JP2021089110A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2021089110A
JP2021089110A JP2019220105A JP2019220105A JP2021089110A JP 2021089110 A JP2021089110 A JP 2021089110A JP 2019220105 A JP2019220105 A JP 2019220105A JP 2019220105 A JP2019220105 A JP 2019220105A JP 2021089110 A JP2021089110 A JP 2021089110A
Authority
JP
Japan
Prior art keywords
combustion
current value
amount
proportional valve
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019220105A
Other languages
Japanese (ja)
Inventor
田中 章夫
Akio Tanaka
章夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2019220105A priority Critical patent/JP2021089110A/en
Publication of JP2021089110A publication Critical patent/JP2021089110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

To solve a problem that there is the possibility that occurrence of fan clogging might increase the amount of gas jetting out from a burner due to reduction in inner pressure of a combustion casing and thus cause incomplete combustion in a water heater that includes a fan supplying combustion air into the combustion casing with a burner and a hot water supply heat exchanger built therein and a proportional valve interposed in a gas supply passage and that controls fan rotational frequency on the basis of a combustion characteristic line indicating a correlation between a proportional valve electric current value predetermined to perform normal combustion of the burner and the fan rotational frequency.SOLUTION: When an exhaust clogging rate is a predetermined value or greater and a proportional valve electric current value Ip is equal to or greater than a predetermined electric current value YIp close to an upper limit value, actual combustion amount Qj calculated from heating amount in a heat exchanger and a design combustion amount Qs calculated from the proportional valve electric current value are compared with each other. When Qj is larger than Qs by a predetermined rate or greater, a combustion characteristic line used for controlling fan rotational frequency is switched to correction combustion characteristic line L1-L5 in which a change rate of the fan rotational frequency relative to the proportional valve electric current value is set larger than a reference combustion characteristic line L.SELECTED DRAWING: Figure 2

Description

本発明は、燃焼筐と、燃焼筐内に設けられたバーナと、燃焼筐内に設けられた、バーナでの燃焼により生ずる燃焼ガスにより加熱される給湯用の熱交換器と、燃焼筐に連通し、熱交換器を通過した燃焼ガスを排出する排気路と、燃焼筐内に燃焼用空気を供給する燃焼ファンと、バーナへのガス供給路に介設された比例弁とを備える給湯装置に関する。 The present invention communicates with a combustion case, a burner provided in the combustion case, a heat exchanger for hot water supply heated by combustion gas generated by combustion in the burner provided in the combustion case, and the combustion case. The present invention relates to a hot water supply device including an exhaust path for discharging combustion gas that has passed through a heat exchanger, a combustion fan for supplying combustion air into a combustion housing, and a proportional valve provided in a gas supply path to a burner. ..

元来、この種の給湯装置においては、燃焼ファンの回転数をファン回転数、燃焼ファンへの通電電流値をファン電流値、比例弁への通電電流値を比例弁電流値として、バーナの燃焼量が給湯温度を所定の設定温度にする燃焼量になるように比例弁電流値を制御すると共に、バーナで正常燃焼するように予め定められた比例弁電流値とファン回転数との相関関係を表す燃焼特性線に基づいてファン回転数を制御している。また、排気路の閉塞を生ずると、ファン回転数が同じでも送風量が減少して、ファン電流値が減少する。従って、ファン回転数とファン電流値との相関関係から排気路の閉塞率を算定することができる。そして、従来、ファン回転数とファン電流値との相関関係から算定された排気路の閉塞率に応じてファン回転数を補正する制御を行い、バーナの燃焼量に対応する量の燃焼用空気が供給されるようにした給湯装置が知られている(例えば、特許文献1参照)。 Originally, in this type of hot water supply device, the combustion of the burner is burned with the combustion fan rotation speed as the fan rotation speed, the energizing current value for the combustion fan as the fan current value, and the energizing current value for the proportional valve as the proportional valve current value. The proportional valve current value is controlled so that the amount is the amount of combustion that brings the hot water supply temperature to a predetermined set temperature, and the correlation between the proportional valve current value and the fan rotation speed that is predetermined so that the burner burns normally is maintained. The fan speed is controlled based on the combustion characteristic line shown. Further, when the exhaust passage is blocked, the amount of air blown decreases even if the fan rotation speed is the same, and the fan current value decreases. Therefore, the blockage rate of the exhaust passage can be calculated from the correlation between the fan speed and the fan current value. Then, conventionally, control is performed to correct the fan rotation speed according to the blockage rate of the exhaust passage calculated from the correlation between the fan rotation speed and the fan current value, and the amount of combustion air corresponding to the combustion amount of the burner is generated. A hot water supply device that has been made to be supplied is known (see, for example, Patent Document 1).

ところで、給湯装置をある程度使用すると、燃焼ファンのブレード間に塵埃等が詰まることがある。このようなファン詰まりを生ずると、ファン回転数が同じでも送風量の減少でファン電流値が減少する。そして、上記従来例のものでは、ファン詰まりを生じた場合も、排気路の閉塞を生じたと判断して、ファン回転数を補正する制御が行われ、その時点での燃焼量に対応する量の燃焼用空気が供給される。 By the way, when the hot water supply device is used to some extent, dust or the like may be clogged between the blades of the combustion fan. When such fan clogging occurs, the fan current value decreases due to the decrease in the amount of air blown even if the fan rotation speed is the same. Then, in the above-mentioned conventional example, even when the fan is clogged, it is determined that the exhaust passage is blocked, and the control for correcting the fan rotation speed is performed, and the amount corresponding to the combustion amount at that time is performed. Combustion air is supplied.

但し、ファン詰まりを生ずると、燃焼筐の内圧が減少する。ここで、バーナからの噴出ガス量は、バーナへの供給ガス圧と燃焼筐内圧との差圧で決まる。従って、ファン詰まりで燃焼筐内圧が減少すると、バーナからの噴出ガス量が増加し、バーナの実燃焼量は比例弁電流値から求められる設計燃焼量よりも大きくなる。そのため、上記の如くファン回転数を補正しても、燃焼用空気の供給量は、設計燃焼量に対応する量になるだけで、実燃焼量に対応する量よりも少なくなる。そして、比例弁電流値が大きな領域では、実燃焼量に対する燃焼用空気の供給量の不足具合が大きくなり、不完全燃焼を生じてしまう。 However, when the fan is clogged, the internal pressure of the combustion casing decreases. Here, the amount of gas ejected from the burner is determined by the differential pressure between the pressure of the gas supplied to the burner and the pressure inside the combustion casing. Therefore, when the internal pressure of the combustion housing decreases due to the clogging of the fan, the amount of gas ejected from the burner increases, and the actual combustion amount of the burner becomes larger than the design combustion amount obtained from the proportional valve current value. Therefore, even if the fan speed is corrected as described above, the supply amount of combustion air is only the amount corresponding to the design combustion amount, and is smaller than the amount corresponding to the actual combustion amount. Then, in the region where the proportional valve current value is large, the degree of insufficient supply of combustion air with respect to the actual combustion amount becomes large, and incomplete combustion occurs.

特開平8−247452号公報Japanese Unexamined Patent Publication No. 8-247452

本発明は、以上の点に鑑み、ファン詰まりに起因する不完全燃焼を防止できるようにした給湯装置を提供することをその課題としている。 In view of the above points, it is an object of the present invention to provide a hot water supply device capable of preventing incomplete combustion due to fan clogging.

上記課題を解決するために、本発明は、燃焼筐と、燃焼筐内に設けられたバーナと、燃焼筐内に設けられた、バーナでの燃焼により生ずる燃焼ガスにより加熱される給湯用の熱交換器と、燃焼筐に連通し、熱交換器を通過した燃焼ガスを排出する排気路と、燃焼筐内に燃焼用空気を供給する燃焼ファンと、バーナへのガス供給路に介設された比例弁とを備える給湯装置であって、燃焼ファンの回転数をファン回転数、燃焼ファンへの通電電流値をファン電流値、比例弁への通電電流値を比例弁電流値として、バーナの燃焼量が給湯温度を所定の設定温度にする燃焼量になるように比例弁電流値を制御すると共に、バーナで正常燃焼するように予め定められた比例弁電流値とファン回転数との相関関係を表す燃焼特性線に基づいてファン回転数を制御し、更に、ファン回転数とファン電流値との相関関係から算定された排気路の閉塞率に応じてファン回転数を補正する制御を行うものにおいて、算定された排気路の閉塞率が所定値以上で、且つ、比例弁電流値が上限値に近い所定電流値以上であるときに、熱交換器での加熱量から求められるバーナの実燃焼量と比例弁電流値から求められるバーナの設計燃焼量とを比較して、実燃焼量が設計燃焼量よりも所定割合以上大きい場合に、ファン回転数の制御に用いる燃焼特性線を、基準となる燃焼特性線よりも比例弁電流値に対するファン回転数の変化率が大きく設定された修正燃焼特性線に切換えることを特徴とする。 In order to solve the above problems, the present invention presents the combustion casing, the burner provided in the combustion casing, and the heat for hot water supply heated by the combustion gas generated by the combustion in the burner provided in the combustion casing. It is installed in the exchanger, the exhaust path that communicates with the combustion casing and discharges the combustion gas that has passed through the heat exchanger, the combustion fan that supplies the combustion air into the combustion casing, and the gas supply path to the burner. A hot water supply device equipped with a proportional valve, in which the combustion fan rotation speed is the fan rotation speed, the energizing current value to the combustion fan is the fan current value, and the energizing current value to the proportional valve is the proportional valve current value. The proportional valve current value is controlled so that the amount is the amount of combustion that brings the hot water supply temperature to a predetermined set temperature, and the correlation between the proportional valve current value and the fan rotation speed that is predetermined so that the burner burns normally is maintained. In the case where the fan rotation speed is controlled based on the represented combustion characteristic line, and the fan rotation speed is corrected according to the blockage rate of the exhaust passage calculated from the correlation between the fan rotation speed and the fan current value. , When the calculated exhaust passage blockage rate is equal to or higher than the predetermined value and the proportional valve current value is equal to or higher than the predetermined current value close to the upper limit value, the actual combustion amount of the burner obtained from the heating amount in the heat exchanger. Compare with the design combustion amount of the burner obtained from the proportional valve current value, and when the actual combustion amount is larger than the design combustion amount by a predetermined ratio or more, the combustion characteristic line used for controlling the fan rotation speed becomes the reference. It is characterized by switching to a modified combustion characteristic line in which the rate of change of the fan rotation speed with respect to the proportional valve current value is set larger than that of the combustion characteristic line.

本発明によれば、ファン詰まりを生じた場合、比例弁電流値が上限値に近い所定電流値以上で、実燃焼量が設計燃焼量よりも所定割合以上大きくなる状態、即ち、そのままでは不完全燃焼を生ずる状態になると、ファン回転数の制御に用いる燃焼特性線が修正燃焼特性線に切換えられる。そして、修正燃焼特性線では、基準となる燃焼特性線と比べて同じ比例弁電流値でファン回転数が大きくなるため、実燃焼量に対応する量の燃焼用空気が供給される。従って、ファン詰まりに起因する不完全燃焼を防止できる。 According to the present invention, when a fan is clogged, the proportional valve current value is equal to or higher than a predetermined current value close to the upper limit value, and the actual combustion amount is larger than the design combustion amount by a predetermined ratio or more, that is, it is incomplete as it is. When combustion occurs, the combustion characteristic line used to control the fan speed is switched to the modified combustion characteristic line. Then, in the modified combustion characteristic line, the fan rotation speed is increased at the same proportional valve current value as compared with the reference combustion characteristic line, so that an amount of combustion air corresponding to the actual combustion amount is supplied. Therefore, incomplete combustion due to fan clogging can be prevented.

また、本発明においては、設計燃焼量に対する実燃焼量の増加割合が大きくなるほど、修正燃焼特性線の比例弁電流値に対するファン回転数の変化率を大きくすることが望ましい。これによれば、設計燃焼量に対する実燃焼量の増加割合が大きくなるほど、燃焼用空気の供給量の増加割合が大きくなり、不完全燃焼をより確実に防止できる。 Further, in the present invention, it is desirable that the larger the rate of increase of the actual combustion amount with respect to the design combustion amount, the larger the rate of change of the fan rotation speed with respect to the proportional valve current value of the modified combustion characteristic line. According to this, as the rate of increase in the actual combustion amount with respect to the design combustion amount increases, the rate of increase in the supply amount of combustion air increases, and incomplete combustion can be prevented more reliably.

ところで、実燃焼量は、給湯温度と熱交換器への給水温度との偏差に給湯流量を乗算して得られる熱交換器での加熱量を熱交換器の熱交換効率で除して求められる。そして、給湯装置の累積運転時間が長くなると、熱交換器が劣化して、熱交換器の実際の熱交換効率が低下し、熱交換器での加熱量から求められる実燃焼量は実際の値よりも低くなる。それでも、実燃焼量が設計燃焼量よりも大きくなるのは、ファン詰まりが進行して、バーナからのガス噴出量がより増加するためである。 By the way, the actual combustion amount is obtained by dividing the heat amount in the heat exchanger obtained by multiplying the deviation between the hot water supply temperature and the water supply temperature to the heat exchanger by the hot water supply flow rate by the heat exchange efficiency of the heat exchanger. .. When the cumulative operating time of the hot water supply device becomes long, the heat exchanger deteriorates, the actual heat exchange efficiency of the heat exchanger decreases, and the actual combustion amount obtained from the heat amount in the heat exchanger is the actual value. Will be lower than. Even so, the actual combustion amount is larger than the design combustion amount because the fan clogging progresses and the amount of gas ejected from the burner increases.

従って、本発明においては、給湯装置の累積運転時間が長くなるほど、修正燃焼特性線の比例弁電流値に対するファン回転数の変化率を大きくすることが望ましい。これによれば、熱交換器の劣化に起因して、熱交換器での加熱量から求められる実燃焼量より実際の燃焼量の方が大きくなっても、この実際の燃焼量に応じた量の燃焼用空気を供給でき、不完全燃焼の防止に寄与する。 Therefore, in the present invention, it is desirable that the longer the cumulative operating time of the water heater, the larger the rate of change of the fan rotation speed with respect to the proportional valve current value of the modified combustion characteristic line. According to this, even if the actual combustion amount is larger than the actual combustion amount obtained from the heating amount in the heat exchanger due to the deterioration of the heat exchanger, the amount corresponding to the actual combustion amount. It can supply combustion air and contributes to the prevention of incomplete combustion.

本発明の実施形態の給湯装置の説明図。Explanatory drawing of the hot water supply apparatus of embodiment of this invention. 実施形態の給湯装置の制御手段が行う燃焼特性線の切換制御の内容を示すフロー図。The flow chart which shows the content of the switching control of the combustion characteristic line performed by the control means of the water heater of an embodiment. 基準燃焼特性線と第1乃至第5の各修正燃焼特性線を示すグラフ。The graph which shows the reference combustion characteristic line and each of the 1st to 5th modified combustion characteristic lines.

図1に示す本発明の実施形態の給湯装置は、ハウジング1内に収納した燃焼筐2を備えている。燃焼筐2内には、下部にバーナ3と、上部に給湯用の熱交換器4とが設けられ、バーナ3での燃焼により生ずる燃焼ガスにより熱交換器4が加熱される。燃焼筐2の上端には、燃焼筐2に連通する排気路21が接続されており、熱交換器4を通過した燃焼ガスが排気路21を介して外部に排出される。また、燃焼筐2の下端には、燃焼筐2内に燃焼用空気を供給する燃焼ファン5が接続されている。 The hot water supply device of the embodiment of the present invention shown in FIG. 1 includes a combustion casing 2 housed in a housing 1. Inside the combustion casing 2, a burner 3 is provided at the lower part and a heat exchanger 4 for hot water supply is provided at the upper part, and the heat exchanger 4 is heated by the combustion gas generated by the combustion in the burner 3. An exhaust passage 21 communicating with the combustion casing 2 is connected to the upper end of the combustion casing 2, and the combustion gas that has passed through the heat exchanger 4 is discharged to the outside via the exhaust passage 21. Further, a combustion fan 5 for supplying combustion air into the combustion casing 2 is connected to the lower end of the combustion casing 2.

バーナ3へのガス供給路6には、元弁7と比例弁8とが介設されている。また、熱交換器4には、上流側の給水路9と、下流側の給湯路10とが接続されている。給水路9には、水量センサ11と水温センサ12と水量サーボ13とが設けられ、給湯路10には、湯温センサ14が設けられている。 A main valve 7 and a proportional valve 8 are interposed in the gas supply path 6 to the burner 3. Further, the heat exchanger 4 is connected to a water supply channel 9 on the upstream side and a hot water supply channel 10 on the downstream side. The water supply channel 9 is provided with a water amount sensor 11, a water temperature sensor 12, and a water amount servo 13, and the hot water supply channel 10 is provided with a hot water temperature sensor 14.

また、ハウジング1内には、燃焼ファン5、元弁7、比例弁8、水量サーボ13等を制御する制御手段たるコントローラ15が設けられている。そして、コントローラ15に、水量センサ11、水温センサ12、湯温センサ14、ファン回転数Nf(燃焼ファン5の回転数)とファン電流値(燃焼ファン5への通電電流値)を夫々検出する図示省略したセンサの検出信号を入力している。 Further, in the housing 1, a controller 15 which is a control means for controlling a combustion fan 5, a main valve 7, a proportional valve 8, a water amount servo 13, and the like is provided. Then, the controller 15 detects the water amount sensor 11, the water temperature sensor 12, the hot water temperature sensor 14, the fan rotation speed Nf (the rotation speed of the combustion fan 5), and the fan current value (the energization current value to the combustion fan 5), respectively. The omitted sensor detection signal is input.

給湯路10の下流端の出湯栓(図示せず)を開いて熱交換器4に通水すると、水量センサ11の検出水量が所定の最低作動水量以上になったところで、コントローラ15は、元弁7を開弁させると共に図外のイグナイタを作動させて、バーナ3に点火する。その後、給湯温度を図外のリモコンで設定される所定の設定温度にするのに必要な燃焼量である要求燃焼量を演算し、バーナ3の燃焼量が要求燃焼量になるように比例弁電流値Ip(比例弁8への通電電流値)を制御すると共に、バーナ3で正常燃焼するように予め定められた比例弁電流値Ipとファン回転数Nfとの相関関係を表す図3に示す燃焼特性線に基づいてファン回転数Nfを制御する。尚、本実施形態では、先ず、ファン回転数Nfを、要求燃焼量を得るのに必要な比例弁電流値Ipに燃焼特性線上で合致する回転数になるように制御し、次に、比例弁電流値Ipを、センサにより検出されたファン回転数Nfに燃焼特性線上で合致する電流値になるように制御するファン先行制御を行う。この場合も、比例弁電流値Ipは、バーナ3の燃焼量が要求燃焼量、即ち、給湯温度を設定温度にする燃焼量になるように制御されることになる。 When the hot water tap (not shown) at the downstream end of the hot water supply passage 10 is opened and water is passed through the heat exchanger 4, the controller 15 sets the main valve when the amount of water detected by the water amount sensor 11 exceeds the predetermined minimum working water amount. The valve 7 is opened and the igniter (not shown) is operated to ignite the burner 3. After that, the required combustion amount, which is the combustion amount required to set the hot water supply temperature to the predetermined set temperature set by the remote control (not shown), is calculated, and the proportional valve current is adjusted so that the combustion amount of the burner 3 becomes the required combustion amount. Combustion shown in FIG. 3 which controls the value Ip (the value of the energizing current to the proportional valve 8) and shows the correlation between the proportional valve current value Ip and the fan rotation speed Nf, which are predetermined so as to normally burn with the burner 3. The fan rotation speed Nf is controlled based on the characteristic line. In the present embodiment, first, the fan rotation speed Nf is controlled so that the rotation speed matches the proportional valve current value Ip required to obtain the required combustion amount on the combustion characteristic line, and then the proportional valve. Fan advance control is performed to control the current value Ip so that the current value matches the fan rotation speed Nf detected by the sensor on the combustion characteristic line. In this case as well, the proportional valve current value Ip is controlled so that the combustion amount of the burner 3 becomes the required combustion amount, that is, the combustion amount that sets the hot water supply temperature to the set temperature.

また、要求燃焼量は、給湯開始当初は、設定温度と水温センサ12で検出される給水温度との偏差に水量センサ11で検出される給湯流量を乗算した値を熱交換器4の熱交換効率で除してフィードフォワード方式で求められ、その後は、湯温センサ14で検出される実際の給湯温度に基づいてフィードバック方式で求められる。尚、要求燃焼量がバーナ3の最大燃焼量(比例弁電流値Ipを上限値にしたときの燃焼量)を上回るときは、給湯流量を最大燃焼量で給湯温度が設定温度になる量まで水量サーボ13により減少させる。 Further, the required combustion amount is the heat exchange efficiency of the heat exchanger 4 obtained by multiplying the deviation between the set temperature and the water supply temperature detected by the water temperature sensor 12 by the hot water supply flow rate detected by the water amount sensor 11 at the beginning of hot water supply. It is obtained by the feed-forward method by dividing by, and then it is obtained by the feedback method based on the actual hot water supply temperature detected by the hot water temperature sensor 14. When the required combustion amount exceeds the maximum combustion amount of the burner 3 (combustion amount when the proportional valve current value Ip is set as the upper limit value), the amount of water reaches the set temperature at the maximum combustion amount of the hot water supply flow rate. It is reduced by the servo 13.

ここで、排気路21の閉塞を生ずると、ファン回転数Nfが同じでも送風量が減少して、ファン電流値が減少する。従って、コントローラ15は、ファン回転数Nfとファン電流値との相関関係から、排気路21の閉塞率を算出し、この閉塞率に応じてファン回転数Nfを補正する制御を行い、バーナ3の燃焼量に対応する量の燃焼用空気が供給されるようにする。ファン回転数Nfの補正は、具体的には、燃焼特性線に基づいて求めた回転数に補正係数を乗算することで行われる。そして、この補正係数は、例えば、排気路21の閉塞率が72%未満であれば1.0、閉塞率が72%以上、81%未満であれば1.04、閉塞率が81%以上、84%未満であれば1.08、閉塞率が84%以上、86%未満であれば1.12、閉塞率が86%以上、88%未満であれば1.16、閉塞率が88%以上、90%未満であれば1.20に設定され、閉塞率が90%以上の場合は燃焼を停止する。排気路21の閉塞率の算定方法は、上記特許文献1等で公知であるため、その説明は省略する。 Here, when the exhaust passage 21 is blocked, the amount of air blown decreases even if the fan rotation speed Nf is the same, and the fan current value decreases. Therefore, the controller 15 calculates the blockage rate of the exhaust passage 21 from the correlation between the fan rotation speed Nf and the fan current value, controls the fan rotation speed Nf to be corrected according to the blockage rate, and controls the burner 3. Make sure that the amount of combustion air corresponding to the amount of combustion is supplied. Specifically, the correction of the fan rotation speed Nf is performed by multiplying the rotation speed obtained based on the combustion characteristic line by the correction coefficient. The correction coefficient is, for example, 1.0 when the blockage rate of the exhaust passage 21 is less than 72%, 1.04 when the blockage rate is 72% or more and less than 81%, and the blockage rate is 81% or more. If it is less than 84%, it is 1.08, if the blockage rate is 84% or more and less than 86%, it is 1.12, if the blockage rate is 86% or more and less than 88%, 1.16, and the blockage rate is 88% or more. If it is less than 90%, it is set to 1.20, and if the blockage rate is 90% or more, combustion is stopped. Since the method for calculating the blockage rate of the exhaust passage 21 is known in Patent Document 1 and the like, the description thereof will be omitted.

尚、ファン先行制御を行う場合は、ファン回転数Nfの補正により、センサで検出されるファン回転数Nfが燃焼特性線で求めた回転数に補正係数を乗算した値になり、燃焼特性線上でこのファン回転数Nfに合致する比例弁電流値Ipは、要求燃焼量を得るのに必要な比例弁電流値Ipよりも大きくなってしまう。そこで、ファン回転数Nfを上記の如く補正した場合は、比例弁電流値Ipを、センサで検出されるファン回転数Nfを補正係数で除した回転数に燃焼特性線上で合致する電流値になるように制御する。これにより、バーナ3の燃焼量が要求燃焼量になるように比例弁電流値Ipが制御されることになる。 When performing fan advance control, by correcting the fan rotation speed Nf, the fan rotation speed Nf detected by the sensor becomes a value obtained by multiplying the rotation speed obtained by the combustion characteristic line by the correction coefficient, and is obtained on the combustion characteristic line. The proportional valve current value Ip corresponding to the fan speed Nf becomes larger than the proportional valve current value Ip required to obtain the required combustion amount. Therefore, when the fan rotation speed Nf is corrected as described above, the proportional valve current value Ip becomes a current value that matches the rotation speed obtained by dividing the fan rotation speed Nf detected by the sensor by the correction coefficient on the combustion characteristic line. To control. As a result, the proportional valve current value Ip is controlled so that the combustion amount of the burner 3 becomes the required combustion amount.

ところで、燃焼ファン5のブレード間に塵埃等が詰まるファン詰まりを生ずると、排気路21が閉塞した場合と同様に、ファン回転数Nfが同じでも送風量の減少でファン電流値が減少する。そして、ファン詰まりを生じた場合も、排気路21の閉塞を生じたと判断され、ファン回転数Nfを補正する制御が行われる。然し、ファン詰まりを生ずると、燃焼筐2の内圧が減少して、バーナ3からの噴出ガス量が増加し、バーナ3の実燃焼量は比例弁電流値Ipから求められる設計燃焼量よりも大きくなる。そのため、上記の如くファン回転数Nfを補正しても、燃焼用空気の供給量は、設計燃焼量に対応する量になるだけで、実燃焼量に対応する量よりも少なくなる。そして、比例弁電流値Ipが大きな領域では、実燃焼量に対する燃焼用空気の供給量の不足具合が大きくなり、不完全燃焼を生じてしまう。 By the way, when a fan is clogged with dust or the like between the blades of the combustion fan 5, the fan current value decreases due to a decrease in the amount of air blown even if the fan rotation speed Nf is the same, as in the case where the exhaust passage 21 is blocked. Then, even when the fan is clogged, it is determined that the exhaust passage 21 is blocked, and control is performed to correct the fan rotation speed Nf. However, when the fan is clogged, the internal pressure of the combustion housing 2 decreases, the amount of gas ejected from the burner 3 increases, and the actual combustion amount of the burner 3 is larger than the design combustion amount obtained from the proportional valve current value Ip. Become. Therefore, even if the fan rotation speed Nf is corrected as described above, the supply amount of combustion air is only the amount corresponding to the design combustion amount, and is smaller than the amount corresponding to the actual combustion amount. Then, in the region where the proportional valve current value Ip is large, the degree of insufficient supply of combustion air with respect to the actual combustion amount becomes large, and incomplete combustion occurs.

そこで、本実施形態では、コントローラ15により、バーナ3の燃焼中、図2に示す燃焼特性線の切換制御を行う。この制御では、先ず、STEP1でファン回転数Nfとファン電流値との相関関係から排気路21の閉塞率を算定し、次に、STEP2でこの閉塞率が所定値(例えば、30%)以上であるか否かを判別する。閉塞率が所定値以上であれば、STEP3に進んで、給湯装置の最初からの累積運転時間が1000時間以上であるか否かを判別し、1000時間以上であれば、STEP4に進んで、累積運転時間が2000時間以上であるか否かを判別する。 Therefore, in the present embodiment, the controller 15 controls the switching of the combustion characteristic line shown in FIG. 2 during the combustion of the burner 3. In this control, first, in STEP 1, the blockage rate of the exhaust passage 21 is calculated from the correlation between the fan rotation speed Nf and the fan current value, and then in STEP 2, the blockage rate is equal to or higher than a predetermined value (for example, 30%). Determine if it exists. If the blockage rate is equal to or higher than a predetermined value, the process proceeds to STEP3 to determine whether or not the cumulative operating time of the water heater from the beginning is 1000 hours or more, and if it is 1000 hours or more, the process proceeds to STEP4 and the cumulative operation time is accumulated. It is determined whether or not the operation time is 2000 hours or more.

給湯装置の累積運転時間が1000時間未満の場合は、STEP3からSTEP5に進み、燃焼特性線切換後の累積運転時間が100時間以上であるか、又は、それまでの燃焼特性線の切換回数が零であるか否かを判別する。この判別結果が「YES」であれば、STEP6に進んで、比例弁電流値Ipが上限値に近い所定電流値YIp(例えば、上限値の80%)以上であるか否かを判別する。そして、Ip≧YIpになったときに、STEP7に進んで、バーナ3の実燃焼量Qjを算出する。尚、バーナ3の実燃焼量Qjは、湯温センサ14で検出される給湯温度と水温センサ12で検出される給水温度との偏差に水量センサ11で検出される給湯流量を乗算して得られる熱交換器4での加熱量を熱交換器4の熱交換効率で除して求めることができる。 If the cumulative operating time of the water heater is less than 1000 hours, the process proceeds from STEP 3 to STEP 5, and the cumulative operating time after switching the combustion characteristic line is 100 hours or more, or the number of times the combustion characteristic line is switched is zero. It is determined whether or not it is. If the determination result is "YES", the process proceeds to STEP6, and it is determined whether or not the proportional valve current value Ip is equal to or greater than a predetermined current value YIp (for example, 80% of the upper limit value) close to the upper limit value. Then, when Ip ≧ YIp, the process proceeds to STEP7, and the actual combustion amount Qj of the burner 3 is calculated. The actual combustion amount Qj of the burner 3 is obtained by multiplying the deviation between the hot water supply temperature detected by the hot water temperature sensor 14 and the water supply temperature detected by the water temperature sensor 12 by the hot water supply flow rate detected by the water amount sensor 11. It can be obtained by dividing the amount of heat in the heat exchanger 4 by the heat exchange efficiency of the heat exchanger 4.

バーナ3の実燃焼量Qjを算出すると、次に、STEP8に進み、バーナ3の実燃焼量Qjと比例弁電流値Ipから求められるバーナ3の設計燃焼量Qsとを比較して、実燃焼量Qjの設計燃焼量Qsに対する増加割合を算出する。そして、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%未満であれば、STEP9に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、図3にLで示す基準となる燃焼特性線(基準燃焼特性線)に維持する処理を行い、STEP3に戻る。一方、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%以上、4%未満であれば、STEP10に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、ファン回転数Nfの上限値Nfmaxを変えずに比例弁電流値Ipの上限値を基準燃焼特性線Lの上限値Ipmaxよりも2%低くした図3にL1で示す第1修正燃焼特性線に切換える処理を行い、STEP3に戻る。また、実燃焼量Qjの設計燃焼量Qsに対する増加割合が4%以上あれば、STEP11に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、ファン回転数Nfの上限値Nfmaxを変えずに比例弁電流値Ipの上限値を基準燃焼特性線Lの上限値Ipmaxよりも4%低くした図3にL3で示す第3修正燃焼特性線に切換える処理を行い、STEP3に戻る。第1修正燃焼特性線L1は、基準燃焼特性線Lに比し比例弁電流値Ipに対するファン回転数Nfの変化率が大きく、第3修正燃焼特性線L3は、比例弁電流値Ipに対するファン回転数Nfの変化率が第1修正燃焼特性線L1よりも大きくなる。尚、各修正燃焼特性線において、比例弁電流値Ipの下限値Ipminとファン回転数Nfの下限値Nfminは基準燃焼特性線Lと同一である。 After calculating the actual combustion amount Qj of the burner 3, the next step is STEP8, and the actual combustion amount Qj of the burner 3 is compared with the design combustion amount Qs of the burner 3 obtained from the proportional valve current value Ip, and the actual combustion amount is compared. The rate of increase of Qj with respect to the design combustion amount Qs is calculated. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is less than 1%, the process proceeds to STEP9, and the combustion characteristic line used for controlling the fan rotation speed Nf is the reference combustion shown by L in FIG. The process of maintaining the characteristic line (reference combustion characteristic line) is performed, and the process returns to STEP3. On the other hand, if the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 1% or more and less than 4%, the process proceeds to STEP10, and the combustion characteristic line used for controlling the fan rotation speed Nf is set to the upper limit of the fan rotation speed Nf. The upper limit of the proportional valve current value Ip was set to 2% lower than the upper limit of the reference combustion characteristic line L without changing the value Nfmax. Return. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 4% or more, the process proceeds to STEP11, and the combustion characteristic line used for controlling the fan rotation speed Nf is not changed by changing the upper limit value Nfmax of the fan rotation speed Nf. The upper limit of the proportional valve current value Ip is set to be 4% lower than the upper limit Ipmax of the reference combustion characteristic line L. The process of switching to the third modified combustion characteristic line shown by L3 in FIG. 3 is performed, and the process returns to STEP3. The first modified combustion characteristic line L1 has a larger rate of change of the fan rotation speed Nf with respect to the proportional valve current value Ip than the reference combustion characteristic line L, and the third modified combustion characteristic line L3 has the fan rotation with respect to the proportional valve current value Ip. The rate of change of several Nf becomes larger than the first modified combustion characteristic line L1. In each modified combustion characteristic line, the lower limit value Ipmin of the proportional valve current value Ip and the lower limit value Nfmin of the fan rotation speed Nf are the same as the reference combustion characteristic line L.

以上の制御によれば、ファン詰まりを生じた場合、比例弁電流値Ipが上限値に近い所定電流値YIp以上で、実燃焼量Qjが設計燃焼量Qsよりも1%以上大きくなる状態、即ち、そのままでは不完全燃焼を生ずる状態になると、ファン回転数Nfの制御に用いる燃焼特性線が第1修正燃焼特性線L1に切換えられる。そして、第1修正燃焼特性線L1では、基準燃焼特性線Lと比べて同じ比例弁電流値Ipでファン回転数Nfが大きくなるため、実燃焼量Qjに対応する量の燃焼用空気が供給される。従って、ファン詰まりに起因する不完全燃焼を防止できる。更に、設計燃焼量Qsに対する実燃焼量Qjの増加割合が4%以上になると、ファン回転数Nfの制御に用いる燃焼特性線が、比例弁電流値Ipに対するファン回転数Nfの変化率がより大きな第3修正燃焼特性線L3に切換えられて、燃焼用空気の供給量の増加割合が大きくなり、不完全燃焼をより確実に防止できる。 According to the above control, when the fan is clogged, the proportional valve current value Ip is equal to or higher than the predetermined current value YIp close to the upper limit value, and the actual combustion amount Qj is 1% or more larger than the design combustion amount Qs, that is, If incomplete combustion occurs as it is, the combustion characteristic line used for controlling the fan rotation speed Nf is switched to the first modified combustion characteristic line L1. Then, in the first modified combustion characteristic line L1, the fan rotation speed Nf becomes larger at the same proportional valve current value Ip as compared with the reference combustion characteristic line L, so that an amount of combustion air corresponding to the actual combustion amount Qj is supplied. To. Therefore, incomplete combustion due to fan clogging can be prevented. Further, when the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 4% or more, the combustion characteristic line used for controlling the fan rotation speed Nf has a larger change rate of the fan rotation speed Nf with respect to the proportional valve current value Ip. By switching to the third modified combustion characteristic line L3, the rate of increase in the supply amount of combustion air becomes large, and incomplete combustion can be prevented more reliably.

給湯装置の累積運転時間が1000時間以上、2000時間未満の場合は、STEP4からSTEP12に進み、燃焼特性線切換後の累積運転時間が100時間以上であるか、又は、累積運転時間1000時間以上での燃焼特性線の切換回数が零であるか否かを判別する。この判別結果が「YES」であれば、STEP13に進んで、比例弁電流値Ipが上記所定電流値YIp以上であるか否かを判別する。そして、Ip≧YIpになったときに、STEP14でバーナ3の実燃焼量Qjを算出し、次に、STEP15でバーナ3の実燃焼量Qjと比例弁電流値Ipから求められるバーナ3の設計燃焼量Qsとを比較して、実燃焼量Qjの設計燃焼量Qsに対する増加割合を算出する。そして、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%未満であれば、STEP16に進んで、ファン回転数Nfの制御に用いる燃焼特性線を基準燃焼特性線Lに維持する処理を行い、STEP3に戻る。一方、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%以上、4%未満であれば、STEP17に進んで、ファン回転数Nfの制御に用いる燃焼特性線を第1修正燃焼特性線L1に切換える処理を行い、STEP3に戻る。また、実燃焼量Qjの設計燃焼量Qsに対する増加割合が4%以上あれば、STEP18に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、ファン回転数Nfの上限値Nfmaxを変えずに比例弁電流値Ipの上限値を基準燃焼特性線Lの上限値Ipmaxよりも5%低くした図3にL4で示す第4修正燃焼特性線に切換える処理を行い、STEP3に戻る。 If the cumulative operating time of the hot water supply device is 1000 hours or more and less than 2000 hours, proceed from STEP 4 to STEP 12, and the cumulative operating time after switching the combustion characteristic line is 100 hours or more, or the cumulative operating time is 1000 hours or more. It is determined whether or not the number of times of switching of the combustion characteristic line of is zero. If the determination result is "YES", the process proceeds to STEP13, and it is determined whether or not the proportional valve current value Ip is equal to or greater than the predetermined current value YIp. Then, when Ip ≧ YIp, the actual combustion amount Qj of the burner 3 is calculated in STEP14, and then the design combustion of the burner 3 obtained from the actual combustion amount Qj of the burner 3 and the proportional valve current value Ip in STEP15. The rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is calculated by comparing with the amount Qs. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is less than 1%, the process proceeds to STEP 16 to maintain the combustion characteristic line used for controlling the fan rotation speed Nf at the reference combustion characteristic line L. , Return to STEP3. On the other hand, if the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 1% or more and less than 4%, the process proceeds to STEP17 and the combustion characteristic line used for controlling the fan rotation speed Nf is set to the first modified combustion characteristic line L1. The process of switching to STEP3 is performed, and the process returns to STEP3. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 4% or more, the process proceeds to STEP18, and the combustion characteristic line used for controlling the fan rotation speed Nf is changed without changing the upper limit value Nfmax of the fan rotation speed Nf. The upper limit of the proportional valve current value Ip is 5% lower than the upper limit Ipmax of the reference combustion characteristic line L. The process of switching to the fourth modified combustion characteristic line shown by L4 in FIG. 3 is performed, and the process returns to STEP3.

給湯装置の累積運転時間が2000時間以上の場合は、STEP4からSTEP19に進み、燃焼特性線切換後の累積運転時間が100時間以上であるか、又は、累積運転時間2000時間以上での燃焼特性線の切換回数が零であるか否かを判別する。この判別結果が「YES」であれば、STEP20に進んで、比例弁電流値Ipが上記所定電流値YIp以上であるか否かを判別する。そして、Ip≧YIpになったときに、STEP21でバーナ3の実燃焼量Qjを算出し、次に、STEP22でバーナ3の実燃焼量Qjと比例弁電流値Ipから求められるバーナ3の設計燃焼量Qsとを比較して、実燃焼量Qjの設計燃焼量Qsに対する増加割合を算出する。そして、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%未満であれば、STEP23に進んで、ファン回転数Nfの制御に用いる燃焼特性線を基準燃焼特性線Lに維持する処理を行い、STEP3に戻る。一方、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%以上、4%未満であれば、STEP24に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、ファン回転数Nfの上限値Nfmaxを変えずに比例弁電流値Ipの上限値を基準燃焼特性線Lの上限値Ipmaxよりも3%低くした図3にL2で示す第2修正燃焼特性線L2に切換える処理を行い、STEP3に戻る。また、実燃焼量Qjの設計燃焼量Qsに対する増加割合が4%以上あれば、STEP25に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、ファン回転数Nfの上限値Nfmaxを変えずに比例弁電流値Ipの上限値を基準燃焼特性線Lの上限値Ipmaxよりも6%低くした図3にL5で示す第5修正燃焼特性線に切換える処理を行い、STEP3に戻る。 If the cumulative operation time of the hot water supply device is 2000 hours or more, proceed from STEP 4 to STEP 19, and the cumulative operation time after switching the combustion characteristic line is 100 hours or more, or the combustion characteristic line when the cumulative operation time is 2000 hours or more. It is determined whether or not the number of times of switching is zero. If the determination result is "YES", the process proceeds to STEP 20, and it is determined whether or not the proportional valve current value Ip is equal to or greater than the predetermined current value YIp. Then, when Ip ≧ YIp, the actual combustion amount Qj of the burner 3 is calculated in STEP21, and then the design combustion of the burner 3 obtained from the actual combustion amount Qj of the burner 3 and the proportional valve current value Ip in STEP22. The rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is calculated by comparing with the amount Qs. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is less than 1%, the process proceeds to STEP23 to maintain the combustion characteristic line used for controlling the fan rotation speed Nf at the reference combustion characteristic line L. , Return to STEP3. On the other hand, if the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 1% or more and less than 4%, the process proceeds to STEP24, and the combustion characteristic line used for controlling the fan rotation speed Nf is set to the upper limit of the fan rotation speed Nf. The upper limit of the proportional valve current value Ip was set to be 3% lower than the upper limit of the reference combustion characteristic line L without changing the value Nfmax. Return to. If the rate of increase of the actual combustion amount Qj with respect to the design combustion amount Qs is 4% or more, the process proceeds to STEP25, and the combustion characteristic line used for controlling the fan rotation speed Nf is not changed by changing the upper limit value Nfmax of the fan rotation speed Nf. The upper limit of the proportional valve current value Ip is 6% lower than the upper limit Ipmax of the reference combustion characteristic line L. The process of switching to the fifth modified combustion characteristic line shown by L5 in FIG. 3 is performed, and the process returns to STEP3.

ここで、給湯装置の累積運転時間が長くなると、熱交換器4が劣化して、熱交換器4の実際の熱交換効率が設計値より低下し、熱交換器4での加熱量を熱交換効率の設計値で除して求められる実燃焼量Qjは実際の値よりも低くなる。それでも、実燃焼量Qjが設計燃焼量Qsよりも大きくなるのは、ファン詰まりが進行して、バーナ3からのガス噴出量がより増加するためである。 Here, if the cumulative operating time of the hot water supply device becomes long, the heat exchanger 4 deteriorates, the actual heat exchange efficiency of the heat exchanger 4 becomes lower than the design value, and the amount of heat exchanged by the heat exchanger 4 is exchanged. The actual combustion amount Qj obtained by dividing by the design value of efficiency is lower than the actual value. Even so, the actual combustion amount Qj becomes larger than the design combustion amount Qs because the fan clogging progresses and the gas ejection amount from the burner 3 further increases.

上記の制御によれば、実燃焼量Qjの設計燃焼量Qsに対する増加割合が1%以上、4%未満の場合、累積運転時間が2000時間以上であれば、累積運転時間が2000時間未満であるときに切換えられる第1修正燃焼特性線L1よりも比例弁電流値Ipに対するファン回転数Nfの変化率が大きな第2修正燃焼特性線L2に切換えられ、更に、実燃焼量Qjの設計燃焼量Qsに対する増加割合が4%以上の場合、累積運転時間が1000時間以上、2000時間未満であれば、累積運転時間が1000時間未満であるときに切換えられる第3修正燃焼特性線L3よりも比例弁電流値Ipに対するファン回転数Nfの変化率が大きな第4修正燃焼特性線L4に切換えられ、累積運転時間が2000時間以上であれば、第4修正燃焼特性線L4よりも比例弁電流値Ipに対するファン回転数Nfの変化率が大きな第5修正燃焼特性線L5に切換えられる。このように、給湯装置の累積運転時間が長くなるほど、修正燃焼特性線の比例弁電流値Ipに対するファン回転数Nfの変化率を大きくすれば、熱交換器4の劣化に起因して、熱交換器4での加熱量から求められる実燃焼量Qjより実際の燃焼量の方が大きくなっても、この実際の燃焼量に応じた量の燃焼用空気を供給でき、不完全燃焼の防止に寄与する。 According to the above control, when the increase rate of the actual combustion amount Qj with respect to the design combustion amount Qs is 1% or more and less than 4%, and the cumulative operation time is 2000 hours or more, the cumulative operation time is less than 2000 hours. It is switched to the second modified combustion characteristic line L2 in which the rate of change of the fan speed Nf with respect to the proportional valve current value Ip is larger than that of the first modified combustion characteristic line L1 which is sometimes switched, and further, the design combustion amount Qs of the actual combustion amount Qj. If the cumulative operating time is 1000 hours or more and less than 2000 hours, the proportional valve current is larger than the third modified combustion characteristic line L3, which is switched when the cumulative operating time is less than 1000 hours. If the rate of change of the fan speed Nf with respect to the value Ip is switched to the fourth modified combustion characteristic line L4 and the cumulative operating time is 2000 hours or more, the fan with respect to the proportional valve current value Ip is higher than the fourth modified combustion characteristic line L4. It is switched to the fifth modified combustion characteristic line L5 in which the rate of change of the rotation speed Nf is large. In this way, if the rate of change of the fan rotation speed Nf with respect to the proportional valve current value Ip of the modified combustion characteristic line increases as the cumulative operating time of the hot water supply device increases, heat exchange occurs due to deterioration of the heat exchanger 4. Even if the actual combustion amount is larger than the actual combustion amount Qj obtained from the heating amount in the vessel 4, the amount of combustion air corresponding to the actual combustion amount can be supplied, which contributes to the prevention of incomplete combustion. To do.

尚、各STEP6,13,20でIp<YIpと判別されたときは、各STEP26,27,28に進んで、ファン回転数Nfの制御に用いる燃焼特性線を、前回の切換え前の燃焼特性線(例えば、前回、基準燃焼特性線Lから第1修正燃焼特性線L1に切換えたのであれば基準燃焼特性線L)に切換える処理を行い、各STEP6,13,20に戻る。また、上述したSTEP10,11,17,18,24,25やSTEP26,27,28における燃焼特性線の切換えは、徐々に行う。更に、何れかの修正燃焼特性線への切換えが行われている状態で、排気路21の閉塞率が72%以上になったときは、修正燃焼特性線に基づいて求めた回転数に上述した補正係数を乗算してファン回転数Nfを補正する。 When it is determined that Ip <YIp in each STEP 6, 13, 20, proceed to each STEP 26, 27, 28, and the combustion characteristic line used for controlling the fan rotation speed Nf is changed to the combustion characteristic line before the previous switching. (For example, if the reference combustion characteristic line L was switched to the first modified combustion characteristic line L1 last time, the reference combustion characteristic line L) is performed, and the process returns to STEPs 6, 13 and 20, respectively. Further, the combustion characteristic lines in STEP10, 11, 17, 18, 24, 25 and STEP 26, 27, 28 described above are gradually switched. Further, when the blockage rate of the exhaust passage 21 becomes 72% or more in a state where the switching to any of the modified combustion characteristic lines is performed, the rotation speed obtained based on the modified combustion characteristic line is described above. The fan speed Nf is corrected by multiplying the correction coefficient.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the present invention.

2…燃焼筐、21…排気路、3…バーナ、4…熱交換器、5…燃焼ファン、6…ガス供給路、8…比例弁、Nf…ファン回転数、Ip…比例弁電流値、L…基準燃焼特性線、L1〜L5…修正燃焼特性線。
2 ... Combustion box, 21 ... Exhaust path, 3 ... Burner, 4 ... Heat exchanger, 5 ... Combustion fan, 6 ... Gas supply path, 8 ... Proportional valve, Nf ... Fan rotation speed, Ip ... Proportional valve current value, L ... Reference combustion characteristic line, L1 to L5 ... Corrected combustion characteristic line.

Claims (3)

燃焼筐と、燃焼筐内に設けられたバーナと、燃焼筐内に設けられた、バーナでの燃焼により生ずる燃焼ガスにより加熱される給湯用の熱交換器と、燃焼筐に連通し、熱交換器を通過した燃焼ガスを排出する排気路と、燃焼筐内に燃焼用空気を供給する燃焼ファンと、バーナへのガス供給路に介設された比例弁とを備える給湯装置であって、
燃焼ファンの回転数をファン回転数、燃焼ファンへの通電電流値をファン電流値、比例弁への通電電流値を比例弁電流値として、バーナの燃焼量が給湯温度を所定の設定温度にする燃焼量になるように比例弁電流値を制御すると共に、バーナで正常燃焼するように予め定められた比例弁電流値とファン回転数との相関関係を表す燃焼特性線に基づいてファン回転数を制御し、更に、ファン回転数とファン電流値との相関関係から算定された排気路の閉塞率に応じてファン回転数を補正する制御を行うものにおいて、
算定された排気路の閉塞率が所定値以上で、且つ、比例弁電流値が上限値に近い所定電流値以上であるときに、熱交換器での加熱量から求められるバーナの実燃焼量と比例弁電流値から求められるバーナの設計燃焼量とを比較して、実燃焼量が設計燃焼量よりも所定割合以上大きい場合に、ファン回転数の制御に用いる燃焼特性線を、基準となる燃焼特性線よりも比例弁電流値に対するファン回転数の変化率が大きく設定された修正燃焼特性線に切換えることを特徴とする給湯装置。
The combustion case, the burner provided in the combustion case, the heat exchanger for hot water supply heated by the combustion gas generated by the combustion in the burner provided in the combustion case, and the heat exchange by communicating with the combustion case. A hot water supply device including an exhaust passage for discharging combustion gas that has passed through the vessel, a combustion fan for supplying combustion air into the combustion casing, and a proportional valve provided in the gas supply passage to the burner.
The combustion amount of the burner sets the hot water supply temperature to a predetermined set temperature, with the combustion fan rotation speed as the fan rotation speed, the energizing current value for the combustion fan as the fan current value, and the energizing current value for the proportional valve as the proportional valve current value. The proportional valve current value is controlled so as to be the amount of combustion, and the fan rotation speed is set based on the combustion characteristic line showing the correlation between the proportional valve current value and the fan rotation speed, which are predetermined so as to normally burn with the burner. In the control, the fan rotation speed is corrected according to the blockage rate of the exhaust passage calculated from the correlation between the fan rotation speed and the fan current value.
When the calculated exhaust passage blockage rate is equal to or higher than the predetermined value and the proportional valve current value is equal to or higher than the predetermined current value close to the upper limit value, the actual combustion amount of the burner obtained from the heating amount in the heat exchanger Comparing with the design combustion amount of the burner obtained from the proportional valve current value, when the actual combustion amount is larger than the design combustion amount by a predetermined ratio or more, the combustion characteristic line used for controlling the fan rotation speed is used as the reference combustion. A hot water supply device characterized by switching to a modified combustion characteristic line in which the rate of change of the fan rotation speed with respect to the proportional valve current value is set larger than that of the characteristic line.
前記設計燃焼量に対する前記実燃焼量の増加割合が大きくなるほど、前記修正燃焼特性線の比例弁電流値に対するファン回転数の変化率を大きくすることを特徴とする請求項1記載の給湯装置。 The hot water supply device according to claim 1, wherein the rate of change of the fan rotation speed with respect to the proportional valve current value of the modified combustion characteristic line increases as the rate of increase of the actual combustion amount with respect to the design combustion amount increases. 給湯装置の累積運転時間が長くなるほど、前記修正燃焼特性線の比例弁電流値に対するファン回転数の変化率を大きくすることを特徴とする請求項1又は2記載の給湯装置。
The hot water supply device according to claim 1 or 2, wherein the longer the cumulative operating time of the hot water supply device is, the larger the rate of change of the fan rotation speed with respect to the proportional valve current value of the modified combustion characteristic line.
JP2019220105A 2019-12-05 2019-12-05 Water heater Pending JP2021089110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220105A JP2021089110A (en) 2019-12-05 2019-12-05 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220105A JP2021089110A (en) 2019-12-05 2019-12-05 Water heater

Publications (1)

Publication Number Publication Date
JP2021089110A true JP2021089110A (en) 2021-06-10

Family

ID=76219965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220105A Pending JP2021089110A (en) 2019-12-05 2019-12-05 Water heater

Country Status (1)

Country Link
JP (1) JP2021089110A (en)

Similar Documents

Publication Publication Date Title
KR100731771B1 (en) Combustion equipment
JP2021089110A (en) Water heater
JP6815225B2 (en) Combustion device
JP6661384B2 (en) Water heater
JP4194228B2 (en) Combustion control device for all primary combustion burners
JP4665842B2 (en) Turbine bypass valve control system and apparatus
JP2870436B2 (en) Combustion equipment
JP6085965B2 (en) Water heater
JP2007278610A (en) Control method for gas water heater, and gas water heater for carrying out the control method
JPH07180904A (en) Hot water-supplying apparatus
JP2012525317A (en) System and method for controlling temperature in forefurnace
JP2016057045A (en) Combustion device
JP4106148B2 (en) Combustion device
JP3153438B2 (en) Hot air heater
JP3642118B2 (en) Water heater
JP3837142B2 (en) Water heater
JP3289515B2 (en) How to determine the combustion state of a water heater
JP3531443B2 (en) Combustion equipment
JP3291104B2 (en) Combustion device and combustion capacity updating operation method thereof
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JP6851152B2 (en) Heating device
JP2021060128A (en) Combustion device
JP3848761B2 (en) Water heater
JP2020020487A (en) Water heater
JP3471107B2 (en) Control method of combustion device with proportional valve