JP2021089223A - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP2021089223A
JP2021089223A JP2019220153A JP2019220153A JP2021089223A JP 2021089223 A JP2021089223 A JP 2021089223A JP 2019220153 A JP2019220153 A JP 2019220153A JP 2019220153 A JP2019220153 A JP 2019220153A JP 2021089223 A JP2021089223 A JP 2021089223A
Authority
JP
Japan
Prior art keywords
light
measuring device
central
translucent
diaphragm member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019220153A
Other languages
Japanese (ja)
Other versions
JP7406971B2 (en
Inventor
雅明 矢部
Masaaki Yabe
雅明 矢部
隆一 竹居
Ryuichi Takei
隆一 竹居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019220153A priority Critical patent/JP7406971B2/en
Publication of JP2021089223A publication Critical patent/JP2021089223A/en
Application granted granted Critical
Publication of JP7406971B2 publication Critical patent/JP7406971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a measuring device with which it is possible to facilitate assembling and adjustment without the need for an elaborate adjustment of the fitted position of a light source and the axis alignment of an enlargement lens.SOLUTION: Provided is a measuring device comprising a light source for emitting measurement light, a light receiving unit for receiving reflected light of the measurement light from the object to be measured, the measuring device measuring the distance to the object to be measured, on the basis of the reflected light received by the light receiving unit. The measuring device includes an aperture member for narrowing the beam of measurement light from the light source, the aperture member including a center light permeable part arranged on the optical axis of the light source and a light permeable band part for forming a plurality of light permeable bands arranged in the periphery of the center light permeable part. The emitted beam of measurement light is expanded to a desired angle of aperture by interference due to diffraction at the time measurement light passes through the center light permeable part and the light permeable band part.SELECTED DRAWING: Figure 4

Description

本発明は、光源射出される測定光の調整する絞り装置を備える測定装置に関する。 The present invention relates to a measuring device including a diaphragm device for adjusting the measurement light emitted from a light source.

上述の測定装置として光波距離計があり、この光距離計は、変調した所定波長領域の測定光を被測定物に照射し、被測定物からの反射光を受光して、内部参照光と受光された測定光との位相差から測定物までの距離を測定する(特許文献1、特許文献2参照)。 As the above-mentioned measuring device, there is a light wave range finder, which irradiates a measured object with measured light in a modulated predetermined wavelength region, receives reflected light from the measured object, and receives internal reference light and received light. The distance from the measured object to the object to be measured is measured from the phase difference with the measured light (see Patent Document 1 and Patent Document 2).

特許文献2には、以下の光波距離計が記載されている。図9は従来の光波距離計の構成を示す断面図である。図9は光波距離計500をターゲットに光再帰性の素子を配置して距離を測定するプリズムモードで使用する場合を示している。光波距離計500は、対物レンズ510と、2つの反射面を備えるプリズム520と、光源530と、射出光学系540と、射出反射鏡550と、ダイクロイックミラー560と、視準光学系570と、受光ファイバ等の2次光源端580とを備える。 Patent Document 2 describes the following light wave rangefinders. FIG. 9 is a cross-sectional view showing the configuration of a conventional light wave range finder. FIG. 9 shows a case where a light wave rangefinder 500 is used as a target in a prism mode in which a photoretrospective element is arranged and the distance is measured. The light wave distance meter 500 includes an objective lens 510, a prism 520 having two reflecting surfaces, a light source 530, an emission optical system 540, an emission reflecting mirror 550, a dichroic mirror 560, a collimation optical system 570, and light receiving. It is provided with a secondary light source end 580 such as a fiber.

対物レンズ510は、光軸Oaに配置した3枚のレンズで構成される。プリズム520は、対物レンズ510の後方の光軸Oa上に配置され、光軸Oaに対して45度の角度をなす平行2つの反射面、即ち測定光を射出する方向に反射する射出用反射面521と、入射した測定光を受光素子580に向け反射する受光用反射面522とを備える。 The objective lens 510 is composed of three lenses arranged on the optical axis Oa. The prism 520 is arranged on the optical axis Oa behind the objective lens 510, and has two parallel reflecting surfaces forming an angle of 45 degrees with respect to the optical axis Oa, that is, an ejection reflecting surface that reflects the measurement light in the emitting direction. It includes a 521 and a light receiving reflecting surface 522 that reflects the incident measurement light toward the light receiving element 580.

光源530は所定波長領域の光を発生する。射出光学系540は、光軸Oaと平行な光軸Obに配置され、光源530からの光を平行光にするコリメータ541と、測定光を断続的に遮断する光チョッパ542と、絞り部材543とを備える。反射鏡550は、光軸Obに45度の角度で配置され射出光学系540からの測定光の方向を90度変更して、プリズム520の射出用反射面521に向け、光軸Ocに沿って測定光を反射する。この射出用反射面521で反射された測定光は、対物レンズ510を経て測定物に射出される。 The light source 530 generates light in a predetermined wavelength region. The injection optical system 540 is arranged on an optical axis Ob parallel to the optical axis Oa, and includes a collimator 541 that makes the light from the light source 530 parallel light, an optical chopper 542 that intermittently blocks the measurement light, and a throttle member 543. To be equipped with. The reflector 550 is arranged on the optical axis Ob at an angle of 45 degrees, changes the direction of the measurement light from the emission optical system 540 by 90 degrees, and faces the ejection reflection surface 521 of the prism 520 along the optical axis Oct. Reflects the measurement light. The measurement light reflected by the ejection reflecting surface 521 is emitted to the object to be measured through the objective lens 510.

測定物からの反射光は、対物レンズ510を経てダイクロイックミラー560に至る。ダイクロイックミラー560は、入射した光から、所定波長帯域の測定光を反射し、他の光を透過させ視準光学系570に射出する。ダイクロイックミラー560で反射された測定光は、プリズム520の受光用反射面522で反射され、受光素子580に入射する。 The reflected light from the object to be measured passes through the objective lens 510 and reaches the dichroic mirror 560. The dichroic mirror 560 reflects the measurement light in a predetermined wavelength band from the incident light, transmits the other light, and emits it to the collimation optical system 570. The measurement light reflected by the dichroic mirror 560 is reflected by the light receiving reflecting surface 522 of the prism 520 and is incident on the light receiving element 580.

このような光波距離計において絞り部材は、光源からの光を絞るものであり、光源から射出される光の配光特性に合わせて選択される。即ち、光源からの光が最も効率よく射出されるように選定され、設置される。特許文献2には、絞りとしてスリット状の絞りが記載されている。また、絞り部材の開口の形状は円形、その他の形状が採用されている。(特許文献3参照) In such a light wave range finder, the diaphragm member narrows the light from the light source and is selected according to the light distribution characteristics of the light emitted from the light source. That is, it is selected and installed so that the light from the light source is emitted most efficiently. Patent Document 2 describes a slit-shaped diaphragm as a diaphragm. Further, the shape of the opening of the diaphragm member is circular, and other shapes are adopted. (See Patent Document 3)

特開平8−68852号公報Japanese Unexamined Patent Publication No. 8-68852 特開2014−149171号公報Japanese Unexamined Patent Publication No. 2014-149171 特開2017−6767号公報JP-A-2017-6767

しかし、従来の絞り部材の開口形状は、光源の配光特性に合わせて設定される。このため、光源の配光特性に合わせて、光源と絞り部材の角度関係(光軸を中心とする回転位置関係)が適切でないと、光源からの光が減少してしまう。このため、例えば絞り部材又は光源の角度位置(光軸を中心とする角度位置)が適正となるように調整しければならない。 However, the aperture shape of the conventional diaphragm member is set according to the light distribution characteristics of the light source. Therefore, if the angular relationship between the light source and the diaphragm member (rotational positional relationship about the optical axis) is not appropriate according to the light distribution characteristics of the light source, the light from the light source will decrease. Therefore, for example, the angular position of the diaphragm member or the light source (the angular position about the optical axis) must be adjusted to be appropriate.

また、特許文献2に係る技術が絞り部材として使用する細長いスリットは、プリズムでの測定範囲が横方向は広く、測距光が、縦方向に回折し広がっているため、横方向の広がりが狭い。このため、回折作用による光の回り込みが縦横で偏りが生じ、絞りのぼけを生じていた。更に、光源の配光特性は個体により異なることがあり、光源における配光特性を個体別に予め把握して、絞り部材の開口形状を選定したり、光源又は絞り部材の取付角度を設定したりしなければならず手間がかかるという問題がある。 Further, the elongated slit used as the diaphragm member by the technique according to Patent Document 2 has a wide measurement range with a prism in the horizontal direction, and the distance measurement light is diffracted and spread in the vertical direction, so that the spread in the horizontal direction is narrow. .. For this reason, the wraparound of light due to the diffraction action is biased in the vertical and horizontal directions, causing blurring of the diaphragm. Furthermore, the light distribution characteristics of the light source may differ from individual to individual, and the light distribution characteristics of the light source may be grasped in advance for each individual to select the aperture shape of the aperture member or set the mounting angle of the light source or aperture member. There is a problem that it has to be troublesome.

また、特許文献3に係る技術では、絞り部材の開口の形状を円形としているが、口径絞り部材を通過した光(光束)の開き角度は、絞りの開口による回折で所望の角度にならない場合がある。この角度を広げようとすると口径が小さくなり、光量が減少する。このため、光束の広がりを所望の値に設定しようとすると絞り部材を通過した光束の開き角度を広げる拡大レンズ系(凹レンズ)590(図9中に破線で示した)を配置する必要がある。 Further, in the technique according to Patent Document 3, the shape of the opening of the diaphragm member is circular, but the opening angle of the light (luminous flux) passing through the aperture diaphragm member may not be a desired angle due to diffraction by the aperture of the diaphragm. is there. If you try to increase this angle, the aperture will become smaller and the amount of light will decrease. Therefore, in order to set the spread of the luminous flux to a desired value, it is necessary to arrange a magnifying lens system (concave lens) 590 (shown by a broken line in FIG. 9) that widens the opening angle of the luminous flux passing through the diaphragm member.

しかし、このような拡大レンズ系を配置するには、そのためのスペースを確保する必要がある他、レンズ系の配置位置や光軸合わせを厳密に行わなければならず、組立や調整に手間と費用がかかってしまう。 However, in order to arrange such a magnifying lens system, it is necessary to secure a space for it, and it is necessary to strictly adjust the arrangement position and optical axis of the lens system, which is troublesome and costly for assembly and adjustment. Will take.

本発明は上述した課題に鑑みてなされたものであり、回折現象によるぼけの影響をなくするとともに、光源の配光特性に応じて光源の取付状態を調整したり、光束拡開のためのレンズ系の設置や光軸調整を設定したりする必要がなく、絞り部材を通過した光束に所望の開き角を付与することができる測定装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a lens for eliminating the influence of blurring due to a diffraction phenomenon, adjusting the mounting state of a light source according to the light distribution characteristics of the light source, and expanding the luminous flux. It is an object of the present invention to provide a measuring device capable of imparting a desired opening angle to a light flux passing through a diaphragm member without the need to install a system or set an optical axis adjustment.

前記課題を解決するため、請求項1に記載の発明は、測定光を発する光源と、前記測定光の被測定物からの反射光を受ける受光部とを備え、前記受光部が受光した前記反射光に基づいて前記被測定物までの距離を測定する測定装置において、前記光源からの前記測定光の光束を絞る絞り部材を備え、前記絞り部材は、前記光源の光軸上に配置された中央透光部、及び前記中央透光部の周囲に配置された複数の透光帯部を形成する遮光帯部を備え、前記測定光が前記中央透光部及び前記透光帯部を透過するときの回折による干渉により、射出する前記測定光の光束を所望の開き角に拡大することを特徴とする測定装置である。 In order to solve the above problem, the invention according to claim 1 includes a light source that emits measurement light and a light receiving portion that receives reflected light from the object to be measured, and the reflection received by the light receiving portion. In a measuring device that measures the distance to the object to be measured based on light, a throttle member for narrowing the light beam of the measurement light from the light source is provided, and the throttle member is centered on the optical axis of the light source. When a light-transmitting portion and a light-shielding band portion forming a plurality of light-transmitting band portions arranged around the central translucent portion are provided, and the measurement light passes through the central translucent portion and the translucent band portion. It is a measuring device characterized in that the light beam of the light to be emitted is expanded to a desired opening angle by interference due to the diffraction of the light.

同じく請求項2に記載の発明は、請求項1に記載の測定装置において、前記絞り部材の前記遮光帯部は、前記中央透光部の周囲に配置され、前記中央透光部と同心であり所定の間隔で離間して配置された複数の円環帯であることを特徴とする。 Similarly, according to the second aspect of the present invention, in the measuring device according to the first aspect, the light-shielding band portion of the aperture member is arranged around the central translucent portion and is concentric with the central translucent portion. It is characterized in that it is a plurality of torus bands arranged at predetermined intervals.

同じく請求項3に記載の発明は、請求項1に記載の測定装置において、前記絞り部材の前記透光帯部は、前記中央透光部の周囲に配置され、前記中央透光部と同心であり所定の間隔で離間して配置された複数の弧状帯であることを特徴とする。 Similarly, according to the third aspect of the present invention, in the measuring device according to the first aspect, the translucent band portion of the aperture member is arranged around the central translucent portion and is concentric with the central translucent portion. It is characterized in that it is a plurality of arcuate bands arranged at predetermined intervals.

同じく請求項4に記載の発明は、請求項1に記載の測定装置において、前記中央透光部の形状を円形としたことを特徴とする。 Similarly, the invention according to claim 4 is characterized in that, in the measuring device according to claim 1, the shape of the central translucent portion is circular.

同じく請求項5に記載の発明は、請求項3に記載の測定装置において、前記絞り部材は、前記中央透光部の中心と同心である複数の扇状領域に区分けされ、それぞれの扇状領域では少なくとも2つの扇状領域において前記透光帯部の配置間隔を違えたことを特徴とする。 Similarly, the invention according to claim 5 is the measuring device according to claim 3, wherein the diaphragm member is divided into a plurality of fan-shaped regions concentric with the center of the central translucent portion, and at least in each fan-shaped region. It is characterized in that the arrangement intervals of the transmissive band portions are different in the two fan-shaped regions.

同じく請求項6に記載の発明は、請求項3に記載の測定装置において、前記絞り部材を、光軸を中心に回転させる駆動手段を備えることを特徴とする。 Similarly, the invention according to claim 6 is characterized in that the measuring device according to claim 3 includes a driving means for rotating the diaphragm member about an optical axis.

同じく請求項7に記載の発明は、請求項1に記載の測定装置において前記絞り部材を光の遮蔽及び透過のパターンを外部の制御で変更できる透光素子で構成し、前記中央透光部及び遮光帯部及び透光帯部の形状を変更することを特徴とする。 Similarly, according to the seventh aspect of the present invention, in the measuring apparatus according to the first aspect, the diaphragm member is composed of a translucent element capable of changing the pattern of light shielding and transmission by external control, and the central translucent portion and the central translucent portion. It is characterized in that the shapes of the light-shielding band portion and the translucent band portion are changed.

本発明に係る光波距離計によれば、回折現象によるぼけの影響をなくするとともに、光源の配光特性に応じて光源の取付状態を調整したり、光束拡開のためのレンズ系の設置や光軸調整を設定したりする必要がなく、絞り部材を通過した光束に所望の開き角を付与することができる。 According to the optical wave distance meter according to the present invention, the influence of blurring due to the diffraction phenomenon can be eliminated, the mounting state of the light source can be adjusted according to the light distribution characteristics of the light source, and a lens system for expanding the luminous flux can be installed. It is not necessary to set the optical axis adjustment, and a desired opening angle can be imparted to the light flux passing through the diaphragm member.

即ち、請求項1に記載の測定装置によれば、絞る絞り部材は、光源の光軸上に配置された中央透光部、及び中央透光部の周囲に配置された複数の透光帯部を形成する遮光帯部を備え、前記測定光が前記中央透光部及び前記透光帯部を透過するときの回折による干渉により、射出する前記測定光の光束を所望の開き角に拡大する。 That is, according to the measuring device according to claim 1, the diaphragm member for squeezing is a central translucent portion arranged on the optical axis of the light source and a plurality of translucent band portions arranged around the central translucent portion. The light beam of the measurement light emitted is expanded to a desired opening angle by interference due to diffraction when the measurement light passes through the central light transmission portion and the light transmission band portion.

よって、本発明によれば、絞り部の下流側に特にレンズ系を配置することなく、絞り部材を通過した光束を所望の開き角度にすることができる。このため、測定装置の組立や調整において、光源、絞り部材の取付位置や取付角度等を厳密にする必要がなく、容易に組立、調整ができ生産、調整のコストを低減できる。またレンズ系が不要であるので、レンズ系のコストや取付、調整のための手間がなくなり、コストを低減できる。 Therefore, according to the present invention, the luminous flux passing through the diaphragm member can be set to a desired opening angle without particularly arranging the lens system on the downstream side of the diaphragm portion. Therefore, in assembling and adjusting the measuring device, it is not necessary to strictly set the mounting position and mounting angle of the light source and the diaphragm member, and the assembly and adjustment can be easily performed, and the production and adjustment costs can be reduced. Moreover, since the lens system is not required, the cost of the lens system and the trouble of mounting and adjusting can be eliminated, and the cost can be reduced.

また、請求項2に記載の測定装置によれば、絞り部材の遮光帯部は、中央透光部の周囲に配置され、中央透光部と同心であり所定の間隔で離間して配置された複数の円環帯である。このため、絞り部材には、中央透光部と、この中央透光部の周囲に配置され、中央透光部と同心であり所定の間隔で離間して配置された複数の円環帯である透光帯部が所定間隔を開けて形成される。 Further, according to the measuring device according to claim 2, the light-shielding band portion of the diaphragm member is arranged around the central translucent portion, is concentric with the central translucent portion, and is arranged at a predetermined interval. Multiple toruses. For this reason, the diaphragm member is a plurality of torus bands arranged around the central translucent portion and the central transmissive portion, which are concentric with the central transmissive portion and are arranged at predetermined intervals. The translucent band portions are formed at predetermined intervals.

よって、中央透光部と所定距離離間した複数の環帯状の透光帯部を通過した光は、回折して干渉し、絞り部材からの射出光は、所定の広がりをもって分布する光束となる。このため、中央透光部及び透光帯部の形状寸法を設定することにより、絞り部から所望の光量及び広がりをもつ光束を射出できる。このとき、射出される光束は直径方向に強弱の規則的分布がある。しかし、この分布は測定時における空気の揺らぎ、装置の振動により平均化され測定に影響を与えない。 Therefore, the light that has passed through the plurality of ring-shaped translucent band portions separated from the central transmissive portion by a predetermined distance is diffracted and interferes with each other, and the emitted light from the diaphragm member becomes a luminous flux distributed with a predetermined spread. Therefore, by setting the shape and dimensions of the central translucent portion and the translucent band portion, it is possible to emit a light beam having a desired amount of light and spread from the diaphragm portion. At this time, the emitted luminous flux has a regular distribution of strength and weakness in the radial direction. However, this distribution is averaged by the fluctuation of air at the time of measurement and the vibration of the device and does not affect the measurement.

また、請求項3に記載の測定装置によれば、絞り部材の透光帯部は、中央透光部の周囲に配置され、中央透光部と同心であり所定の間隔で離間して配置された複数の弧状帯である。このため、絞り部材には、中央透光部と、この中央透光部の周囲に配置され、中央透光部と同心であり所定の間隔で離間して配置された複数の弧状帯である透光帯部が所定間隔を開けて形成される。 Further, according to the measuring device according to claim 3, the translucent band portion of the diaphragm member is arranged around the central translucent portion, is concentric with the central translucent portion, and is arranged at a predetermined interval. There are multiple arcuate bands. For this reason, the diaphragm member is a transparent band that is arranged around the central translucent portion and the central transmissive portion, and is concentric with the central transmissive portion and arranged at predetermined intervals. Light bands are formed at predetermined intervals.

よって、中央透光部と所定距離離間した複数の弧帯状の透光帯部を通過した光は、回折して干渉し、絞り部材からの射出光は、所定の広がりをもって分布する光束となる。このため、中央透光部及び透光帯部の形状寸法を設定することにより、絞り部から所望の光量及び広がりをもつ光束を射出できる。このとき、射出される光束は直径方向に強弱の規則的分布がある。しかし、この分布は測定時における空気の揺らぎ、装置の振動により平均化され測定に影響を与えない。 Therefore, the light that has passed through the plurality of arc-shaped translucent band portions separated from the central transmissive portion by a predetermined distance is diffracted and interferes with each other, and the emitted light from the diaphragm member becomes a luminous flux distributed with a predetermined spread. Therefore, by setting the shape and dimensions of the central translucent portion and the translucent band portion, it is possible to emit a light beam having a desired amount of light and spread from the diaphragm portion. At this time, the emitted luminous flux has a regular distribution of strength and weakness in the radial direction. However, this distribution is averaged by the fluctuation of air at the time of measurement and the vibration of the device and does not affect the measurement.

即ち、請求項4に記載の測定装置によれば、中央透光部の形状を円形としているので、射出される光束は光軸を中心とした回転対称に分布する。よって、中央透光部を透過した光の分布は光軸を中心とした回転対称となる他、回折や周囲の透光帯部からの光と干渉して、所定の広がりをもち回転対称の光束を射出できる。 That is, according to the measuring device according to claim 4, since the shape of the central translucent portion is circular, the emitted light flux is distributed symmetrically around the optical axis. Therefore, the distribution of light transmitted through the central translucent portion is rotationally symmetric about the optical axis, and also interferes with diffraction and light from the surrounding translucent band portion to have a predetermined spread and rotationally symmetric luminous flux. Can be ejected.

また、請求項5に記載の測定装置によれば、絞り部材は、中央透光部の中心と同心である複数の扇状領域に区分けされ、それぞれの扇状領域では少なくとも2つの扇状領域において前記透光帯部の配置間隔を違えている。このため、各扇状領域において、異なる干渉状態による異なる強度分布の光を射出する。よって、絞り部材からの射出される光束は異なる強度分布の光束が重なりあい、直径方向の強弱分布が平均化され、干渉による強弱分布の影響を軽減できる。 Further, according to the measuring device according to claim 5, the diaphragm member is divided into a plurality of fan-shaped regions concentric with the center of the central light-transmitting portion, and in each fan-shaped region, the light-transmitting region is formed in at least two fan-shaped regions. The arrangement interval of the band is different. Therefore, in each fan-shaped region, light having a different intensity distribution due to different interference states is emitted. Therefore, the luminous flux emitted from the diaphragm member overlaps the luminous fluxes having different intensity distributions, the intensity distribution in the radial direction is averaged, and the influence of the intensity distribution due to interference can be reduced.

また、請求項6に記載の測定装置によれば、遮光帯部を中央透光部の周囲に配置し中央透光部と同心に配置された複数の弧状帯絞り部材とした絞り部材を駆動手段で光軸を中心に回転させている。このため、射出される光の干渉状態は時間の経過とともに変化する。よって、射出する光束の強弱の分布を平均化することができる。 Further, according to the measuring device according to claim 6, the driving means is a diaphragm member having a plurality of arcuate band diaphragm members arranged with the light-shielding band portion around the central light-transmitting portion and concentrically arranged with the central light-transmitting portion. Is rotated around the optical axis. Therefore, the interference state of the emitted light changes with the passage of time. Therefore, the distribution of the intensity of the emitted luminous flux can be averaged.

そして、請求項7に記載の測定装置によれば、絞り部材として中央透光部及び遮光帯部及び透光帯部の形状を変更することができる透光素子を使用する。このため、時間的に
遮光帯部及び透光帯部の形状を変更することにより、射出する光束の強弱の分布を平均化することができる。なお、透光素子としては液晶パネルの他、PLZT素子等の圧電素子を使用することができる。
According to the measuring device according to claim 7, a translucent element capable of changing the shapes of the central translucent portion, the light-shielding band portion, and the translucent band portion is used as the diaphragm member. Therefore, by changing the shapes of the light-shielding band portion and the translucent band portion with time, it is possible to average the distribution of the intensity of the emitted light beam. As the translucent element, a piezoelectric element such as a PLZT element can be used in addition to the liquid crystal panel.

本発明の実施形態に係る光波距離計を示す正面図である。It is a front view which shows the light wave range finder which concerns on embodiment of this invention. 同光波距離計を示す断面図である。It is sectional drawing which shows the light wave range finder. 同光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。The optical system of the light wave rangefinder is shown, (a) is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission. 同光波距離計の絞り配置部材構成を示すものであり、(a)は光波距離計の全体斜視図、(b)は絞り部材の拡大図である。The diaphragm arrangement member configuration of the light wave range finder is shown, (a) is an overall perspective view of the light wave range finder, and (b) is an enlarged view of the diaphragm member. 同光波距離計の絞り部材のパターンを示すものであり、(a)、(b)、(c)は異なるパターンを示す模式図である。The pattern of the diaphragm member of the light wave range finder is shown, and (a), (b), and (c) are schematic views showing different patterns. 回折現象を示すものであり、(a)はスリット部の拡大図、(b)は射出光の振幅強度分布を示すグラフである。The diffraction phenomenon is shown, (a) is an enlarged view of a slit portion, and (b) is a graph showing an amplitude intensity distribution of emitted light. ヤングの干渉実験を説明するためのものであり、(a)は実験装置を示す模式図、(b)は射出光の状態を示す模式図である。For the purpose of explaining Young's interference experiment, (a) is a schematic diagram showing an experimental device, and (b) is a schematic diagram showing a state of emitted light. 実施形態に係る絞り部材での射出光の振幅強度分布を示すグラフである。It is a graph which shows the amplitude intensity distribution of the emission light in the diaphragm member which concerns on embodiment. 従来の光波距離計の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light wave range finder.

本発明を実施するための形態に係る測定装置について説明する。 A measuring device according to a mode for carrying out the present invention will be described.

<第1実施形態>
図1は本発明に係る測定装置の第1実施形態である光波距離計を示す正面図である。第1実施形態に係る光波距離計100は、図1に示すように、三脚(図示せず)に取り付けられる基台部101に架台102が設けられ、この架台102には光学系を含む望遠鏡部103が支持されている。前記基台部101は整準ねじ104を有し、架台102が水平となるように整準可能となっている。架台102は鉛直軸心を中心に回転可能であり、望遠鏡部103は水平軸心を中心に回転可能となっている。また、架台102には表示部106を有する操作入力部107が設けられ、前記表示部106には被測定物までの距離の測定値等が表示される。
<First Embodiment>
FIG. 1 is a front view showing a light wave rangefinder according to a first embodiment of the measuring device according to the present invention. As shown in FIG. 1, in the light wave rangefinder 100 according to the first embodiment, a pedestal 102 is provided on a base portion 101 attached to a tripod (not shown), and the pedestal 102 includes a telescope unit including an optical system. 103 is supported. The base portion 101 has a leveling screw 104, and can be leveled so that the base 102 is horizontal. The gantry 102 is rotatable about the vertical axis, and the telescope unit 103 is rotatable about the horizontal axis. Further, the gantry 102 is provided with an operation input unit 107 having a display unit 106, and the display unit 106 displays a measured value of the distance to the object to be measured.

次に光波距離計100の光学系について説明する。図2は同光波距離計を示す断面図、図3は同光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。 Next, the optical system of the light wave rangefinder 100 will be described. FIG. 2 is a cross-sectional view showing the light wave range finder, FIG. 3 shows the optical system of the light wave range finder, (a) is a schematic view showing a state of measurement light emission, and (b) is an internal reference light emission. It is a schematic diagram which shows the state of.

光波距離計100は、筐体110内に、鏡筒120と、ベース部130が形成されている。また、図2に示すように、光波距離計100は、光学系200として、受光光学系である対物レンズ系210と、測定光を射出して測定物に照射する射出光学系220と、対物レンズ系210からの測定光を光ファイバ260に導く射出反射光学系240とを備える。また光学系200は、受光反射光学系250と、視準光学系270とを備える。光ファイバ260は、受光部である光センサー261(図3参照)に測定光を導く。視準光学系270は対物レンズ系210からの被測定物像を目視できるようにして、光波距離計100の方向を決定したり補正したりするために使用される。 In the light wave rangefinder 100, a lens barrel 120 and a base portion 130 are formed in the housing 110. Further, as shown in FIG. 2, the light wave distance meter 100 has an objective lens system 210 which is a light receiving optical system, an injection optical system 220 which emits measurement light to irradiate a measurement object, and an objective lens as an optical system 200. It includes an injection reflection optical system 240 that guides the measurement light from the system 210 to the optical fiber 260. Further, the optical system 200 includes a light receiving and reflecting optical system 250 and a collimation optical system 270. The optical fiber 260 guides the measurement light to the optical sensor 261 (see FIG. 3) which is a light receiving unit. The collimation optical system 270 is used to make the image of the object to be measured from the objective lens system 210 visible, and to determine or correct the direction of the light wave rangefinder 100.

対物レンズ系210は、鏡筒120に配置され、被測定物であるプリズム280に向かう第1光軸O1を備え、被測定物からの光を集光する。対物レンズ系210は、3枚のレンズを備えており、各種収差が補正され全体で正のパワーを備える。射出光学系220は、ベース部130に配置され、第1光軸O1と平行な第2光軸O2を備え、理想的な点光源230からの光を平行光である測定光として射出する。点光源230は、例えば赤外線を発生するレーザーダイオードである。 The objective lens system 210 is arranged in the lens barrel 120, includes a first optical axis O1 directed to the prism 280, which is the object to be measured, and collects light from the object to be measured. The objective lens system 210 includes three lenses, and various aberrations are corrected to provide positive power as a whole. The emission optical system 220 is arranged on the base portion 130, includes a second optical axis O2 parallel to the first optical axis O1, and emits light from an ideal point light source 230 as measurement light which is parallel light. The point light source 230 is, for example, a laser diode that generates infrared rays.

射出光学系220は、コリメータレンズ221と、射出光を断続的に遮断し射出光を、光源から取得された内部参照光として取り出す台形プリズム225を備えたチョッパ226と、マイコンなどにより制御されて外光束光量を調整するサーキュラー222と手動で回転位置を設定することにより内部参照光の光量を調整する濃度フィルター310、と絞り配置部材224とを備える。濃度フィルター310は、円周上に濃度勾配を備えた円板状の部材である。また、サーキュラー222は、測定光出射光量の調整用に円周上に濃度勾配が付いている濃度フィルターを備え、サーキュラー駆動モータ223で回転駆動される円板状の部材である。 The emission optical system 220 is controlled by a collimator lens 221, a chopper 226 equipped with a trapezoidal prism 225 that intermittently blocks the emission light and extracts the emission light as internal reference light acquired from the light source, and a microcomputer or the like. It includes a circular 222 that adjusts the amount of light flux, a density filter 310 that adjusts the amount of light of internal reference light by manually setting a rotation position, and a throttle arrangement member 224. The density filter 310 is a disk-shaped member having a density gradient on its circumference. Further, the circular 222 is a disk-shaped member provided with a density filter having a density gradient on the circumference for adjusting the amount of light emitted from the measured light, and is rotationally driven by the circular drive motor 223.

更に、チョッパ226はチョッパ駆動モータ227で回転駆動され、所定のタイミングで、第2光軸O2上のコリメータレンズ221の前側に出没するように駆動される。ここで、チョッパ226には、コリメータレンズ221を覆う板部226aが形成されている。また、台形プリズム225は、図3(b)に示すように2つの反射面225a、225bを備え、内部参照光を光センサー261に導く。 Further, the chopper 226 is rotationally driven by the chopper drive motor 227, and is driven so as to appear and disappear on the front side of the collimator lens 221 on the second optical axis O2 at a predetermined timing. Here, the chopper 226 is formed with a plate portion 226a that covers the collimator lens 221. Further, the trapezoidal prism 225 includes two reflecting surfaces 225a and 225b as shown in FIG. 3B, and guides the internal reference light to the optical sensor 261.

測定光の射出時には、図3(a)に示すように、チョッパ226は、コリメータレンズ221の射出口から外れ、点光源230からの光は、サーキュラー222で断続的に遮られながら反射鏡241に向け、射出される。尚、図3(a)において、内部参照光の光軸を一点鎖線で示し、測定光の光路を矢印付の実線で示している。3(a)示した状態では、内部参照光は生成されてない。 When the measurement light is emitted, as shown in FIG. 3A, the chopper 226 deviates from the emission port of the collimator lens 221 and the light from the point light source 230 is intermittently blocked by the circular 222 and is blocked by the reflector 241. Directed and ejected. In FIG. 3A, the optical axis of the internal reference light is indicated by a long-dashed line, and the optical path of the measurement light is indicated by a solid line with an arrow. 3 (a) In the state shown, no internal reference light is generated.

内部参照光の射出時には、図3(b)に示すように、チョッパ226はコリメータレンズ221の射出口に台形プリズム225の反射面225aが配置される状態となる。この状態で、点光源230からの光は、コリメータレンズ221を経て、台形プリズム225の反射面225a、225bで反射されて濃度フィルター310に向け射出される。濃度フィルター310で濃度調整された内部参照光は、光ファイバ263に入射する。このとき、コリメータレンズ221の開口は、板部226aで完全に覆われるので、対物レンズ系210側には光は入射しない。光ファイバ263は、光ファイバ260と合流し、光ファイバ263からの内部参照光と、光ファイバ260からの測定光は同一の光センサー261で検出される。尚、図3(b)において、内部参照光の光路を矢印付の実線で示し、測定光の光軸を一点鎖線で示している。3(b)示した状態では、測定光は生成されてない。 At the time of emitting the internal reference light, as shown in FIG. 3B, the chopper 226 is in a state where the reflecting surface 225a of the trapezoidal prism 225 is arranged at the emitting port of the collimator lens 221. In this state, the light from the point light source 230 passes through the collimator lens 221, is reflected by the reflecting surfaces 225a and 225b of the trapezoidal prism 225, and is emitted toward the density filter 310. The internal reference light whose density is adjusted by the density filter 310 is incident on the optical fiber 263. At this time, since the aperture of the collimator lens 221 is completely covered by the plate portion 226a, no light is incident on the objective lens system 210 side. The optical fiber 263 merges with the optical fiber 260, and the internal reference light from the optical fiber 263 and the measurement light from the optical fiber 260 are detected by the same optical sensor 261. In FIG. 3B, the optical path of the internal reference light is indicated by a solid line with an arrow, and the optical axis of the measurement light is indicated by a dashed line. In the state shown in 3 (b), no measurement light is generated.

射出反射光学系240は、第2光軸O2上に斜めに反射面を形成した反射鏡241と、対物レンズ系210の入射側(外側)に配置される第2反射手段である送光反射プリズム242とを備える。送光反射プリズム242は第1光軸O1上に傾斜した反射面242aを備える。この例では対物レンズ系210の外側には、平行平面ガラスであるカバーガラス281が配置され、送光反射プリズム242は、このカバーガラス281の内側に接着されて配置されている。 The emission reflection optical system 240 includes a reflecting mirror 241 having a reflecting surface obliquely formed on the second optical axis O2, and a light transmitting reflecting prism which is a second reflecting means arranged on the incident side (outside) of the objective lens system 210. 242 and the like. The light transmitting / reflecting prism 242 includes a reflecting surface 242a inclined on the first optical axis O1. In this example, a cover glass 281 which is a parallel flat glass is arranged on the outside of the objective lens system 210, and the light transmitting / reflecting prism 242 is arranged so as to be adhered to the inside of the cover glass 281.

受光反射光学系250は、ダイクロイックミラー251と、このダイクロイックミラー251からの光を直角方向に反射する受光反射部材である受光反射プリズム252とから構成される。ダイクロイックミラー251は、鏡筒120に配置され、対物レンズ系210から第1光軸O1に沿って入射する光のうち、所定波長帯域の光である測定光を反射する。他の帯域の光は透過して、鏡筒120に配置された視準光学系270に入射する。光波距離計100のオペレーターは、視準光学系270を用いて、視準を行うことができる。受光反射プリズム252は、第1光軸O1に45度の角度で形成された反射面252aを有し、ダイクロイックミラー251からの光を光ファイバ260に向け反射する。 The light-receiving reflection optical system 250 is composed of a dichroic mirror 251 and a light-receiving reflection prism 252 which is a light-receiving / reflecting member that reflects light from the dichroic mirror 251 in a perpendicular direction. The dichroic mirror 251 is arranged in the lens barrel 120 and reflects the measurement light, which is the light in a predetermined wavelength band, among the light incident from the objective lens system 210 along the first optical axis O1. Light in other bands is transmitted and incident on the collimation optical system 270 arranged in the lens barrel 120. The operator of the light wave rangefinder 100 can perform collimation using the collimation optical system 270. The light receiving / reflecting prism 252 has a reflecting surface 252a formed at an angle of 45 degrees on the first optical axis O1 and reflects the light from the dichroic mirror 251 toward the optical fiber 260.

このような光波距離計100では、光センサー261で検出した測定物であるプリズム280からの測定光と、光ファイバ263からの内部参照光とに基づいて被測定物であるプリズム280までの距離を演算する。 In such a light wave rangefinder 100, the distance to the prism 280, which is the object to be measured, is determined based on the measurement light from the prism 280, which is the object to be measured, detected by the optical sensor 261 and the internal reference light from the optical fiber 263. Calculate.

次に、本実施形態に係る絞り部材400について説明する。絞り部材400は、絞り配置部材224に取り付けられている。図4は同光波距離計の絞り配置部材構成を示すものであり、(a)は光波距離計の全体斜視図、(b)は絞り部材の拡大図である。絞り配置部材224は、遮光性の薄板で構成されており、絞り部材400は、絞り配置部材224の光軸の位置に配置されている。 Next, the diaphragm member 400 according to the present embodiment will be described. The diaphragm member 400 is attached to the diaphragm arrangement member 224. FIG. 4 shows a diaphragm arrangement member configuration of the light wave range finder, (a) is an overall perspective view of the light wave range finder, and (b) is an enlarged view of the diaphragm member. The diaphragm arrangement member 224 is composed of a light-shielding thin plate, and the diaphragm member 400 is arranged at the position of the optical axis of the diaphragm arrangement member 224.

図5は同光波距離計の絞り部材のパターンを示す模式図である。本実施形態では、絞り部材400は、図4(b)及び図5(a)に示すように、光源の光軸上に配置された中央透光部401と、中央透光部401の周囲に配置された複数の円環帯である透光帯部403の間に配置される遮光帯部402を備える。この構成により、降雨量測定光が中央透光部401及び透光帯部403を透過するときの回折光の干渉により、射出する測定光の光束を所望の開き角に拡大するとともに、光量を所定の値とする。この例では中央透光部401は図5(a)に示すように円形としている。 FIG. 5 is a schematic view showing a pattern of a diaphragm member of the light wave rangefinder. In the present embodiment, as shown in FIGS. 4B and 5A, the diaphragm member 400 is placed around the central translucent portion 401 arranged on the optical axis of the light source and around the central translucent portion 401. A light-shielding band portion 402 arranged between the light-transmitting band portions 403, which are a plurality of arranged ring bands, is provided. With this configuration, the luminous flux of the emitted measurement light is expanded to a desired opening angle and the amount of light is determined by the interference of the diffracted light when the rainfall measurement light passes through the central translucent portion 401 and the translucent band portion 403. The value of. In this example, the central translucent portion 401 has a circular shape as shown in FIG. 5 (a).

図5(a)に示す例では、直径d1の中央透光部401と同心に中央透光部401を、所定間隔d2を隔てて複数個所(図5(a)では4個所)に配置している。ここで、遮光帯部402は透光帯部403の間隔d1の幅寸法を備える。そして、中央透光部401と遮光帯部402の間及び隣接する遮光帯部402の間に透光帯部403を複数個所(同図では3個所)に配置している。尚、中央透光部401の直径寸法、中央透光部401及び遮光帯部402の幅寸法は、必要とする光量及び開き角によって適宜設定し、変更することができる。 In the example shown in FIG. 5A, the central translucent portions 401 concentrically with the central translucent portion 401 having a diameter d1 are arranged at a plurality of locations (4 locations in FIG. 5A) with a predetermined interval d2. There is. Here, the light-shielding band portion 402 has a width dimension of the interval d1 of the light-transmitting band portion 403. Then, a plurality of light-transmitting band portions 403 (three locations in the figure) are arranged between the central light-transmitting portion 401 and the light-shielding band portion 402 and between the adjacent light-shielding band portions 402. The diameter dimension of the central translucent portion 401 and the width dimension of the central translucent portion 401 and the light-shielding band portion 402 can be appropriately set and changed according to the required amount of light and the opening angle.

次に、絞り部材400の作用を、回折光が干渉して光束を所望の広がる原理とともに簡単に説明する。 Next, the operation of the diaphragm member 400 will be briefly described together with the principle that the diffracted light interferes to spread the luminous flux as desired.

説明を簡単にするため、直線状のスリットを透過する光について説明する。まず1本のスリット(単スリット)の場合、図6(a)に示すように、入射光の波長をλとし、回折用の単スリットの幅をaとし、スリット通過後の回折せずに進む信号光の振幅をA(0)、θだけ回折した信号光の振幅をA(θ)とすると、以下の式が成立する。 For the sake of simplicity, the light transmitted through the linear slit will be described. First, in the case of one slit (single slit), as shown in FIG. 6A, the wavelength of the incident light is λ, the width of the single slit for diffraction is a, and the process proceeds without diffraction after passing through the slit. Assuming that the amplitude of the signal light is A (0) and the amplitude of the signal light diffracted by θ is A (θ), the following equation holds.

Figure 2021089223
式2を、絶対値を含まない形にするため、両辺を2乗しその式をf(θ)とすると、
Figure 2021089223
Figure 2021089223
In order to make Equation 2 not include absolute values, if both sides are squared and the equation is f (θ),
Figure 2021089223

すると図6(b)に示すように、式3でθ=0から最初の振幅が“0”になる干渉角度は、

Figure 2021089223
のときであり、
Figure 2021089223
の角度となる。
以下順次その隣の角度で振幅が“0”になるのは、
Figure 2021089223
のときとなる。 Then, as shown in FIG. 6B, the interference angle at which the first amplitude becomes “0” from θ = 0 in Equation 3 is
Figure 2021089223
At that time
Figure 2021089223
It becomes the angle of.
Below, the amplitude becomes "0" at the angle next to it in sequence.
Figure 2021089223
It will be the time of.

例えば、λ=840nmの(レーザー)光源で、スリット幅0.2mmのとき、1次干渉点は、

Figure 2021089223
となる。 For example, with a (laser) light source with λ = 840 nm and a slit width of 0.2 mm, the primary interference point is
Figure 2021089223
Will be.

この広がり角度は、プリズム(反射鏡)を用いた、通常の測定では十分な広がり角度である。この効果を利用することで、通常のレンズ系を使用せずに、発光光束を広げることが簡便にできる。 This spread angle is sufficient for normal measurement using a prism (reflector). By utilizing this effect, it is possible to easily widen the luminous flux emitted without using a normal lens system.

しかし、上述の設定では、どこかに必ず信号強度がゼロか若しくは、弱くなる点が投降像上に発生する。この部分にターゲットがあった場合には、通常中心位置であれば十分に信号強度がある距離にも関わらず、測定できない信号強度になってしまう。もちろんスリット幅(実際には円形のピンホール径)を小さくすれば、回折量が増加して、1次干渉ポイント角度が広がる(円形の場合は中心から半径方向への角度)が、その分中心光束が透過できず、結果として信号光量が減少し許容できない量になることがある。 However, with the above settings, there will always be a point on the surrender image where the signal strength is zero or weak. If there is a target in this part, the signal strength will be unmeasurable even if the signal strength is sufficient at the center position. Of course, if the slit width (actually the circular pinhole diameter) is reduced, the amount of diffraction increases and the primary interference point angle widens (in the case of a circle, the angle from the center to the radial direction), but the center is correspondingly large. The light beam cannot be transmitted, and as a result, the amount of signal light may decrease to an unacceptable amount.

そのため、本発明では、中央透光部401の周囲に複数の透光帯部403を配置している。以下、光波の干渉について簡単に説明する。 Therefore, in the present invention, a plurality of translucent band portions 403 are arranged around the central translucent portion 401. Hereinafter, the interference of light waves will be briefly described.

上の説明は単スリットの幅に関する回折強度の考察結果であるが、視点を変えて、同じようなスリット幅aのスリットが、スリット幅の中心間隔dで配置された場合の光の干渉について説明する。これは、基本的には図7(a)に示したヤングの干渉実験と同様の現象である。 The above explanation is the result of considering the diffraction intensity regarding the width of a single slit, but from a different viewpoint, the interference of light when slits having a similar slit width a are arranged at the center spacing d of the slit width will be explained. To do. This is basically the same phenomenon as Young's interference experiment shown in FIG. 7 (a).

2本のスリットによる干渉を例とする。図7はヤングの干渉実験を説明するためのものであり、(a)は実験装置を示す模式図、(b)は射出光の状態を示す模式図である。図7(b)に示すように、スリット間隔がdの場合、角度θの光束の干渉を考慮すると、光束1と光束2の光路差は、d・sinθであるので、その分の位相遅れが発生する。従って、光束1の光波φ1と光束2の光波2の式は以下のようになる。 Take the interference caused by two slits as an example. 7A and 7B are for explaining Young's interference experiment, FIG. 7A is a schematic diagram showing an experimental apparatus, and FIG. 7B is a schematic diagram showing a state of emitted light. As shown in FIG. 7B, when the slit spacing is d, the optical path difference between the luminous flux 1 and the luminous flux 2 is d · sin θ, considering the interference of the luminous flux at the angle θ, so that the phase delay is corresponding to that. appear. Therefore, the equations of the light wave φ1 of the luminous flux 1 and the light wave 2 of the luminous flux 2 are as follows.

Figure 2021089223
但し、f:光波の周波数を示す。
Figure 2021089223
However, f: indicates the frequency of the light wave.

ここで、合成波φは、
φ=φ1+φ2
であり、

Figure 2021089223
ここで三角関数sinの和積の公式
Figure 2021089223
Figure 2021089223

式6の第1項は時間のパラメータtを含んでいないので、関数φの振幅を表す項となり、角度θの位置での振幅強度を示す。 Here, the combined wave φ is
φ = φ1 + φ2
And
Figure 2021089223
Here is the formula of the sum product of trigonometric functions sin
Figure 2021089223
Figure 2021089223

Since the first term of Equation 6 does not include the time parameter t, it is a term representing the amplitude of the function φ and shows the amplitude intensity at the position of the angle θ.

Figure 2021089223
式7の絶対値記号を2乗することで外すことを考える。
Figure 2021089223
Figure 2021089223
Consider removing the absolute value symbol of Equation 7 by squared.
Figure 2021089223

Figure 2021089223
Figure 2021089223

よって式8をまとめると、

Figure 2021089223
式10で得られる振幅強度の分布状態を図8に示す。 Therefore, to summarize Equation 8,
Figure 2021089223
The distribution state of the amplitude intensity obtained by Equation 10 is shown in FIG.

上記式10は平行な2スリットの振幅解析結果であるが、スリットとして同心円状に透過用トラック(帯)を設けて、そのスリットを等価する光と中心光束の光とで干渉させることで同様の効果を発揮することも可能である。本発明では同心円上のスリットとして論ずる。 Equation 10 above is the result of amplitude analysis of two parallel slits. The same is true by providing transmission tracks (bands) concentrically as slits and causing the slits to interfere with the equivalent light and the light of the central luminous flux. It is also possible to exert an effect. In the present invention, it is discussed as a slit on concentric circles.

ピンホールのみの回折現象では、上述した課題があり、回折光の強度がゼロ点になる範囲を広げようとすると、ピンホール径を極端に小さくする必要がある。すると、通過する光束が減少するために、必要光量を確保できない。本発明は、必要光量を確保しながら回折と干渉現象を利用して、中央透光部(ピンホール)と同心円状に透光帯部を設けることにより、ピンホールの回折現象と透光帯部の透過光同士の干渉により、振幅強度の分布状態を図8に示すようにできる。 The diffraction phenomenon of only pinholes has the above-mentioned problems, and it is necessary to make the pinhole diameter extremely small in order to widen the range in which the intensity of the diffracted light becomes the zero point. Then, the required amount of light cannot be secured because the passing luminous flux is reduced. In the present invention, the diffraction phenomenon of a pinhole and the translucent band portion are provided by providing a translucent band portion concentrically with the central transmissive portion (pinhole) by utilizing the diffraction and the interference phenomenon while securing the required amount of light. Due to the interference between the transmitted lights of the above, the distribution state of the amplitude intensity can be shown in FIG.

このことから、必要光量を得ながら強度分布の影響を軽減し実質的にレンズ系で光束の広がり角度を実現する。 From this, the influence of the intensity distribution is reduced while obtaining the required amount of light, and the spreading angle of the luminous flux is substantially realized in the lens system.

具体的には、スリット幅aに相当する中央透光部401の径d1を0.4mmとし、透光帯部403の間隔d2を2.5mmとすれば、回折での振幅強度1次ゼロ点は、

Figure 2021089223
の間隔で発生する。 Specifically, if the diameter d1 of the central translucent portion 401 corresponding to the slit width a is 0.4 mm and the interval d2 of the translucent band portion 403 is 2.5 mm, the first-order zero point of the amplitude intensity in diffraction is
Figure 2021089223
Occurs at intervals of.

また、スリット間隔が2.5mmなので、内部の振幅強度1次ゼロ点は、

Figure 2021089223
の間隔で振幅強弱が発生する。 Also, since the slit spacing is 2.5 mm, the internal amplitude intensity primary zero point is
Figure 2021089223
Amplitude strength and weakness occur at intervals of.

しかし、図8に示すように、光量の分布には、大きなゼロ点の他に、周期的に高次のゼロ点が発生する。しかし、実際の光波距離計では、大気中の揺らぎ等で光信号光束が位置的に揺られるため、一定の場所での振幅強度を維持できない。そのため上記のような細かな振幅の変動がある場合にも、大気の揺らぎの影響で平均されるため、細かな強度変化は事実上無視できる。 However, as shown in FIG. 8, in addition to the large zero points, higher-order zero points are periodically generated in the distribution of the amount of light. However, in an actual light wave rangefinder, the amplitude intensity at a certain place cannot be maintained because the light signal luminous flux fluctuates positionally due to fluctuations in the atmosphere or the like. Therefore, even if there is a small amplitude fluctuation as described above, it is averaged due to the influence of atmospheric fluctuations, so that the small intensity change can be virtually ignored.

従って、式10に示した振幅変動関数により、振幅強度のθに関する設定を制御できることになり、特別に光束拡開用のレンズ系を使用することなく、簡単な構成で光束の広角を所望の値に設定できることがわかる。 Therefore, the amplitude fluctuation function shown in Equation 10 can control the setting of the amplitude intensity with respect to θ, and the wide angle of the luminous flux can be set to a desired value with a simple configuration without using a special lens system for expanding the luminous flux. You can see that it can be set to.

尚、上記例では、位相差dsinθ=λのとき、中心強度f(0)は、0.4mm=2.5mm/6.25より、a=d/6.25の関係になるので、

Figure 2021089223
ここで、cos2(πd・sinθ/λ)の項は、d*sinθ=λよりcos (π)=1である。このため、式10より、I(θ)/I(0) =0.919×1.0=0.919 が正確な表現となる。 In the above example, when the phase difference dsinθ = λ, the center intensity f (0) has a relationship of a = d / 6.25 from 0.4 mm = 2.5 mm / 6.25.
Figure 2021089223
Here, the term of cos 2 (πd · sinθ / λ) is cos 2 (π) = 1 from d * sinθ = λ. Therefore, from Equation 10, I (θ) / I (0) = 0.919 × 1.0 = 0.919 is an accurate expression.

<第2実施形態>
第1実施形態では、絞り部材400として401の同心円状に透光帯部を設けた。第2実施形態に係る光波距離計の絞り部材は、中央透光部の中心と同心である複数の扇状領域に区分けし、それぞれの扇状領域では少なくとも2つの扇状領域において透光帯部の配置状態を変更している。
<Second Embodiment>
In the first embodiment, the light transmitting band portion is provided concentrically of 401 as the aperture member 400. The diaphragm member of the light wave rangefinder according to the second embodiment is divided into a plurality of fan-shaped regions concentric with the center of the central transmissive portion, and in each fan-shaped region, the transmissive band portions are arranged in at least two fan-shaped regions. Is changing.

即ち、図5(b)に示す絞り部材410は、直径を隔てて2つの扇状領域410A、410Bに区分けされている。そして各扇状領域410A、410Bには、所定間隔(d3)を有する弧状帯をなす遮光帯部412A、412Bを隔てて透光帯部413A、413Bを、各扇状領域410A、410Bにおいて異なった位相、配置間隔で配置している。 That is, the diaphragm member 410 shown in FIG. 5B is divided into two fan-shaped regions 410A and 410B with a diameter separated from each other. Then, in the fan-shaped regions 410A and 410B, the light-transmitting band portions 413A and 413B are separated from the light-shielding band portions 412A and 412B forming an arc-shaped band having a predetermined interval (d3), and the phases of the light-transmitting band portions 413A and 413B are different in the fan-shaped regions 410A and 410B. It is arranged at the arrangement interval.

そして、本実施形態では、絞り部材410をモータ等の駆動手段により光軸を中心として回転させる。これにより、振幅強弱の角度位置が時間的に変化し、ミキシング効果を得て、より一層の平均化することができる。 Then, in the present embodiment, the diaphragm member 410 is rotated about the optical axis by a driving means such as a motor. As a result, the angular position of the amplitude strength changes with time, a mixing effect can be obtained, and further averaging can be performed.

図5(c)に示す例では、絞り部材420は、直交する2本の直径を隔てて4つの扇状領域420A、420B、420C、420Dに区分けされている。そしてこの扇状領域420A、420B、420C、420Dには、遮光帯部422A、422B、422C、422D、透光帯部423A、423B、423C、423Dを配置できる。 In the example shown in FIG. 5C, the diaphragm member 420 is divided into four fan-shaped regions 420A, 420B, 420C, and 420D with two orthogonal diameters separated from each other. The light-shielding band portions 422A, 422B, 422C, 422D, and the translucent band portions 423A, 423B, 423C, and 423D can be arranged in the fan-shaped regions 420A, 420B, 420C, and 420D.

<第3実施形態>
第3実施形態では、絞り部材を光の遮蔽及び透過のパターンを外部の制御で変更できる透光素子として液晶パネルで構成する。なお、透光素子としては液晶パネルの他、PLZT素子等の圧電素子を使用することができる。そして、中央透光部、遮光帯部及び透光帯部の形状を変更する。例えば、図5(b)に示したパターンの扇状領域410A、410Bのパターンを周期的に交互に変更表示させる、図5(c)に示したパターンの扇状領域420A、420B、420C、420Dのパターンを90度ずつ回転させたように表示することができる。
<Third Embodiment>
In the third embodiment, the diaphragm member is composed of a liquid crystal panel as a translucent element capable of changing the pattern of light shielding and transmission by external control. As the translucent element, a piezoelectric element such as a PLZT element can be used in addition to the liquid crystal panel. Then, the shapes of the central translucent portion, the light-shielding band portion, and the translucent band portion are changed. For example, the patterns of the fan-shaped regions 410A, 420B, 420C, and 420D of the pattern shown in FIG. 5 (c), in which the patterns of the fan-shaped regions 410A and 410B of the pattern shown in FIG. Can be displayed as if it was rotated by 90 degrees.

これにより、振動等が発生する回転駆動手段等を使用することなく、射出光の振幅強弱の角度位置を時間的に変化させてミキシング効果を発揮させ、測定光を平均化することができる。 As a result, the mixing effect can be exerted by changing the angular position of the amplitude strength of the emitted light with time without using a rotation driving means or the like that generates vibration or the like, and the measured light can be averaged.

100:光波距離計
101:基台部
102:架台
103:望遠鏡部
104:整準ねじ
106:表示部
107:操作入力部
110:筐体
120:鏡筒
130:ベース部
200:光学系
210:対物レンズ系
220:射出光学系
221:コリメータレンズ
222:サーキュラー
223:サーキュラー駆動モータ
224:絞り配置部材
225:台形プリズム
225a:反射面
225b:反射面
226:チョッパ
226a:板部
227:チョッパ駆動モータ
230:理想的な点光源
240:射出反射光学系
241:反射鏡
242:送光反射プリズム
242a:反射面
250:受光反射光学系
251:ダイクロイックミラー
252:受光反射プリズム
252a:反射面
260:光ファイバ
261:光センサー
263:光ファイバ
270:視準光学系
280:プリズム
281:カバーガラス
310:濃度フィルター
400:絞り部材
401:中央透光部
402:遮光帯部
403:透光帯部
410:絞り部材
410A、410B:扇状領域
412A、412B:遮光帯部
413A、413B:透光帯部
420:絞り部材
420A、420B、420C、420D:扇状領域
422A、422B、422C、422D:遮光帯部
423A、423B、423C、423D:透光帯部
100: Light wave distance meter 101: Base 102: Base 103: Telescope 104: Leveling screw 106: Display 107: Operation input 110: Housing 120: Lens tube 130: Base 200: Optical system 210: Objective Lens system 220: Injection optical system 221: Collimeter lens 222: Circular 223: Circular drive motor 224: Aperture arrangement member 225: Trapezoidal prism 225a: Reflective surface 225b: Reflective surface 226: Chopper 226a: Plate part 227: Chopper drive motor 230: Ideal point light source 240: Ejection reflection optical system 241: Reflector 242: Light transmission reflection prism 242a: Reflection surface 250: Light reception reflection optical system 251: Dicroic mirror 252: Light reception reflection prism 252a: Reflection surface 260: Optical fiber 261: Optical sensor 263: Optical fiber 270: Collimation optical system 280: Prism 281: Cover glass 310: Density filter 400: Filter member 401: Central light-transmitting part 402: Light-shielding band part 403: Light-transmitting band part 410: Filter member 410A, 410B: Fan-shaped area 412A, 412B: Light-shielding band part 413A, 413B: Light-transmitting band part 420: Filter members 420A, 420B, 420C, 420D: Fan-shaped area 422A, 422B, 422C, 422D: Light-shielding band part 423A, 423B, 423C, 423D: Translucent band

Claims (7)

測定光を発する光源と、前記測定光の被測定物からの反射光を受ける受光部とを備え、前記受光部が受光した前記反射光に基づいて前記被測定物までの距離を測定する測定装置において、
前記光源からの前記測定光の光束を絞る絞り部材を備え、
前記絞り部材は、前記光源の光軸上に配置された中央透光部、及び前記中央透光部の周囲に配置された複数の透光帯部を形成する遮光帯部を備え、前記測定光が前記中央透光部及び前記透光帯部を透過するときの回折による干渉により、射出する前記測定光の光束を所望の開き角に拡大することを特徴とする測定装置。
A measuring device including a light source that emits measurement light and a light receiving unit that receives reflected light from the object to be measured, and measures the distance to the object to be measured based on the reflected light received by the light receiving unit. In
A diaphragm member for narrowing the luminous flux of the measurement light from the light source is provided.
The aperture member includes a central translucent portion arranged on the optical axis of the light source and a light-shielding band portion forming a plurality of translucent band portions arranged around the central transmissive portion, and the measurement light is measured. A measuring device characterized in that the luminous flux of the measured light emitted is expanded to a desired opening angle by interference due to diffraction when the light is transmitted through the central translucent portion and the translucent band portion.
前記絞り部材の前記遮光帯部は、前記中央透光部の周囲に配置され、前記中央透光部と同心であり所定の間隔で離間して配置された複数の円環帯であることを特徴とする請求項1に記載の測定装置。 The light-shielding band portion of the diaphragm member is a plurality of torus bands arranged around the central translucent portion, concentric with the central translucent portion, and arranged at predetermined intervals. The measuring device according to claim 1. 前記絞り部材の前記透光帯部は、前記中央透光部の周囲に配置され、前記中央透光部と同心であり所定の間隔で離間して配置された複数の弧状帯であることを特徴とする請求項1に記載の測定装置。 The translucent band portion of the diaphragm member is a plurality of arc-shaped bands arranged around the central translucent portion, concentric with the central translucent portion, and arranged at predetermined intervals. The measuring device according to claim 1. 前記中央透光部の形状を円形としたことを特徴とする請求項1に記載の測定装置。 The measuring device according to claim 1, wherein the central translucent portion has a circular shape. 前記絞り部材は、前記中央透光部の中心と同心である複数の扇状領域に区分けされ、それぞれの扇状領域では少なくとも2つの扇状領域において前記透光帯部の配置間隔を違えたことを特徴とする請求項3に記載の測定装置。 The diaphragm member is divided into a plurality of fan-shaped regions concentric with the center of the central translucent portion, and each fan-shaped region is characterized in that the arrangement intervals of the translucent band portions are different in at least two fan-shaped regions. The measuring device according to claim 3. 前記絞り部材を、光軸を中心に回転させる駆動手段を備えることを特徴とする請求項3に記載の測定装置。 The measuring device according to claim 3, further comprising a driving means for rotating the diaphragm member about an optical axis. 前記絞り部材を光の遮蔽及び透過のパターンを外部の制御で変更できる透光素子で構成し、前記中央透光部及び遮光帯部及び透光帯部の形状を変更することを特徴とする請求項1に記載の測定装置。

The claim is characterized in that the diaphragm member is composed of a light-transmitting element whose light shielding and transmission patterns can be changed by external control, and the shapes of the central light-transmitting portion, the light-shielding band portion, and the light-transmitting band portion are changed. Item 1. The measuring device according to item 1.

JP2019220153A 2019-12-05 2019-12-05 measuring device Active JP7406971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220153A JP7406971B2 (en) 2019-12-05 2019-12-05 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220153A JP7406971B2 (en) 2019-12-05 2019-12-05 measuring device

Publications (2)

Publication Number Publication Date
JP2021089223A true JP2021089223A (en) 2021-06-10
JP7406971B2 JP7406971B2 (en) 2023-12-28

Family

ID=76220077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220153A Active JP7406971B2 (en) 2019-12-05 2019-12-05 measuring device

Country Status (1)

Country Link
JP (1) JP7406971B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243908A (en) 2001-02-13 2002-08-28 Minolta Co Ltd Optical element for ir ray and ir camera
JP2008052177A (en) 2006-08-28 2008-03-06 Osaka Opto-Science & Technology Institute Co Ltd Confocal optical system
JP6604623B2 (en) 2015-03-31 2019-11-13 株式会社トプコン Light wave distance meter
CN113740948A (en) 2021-07-20 2021-12-03 暨南大学 Planar diffraction lens, method for manufacturing planar diffraction lens, and optical imaging system

Also Published As

Publication number Publication date
JP7406971B2 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US9817242B2 (en) Image projector and optical assembly
JP4121803B2 (en) Lightwave distance measuring device
US6747733B2 (en) Electronic distance meter
JP6062625B2 (en) Optical position measuring device
EP2381272B1 (en) Laser scanner
US9979939B2 (en) Light source assembly and laser projector
JP2001021354A (en) Optical position detector
JPH11166830A (en) Surveying reflecting member
WO2021019902A1 (en) Laser radar
JP2017072466A (en) Light wave distance measuring device
KR102017186B1 (en) 3-dimensional shape measurement apparatus
JP2006071545A (en) Rotating laser system
JP2008203022A (en) Optical interference type gas concentration measuring device
JP7406971B2 (en) measuring device
JP3749152B2 (en) Lens meter
JP6325619B2 (en) Light wave distance meter
JP4846302B2 (en) Rotating laser device and rotating blur detecting device using the same
JPH11109199A (en) Assembling regulating device and assembling regulating method for optical system
JP2009222441A (en) Retroreflective intensity measuring device
JP2000308617A (en) Corneal shape measuring device
US10732267B2 (en) Electro-optical distance meter
JP6315722B2 (en) Light wave distance meter
JP2017067672A (en) Light wave range finder
JP2020190495A (en) Distance measurement device
JP6937568B2 (en) Laser rangefinder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7406971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150