 3, the quarter block 4, and the shoulder block 5 each form a quadrangle (quadrilateral) in a plan view, but the present invention is not limited to this.

傾斜陸部2を構成するブロックのうち、センターブロック3が最もタイヤ幅方向内側に位置し、ショルダーブロック5が最もタイヤ幅方向外側に位置する。傾斜陸部2は、一対の接続溝6,7によって三つのブロックに区画されている。接続溝6は、センターブロック3とクオーターブロック4とを区画し、接続溝7は、クオーターブロック4とショルダーブロック5とを区画する。接続溝6,7は、それぞれタイヤ周方向に延びて傾斜溝1同士を接続している。接続溝6,7は、それぞれタイヤ周方向他方側CD2に向かってタイヤ幅方向外側に傾斜している。タイヤ周方向他方側CD2は、回転方向RDの前方側に相当する。 Of the blocks constituting the inclined land portion 2, the center block 3 is located on the innermost side in the tire width direction, and the shoulder block 5 is located on the outermost side in the tire width direction. The inclined land portion 2 is divided into three blocks by a pair of connecting grooves 6 and 7. The connection groove 6 partitions the center block 3 and the quarter block 4, and the connection groove 7 partitions the quarter block 4 and the shoulder block 5. The connecting grooves 6 and 7 extend in the tire circumferential direction to connect the inclined grooves 1 to each other. The connecting grooves 6 and 7 are inclined outward in the tire width direction toward the CD2 on the other side in the tire circumferential direction, respectively. The CD2 on the other side in the tire circumferential direction corresponds to the front side in the rotation direction RD.

本実施形態の空気入りタイヤPTは、タイヤ周方向に連続して延びたセンター主溝8を備える。これにより排水効率が高められるので、排水性能を確保するうえで都合がよい。センター主溝8は、トレッド面Trのタイヤ幅方向中央部に配置される。本実施形態では、センター主溝8が、トレッド面TrのセンターラインCL(タイヤ赤道)を通っている。傾斜溝1は、センター主溝8からタイヤ幅方向外側に延びて接地端TEに達している。センター主溝8の形状は、本実施形態のようなストレート状に限られず、ジグザグ状であってもよい。また、センター主溝8が設けられていなくてもよい。 The pneumatic tire PT of the present embodiment includes a center main groove 8 continuously extending in the tire circumferential direction. As a result, the drainage efficiency is improved, which is convenient for ensuring the drainage performance. The center main groove 8 is arranged at the center of the tread surface Tr in the tire width direction. In the present embodiment, the center main groove 8 passes through the center line CL (tire equator) of the tread surface Tr. The inclined groove 1 extends outward from the center main groove 8 in the tire width direction and reaches the ground contact end TE. The shape of the center main groove 8 is not limited to the straight shape as in the present embodiment, and may be a zigzag shape. Further, the center main groove 8 may not be provided.

センターラインCL(及びセンター主溝8)は、トレッド面Trをタイヤ幅方向に二分し、一対のトレッド半領域を形成している。その一方側(図1の右側)のトレッド半領域は、複数のセンターブロック3がタイヤ周方向に配列されたセンター領域3a、複数のクオーターブロック4がタイヤ周方向に配列されたクオーター領域4a、及び、複数のショルダーブロック5がタイヤ周方向に配列されたショルダー領域5aを有し、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって設けられている。 The center line CL (and the center main groove 8) divides the tread surface Tr in the tire width direction to form a pair of tread half regions. The tread half region on one side (right side in FIG. 1) includes a center region 3a in which a plurality of center blocks 3 are arranged in the tire circumferential direction, a quarter region 4a in which a plurality of quarter blocks 4 are arranged in the tire circumferential direction, and a tread half region. , A plurality of shoulder blocks 5 have shoulder regions 5a arranged in the tire circumferential direction, and are provided in this order from the central portion in the tire width direction toward the outer side in the tire width direction.

接地端TEは、タイヤPTを正規リムにリム組みし、正規内圧を充填した状態でタイヤPTを平坦な路面に垂直に置き、正規荷重を加えたときの接地面のタイヤ幅方向の最外位置である。接地幅Wは、その接地面の幅であり、一対の接地端TE間のタイヤ幅方向の距離である。接地幅Wの半分が接地半幅HWである。 The ground contact end TE is the outermost position in the tire width direction of the ground contact surface when the tire PT is rim-assembled on the regular rim, the tire PT is placed vertically on a flat road surface with the regular internal pressure charged, and a regular load is applied. Is. The ground contact width W is the width of the ground contact surface, and is the distance in the tire width direction between the pair of ground contact ends TE. Half of the ground contact width W is the ground contact half width HW.

正規リムは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤごとに定めるリムであり、例えば、JATMAであれば標準リム、TRA及びETRTOであれば「Measuring Rim」となる。正規内圧は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤごとに定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、ETRTOであれば「INFLATION PRESSURE」である。なお、タイヤが乗用車用である場合には180kPaとし、さらに、Extra LoadまたはReinforcedと記載されたタイヤである場合には220kPaとする。正規荷重は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤごとに定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば上記の表に記載の最大値、ETRTOであれば「LOAD CAPACITY」であるが、タイヤが乗用車用である場合には内圧の対応荷重の88%とする。 A regular rim is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATMA is a standard rim, and TRA and ETRTO are "Measuring Rim". The regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which the tire is based. For JATMA, the maximum air pressure, and for TRA, the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES". If it is the maximum value described in "ETRTO", it is "INFLATION PRESSURE". If the tire is for a passenger car, the value is 180 kPa, and if the tire is described as Extra Load or Reinforced, the value is 220 kPa. The normal load is the load defined for each tire in the standard system including the standard on which the tire is based. For JATMA, the maximum load capacity, for TRA, the maximum value listed in the above table. If it is ETRTO, it is "LOAD CAPACITY", but if the tires are for passenger cars, it is 88% of the corresponding load of the internal pressure.

図2は、タイヤ回転軸を含む平面で切断したタイヤPTを示すタイヤ子午線半断面図である。図2の右側がタイヤ幅方向外側、左側がタイヤ幅方向内側に相当する。接続溝6,7を省略し、傾斜陸部2を概略的に示している。このタイヤPTでは、センターラインCLからタイヤ幅方向外側に接地半幅HWの30〜70%の領域Arで、傾斜溝1の溝深さD1がタイヤ幅方向内側に向けて大きくなっている。傾斜溝1の溝深さD1は、接地幅Wなどを定める際の上記条件で接地させたタイヤに対し、トレッド面Trに対して垂直な方向における、傾斜陸部2の表面から傾斜溝1の溝底1Bまでの距離として求められる。 FIG. 2 is a half cross-sectional view of the tire meridian showing the tire PT cut in a plane including the tire rotation axis. The right side of FIG. 2 corresponds to the outside in the tire width direction, and the left side corresponds to the inside in the tire width direction. The connecting grooves 6 and 7 are omitted, and the inclined land portion 2 is shown schematically. In this tire PT, the groove depth D1 of the inclined groove 1 increases toward the inside in the tire width direction in the region Ar of 30 to 70% of the ground contact half width HW from the center line CL to the outside in the tire width direction. The groove depth D1 of the inclined groove 1 is the inclined groove 1 from the surface of the inclined land portion 2 in the direction perpendicular to the tread surface Tr with respect to the tire grounded under the above conditions when determining the ground contact width W and the like. It is calculated as the distance to the groove bottom 1B.

領域Arでは、溝深さD1がタイヤ幅方向内側に向けて徐々に大きくなるように、溝底1Bがトレッド面Trに対して傾斜している。溝深さD1が変化する部分は、領域Arの外側にはみ出していてもよい。センターラインCLからタイヤ幅方向外側に接地半幅HWの30%での溝深さD1aは、同じく接地半幅HWの70%での溝深さD1bよりも大きい。よって、溝深さD1aは、溝深さD1bの100%を超えており、例えば溝深さD1bの110〜160%である。 In the region Ar, the groove bottom 1B is inclined with respect to the tread surface Tr so that the groove depth D1 gradually increases inward in the tire width direction. The portion where the groove depth D1 changes may protrude to the outside of the region Ar. The groove depth D1a at 30% of the ground contact half width HW from the center line CL to the outside in the tire width direction is also larger than the groove depth D1b at 70% of the ground contact half width HW. Therefore, the groove depth D1a exceeds 100% of the groove depth D1b, and is, for example, 110 to 160% of the groove depth D1b.

ショルダー領域5aでは溝深さD1が相対的に小さいため、ドライ性能に対する寄与が大きいショルダーブロック5の剛性が確保される。また、センター領域3aでは溝深さD1が相対的に大きいため、傾斜溝1を備えることと相俟って、排水性能が向上する。これにより、濡れた路面でのハイドロプレーニング現象の発生が抑えられる。一方で、センター領域3aでは溝深さD1が相対的に大きいためにセンターブロック3の剛性が低下する傾向にあり、ドライ性能が十分に発揮されない恐れがある。そこで、このタイヤPTでは、後述するような縦長形状をセンターブロック3に採用し、それによってドライ性能の悪化を抑制している。 Since the groove depth D1 is relatively small in the shoulder region 5a, the rigidity of the shoulder block 5 having a large contribution to the dry performance is secured. Further, since the groove depth D1 is relatively large in the center region 3a, the drainage performance is improved in combination with the provision of the inclined groove 1. As a result, the occurrence of the hydroplaning phenomenon on a wet road surface is suppressed. On the other hand, in the center region 3a, since the groove depth D1 is relatively large, the rigidity of the center block 3 tends to decrease, and the dry performance may not be sufficiently exhibited. Therefore, in this tire PT, a vertically long shape as described later is adopted for the center block 3, thereby suppressing deterioration of dry performance.

図3のように、このタイヤPTでは、センターブロック3のタイヤ周方向の長さL3が、そのセンターブロック3のタイヤ幅方向の長さ(即ち、幅W3)よりも大きい。これにより、タイヤ周方向におけるセンターブロック3の剛性低下が抑えられ、ドライ性能の悪化を抑制できる。幅W3に対する長さL3の比L3/W3は、1.5以上であることが好ましい。これにより、タイヤ周方向におけるセンターブロック3の剛性を高めて、ドライ性能を効果的に向上できる。長さL3及び幅W3は、それぞれセンターブロック3の頂面の形状に基づいて求められる。長さL4,L5及び幅W4,W5も同様である。 As shown in FIG. 3, in this tire PT, the length L3 of the center block 3 in the tire circumferential direction is larger than the length of the center block 3 in the tire width direction (that is, the width W3). As a result, the decrease in rigidity of the center block 3 in the tire circumferential direction can be suppressed, and the deterioration of dry performance can be suppressed. The ratio L3 / W3 of the length L3 to the width W3 is preferably 1.5 or more. As a result, the rigidity of the center block 3 in the tire circumferential direction can be increased, and the dry performance can be effectively improved. The length L3 and the width W3 are obtained based on the shape of the top surface of the center block 3, respectively. The same applies to the lengths L4 and L5 and the widths W4 and W5.

ショルダーブロック5のタイヤ周方向の長さL5は、そのショルダーブロック5のタイヤ幅方向の長さ(即ち、幅W5)と同じか、それよりも小さいことが好ましい。本実施形態では、長さL5が幅W5よりも小さい。これにより、タイヤ幅方向におけるショルダーブロック5の剛性を高めて、ドライ性能(特には乾燥した路面での操縦安定性能)を効果的に向上できる。加えて、ショルダーサイプ5sによるエッジ成分が増えることで、スノートラクション性能(雪上駆動性能)の向上に資する。幅W5に対する長さL5の比L5/W5は、例えば0.4〜1.0(更に言えば0.4以上1.0未満)である。長さL5及び幅W5は、いずれも接地面内で求められる。 The length L5 of the shoulder block 5 in the tire circumferential direction is preferably the same as or smaller than the length of the shoulder block 5 in the tire width direction (that is, the width W5). In this embodiment, the length L5 is smaller than the width W5. As a result, the rigidity of the shoulder block 5 in the tire width direction can be increased, and the dry performance (particularly, the steering stability performance on a dry road surface) can be effectively improved. In addition, the increase in the edge component due to the shoulder sipe 5s contributes to the improvement of snow traction performance (driving performance on snow). The ratio L5 / W5 of the length L5 to the width W5 is, for example, 0.4 to 1.0 (more specifically, 0.4 or more and less than 1.0). Both the length L5 and the width W5 are obtained in the ground plane.

クオーターブロック4のタイヤ周方向の長さL4は、そのクオーターブロック4のタイヤ幅方向の長さ(即ち、幅W4)と同じか、それよりも大きいことが好ましい。本実施形態では、長さL4が幅W4よりも大きい。幅W4に対する長さL4の比L4/W4は、例えば1.0〜1.5である。これにより、タイヤ周方向におけるクオーターブロック4の剛性低下が抑えられ、ドライ性能に寄与できる。また、比L4/W4を1.5以下にすることにより、排水性能を確保するのに有利な傾斜角度θ4を採用しつつ、操縦安定性にも有利に作用する。 The length L4 of the quarter block 4 in the tire circumferential direction is preferably the same as or larger than the length of the quarter block 4 in the tire width direction (that is, the width W4). In this embodiment, the length L4 is larger than the width W4. The ratio L4 / W4 of the length L4 to the width W4 is, for example, 1.0 to 1.5. As a result, the decrease in rigidity of the quarter block 4 in the tire circumferential direction can be suppressed, which can contribute to dry performance. Further, by setting the ratio L4 / W4 to 1.5 or less, the inclination angle θ4 which is advantageous for ensuring the drainage performance is adopted, and the steering stability is also advantageous.

センターブロック3が設けられた領域(即ち、センター領域3a)における傾斜溝1のタイヤ幅方向に対する傾斜角度θ3は、例えば40〜60度である。これにより、排水性能とスノートラクション性能を両立するうえで都合がよい。傾斜角度θ3は、センターブロック3の踏込側となるタイヤ周方向他方側CD2の先端からタイヤ幅方向外側に延びるブロック縁のタイヤ幅方向に対する角度として求めることができる。傾斜角度θ3は、後述する傾斜角度θ4及び傾斜角度θ5よりも大きいことが好ましい。 The inclination angle θ3 of the inclined groove 1 with respect to the tire width direction in the region where the center block 3 is provided (that is, the center region 3a) is, for example, 40 to 60 degrees. This is convenient in achieving both drainage performance and snow traction performance. The inclination angle θ3 can be obtained as an angle of the block edge extending outward in the tire width direction from the tip of the CD2 on the other side in the tire circumferential direction, which is the stepping side of the center block 3, with respect to the tire width direction. The inclination angle θ3 is preferably larger than the inclination angle θ4 and the inclination angle θ5, which will be described later.

クオーターブロック4が設けられた領域(即ち、クオーター領域4a)における傾斜溝1のタイヤ幅方向に対する傾斜角度θ4は、例えば30〜50度である。これにより、排水性能とスノートラクション性能を両立するうえで都合がよい。傾斜角度θ4は、クオーターブロック4の踏込側となるタイヤ周方向他方側CD2の先端からタイヤ幅方向外側に延びるブロック縁のタイヤ幅方向に対する角度として求めることができる。傾斜角度θ4は、後述する傾斜角度θ5よりも大きいことが好ましい。 The inclination angle θ4 of the inclined groove 1 with respect to the tire width direction in the region where the quarter block 4 is provided (that is, the quarter region 4a) is, for example, 30 to 50 degrees. This is convenient in achieving both drainage performance and snow traction performance. The inclination angle θ4 can be obtained as an angle with respect to the tire width direction of the block edge extending outward in the tire width direction from the tip of the CD2 on the other side in the tire circumferential direction, which is the stepping side of the quarter block 4. The inclination angle θ4 is preferably larger than the inclination angle θ5 described later.

ショルダーブロック5が設けられた領域(即ち、ショルダー領域5a)における傾斜溝1のタイヤ幅方向に対する傾斜角度θ5は、例えば0〜20度である。これにより、ドライ制動性能とスノートラクション性能を両立するうえで都合がよい。傾斜角度θ5は、ショルダーブロック5の踏込側となるタイヤ周方向他方側CD2の先端からタイヤ幅方向外側に延びるブロック縁のタイヤ幅方向に対する角度として求めることができる。 The inclination angle θ5 of the inclined groove 1 with respect to the tire width direction in the region where the shoulder block 5 is provided (that is, the shoulder region 5a) is, for example, 0 to 20 degrees. This is convenient for achieving both dry braking performance and snow traction performance. The inclination angle θ5 can be obtained as an angle with respect to the tire width direction of the block edge extending outward in the tire width direction from the tip of the CD2 on the other side in the tire circumferential direction, which is the stepping side of the shoulder block 5.

図4Aは、図3のX部を示す拡大図であり、サイプの図示は省略している。センターブロック3のタイヤ周方向他方側CD2のブロック縁の延長線EL3と、クオーターブロック4のタイヤ周方向他方側CD2のブロック縁の延長線EL4とが破線で示されている。接続溝6を挟んで互いに隣接するセンターブロック3とクオーターブロック4との間で、ブロック縁の延長線EL3,EL4はタイヤ周方向に位置ずれしており、互いに交差しない位置関係にある。延長線EL4は延長線EL3よりもタイヤ周方向他方側CD2に位置するが、これらは反対でもよい。 FIG. 4A is an enlarged view showing a portion X in FIG. 3, and the sipe is not shown. The extension line EL3 of the block edge of the CD2 on the other side of the tire circumferential direction of the center block 3 and the extension line EL4 of the block edge of the CD2 on the other side of the tire circumferential direction of the quarter block 4 are shown by broken lines. The extension lines EL3 and EL4 of the block edge are displaced in the tire circumferential direction between the center block 3 and the quarter block 4 adjacent to each other with the connecting groove 6 interposed therebetween, and are in a positional relationship that does not intersect with each other. The extension line EL4 is located on the other side CD2 in the tire circumferential direction with respect to the extension line EL3, but these may be opposite.

図4Bは、図3のY部を示す拡大図であり、サイプの図示は省略している。クオーターブロック4のタイヤ周方向他方側CD2のブロック縁の延長線EL4と、ショルダーブロック5のタイヤ周方向他方側CD2のブロック縁の延長線EL5とが破線で示されている。接続溝7を挟んで互いに隣接するクオーターブロック4とショルダーブロック5との間で、ブロック縁の延長線EL4,EL5はタイヤ周方向に位置ずれしており、互いに交差しない位置関係にある。延長線EL5は延長線EL4よりもタイヤ周方向他方側CD2に位置するが、これらは反対でもよい。 FIG. 4B is an enlarged view showing the Y portion of FIG. 3, and the illustration of the sipe is omitted. The extension line EL4 of the block edge of the CD2 on the other side of the tire circumferential direction of the quarter block 4 and the extension line EL5 of the block edge of the CD2 on the other side of the tire circumferential direction of the shoulder block 5 are shown by broken lines. The extension lines EL4 and EL5 of the block edge are displaced in the tire circumferential direction between the quarter block 4 and the shoulder block 5 adjacent to each other with the connecting groove 7 in between, and are in a positional relationship that does not intersect with each other. The extension line EL5 is located on the other side CD2 in the tire circumferential direction with respect to the extension line EL4, but these may be opposite.

本実施形態のように、センターブロック3とクオーターブロック4との間で、及び/または、クオーターブロック4とショルダーブロック5との間で、ブロック縁の延長線がタイヤ周方向に位置ずれしていることが好ましい。それにより、エッジ成分を増やして雪上での走行性能を高めることができる。また、回転方向RDの前方側となるタイヤ周方向他方側CD2のブロック縁が位置ずれしていることにより、雪上での駆動性能や操縦安定性能に資する。 As in the present embodiment, the extension line of the block edge is displaced in the tire circumferential direction between the center block 3 and the quarter block 4 and / or between the quarter block 4 and the shoulder block 5. Is preferable. As a result, the edge component can be increased to improve the running performance on snow. Further, the block edge of the CD2 on the other side in the tire circumferential direction, which is the front side in the rotation direction RD, is misaligned, which contributes to driving performance and steering stability performance on snow.

本実施形態では、図4Aのように、クオーターブロック4が、延長線EL3に対してタイヤ周方向他方側CD2に突出する突出部40を有する。これにより、踏込側に突出した突出部40がエッジ効果を奏して、スノートラクション性能を向上できる。かかる構成でも、上述した溝深さD1の変化により排水性能は確保される。突出部40は、傾斜溝1に向けて先細りとなるV字状に形成されている。突出部40の突出量P40は、好ましくは0.5mm以上であり、より好ましくは1.0mm以上である。突出量P40は、クオーターブロック4のタイヤ周方向他方側CD2のブロック縁のタイヤ幅方向内側端と、延長線EL3がクオーターブロック4に交わる点との距離として求められる。 In the present embodiment, as shown in FIG. 4A, the quarter block 4 has a protruding portion 40 protruding from the extension line EL3 on the other side CD2 in the tire circumferential direction. As a result, the protruding portion 40 protruding toward the stepping side exerts an edge effect, and the snow traction performance can be improved. Even in such a configuration, the drainage performance is ensured by the above-mentioned change in the groove depth D1. The protruding portion 40 is formed in a V shape that tapers toward the inclined groove 1. The protrusion amount P40 of the protrusion 40 is preferably 0.5 mm or more, and more preferably 1.0 mm or more. The protrusion amount P40 is obtained as the distance between the inner end in the tire width direction of the block edge of the CD2 on the other side in the tire circumferential direction of the quarter block 4 and the point where the extension line EL3 intersects the quarter block 4.

本実施形態では、図4Bのように、ショルダーブロック5が、延長線EL4に対してタイヤ周方向他方側CD2に突出する突出部50を有する。これにより、踏込側に突出した突出部50がエッジ効果を奏して、スノートラクション性能を向上できる。かかる構成でも、上述した溝深さD1の変化により排水性能は確保される。突出部50は、傾斜溝1に向けて先細りとなるV字状に形成されている。突出部50の突出量P50は、好ましくは0.5mm以上であり、より好ましくは1.0mm以上である。突出量P50は、ショルダーブロック5のタイヤ周方向他方側CD2のブロック縁のタイヤ幅方向内側端と、延長線EL4がショルダーブロック5に交わる点との距離として求められる。 In the present embodiment, as shown in FIG. 4B, the shoulder block 5 has a protruding portion 50 projecting toward the CD2 on the other side in the tire circumferential direction with respect to the extension line EL4. As a result, the protruding portion 50 protruding toward the stepping side exerts an edge effect, and the snow traction performance can be improved. Even in such a configuration, the drainage performance is ensured by the above-mentioned change in the groove depth D1. The protruding portion 50 is formed in a V shape that tapers toward the inclined groove 1. The protrusion amount P50 of the protrusion 50 is preferably 0.5 mm or more, and more preferably 1.0 mm or more. The protrusion amount P50 is obtained as the distance between the inner end in the tire width direction of the block edge of the CD2 on the other side of the shoulder block 5 in the tire circumferential direction and the point where the extension line EL4 intersects the shoulder block 5.

図3のように、センターブロック3には、複数のセンターサイプ3sが形成されている。センターサイプ3sの両端は溝に接続されているが、片端または両端がブロック内で終端してもよい。センターサイプ3sは、タイヤ幅方向と交差するように延び、且つ、傾斜溝1に接するセンターブロック3のブロック縁と交差するように延びている。センターサイプ3sは、直線状に延びる直線サイプ3s1と、屈曲部を有する屈曲サイプ3s2とを含む。直線サイプ3s1は、センターブロック3のタイヤ周方向の端部に配置され、屈曲サイプ3s2は、センターブロック3のタイヤ周方向の中央部に配置されている。 As shown in FIG. 3, a plurality of center sipes 3s are formed in the center block 3. Both ends of the center sipe 3s are connected to the groove, but one end or both ends may be terminated within the block. The center sipe 3s extends so as to intersect the tire width direction, and extends so as to intersect the block edge of the center block 3 in contact with the inclined groove 1. The center sipe 3s includes a linear sipe 3s1 extending linearly and a bending sipe 3s2 having a bent portion. The straight sipe 3s1 is arranged at the end of the center block 3 in the tire circumferential direction, and the bent sipe 3s2 is arranged at the center of the center block 3 in the tire circumferential direction.

クオーターブロック4には、複数のクオーターサイプ4sが形成されている。クオーターサイプ4sの両端は溝に接続されているが、これに限られない。クオーターサイプ4sは、タイヤ幅方向と交差するように延び、且つ、傾斜溝1に接するクオーターブロック4のブロック縁と交差するように延びている。クオーターサイプ4sは、直線状に延びる直線サイプ4s1と、屈曲部を有する屈曲サイプ4s2とを含む。直線サイプ4s1は、クオーターブロック4のタイヤ周方向の端部に配置され、屈曲サイプ4s2は、クオーターブロック4のタイヤ周方向の中央部に配置されている。クオーターサイプ4sがタイヤ幅方向と交差する角度θ4sは、センターサイプ3sがタイヤ幅方向と交差する角度θ3sよりも大きい。 A plurality of quarter sipes 4s are formed in the quarter block 4. Both ends of the quarter sipe 4s are connected to the groove, but the present invention is not limited to this. The quarter sipe 4s extends so as to intersect the tire width direction and intersects the block edge of the quarter block 4 in contact with the inclined groove 1. The quarter sipe 4s includes a linear sipe 4s1 extending linearly and a bending sipe 4s2 having a bent portion. The straight sipe 4s1 is arranged at the end of the quarter block 4 in the tire circumferential direction, and the bent sipe 4s2 is arranged at the center of the quarter block 4 in the tire circumferential direction. The angle θ4s at which the quartersipe 4s intersects the tire width direction is larger than the angle θ3s at which the centersipe 3s intersects the tire width direction.

ショルダーブロック5には、複数のショルダーサイプ5sが形成されている。ショルダーサイプ5sの一端は溝に接続され、他端は接地端TEに達しているが、これに限られない。ショルダーサイプ5sは、直線状に延びる直線サイプ5s1と、屈曲部を有する屈曲サイプ5s2とを含む。屈曲サイプ5s2の屈曲部は波形状を有するが、これに限られず、このことは屈曲サイプ3s2や屈曲サイプ4s2でも同様である。ショルダーサイプ5sがタイヤ幅方向と交差する角度θ5sは、クオーターサイプ4sがタイヤ幅方向と交差する角度θ4sよりも小さい。サイプ3s,4s,5sは、幅1.6mm未満の切り込みにより形成されている。 A plurality of shoulder sipes 5s are formed on the shoulder block 5. One end of the shoulder sipe 5s is connected to the groove, and the other end reaches the grounding end TE, but is not limited to this. The shoulder sipe 5s includes a linear sipe 5s1 extending linearly and a bending sipe 5s2 having a bent portion. The bent portion of the bent sipe 5s2 has a wavy shape, but the present invention is not limited to this, and the same applies to the bent sipe 3s2 and the bent sipe 4s2. The angle θ5s at which the shoulder sipe 5s intersects the tire width direction is smaller than the angle θ4s at which the quarter sipe 4s intersects the tire width direction. The sipes 3s, 4s, and 5s are formed by notches having a width of less than 1.6 mm.

本実施形態では、トレッド面Trのタイヤ幅方向中央部からタイヤ幅方向の両外側に向かってタイヤ周方向一方側CD1へ傾斜して延びる、一対の傾斜溝1,11が設けられている。傾斜溝1,11及びセンター主溝8が、トレッド面Trの主溝である。他方側(図1の左側)のトレッド半領域には、タイヤ周方向に間隔を置いて複数形成された傾斜溝11と、その傾斜溝11によって区画された傾斜陸部12とが設けられている。傾斜溝11は、トレッド面Trのタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側CD1へ傾斜して延びている。傾斜陸部12は、接続溝16及び接続溝17によって、センターブロック13、クオーターブロック14及びショルダーブロック15に区画され、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって配置されている。 In the present embodiment, a pair of inclined grooves 1 and 11 extending from the central portion of the tread surface Tr in the tire width direction toward both outer sides in the tire width direction toward the CD1 on one side in the tire circumferential direction are provided. The inclined grooves 1 and 11 and the center main groove 8 are the main grooves of the tread surface Tr. In the tread half region on the other side (left side in FIG. 1), a plurality of inclined grooves 11 formed at intervals in the tire circumferential direction and an inclined land portion 12 partitioned by the inclined grooves 11 are provided. .. The inclined groove 11 extends from the central portion of the tread surface Tr in the tire width direction toward the outside in the tire width direction toward the CD1 on one side in the tire circumferential direction. The inclined land portion 12 is divided into a center block 13, a quarter block 14, and a shoulder block 15 by a connecting groove 16 and a connecting groove 17, and is arranged in this order from the central portion in the tire width direction toward the outside in the tire width direction. ..

他方側のトレッド半領域のパターンは、一方側のトレッド半領域のパターンをセンターラインCLに関して反転させた形状であるため、重複した説明を省略する。一方側のトレッド半領域について説明した事項は、他方側のトレッド半領域にも当て嵌まる。したがって、上述した領域Arで溝深さD1が変化する形状と、センターブロック3の縦長形状は、一方側のトレッド半領域と同様に、他方側のトレッド半領域でも成立する。これらの形状は、少なくとも片側のトレッド半領域で成立していればよいが、本実施形態のように両側のトレッド半領域で成立することが好ましい。 Since the pattern of the tread half region on the other side has a shape in which the pattern of the tread half region on the one side is inverted with respect to the center line CL, duplicate description will be omitted. The matters described for the tread half region on one side also apply to the tread half region on the other side. Therefore, the shape in which the groove depth D1 changes in the above-mentioned region Ar and the vertically elongated shape of the center block 3 are established in the tread half region on the other side as well as the tread half region on one side. These shapes may be formed in at least one tread half region, but it is preferably formed in both tread half regions as in the present embodiment.

本実施形態では、一方側のトレッド半領域のパターンに対して、他方側のトレッド半領域のパターンがタイヤ周方向にシフト(位置ずれ)している。これにより、排水性能とドライ性能を両立しながら、ヒールアンドトウ摩耗などの偏摩耗の発生を抑制できる。この位置ずれ量となるシフト長さSL(図3参照)は、例えばピッチ長P(図1参照)の10〜50%である。但し、これに限られず、両側のトレッド半領域のパターンのタイヤ周方向位置が互いに一致していてもよい。 In the present embodiment, the pattern of the tread half region on the other side is shifted (misaligned) in the tire circumferential direction with respect to the pattern of the tread half region on one side. As a result, it is possible to suppress the occurrence of uneven wear such as heel-and-toe wear while achieving both drainage performance and dry performance. The shift length SL (see FIG. 3), which is the amount of this misalignment, is, for example, 10 to 50% of the pitch length P (see FIG. 1). However, the present invention is not limited to this, and the tire circumferential positions of the patterns in the tread half regions on both sides may coincide with each other.

本実施形態の空気入りタイヤPTは、上記の如きブロックパターンのトレッド面Trを有し且つ多数のサイプ3s,4s,5sが形成されており、排水性能とドライ性能に優れているとともに、スノートラクション性能に優れるため、雪用タイヤまたはオールシーズンタイヤとして有用である。雪用タイヤである場合において、トレッド面Trを形成するトレッドゴムのゴム硬度は、例えば55〜73°である。このゴム硬度は、JISK6253のデュロメータ硬さ試験(タイプA)に準じて25℃で測定した硬度である。 The pneumatic tire PT of the present embodiment has the tread surface Tr of the block pattern as described above and has a large number of sipes 3s, 4s, and 5s formed, and is excellent in drainage performance and dry performance, and also has snow traction. Due to its excellent performance, it is useful as a snow tire or an all-season tire. In the case of a snow tire, the rubber hardness of the tread rubber forming the tread surface Tr is, for example, 55 to 73 °. This rubber hardness is the hardness measured at 25 ° C. according to the durometer hardness test (type A) of JIS K6253.

以上のように、本実施形態の空気入りタイヤPTは、タイヤ周方向に間隔を置いて複数形成され、トレッド面Trのタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側CD1へ傾斜して延びる傾斜溝1と、傾斜溝1によって区画された傾斜陸部2と、を備える。傾斜陸部2は、センターブロック3、クオーターブロック4及びショルダーブロック5に区画され、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって配置されている。トレッド面TrのセンターラインCLからタイヤ幅方向外側に接地半幅HWの30〜70%の領域Arで、傾斜溝1の溝深さD1はタイヤ幅方向内側に向けて大きくなっている。センターブロック3のタイヤ周方向の長さL3は、センターブロック3のタイヤ幅方向の長さとしての幅W3よりも大きい。 As described above, a plurality of pneumatic tire PTs of the present embodiment are formed at intervals in the tire circumferential direction, and the tread surface Tr is CD1 on one side in the tire circumferential direction from the central portion in the tire width direction toward the outside in the tire width direction. It is provided with an inclined groove 1 extending so as to be inclined to, and an inclined land portion 2 partitioned by the inclined groove 1. The inclined land portion 2 is divided into a center block 3, a quarter block 4, and a shoulder block 5, and is arranged in this order from the central portion in the tire width direction to the outside in the tire width direction. The groove depth D1 of the inclined groove 1 increases toward the inside in the tire width direction in the region Ar of 30 to 70% of the ground contact half width HW from the center line CL of the tread surface Tr to the outside in the tire width direction. The length L3 of the center block 3 in the tire circumferential direction is larger than the width W3 as the length of the center block 3 in the tire width direction.

このタイヤPTによれば、傾斜溝1を備えていることにより、タイヤ幅方向外側への排水効率が高められる。また、傾斜溝1の溝深さD1がタイヤ幅方向内側に向かって大きくなっているため、ドライ性能に対する寄与が大きいショルダーブロック5の剛性を確保しながら、排水性能を向上できる。更に、長さL3が幅W3よりも大きいことにより、タイヤ周方向におけるセンターブロック3の剛性低下が抑えられ、ドライ性能の悪化が抑制される。その結果、排水性能とドライ性能とを高次元で両立できる。 According to this tire PT, the provision of the inclined groove 1 enhances the drainage efficiency to the outside in the tire width direction. Further, since the groove depth D1 of the inclined groove 1 increases inward in the tire width direction, the drainage performance can be improved while ensuring the rigidity of the shoulder block 5 which greatly contributes to the dry performance. Further, since the length L3 is larger than the width W3, the decrease in the rigidity of the center block 3 in the tire circumferential direction is suppressed, and the deterioration of the dry performance is suppressed. As a result, both drainage performance and dry performance can be achieved at a high level.

本実施形態の空気入りタイヤPTでは、センターブロック3のタイヤ幅方向の長さとしての幅W3に対するセンターブロック3のタイヤ周方向の長さL3の比L3/W3が1.5以上である。これにより、タイヤ周方向におけるセンターブロック3の剛性を高めて、ドライ性能を効果的に向上できる。 In the pneumatic tire PT of the present embodiment, the ratio L3 / W3 of the length L3 of the center block 3 in the tire circumferential direction to the width W3 as the length of the center block 3 in the tire width direction is 1.5 or more. As a result, the rigidity of the center block 3 in the tire circumferential direction can be increased, and the dry performance can be effectively improved.

本実施形態の空気入りタイヤPTでは、センターブロック3とクオーターブロック4との間で、及び/または、クオーターブロック4とショルダーブロック5との間で、ブロック縁の延長線がタイヤ周方向に位置ずれしている。これにより、エッジ成分を増やして雪上での走行性能を高めることができる。 In the pneumatic tire PT of the present embodiment, the extension line of the block edge is displaced in the tire circumferential direction between the center block 3 and the quarter block 4 and / or between the quarter block 4 and the shoulder block 5. doing. As a result, the edge component can be increased to improve the running performance on snow.

本実施形態の空気入りタイヤPTでは、クオーターブロック4が、センターブロック3のタイヤ周方向他方側CD2のブロック縁の延長線EL3に対してタイヤ周方向他方側CD2に突出する突出部40を有する。突出部40がエッジ効果を奏することにより、スノートラクション性能が向上する。 In the pneumatic tire PT of the present embodiment, the quarter block 4 has a protruding portion 40 protruding from the tire circumferential direction other side CD2 with respect to the extension line EL3 of the block edge of the tire circumferential direction other side CD2 of the center block 3. The protruding portion 40 exerts an edge effect, so that the snow traction performance is improved.

本実施形態の空気入りタイヤPTでは、ショルダーブロック5が、クオーターブロック4のタイヤ周方向他方側CD2のブロック縁の延長線EL4に対してタイヤ周方向他方側CD2に突出する突出部50を有する。突出部50がエッジ効果を奏することにより、スノートラクション性能が向上する。 In the pneumatic tire PT of the present embodiment, the shoulder block 5 has a protruding portion 50 protruding from the tire circumferential direction other side CD2 with respect to the extension line EL4 of the block edge of the tire circumferential direction other side CD2 of the quarter block 4. The protruding portion 50 exerts an edge effect, so that the snow traction performance is improved.

本実施形態の空気入りタイヤPTでは、ショルダーブロック5のタイヤ周方向の長さL5が、ショルダーブロック5のタイヤ幅方向の長さとしての幅W5よりも小さい。これにより、タイヤ幅方向におけるショルダーブロック5の剛性を高めて、ドライ性能(特には乾燥した路面での操縦安定性能)を効果的に向上できる。加えて、ショルダーサイプ5sによるエッジ成分が増えることで、スノートラクション性能の向上に資する。 In the pneumatic tire PT of the present embodiment, the length L5 of the shoulder block 5 in the tire circumferential direction is smaller than the width W5 of the shoulder block 5 as the length in the tire width direction. As a result, the rigidity of the shoulder block 5 in the tire width direction can be increased, and the dry performance (particularly, the steering stability performance on a dry road surface) can be effectively improved. In addition, the increase in the edge component due to the shoulder sipe 5s contributes to the improvement of snow traction performance.

空気入りタイヤPTは、トレッド面Trを上記の如く構成すること以外は、通常の空気入りタイヤと同等に構成でき、従来公知の材料、形状、構造、製法などは何れも採用することができる。図2に概略的に示すように、空気入りタイヤPTは、一対のビード部91と、そのビード部91の各々からタイヤ径方向外側(図2の上側)に延びる一対のサイドウォール部92と、その一対のサイドウォール部92の各々のタイヤ径方向外側端に連なるトレッド部93とを備えており、そのトレッド部93の外周面がトレッド面Trによって形成されている。 The pneumatic tire PT can be configured in the same manner as a normal pneumatic tire except that the tread surface Tr is configured as described above, and any conventionally known material, shape, structure, manufacturing method, etc. can be adopted. As schematically shown in FIG. 2, the pneumatic tire PT includes a pair of bead portions 91 and a pair of sidewall portions 92 extending outward in the tire radial direction (upper side in FIG. 2) from each of the bead portions 91. Each of the pair of sidewall portions 92 is provided with a tread portion 93 connected to the outer end in the tire radial direction, and the outer peripheral surface of the tread portion 93 is formed by a tread surface Tr.

本開示の実施形態について図面に基づいて説明したが、具体的な構成は、この実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、更に、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。 Although the embodiments of the present disclosure have been described with reference to the drawings, it should be considered that the specific configuration is not limited to this embodiment. The scope of the present disclosure is shown not only by the description of the above-described embodiment but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

本開示の空気入りタイヤは、上述した実施形態に何ら限定されるものではなく、また、上記した作用効果に限定されるものではない。本開示の空気入りタイヤは、その要旨を逸脱しない範囲内で種々の改良変更が可能である。 The pneumatic tire of the present disclosure is not limited to the above-described embodiment, and is not limited to the above-mentioned action and effect. The pneumatic tire of the present disclosure can be improved and changed in various ways without departing from the gist thereof.

本開示の空気入りタイヤの構成と効果を具体的に示すため、下記(1)〜(3)の評価試験を行ったので説明する。これらの評価試験では、図1の如きトレッドパターンを有するテストタイヤ(タイヤサイズ:205/55R16 91H)を使用し、これをJATMAに規定されるサイズの標準リムに装着して、車両指定の空気圧を充填した。表1に示した構成を除いて、各例におけるタイヤ構造やゴム配合は共通している。 In order to specifically show the configuration and effect of the pneumatic tire of the present disclosure, the following evaluation tests (1) to (3) have been carried out and will be described. In these evaluation tests, a test tire (tire size: 205 / 55R16 91H) having a tread pattern as shown in Fig. 1 was used, and this was attached to a standard rim of the size specified by JATTA to apply the air pressure specified by the vehicle. Filled. Except for the configurations shown in Table 1, the tire structure and rubber composition in each example are common.

(1)排水性能(耐ハイドロプレーニング性能)
テストタイヤを装着した実車(2名乗車)で、一方の片輪が水深10mmの水路、他方の片輪が乾燥路となる直進路を走行し、左右輪のスリップ率差10%に到達した速度を計測した。参考例の結果を100とした指数で評価し、数値が大きいほど排水性能に優れることを示す。
(1) Drainage performance (hydroplaning resistance)
A speed of an actual vehicle (two passengers) equipped with test tires, one wheel running on a waterway with a depth of 10 mm and the other wheel running on a straight road with a dry road, reaching a slip ratio difference of 10% between the left and right wheels. Was measured. The result of the reference example is evaluated by an index of 100, and the larger the value, the better the drainage performance.

(2)ドライ性能(ドライ操縦安定性能)
テストタイヤを装着した実車(2名乗車)で走行し、乾燥した路面で加速や制動、旋回などを実施して、ドライバーによる操縦安定性の官能評価を行った。参考例の結果を100とした指数で評価し、数値が大きいほど耐偏摩耗性能に優れることを示す。
(2) Dry performance (dry steering stability performance)
The driver performed a sensory evaluation of steering stability by running on an actual vehicle (two passengers) equipped with test tires, accelerating, braking, and turning on a dry road surface. The result of the reference example is evaluated by an index of 100, and the larger the value, the better the uneven wear resistance performance.

(3)スノートラクション性能
テストタイヤを装着した実車(2名乗車)で雪道を走行し、停止状態から20m地点到達までの時間を測定して、その逆数を算出した。参考例の結果を100とした指数で評価し、数値が大きいほどスノートラクション性能に優れることを示す。
(3) Snow traction performance The actual vehicle (two passengers) equipped with test tires was driven on a snowy road, the time from the stopped state to the arrival at the 20 m point was measured, and the reciprocal was calculated. The result of the reference example is evaluated by an index of 100, and the larger the value, the better the snow traction performance.

Figure 2021091362
Figure 2021091362

表1に示すように、実施例1〜5では、参考例よりも高い次元で、排水性能とドライ性能(ドライ操縦安定性能)とを両立できている。ドライ性能については、実施例2〜5の評価結果が比較的良好である。更に、実施例3〜5では、スノートラクション性能を向上できている。 As shown in Table 1, in Examples 1 to 5, both drainage performance and dry performance (dry steering stability performance) can be achieved at a higher level than in the reference example. Regarding the dry performance, the evaluation results of Examples 2 to 5 are relatively good. Further, in Examples 3 to 5, the snow traction performance can be improved.

1・・・傾斜溝、2・・・傾斜陸部、3・・・センターブロック、4・・・クオーターブロック、5・・・ショルダーブロック、6・・・接続溝、7・・・接続溝、8・・・センター主溝、40・・・突出部、50・・・突出部、CD1・・・タイヤ周方向一方側、CD2・・・タイヤ周方向他方側、CL・・・センターライン、TL・・・接線、Tr・・・トレッド面、 1 ... inclined groove, 2 ... inclined land part, 3 ... center block, 4 ... quarter block, 5 ... shoulder block, 6 ... connection groove, 7 ... connection groove, 8 ... Center main groove, 40 ... Protruding part, 50 ... Protruding part, CD1 ... Tire circumferential direction one side, CD2 ... Tire circumferential direction other side, CL ... Center line, TL・ ・ ・ Tangent, Tr ・ ・ ・ Tread surface,

Claims (6)

タイヤ周方向に間隔を置いて複数形成され、トレッド面のタイヤ幅方向中央部からタイヤ幅方向外側に向かってタイヤ周方向一方側へ傾斜して延びる傾斜溝と、
前記傾斜溝によって区画された傾斜陸部と、を備え、
前記傾斜陸部は、センターブロック、クオーターブロック及びショルダーブロックに区画され、この順でタイヤ幅方向中央部からタイヤ幅方向外側に向かって配置されており、
前記トレッド面のセンターラインからタイヤ幅方向外側に接地半幅の30〜70%の領域で、前記傾斜溝の溝深さがタイヤ幅方向内側に向けて大きくなっており、
前記センターブロックのタイヤ周方向の長さが、前記センターブロックのタイヤ幅方向の長さよりも大きい、空気入りタイヤ。
A plurality of inclined grooves formed at intervals in the tire circumferential direction and extending from the center of the tread surface in the tire width direction toward the outside in the tire width direction toward one side in the tire circumferential direction.
With an inclined land portion partitioned by the inclined groove,
The inclined land portion is divided into a center block, a quarter block, and a shoulder block, and is arranged in this order from the central portion in the tire width direction toward the outside in the tire width direction.
The groove depth of the inclined groove increases toward the inside in the tire width direction in a region of 30 to 70% of the ground contact half width from the center line of the tread surface to the outside in the tire width direction.
A pneumatic tire in which the length of the center block in the tire circumferential direction is larger than the length of the center block in the tire width direction.
前記センターブロックのタイヤ幅方向の長さに対する前記センターブロックのタイヤ周方向の長さの比が1.5以上である、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the ratio of the length of the center block in the tire width direction to the length of the center block in the tire circumferential direction is 1.5 or more. 前記センターブロックと前記クオーターブロックとの間で、及び/または、前記クオーターブロックと前記ショルダーブロックとの間で、ブロック縁の延長線がタイヤ周方向に位置ずれしている、請求項1または2に記載の空気入りタイヤ。 According to claim 1 or 2, the extension line of the block edge is misaligned in the tire circumferential direction between the center block and the quarter block and / or between the quarter block and the shoulder block. Pneumatic tires listed. 前記クオーターブロックは、前記センターブロックのタイヤ周方向他方側のブロック縁の延長線に対してタイヤ周方向他方側に突出する突出部を有する、請求項1〜3いずれか1項に記載の空気入りタイヤ。 The air-filled portion according to any one of claims 1 to 3, wherein the quarter block has a protruding portion protruding to the other side in the tire circumferential direction with respect to an extension line of the block edge on the other side in the tire circumferential direction of the center block. tire. 前記ショルダーブロックは、前記クオーターブロックのタイヤ周方向他方側のブロック縁の延長線に対してタイヤ周方向他方側に突出する突出部を有する、請求項1〜4いずれか1項に記載の空気入りタイヤ。 The air-filled portion according to any one of claims 1 to 4, wherein the shoulder block has a protruding portion protruding to the other side in the tire circumferential direction with respect to an extension line of the block edge on the other side in the tire circumferential direction of the quarter block. tire. 前記ショルダーブロックのタイヤ周方向の長さが、前記ショルダーブロックのタイヤ幅方向の長さよりも小さい、請求項1〜5いずれか1項に記載の空気入りタイヤ。
The pneumatic tire according to any one of claims 1 to 5, wherein the length of the shoulder block in the tire circumferential direction is smaller than the length of the shoulder block in the tire width direction.
JP2019224642A 2019-12-12 2019-12-12 pneumatic tires Active JP7420541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224642A JP7420541B2 (en) 2019-12-12 2019-12-12 pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224642A JP7420541B2 (en) 2019-12-12 2019-12-12 pneumatic tires

Publications (2)

Publication Number Publication Date
JP2021091362A true JP2021091362A (en) 2021-06-17
JP7420541B2 JP7420541B2 (en) 2024-01-23

Family

ID=76311601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019224642A Active JP7420541B2 (en) 2019-12-12 2019-12-12 pneumatic tires

Country Status (1)

Country Link
JP (1) JP7420541B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580387B2 (en) 2004-05-27 2010-11-10 株式会社ブリヂストン Pneumatic tire
US9802444B2 (en) 2012-11-30 2017-10-31 Bridgestone Corporation Pneumatic tire

Also Published As

Publication number Publication date
JP7420541B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
US10894446B2 (en) Tire
EP2752309B1 (en) Pneumatic tire
EP2163405B1 (en) Pneumatic tire
JP5971280B2 (en) Pneumatic tire
KR101259286B1 (en) Pneumatic tire
JP4107393B1 (en) Pneumatic tire
JP6627554B2 (en) Pneumatic tire
US10836215B2 (en) Tire
US10899178B2 (en) Pneumatic tire
US20160243898A1 (en) Pneumatic tire
US11027579B2 (en) Pneumatic tire
JP2006143040A (en) Pneumatic tire
JP5282479B2 (en) Pneumatic tire
JP2012006541A (en) Pneumatic tire
JP2016037083A (en) Pneumatic tire
JP2020200018A (en) tire
US11628690B2 (en) Tire
WO2021124969A1 (en) Tire
WO2021002209A1 (en) Pneumatic tire
JP7420541B2 (en) pneumatic tires
JP7184628B2 (en) pneumatic tire
JP7099063B2 (en) tire
JP2017036010A (en) Pneumatic tire
JP7388905B2 (en) pneumatic tires
US11772428B2 (en) Tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150