JP2021088499A - Coated granular chemicals for agriculture, forestry and horticulture - Google Patents

Coated granular chemicals for agriculture, forestry and horticulture Download PDF

Info

Publication number
JP2021088499A
JP2021088499A JP2020011321A JP2020011321A JP2021088499A JP 2021088499 A JP2021088499 A JP 2021088499A JP 2020011321 A JP2020011321 A JP 2020011321A JP 2020011321 A JP2020011321 A JP 2020011321A JP 2021088499 A JP2021088499 A JP 2021088499A
Authority
JP
Japan
Prior art keywords
forestry
agriculture
temperature
resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020011321A
Other languages
Japanese (ja)
Other versions
JP7419083B2 (en
Inventor
嘉晃 福山
Yoshiaki Fukuyama
嘉晃 福山
佑弥 田中
Yuya Tanaka
佑弥 田中
恭兵 飛永
Kyohei Tobinaga
恭兵 飛永
健造 佐伯
Kenzo Saeki
健造 佐伯
真澄 上田
Masumi Ueda
真澄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2021088499A publication Critical patent/JP2021088499A/en
Application granted granted Critical
Publication of JP7419083B2 publication Critical patent/JP7419083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Fertilizers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide a coated granular chemical for agriculture, forestry and horticulture, the coating layer of which is less likely to be destroyed even if it becomes dry after absorption of water and release of the chemical, and the effect of the chemical such as plant growth can last for a longer period of time without being affected by the weather.SOLUTION: A coated granular chemical for agriculture, forestry and horticulture having a coating layer covering at least a part of the surface of the granule (P0), wherein the coating layer comprises a bioactive substance (E) and a temperature-responsive crosslinked resin particles (A), the lower critical solution temperature to water of the crosslinked resin being 10-40°C.SELECTED DRAWING: None

Description

本発明は表面を樹脂組成物で被覆された被覆型農林園芸用粒状薬剤に関する。 The present invention relates to a coated type agricultural, forestry and horticultural granular drug whose surface is coated with a resin composition.

肥料及び被覆等の農林園芸に用いる粒状薬剤は農地等に散布して用いられている。そして薬剤の効果を高めることを目的として、樹脂等の被覆剤で被覆して薬剤の溶出挙動を調整することが行われている。例えば、溶出後期における溶出速度が大きく、さらに溶出初期の溶出速度が向上した被覆粒状肥料として、特定のポリオール成分とイソシアネート成分からなるウレタン樹脂と高吸水性樹脂であるポリアクリル酸Naからなる粒子とで被覆した被覆粒状肥料が知られている(特許文献1)。 Granular chemicals used for agriculture, forestry and horticulture such as fertilizers and coatings are sprayed on agricultural land and the like. Then, for the purpose of enhancing the effect of the drug, the elution behavior of the drug is adjusted by coating with a coating agent such as a resin. For example, as a coated granular fertilizer having a high elution rate in the late elution stage and an improved elution rate in the early stage of elution, a urethane resin composed of a specific polyol component and an isocyanate component, and particles composed of sodium polyacrylate which is a highly water-absorbent resin. A coated granular fertilizer coated with is known (Patent Document 1).

特許文献1に記載の被覆粒状肥料が有する被覆層に含まれる高吸水性樹脂は、水を吸水して肥料の溶解と溶出を促進する機能を有する。しかし吸水すると膨張してその体積が大きく変化するために吸水後に乾燥すると溶出挙動の調整を担う被覆層が破壊されてしまうことがあった。そのため、散布後の雨天等の天候の影響を受けやすく、長期間にわたって植物育成等の薬剤の効果を発揮させることが困難であるという課題を有していた。 The highly water-absorbent resin contained in the coating layer of the coated granular fertilizer described in Patent Document 1 has a function of absorbing water to promote dissolution and elution of the fertilizer. However, when it absorbs water, it expands and its volume changes significantly. Therefore, when it dries after absorbing water, the coating layer responsible for adjusting the elution behavior may be destroyed. Therefore, there is a problem that it is easily affected by the weather such as rainy weather after spraying, and it is difficult to exert the effect of the chemicals such as plant growth for a long period of time.

特開2010−202482号公報Japanese Unexamined Patent Publication No. 2010-20482

本発明は、一度吸水して薬剤を放出した後に乾燥状態となっても被覆層の破壊が起こりにくく、天候等の影響を受けずに長期間にわたって植物育成等の効果を発揮させることが可能な被覆型農林園芸用粒状薬剤を提供することを目的とする。 INDUSTRIAL APPLICABILITY According to the present invention, even if the coating layer is not easily destroyed even if it becomes dry after absorbing water once and releasing the chemical, it is possible to exert the effect of growing plants for a long period of time without being affected by the weather or the like. An object of the present invention is to provide a coated granular chemical for agriculture, forestry and horticulture.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。すなわち、本発明は生物活性物質(E)を含む粒子(P0)の粒子表面の少なくとも一部を被覆する被覆層を有する被覆型農林園芸用粒状薬剤であり、前記被覆層が、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂粒子(A)と被覆樹脂(C)とを含む被覆型農林園芸用粒状薬剤である。 The present inventors have arrived at the present invention as a result of studies for achieving the above object. That is, the present invention is a coated agricultural, forestry and gardening granular drug having a coating layer that covers at least a part of the particle surface of the particles (P0) containing the bioactive substance (E), and the coating layer is the lower limit criticality with respect to water. It is a coated granular chemical for agriculture, forestry and gardening containing temperature-responsive crosslinked resin particles (A) and a coating resin (C) having a solution temperature of 10 to 40 ° C.

本発明によれば、一度吸水して薬剤の放出が始まった後に再び乾燥状態になっても被覆層の破壊が起こりにくく、長期間にわたって溶出速度の調整が可能な被覆型農林園芸用粒状薬剤を提供することができる。 According to the present invention, a coated type agricultural, forestry and horticultural granular drug capable of adjusting the elution rate over a long period of time, in which the coating layer is less likely to be destroyed even if the coating layer becomes dry again after water absorption has started and the release of the drug has started. Can be provided.

本発明の被覆型農林園芸用粒状薬剤は、生物活性物質(E)を含む粒子(P0)の粒子表面の少なくとも一部を被覆する被覆層を有する被覆型農林園芸用粒状薬剤であり、前記被覆層が、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂粒子(A)と被覆樹脂(C)とを含む被覆型農林園芸用粒状薬剤である。 The coated granular agent for agriculture, forestry and horticulture of the present invention is a coated granular agent for agriculture, forestry and horticulture having a coating layer that covers at least a part of the particle surface of the particles (P0) containing the bioactive substance (E). The layer is a coated agricultural, forestry and horticultural granular chemical containing temperature-responsive crosslinked resin particles (A) and a coating resin (C) having a lower limit critical solution temperature of 10 to 40 ° C. with respect to water.

生物活性物質(E)は、ある生体(菌類、動物及び植物等を含む)に対して作用を奏する物質を意味し、農業、林業及び園芸用に用いられる薬剤の有効成分等が含まれる。農業、林業及び園芸用に用いられる薬剤には、農作物や有用植物などの植物体の育成、保護の目的で用いられ、肥料及び農薬等として使用される公知の粒状薬剤が含まれる。 The bioactive substance (E) means a substance that acts on a certain living body (including fungi, animals, plants, etc.), and includes an active ingredient of a drug used for agriculture, forestry, and horticulture. Chemicals used for agriculture, forestry and horticulture include known granular chemicals used for the purpose of growing and protecting plants such as agricultural crops and useful plants, and used as fertilizers and pesticides.

生物活性物質(E)としては、生物に対して活性を有する物質であれば限定はないが、粒子(P0)が植物体の育成を目的とする薬剤(肥料等)である場合には、公知の肥料に含まれる活性物質があげられ、具体的なものとしては、植物必須元素(カルシウム、マグネシウム、硫黄、鉄、微量要素及びケイ素等)、窒素質肥料に含まれる生物活性物質(硫酸アンモニア、尿素、硝酸アンモニア、イソブチルアルデヒド縮合尿素及びアセトアルデヒド縮合尿素等)、燐酸質肥料に含まれる生物活性物質(過燐酸石灰、熔成リン肥及び焼成リン肥等)、及び加里質肥料に含まれる生物活性物質(硫酸加里、塩化加里及びけい酸加里等)等があげられる。 The biologically active substance (E) is not limited as long as it is a substance having activity on living organisms, but is known when the particles (P0) are chemicals (fertilizers, etc.) for the purpose of growing plants. Examples of active substances contained in fertilizers include plant essential elements (calcium, magnesium, sulfur, iron, trace elements and silicon, etc.) and bioactive substances contained in nitrogenous fertilizers (ammonia sulfate, Urea, ammonia nitrate, isobutylaldehyde condensed urea, acetaldehyde condensed urea, etc.), bioactive substances contained in phosphoric acid fertilizers (lime perphosphate, molten phosphorus fertilizer, calcined phosphorus fertilizer, etc.), and bioactivity contained in caliper fertilizer. Examples include substances (kari sulfate, kari chloride, kari silicate, etc.).

粒子(P0)が植物の保護を目的とする薬剤(農薬、忌避剤及び除草剤等)である場合には、生物活性物質(E)としては、病害防除剤、害虫防除剤、有害動物防除剤、雑草防除剤及び植物生長調節剤等の公知の農薬等に含まれる生物活性物質があげられる。なお、病害防除剤とは病原微生物の有害作用から農作物等を保護するために用いられる薬剤であり、主として殺菌剤が挙げられる。害虫防除剤とは農作物等を加害する害虫を防除する薬剤であり、主として殺虫剤が挙げられる。有害動物防除剤とは農作物等を加害する植物寄生性ダニ、植物寄生性線虫、野鼠、鳥、その他の有害動物を防除するために用いる薬剤である。雑草防除剤とは農作物や樹木等に有害となる草木植物の防除に用いられる薬剤であり、除草剤とも呼ばれる。植物生長調節剤とは植物の生理機能の増進あるいは抑制を目的に用いられる薬剤であり、バイオスティミュラントとも呼ばれている。 When the particles (P0) are chemicals (pesticides, repellents, herbicides, etc.) for the purpose of protecting plants, the bioactive substances (E) include disease control agents, pest control agents, and pest control agents. , Bioactive substances contained in known pesticides such as weed control agents and plant growth regulators. The disease control agent is a drug used to protect crops and the like from the harmful effects of pathogenic microorganisms, and mainly includes fungicides. The pest control agent is an agent that controls pests that harm crops and the like, and mainly includes pesticides. Pest control agents are agents used to control plant-parasitic mites, plant-parasitic nematodes, wild rats, birds, and other harmful animals that damage crops and the like. Weed control agents are chemicals used to control plants and plants that are harmful to crops and trees, and are also called herbicides. A plant growth regulator is a drug used for the purpose of enhancing or suppressing the physiological function of a plant, and is also called a biostimulant.

前記の農薬等に含まれる生物活性物質(E)としては、1−(6−クロロ−3−ピリジルメチル)−N−ニトロイミダゾリジン−2−イリデンアミン(一般名:イミダクロプリド)、o,o−ジエチル−S−2−(エチルチオ)エチルホスホロジチオエート(一般名:エチルチオメトン)、2,3−ジヒドロ−2,2−ジメチル−7−ベンゾ〔b〕フラニル=N−ジブチルアミノチオ−N−メチルカルバマート(一般名:カルボスルファン)、(E)−N−(6−クロロ−3−ピリジルメチル)−N−エチル−N´−メチル−2−ニトロビニリデンジアミン(一般名:ニテンピラム)、(±)−5−アミノ−(2,6−ジクロロ−α,α,α−トリフルオロ−p−トルイル)−4−トリフルオロメチルスルフィニルピラゾール−3−カルボニトリル(一般名:フィプロニル)、ブチル=2,3−ジヒドロ−2,2−ジメチルベンゾフラン−7−イル=N,N´−ジメチル−N,N´−チオジカルバマート(一般名:フラチオカルブ)、エチル=N−〔2,3−ジヒドロ−2,2−ジメチルベンゾフラン−7−イルオキシカルボニル(メチル)アミノチオ〕−N−イソプロピル−β−アラニナート(一般名:ベンフラカルブ)、1−ナフチル−N−メチルカーバメート(一般名:NAC)、(1RS,3SR)−2,2−ジクロロ−N−[1−(4−クロロフェニル)エチル]−1−エチル−3−メチルシクロプロパンカルボキサミド(一般名:カルプロパミド)、(RS)−2−シアノ−N−[(R)−1−(2,4−ジクロロフェニル)エチル]−3,3−ジメチルブチラミド(一般名:ジクロシメット)、5−メチル−1,2,4−トリアゾロ〔3,4−b〕ベンゾチアゾール(一般名:トリシクラゾール)、1,2,5,6−テトラヒドロピロロ〔3,2,1−ij〕キノリン−4−オン(一般名:ピロキロン)、(RS)−5−クロロ−N−(1,3−ジヒドロ−1,1,3−トリメチルイソベンゾフラン−4−イル)−1,3−ジメチルピラゾール−4−カルボキサミド(一般名:フラメトピル)、3−アリルオキシ−1,2−ベンゾイソチアゾール−1,1−ジオキシド(一般名:プロベナゾール)、2−クロロ−4−エチルアミノ−6−イソプロピルアミノ−s−トリアジン(一般名:アトラジン)、1−(2−クロロイミダゾ[1,2−a]ピリジン−3−イルスルホニル)−3−(4,6−ジメトキシピリミジン−2−イル尿素(一般名:イマゾスルフロン)、S−ベンジル=1,2−ジメチルプロピル(エチル)チオカルバマート(一般名:エスプロカルブ)、エチル=(RS)−2−[4−(6−クロロキノキサリン−2−イルオキシ)フェノキシ]プロピオナート(一般名:キザロホップブチル)、ブチル=(R)−2−[4−(4−シアノ−2−フルオノフェノキシ)フェノキシ]プロピオナート(一般名:シハロホップブチル)、2−メチルチオ−4−エチルアミノ−6−(1,2−ジメチルプロピルアミノ)−s−トリアジン(一般名:ジメタメトリン)、2−メチルチオ−4,6−ビス(エチルアミノ)−s−トリアジン(一般名:シメトリン)、1−(α,α−ジメチルベンジル)−3−(パラトリル)尿素(一般名:ダイムロン)、2−クロロ−N−(3−メトキシ−2−テニル)−2´,6´−ジメチルアセトアニリド(一般名:テニルクロール)、α−(2−ナフトキシ)プロピオンアニリド(一般名:ナプロアニリド)、メチル=3−クロロ−5−(4,6−ジメトキシピリミジン−2−イルカルバモイルスルファモイル)−1−メチルピラゾール−4−カルボキシラート(一般名:ハロスルフロンメチル)、エチル=5−(4,6−ジメトキシピリミジン−2−イルカルバモイルスルファモイル)−1−メチルピラゾール−4−カルボキシラート(一般名:ピラゾスルフロンエチル)、S−(4−クロロベンジル)−N,N−ジエチルチオカーバメート(一般名:ベンチオカーブ)、メチル=α−(4,6−ジメトキシピリミジン−2−イルカルバモイルスルファモイル)−o−トルアート(一般名:ベンスルフロンメチル)、2−ベンゾチアゾール−2−イルオキシ−N−メチルアセトアニリド(一般名:メフェナセット)等があげられる。 Examples of the bioactive substance (E) contained in the pesticides and the like include 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidine-2-iridenamine (generic name: imidacloprid), o, o-diethyl-S. -2- (Ethylthio) Ethylphosphologithioate (generic name: ethylthiomethone), 2,3-dihydro-2,2-dimethyl-7-benzo [b] furanyl = N-dibutylaminothio-N-methylcarbamate ( Generic name: Carbosulfan), (E) -N- (6-chloro-3-pyridylmethyl) -N-ethyl-N'-methyl-2-nitrovinylidenediamine (generic name: nitempirum), (±)- 5-Amino- (2,6-dichloro-α, α, α-trifluoro-p-toluyl) -4-trifluoromethylsulfinylpyrazole-3-carbonitrile (generic name: fipronyl), butyl = 2,3- Dihydro-2,2-dimethylbenzofuran-7-yl = N, N'-dimethyl-N, N'-thiodicarbamate (generic name: fratiocarb), ethyl = N- [2,3-dihydro-2,2 -Dimethylbenzofuran-7-yloxycarbonyl (methyl) aminothio] -N-isopropyl-β-alaninate (generic name: benfracarb), 1-naphthyl-N-methylcarbamate (generic name: NAC), (1RS, 3SR)- 2,2-Dichloro-N- [1- (4-chlorophenyl) ethyl] -1-ethyl-3-methylcyclopropanecarboxamide (generic name: carpropamide), (RS) -2-cyano-N-[(R) -1- (2,4-dichlorophenyl) ethyl] -3,3-dimethylbutyramide (generic name: diclosimet), 5-methyl-1,2,4-triazolo [3,4-b] benzothiazole (generic name) : Tricyclazole), 1,2,5,6-tetrahydropyrro [3,2,1-ij] quinoline-4-one (generic name: pyroquilon), (RS) -5-chloro-N- (1,3-) Dihydro-1,1,3-trimethylisobenzofuran-4-yl) -1,3-dimethylpyrazole-4-carboxamide (generic name: flametopyl), 3-allyloxy-1,2-benzoisothiazole-1,1- Dioxide (generic name: probenazole), 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (generic name: atrazin), 1- (2-chloroimidazole [1,2-a] pyridine-3-3 Ilsulfonyl) -3- (4,6-dimethoxypi) Limidin-2-ylurea (generic name: imazosulfuron), S-benzyl = 1,2-dimethylpropyl (ethyl) thiocarbamate (generic name: esprocarb), ethyl = (RS) -2- [4- (6- (6-) Chloroquinoxalin-2-yloxy) phenoxy] propionate (generic name: xarohopbutyl), butyl = (R) -2- [4- (4-cyano-2-fluorophenoxy) phenoxy] propionate (generic name: si) Halohopbutyl), 2-methylthio-4-ethylamino-6- (1,2-dimethylpropylamino) -s-triazine (generic name: dimetamethrin), 2-methylthio-4,6-bis (ethylamino)- s-triazine (generic name: simethrin), 1- (α, α-dimethylbenzyl) -3- (paratril) urea (generic name: dimulon), 2-chloro-N- (3-methoxy-2-thenyl)- 2', 6'-dimethylacetanilide (generic name: tenylchlor), α- (2-naphthoxy) propionanilide (generic name: naproanilide), methyl = 3-chloro-5- (4,6-dimethoxypyrimidine-2-i) Lucarbamoyl sulfamoyl) -1-methylpyrazole-4-carboxylate (generic name: halosulfuron-methyl), ethyl = 5- (4,6-dimethoxypyrimidine-2-ylcarbamoyl sulfamoyl) -1-methylpyrazole- 4-carboxylate (generic name: pyrazosulfuron ethyl), S- (4-chlorobenzyl) -N, N-diethylthiocarbamate (generic name: ventiocurve), methyl = α- (4,6-dimethoxypyrimidine-2) -Ilcarbamoyl sulfamoyl) -o-toluart (generic name: benzulfone methyl), 2-benzothiazole-2-yloxy-N-methylacetanilide (generic name: mephenacet) and the like can be mentioned.

粒子(P0)が含む生物活性物質(E)としては1種だけを用いても、2種以上の成分を併用しても良く、2種以上を併用する場合には、肥料に含まれる生物活性物質(E)と農薬に含まれる生物活性物質(E)とを併用しても良い。 As the biologically active substance (E) contained in the particles (P0), only one kind may be used, or two or more kinds of components may be used in combination, and when two or more kinds are used in combination, the biological activity contained in the fertilizer The substance (E) and the bioactive substance (E) contained in the pesticide may be used in combination.

生物活性物質(E)を含む粒子(P0)の粒子径は特に限定されるものではないが、個数平均粒子径が0.3〜15mmであることが好ましい。
なかでも本発明の被覆型農林園芸用粒状薬剤を肥料として用いる場合には、発塵の少なさ等の取り扱い性等の観点から1.0〜11.0mmであることが好ましく、農薬として用いる場合には発塵の少なさ等の取り扱い性等の観点から0.3〜3.0mmであることが好ましい。
粒子(P0)の個数平均粒子径は、JIS 8827−1に準じて、生物活性物質(E)の粒子をデジタルマイクロスコープ(例えば、キーエンス社製、VHX−200)で観察して画像処理することにより測定することができる。
The particle size of the particles (P0) containing the bioactive substance (E) is not particularly limited, but the number average particle size is preferably 0.3 to 15 mm.
Among them, when the coated granular chemical for agriculture, forestry and horticulture of the present invention is used as a fertilizer, it is preferably 1.0 to 11.0 mm from the viewpoint of handleability such as less dust generation, and when it is used as a pesticide. It is preferably 0.3 to 3.0 mm from the viewpoint of handleability such as less dust generation.
The number average particle size of the particles (P0) is determined by observing the particles of the bioactive substance (E) with a digital microscope (for example, VHX-200 manufactured by KEYENCE CORPORATION) and performing image processing according to JIS 8827-1. Can be measured by.

生物活性物質(E)を含む粒子(P0)は、常温(好ましくは5〜40℃)において固体粒状であることが好ましい。また、本発明においては、粒子(P0)は水溶性であっても、水難溶性であっても、水不溶性のものであっても用いることができる。 The particles (P0) containing the bioactive substance (E) are preferably solid particles at room temperature (preferably 5 to 40 ° C.). Further, in the present invention, the particles (P0) can be used regardless of whether they are water-soluble, poorly water-soluble, or water-insoluble.

生物活性物質(E)を含む粒子(P0)としては、生物活性物質(E)の単一結晶、粒状に成形した生物活性物質(E)及び固化した生物活性物質(E)の粉砕物等を用いることが出来る。 Examples of the particles (P0) containing the bioactive substance (E) include a single crystal of the bioactive substance (E), a granularly formed bioactive substance (E), and a pulverized product of the solidified bioactive substance (E). Can be used.

生物活性物質(E)を含む粒子(P0)としては、前記生物活性物質(E)と無機微粒子や結着樹脂等とで造粒した粒子を用いることができる。前記生物活性物質(E)と無機微粒子や結着樹脂等とで造粒した粒子としては、生物活性物質(E)の粒子同士を結着樹脂で結着して造粒した粒子、及び生物活性物質(E)を吸着させた無機微粒子を結着樹脂で結着して造粒した粒子等を用いることができる。 As the particles (P0) containing the bioactive substance (E), particles granulated from the bioactive substance (E) and inorganic fine particles, a binder resin, or the like can be used. The particles granulated by the bioactive substance (E) and the inorganic fine particles, the binder resin, or the like include the particles obtained by binding the particles of the bioactive substance (E) with the binder resin and granulating, and the biological activity. Particles obtained by binding inorganic fine particles to which the substance (E) is adsorbed with a binder resin and granulating can be used.

粒子(P0)が造粒した粒子である場合、無機微粒子としてはクレー、カオリン、タルク、ベントナイト及び炭酸カルシウム等を用いることができ、結着樹脂としてはポリビニルアルコール、カルボキシメチルセルロースナトリウム及び澱粉等を用いることができる。また、造粒粒子にはポリオキシエチレンノニルフェニルエーテル等の界面活性剤や廃糖蜜、動物油、植物油、水素添加油、脂肪酸、脂肪酸金属塩、パラフィン、ワックス及びグリセリンなどの公知の添加物が含まれても良い。 When the particles (P0) are granulated particles, clay, kaolin, talc, bentonite, calcium carbonate and the like can be used as the inorganic fine particles, and polyvinyl alcohol, sodium carboxymethyl cellulose, starch and the like can be used as the binder resin. be able to. In addition, the granulated particles include surfactants such as polyoxyethylene nonylphenyl ether and known additives such as waste sugar honey, animal oil, vegetable oil, hydrogenated oil, fatty acid, fatty acid metal salt, paraffin, wax and glycerin. May be.

本発明の覆型農林園芸用粒状薬剤は、生物活性物質(E)を含む粒子(P0)の粒子表面の少なくとも一部に被覆層を有する。被覆層を有することは後述する被覆型農林園芸用粒状薬剤の製造方法において説明する方法で確認することができる。 The covered agricultural, forestry and horticultural granular drug of the present invention has a coating layer on at least a part of the particle surface of the particles (P0) containing the bioactive substance (E). Having a coating layer can be confirmed by the method described in the method for producing a coated granular chemical for agriculture, forestry and horticulture, which will be described later.

本発明の被覆型農林園芸用粒状薬剤が有する被覆層は、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂粒子(A)を含み、前記の温度応答性樹脂粒子(A)は、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂からなる粒子である。
温度応答性樹脂とは、温度変化により水に対する溶解性が劇的に変化する樹脂であり、なかでも架橋構造を持たず、かつ下限臨界溶液濃度(LCSTともいう)を有する樹脂である場合にはLCSTよりも低い温度では水に溶解するが、温度がLCSTまで上昇すると水に対して不溶化して析出するという性質を有する。このようなLCSTを境に溶解状態から不溶化状態に変化する温度応答性樹脂の構成単量体を架橋剤と共重合して得られる架橋樹脂は、LCSTより低い温度では吸水して膨潤してハイドロゲルを形成し、ハイドロゲルをLCSTより高い温度にすると吸水していた水を排出(脱水ともいう)する性質を発現する。このように、LCSTを境に状態が変化するハイドロゲルを感温性ハイドロゲルという。
本発明で用いる「LCSTが10〜40度℃である温度応答性架橋樹脂粒子(A)」とは、10〜40℃にあるLCSTを境に含水状態から脱水状態(又は脱水状態から含水状態)に状態変化するハイドロゲルを形成する架橋樹脂からなる粒子である。
The coating layer contained in the coated granular chemicals for agriculture, forestry and gardening of the present invention contains the temperature-responsive crosslinked resin particles (A) having a lower limit critical solution temperature with respect to water of 10 to 40 ° C., and the temperature-responsive resin particles (A). ) Are particles made of a temperature-responsive crosslinked resin having a lower limit critical solution temperature of 10 to 40 ° C. with respect to water.
The temperature-responsive resin is a resin whose solubility in water changes dramatically due to a temperature change, and in particular, when it is a resin having no crosslinked structure and having a lower limit critical solution concentration (also referred to as LCST). It dissolves in water at a temperature lower than LCST, but has the property of becoming insoluble in water and precipitating when the temperature rises to LCST. The crosslinked resin obtained by copolymerizing a constituent monomer of a temperature-responsive resin that changes from a dissolved state to an insolubilized state with a crosslinking agent at a temperature lower than LCST absorbs water and swells to hydro. When a gel is formed and the temperature of the hydrogel is higher than that of LCST, the property of discharging (also referred to as dehydration) the absorbed water is exhibited. A hydrogel whose state changes at the boundary of LCST in this way is called a temperature-sensitive hydrogel.
The "temperature-responsive crosslinked resin particles (A) having an LCST of 10 to 40 ° C." used in the present invention are defined as a water-containing state to a dehydrated state (or a dehydrated state to a water-containing state) with the LCST at 10 to 40 ° C. as a boundary. It is a particle made of a crosslinked resin that forms a hydrogel that changes its state.

本発明の被覆型農林園芸用粒状薬剤は水を吸収して感温性ハイドロゲルを形成する温度応答性架橋樹脂粒子(A)を被覆層に含むため、LCSTより低い温度では水を吸水することで生物活性物質(E)の溶解と溶出を促進する機能を有する。それだけではなく、一度吸水した後に乾燥状態になった場合に被覆層を破壊することがないため、長期間にわたって植物育成等の効果を発揮させることが可能な被覆型農林園芸用粒状薬剤となる。 Since the coated granular chemical for agriculture, forestry and horticulture of the present invention contains the temperature-responsive crosslinked resin particles (A) that absorb water to form a temperature-sensitive hydrogel in the coating layer, it absorbs water at a temperature lower than LCST. Has a function of promoting dissolution and elution of the bioactive substance (E). Not only that, the coating layer is not destroyed when it becomes dry after absorbing water once, so that it is a coating-type granular chemical for agriculture, forestry and horticulture that can exert effects such as plant growth for a long period of time.

本発明の被覆型農林園芸用粒状薬剤において、下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂粒子(A)を含むことで、吸水した後に乾燥状態になった場合に被覆層の破壊が生じにくい理由は明らかではないが、温度応答性架橋樹脂粒子(A)から形成される感温性ハイドロゲルは、温度応答性樹脂の骨格中に含まれる疎水基同士の会合形成によってゲルが収縮しながら水を排斥するので吸水する前と一度吸水した後に再び乾燥した後との粒径の変化が小さいことが一つの理由として考えられる。一方、従来技術において用いられるポリアクリル酸Na重合体粒子は疎水基を持たないために会合形成による収縮力が生じず、吸水膨潤によって増えた体積のまま乾燥状態となことが被覆層の破壊が生じやすい理由の一つと考えられる。 In the coated granular chemicals for agriculture, forestry and gardening of the present invention, by containing the temperature-responsive crosslinked resin particles (A) having a lower limit critical solution temperature of 10 to 40 ° C., the coating layer is dried after absorbing water. Although it is not clear why the breakage is unlikely to occur, the temperature-sensitive hydrogel formed from the temperature-responsive crosslinked resin particles (A) is formed by the association formation of hydrophobic groups contained in the skeleton of the temperature-responsive resin. Since water is discharged while contracting, one reason is considered to be that the change in particle size between before water absorption and after water absorption and then drying again is small. On the other hand, since the sodium polyacrylate polymer particles used in the prior art do not have a hydrophobic group, shrinkage force due to association formation does not occur, and the coating layer is destroyed when the volume is increased by water absorption and swelling and remains in a dry state. It is considered to be one of the reasons why it is likely to occur.

温度応答性樹架橋脂粒子(A)としてはLCSTが10〜40℃の架橋樹脂粒子であれば1種類の温度応答性架橋樹脂粒子のみを用いても良く、LCSTが異なる2種以上の温度応答性架橋樹脂粒子を用いても良い。なお、LCSTが10℃より低いと植物が生育する環境温度で不溶化してしまうために灌漑した水が吸水されず、薬剤の放出を調整することができない。また、LCSTが40℃を超えると吸水後の乾燥による被覆層の破壊を十分に抑えることができない。
なお、本発明においてLCSTは、温度応答性架橋樹脂粒子(A)の1.0重量%水溶液を5〜60℃に加熱した時の光線透過率(波長670nm)をUV−vis分光光度計(例えば、(株)島津製作所製、UV−2550)を用いて測定し、透過率50%となる温度である。
As the temperature-responsive crosslinked fat particles (A), only one type of temperature-responsive crosslinked resin particles may be used as long as the LCST is 10 to 40 ° C., and two or more types of temperature-responsive crosslinked resin particles having different LCSTs may be used. Crosslinked resin particles may be used. If the LCST is lower than 10 ° C., it becomes insolubilized at the environmental temperature at which the plant grows, so that the irrigated water is not absorbed and the release of the chemical cannot be adjusted. Further, if the LCST exceeds 40 ° C., the destruction of the coating layer due to drying after water absorption cannot be sufficiently suppressed.
In the present invention, the LCST measures the light transmittance (wavelength 670 nm) when a 1.0 wt% aqueous solution of the temperature-responsive crosslinked resin particles (A) is heated to 5 to 60 ° C. with a UV-vis spectrophotometer (for example). , UV-2550, manufactured by Shimadzu Corporation, the temperature at which the transmittance is 50%.

また、本発明の被覆型農林園芸用粒状薬剤は、温度応答性架橋樹脂粒子(A)のLCSTを調整することによって環境温度に対する生物活性物質(E)の溶出挙動の依存性を抑制できる。
吸水性樹脂粒子を被覆層に含む被覆肥料は吸水性樹脂粒子が吸収した水によって生物活性物質(E)の溶解が行われ、ゲル状になった吸水性樹脂粒子部分から多くの生物活性物質(E)が溶出すると考えられる。一般に温度が異なると生物活性物質(E)の水への溶解度も変化するため、生物活性物質(E)の溶出挙動は環境温度に対する依存性が有り、特に温度が上がった場合には想定以上に生物活性物質(E)が溶出してしまって効果を所定の期間発現させることが困難な場合がある。
しかし、吸水性樹脂粒子として温度応答性架橋樹脂粒子(A)を被覆層に含む本発明の被覆型農林園芸用粒状薬剤には、LCSTより低い温度では吸収した水による生物活性物質(E)の溶解と放出とがおこるがLCSTを超えると生物活性物質(E)を溶解する水を排出するため、生物活性物質(E)の溶解と放出が抑制されてより長期間にわたって効果を発現することができる。
環境温度に対する生物活性物質(E)溶出挙動の依存性を調整する方法としては、温度応答性架橋樹脂粒子(A)として特定のLCSTを用いる方法、及びLCSTが異なる2種以上の温度応答性架橋樹脂粒子(A)を用いる方法等があげられる。高温領域(25℃を超えて40℃以下)になった時に溶出速度を抑制する場合には、LCSTが25〜35℃の温度応答性樹脂粒子を好ましく用いることができ、低温領域(10℃以上で25℃未満)において溶出速度を抑制する場合には、LCSTが15〜25℃の温度応答性樹脂粒子を好ましく用いることができる。
In addition, the coated agricultural, forestry and horticultural granular chemicals of the present invention can suppress the dependence of the elution behavior of the bioactive substance (E) on the environmental temperature by adjusting the LCST of the temperature-responsive crosslinked resin particles (A).
In the coating fertilizer containing the water-absorbent resin particles in the coating layer, the bioactive substance (E) is dissolved by the water absorbed by the water-absorbent resin particles, and many bioactive substances (a large amount of the bioactive substance () from the gelled water-absorbent resin particle portion. It is considered that E) elutes. Generally, when the temperature is different, the solubility of the bioactive substance (E) in water also changes, so the elution behavior of the bioactive substance (E) is dependent on the environmental temperature, and especially when the temperature rises, it is more than expected. In some cases, the bioactive substance (E) elutes, making it difficult to exert the effect for a predetermined period of time.
However, the coated agricultural, forestry and horticultural granular chemicals of the present invention containing the temperature-responsive crosslinked resin particles (A) as the water-absorbent resin particles include the bioactive substance (E) due to water absorbed at a temperature lower than LCST. Dissolution and release occur, but when the LCST is exceeded, water that dissolves the bioactive substance (E) is discharged, so that the dissolution and release of the bioactive substance (E) is suppressed and the effect can be exhibited for a longer period of time. it can.
As a method for adjusting the dependence of the elution behavior of the bioactive substance (E) on the environmental temperature, a method using a specific LCST as the temperature-responsive crosslinked resin particles (A) and two or more types of temperature-responsive crosslinks having different LCSTs are used. Examples thereof include a method using resin particles (A). When the elution rate is suppressed when the temperature reaches a high temperature region (more than 25 ° C. and 40 ° C. or lower), temperature-responsive resin particles having an LCST of 25 to 35 ° C. can be preferably used, and a low temperature region (10 ° C. or higher) can be used. When the elution rate is suppressed at (less than 25 ° C.), temperature-responsive resin particles having an LCST of 15 to 25 ° C. can be preferably used.

高温領域における生物活性物質(E)の溶出挙動は、35℃の水中に粒状薬剤を置いた場合における生物活性物質(E)の溶出率が80%に達する日数(以下、D35と記載する)と25℃の水中に粒状薬剤を置いた場合の生物活性物質(E)の溶出率が80%に達する日数(以下、D25と記載する)とを用いて、D35に対するD25の比率(高温時温度依存指数と記載する場合がある)[(D25)/(D35)]を計算することで評価することができる。高温時温度依存指数は1に近い値である程、温度に対する溶出量の依存性が小さいことを示し、高温時温度依存指数は0.5〜2.0であることが好ましく、0.8〜1.5であることがより好ましい。 The elution behavior of the bioactive substance (E) in the high temperature region is the number of days when the elution rate of the bioactive substance (E) reaches 80% when the granular drug is placed in water at 35 ° C. (hereinafter referred to as D35). The ratio of D25 to D35 (depending on the temperature at high temperature) using the number of days when the elution rate of the bioactive substance (E) reaches 80% when the granular drug is placed in water at 25 ° C. (hereinafter referred to as D25). It can be evaluated by calculating [(D25) / (D35)] (which may be described as an exponent). The closer the high temperature temperature dependence index is to 1, the smaller the dependence of the elution amount on the temperature is, and the high temperature temperature dependence index is preferably 0.5 to 2.0, preferably 0.8 to 0.8. It is more preferably 1.5.

低温領域における生物活性物質(E)の溶出挙動は、前記のD25と15℃の水中に粒状薬剤を置いた場合の生物活性物質(E)の溶出率が80%に達する日数(以下、D15と記載する)とを用いて、D25に対するD15の比率(低温時温度依存指数と記載する場合がある)[(D15)/(D25)]を計算することで評価することができる。低温時温度依存指数は1に近い値である程、温度に対する溶出量の依存性が小さいことを示し、低温時温度依存指数は0.5〜2.0であることが好ましく、0.8〜1.5であることがより好ましい。 The elution behavior of the bioactive substance (E) in the low temperature region is the number of days when the elution rate of the bioactive substance (E) reaches 80% when the granular drug is placed in the water of D25 and 15 ° C. (hereinafter referred to as D15). It can be evaluated by calculating the ratio of D15 to D25 (sometimes referred to as a low temperature temperature dependence index) [(D15) / (D25)]. The closer the low temperature temperature dependence index is to 1, the smaller the dependence of the elution amount on the temperature is, and the low temperature temperature dependence index is preferably 0.5 to 2.0, preferably 0.8 to 0.8. It is more preferably 1.5.

被覆型農林園芸用粒状薬剤からの生物活性物質(E)の溶出率の算出は、以下の方法で行う。
本発明の被覆型農林園芸用粒状薬剤10gを容積250mLのガラス容器の底部に静置させ、ガラス容器のそれぞれに15℃、25℃又は35℃に調整した水を200mL注ぎ、ガラス容器の蓋を閉めて15℃、25℃又は35℃に設定した小型環境試験機(例えば、エスペック社製、SU−222)にガラス容器に入れた水の温度に応じてそれぞれ静置する。一定時間ごとにガラス容器の水溶液に含まれる生物活性物質(E)の量を定量し、被覆型農林園芸用粒状薬剤10gに含まれる生物活性物質(E)の量(g)に対する溶出した生物活性物質(E)の量(g)の比率[生物活性物質(E)の溶出率(%)]を計算し、溶出率が80%となった日数をそれぞれD15、D25及びD35とする。
The elution rate of the bioactive substance (E) from the coated granular chemicals for agriculture, forestry and horticulture is calculated by the following method.
10 g of the coated granular chemical for agriculture, forestry and horticulture of the present invention was allowed to stand on the bottom of a glass container having a volume of 250 mL, 200 mL of water adjusted to 15 ° C., 25 ° C. or 35 ° C. was poured into each of the glass containers, and the lid of the glass container was closed. It is closed and allowed to stand in a small environmental tester (for example, SU-222 manufactured by Espec Co., Ltd.) set at 15 ° C., 25 ° C. or 35 ° C. according to the temperature of water in a glass container. The amount of the bioactive substance (E) contained in the aqueous solution of the glass container is quantified at regular intervals, and the eluted biological activity with respect to the amount (g) of the bioactive substance (E) contained in 10 g of the coated granular drug for agriculture, forestry and gardening. The ratio of the amount (g) of the substance (E) [elution rate (%) of the bioactive substance (E)] is calculated, and the number of days when the dissolution rate becomes 80% is defined as D15, D25 and D35, respectively.

ガラス容器の水溶液に含まれる生物活性物質(E)の量は、生物活性物質(E)の種類に応じた方法で定量すれば良く、生物活性物質(E)が尿素である場合には、水中の尿素濃度を比色法により測定する市販のキット(例えば、BioAssay Systems社のQuantiChrom Urea Assay Kit II)と分光光度計(例えば、BioTEK Instruments社のPowerWave XS)とを用いて尿素の吸収波長(557nm)における吸光度を測定し、濃度既知の尿素水溶液の吸光度を比較することで定量することができる。 The amount of the bioactive substance (E) contained in the aqueous solution of the glass container may be quantified by a method according to the type of the bioactive substance (E), and when the bioactive substance (E) is urea, it is in water. Urea absorption wavelength using a commercially available kit (eg, QuantiChrom Urea Assay Kit II from BioAssy Systems) and a spectrophotometer (eg, PowerWave XS from BioTEK Instruments) to measure the urea concentration of ), And it can be quantified by comparing the absorbance of an aqueous urea solution with a known concentration.

温度応答性樹脂粒子(A)を構成する、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂としては、吸水性と所定のLCSTを有する架橋樹脂であれば制限なく使用でき、N−アルキル(メタ)アクリルアミド、N−ビニルアルキルアミド、N−エトキシエチル(メタ)アクリルアミド及びアルキルビニルエーテル等を構成単量体として含む架橋樹脂、並びに水溶性セルロースエーテル(メチルセルロース等)の架橋体等があげられる。なお、本明細書における「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。 The temperature-responsive crosslinked resin constituting the temperature-responsive resin particles (A) having a lower limit critical solution temperature with respect to water of 10 to 40 ° C. can be used without limitation as long as it is a crosslinked resin having water absorption and a predetermined LCST. , N-alkyl (meth) acrylamide, N-vinylalkylamide, N-ethoxyethyl (meth) acrylamide, a crosslinked resin containing alkylvinyl ether, etc. as constituent monomers, a crosslinked product of water-soluble cellulose ether (methylcellulose, etc.), etc. Can be given. In addition, "(meth) acrylic" in this specification means "acrylic" or "methacryl".

下限臨界溶液温度が10〜40℃の範囲にある温度応答性架橋樹脂粒子(A)としては、生物活性物質(E)の溶出挙動等の観点から、アルキル基の炭素数が2〜12(好ましくは2〜6)であるアルキル(メタ)アクリルアミド(a1)及び/又はN−ビニルアルキルアミド(a2)並びに架橋剤(c)を必須構成単量体とする樹脂(A1)からなる粒子を含むことが好ましく、樹脂(A1)はアルキル(メタ)アクリルアミド(a1)及び架橋剤(c)を必須構成単量体とする樹脂であることが更に好ましい。前記のアルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)は、それぞれ1種であってもよく、2種以上であってもよい。 The temperature-responsive crosslinked resin particles (A) having a lower limit critical solution temperature in the range of 10 to 40 ° C. have an alkyl group having 2 to 12 carbon atoms (preferably) from the viewpoint of elution behavior of the bioactive substance (E). Contains particles composed of alkyl (meth) acrylamide (a1) and / or N-vinylalkylamide (a2) which are 2 to 6) and a resin (A1) containing a cross-linking agent (c) as an essential constituent monomer. The resin (A1) is more preferably a resin containing an alkyl (meth) acrylamide (a1) and a cross-linking agent (c) as essential constituent monomers. The alkyl (meth) acrylamide (a1) and the N-vinylalkylamide (a2) may be one kind or more.

前記のアルキル(メタ)アクリルアミド(a1)としては、アクリルアミド又はメタクリルアミドの窒素原子と結合した1個の水素原子がアルキル基で置換されたもの、又は2個の水素原子がそれぞれアルキル基で置換されたものが挙げられ、アルキル基としては炭素数が2〜6である直鎖、分岐又は環状のアルキル基がこのましいものとして挙げられ、2個の水素原子が置換されている場合には互いに結合して環状構造(窒素原子を含む複素環構造)を形成していてもよい。アルキル(メタ)アクリルアミド(a1)として好ましいものとしては、N−イソプロピルアクリルアミド[LCST=31〜32℃]、N,N’−ジエチルアクリルアミド[LCST=約25℃]、N−n−プロピルアクリルアミド[LCST=22℃]、N−メチル−N−n−プロピルアクリルアミド[LCST=20℃]、N−アクリルピロリジン[LCST=58℃]、N−シクロプロピルアクリルアミド[LCST=約46℃]及びN−n−プロピルメタクリルアミド[LCST=28℃]等が挙げられ、N−イソプロピルアクリルアミド及びN,N’−ジエチルアクリルアミドがさらに好ましく、より好ましくは、N−イソプロピルアクリルアミドである。
N−ビニルアルキルアミド(a2)としてはN−ビニルノルマルプロピルアミド(N−ビニル−n−プロピルアミド)[LCST=約32℃]、N−ビニルイソプロピルアミド[LCST=約39℃]、N−ビニル−n−ブチルアミド[LCST=32℃]及びN−ビニルイソブチルアミド[LCST=39℃]等が挙げられ、N−ビニルノルマルプロピルアミドが好ましい。なお、化合物名の後ろに続けて記載した角括弧内に記載したLCSTの値は、単独重合体のLCSTである。
As the alkyl (meth) acrylamide (a1), one hydrogen atom bonded to the nitrogen atom of acrylamide or methacrylicamide is substituted with an alkyl group, or two hydrogen atoms are substituted with an alkyl group, respectively. Alkyl groups include linear, branched or cyclic alkyl groups having 2 to 6 carbon atoms, and when two hydrogen atoms are substituted, they are mutually exclusive. They may be bonded to form a cyclic structure (a heterocyclic structure containing a nitrogen atom). Preferred alkyl (meth) acrylamide (a1) are N-isopropylacrylamide [LCST = 31-32 ° C], N, N'-diethylacrylamide [LCST = about 25 ° C], N-n-propylacrylamide [LCST]. = 22 ° C.], N-methyl-Nn-propylacrylamide [LCST = 20 ° C.], N-acrylicpyrrolidin [LCST = 58 ° C.], N-cyclopropylacrylamide [LCST = about 46 ° C.] and Nn- Examples thereof include propylmethacrylamide [LCST = 28 ° C.], and N-isopropylacrylamide and N, N'-diethylacrylamide are more preferable, and N-isopropylacrylamide is more preferable.
Examples of N-vinylalkylamide (a2) include N-vinylnormal propylamide (N-vinyl-n-propylamide) [LCST = about 32 ° C], N-vinylisopropylamide [LCST = about 39 ° C], and N-vinyl. Examples thereof include −n-butylamide [LCST = 32 ° C.] and N-vinylisobutyramide [LCST = 39 ° C.], and N-vinylnormalpropylamide is preferable. The value of LCST described in square brackets following the compound name is the LCST of the homopolymer.

例えば、N−イソプロピルアクリルアミドを単独重合して得られるポリ(N−イソプロピルアクリルアミド)は、32℃より低温側では水に溶解し、高温側では不溶となり水を吸収しなくなる。そのためN−イソプロピルアクリルアミドと架橋剤(c)とを構成単量体とする架橋樹脂からなる粒子を温度応答性架橋樹脂粒子(A)として用いてそのハイドロゲルを作製すると、32℃を超えるハイドロゲルからの水が排出され、農林園芸用粒状薬剤の被覆剤を構成する成分として用いた場合には32℃を超える領域での生物活性物質(E)の溶出速度の上昇を抑制できると考えられる。 For example, poly (N-isopropylacrylamide) obtained by homopolymerizing N-isopropylacrylamide dissolves in water on the lower temperature side than 32 ° C., becomes insoluble on the higher temperature side, and does not absorb water. Therefore, when a hydrogel is prepared by using particles made of a crosslinked resin containing N-isopropylacrylamide and a crosslinking agent (c) as constituent monomers as temperature-responsive crosslinked resin particles (A), the hydrogel exceeds 32 ° C. When used as a constituent component of a coating agent for granular chemicals for agriculture, forestry and gardening, it is considered that an increase in the elution rate of the bioactive substance (E) in a region exceeding 32 ° C. can be suppressed.

なお、アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)におけるアルキル基の炭素数を変更することによってLCSTを調整することができ、例えばN−ノルマル−プロピルアクリルアミドと架橋剤(c)とを構成単量体とする架橋樹脂のLCSTは約23℃であり、N−ビニルノルマルプロピルアミドと架橋剤(c)とを構成単量体とする架橋樹脂のLCSTは約32℃である。N−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)は2種以上を併用することでLCSTを調整することができ、それによって溶出挙動を調整することができる。 The LCST can be adjusted by changing the number of carbon atoms of the alkyl group in alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2), for example, N-normal-propylacrylamide and a cross-linking agent (c). ) Is a constituent monomer, and the LCST of the cross-linked resin containing N-vinylnormal propylamide and the cross-linking agent (c) is about 32 ° C. .. The LCST of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) can be adjusted by using two or more of them in combination, thereby adjusting the elution behavior.

架橋剤(c)としては、ラジカル重合性不飽和基を2個以上有する架橋剤が好ましく挙げられ、さらに好ましくはN,N’−メチレンビス(メタ)アクリルアミド、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリアリルアミン、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル等が挙げられる。これらのうち、更に好ましくはN,N’−メチレンビス(メタ)アクリルアミド、ペンタエリスリトールトリアリルエーテルであり、特に好ましくは、N,N’−メチレンビス(メタ)アクリルアミドである。 The cross-linking agent (c) preferably includes a cross-linking agent having two or more radically polymerizable unsaturated groups, and more preferably N, N'-methylenebis (meth) acrylamide, ethylene glycol di (meth) acrylate, and polyethylene glycol. Di (meth) acrylate, propylene glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, trimethyl propantri (meth) acrylate, triallylamine, triallyl cyanurate, triallyl isocyanurate, Examples thereof include tetraaryloxyethane and pentaerythritol triallyl ether. Of these, N, N'-methylenebis (meth) acrylamide and pentaerythritol triaryl ether are more preferable, and N, N'-methylenebis (meth) acrylamide is particularly preferable.

アルキル(メタ)アクリルアミド(a1)及び/又はビニルアルキルアミド(a2)並びに架橋剤(c)を必須構成単量体とする樹脂(A1)において、N−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計使用量は温度応答性架橋樹脂粒子(A)の構成単量体の合計重量に対して50〜99.9重量%が好ましく、98.0〜99.8重量%がさらに好ましい。構成単量体中のN−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計重量の架橋剤(c)の重量に対する重量比率[{(a1)+(a2)}/(c)]は、生物活性物質(E)の溶出挙動の温度依存性等の観点から、95/5〜99.9/0.1が好ましく、96/4〜99/1がさらに好ましい。 In the resin (A1) containing alkyl (meth) acrylamide (a1) and / or vinylalkylamide (a2) and the cross-linking agent (c) as essential constituent monomers, N-alkyl (meth) acrylamide (a1) and N- The total amount of vinylalkylamide (a2) used is preferably 50 to 99.9% by weight, preferably 98.0 to 99.8% by weight, based on the total weight of the constituent monomers of the temperature-responsive crosslinked resin particles (A). Is even more preferable. Weight ratio of the total weight of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) in the constituent monomer to the weight of the cross-linking agent (c) [{(a1) + (a2)} / [C]] is preferably 95/5 to 99.9 / 0.1, more preferably 96/4 to 99/1, from the viewpoint of temperature dependence of the elution behavior of the bioactive substance (E).

温度応答性架橋樹脂粒子(A)としては、アルキル(メタ)アクリルアミド(a1)及び/又はビニルアルキルアミド(a2)、架橋剤(c)並びに(メタ)アクリル酸アルキルエステル(h)を必須構成単量体とする樹脂(A2)からなる粒子も好ましい。必須構成単量体に(メタ)アクリル酸アルキルエステル(h)を含むと、(メタ)アクリル酸アルキルエステル(h)を含まない場合に比べてLCSTの低い樹脂となり、樹脂(A2)としては、LCSTが15〜25℃である樹脂が好ましい。樹脂(A2)のLCSTがこの範囲にあると25℃未満の領域でハイドロゲルからの水の排出が生じ、LCSTを超える領域での生物活性物質(E)の溶出を抑えることができる。 As the temperature-responsive crosslinked resin particles (A), alkyl (meth) acrylamide (a1) and / or vinylalkylamide (a2), a crosslinking agent (c) and (meth) acrylic acid alkyl ester (h) are essential constituents. Particles made of the resin (A2) used as a monomer are also preferable. When the (meth) acrylic acid alkyl ester (h) is contained in the essential constituent monomer, the resin has a lower LCST than when the (meth) acrylic acid alkyl ester (h) is not contained, and the resin (A2) has a lower LCST. A resin having an LCST of 15 to 25 ° C. is preferable. When the LCST of the resin (A2) is in this range, water is discharged from the hydrogel in the region below 25 ° C., and the elution of the bioactive substance (E) in the region exceeding the LCST can be suppressed.

(メタ)アクリル酸アルキルエステル(h)としては、アルキル基の炭素数が1〜12の(メタ)アクリル酸アルキルエステルがあげられ、好ましいものとしてはメチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、ブチルメタクリレート、ブチルアクリレート、ラウリルアクリレート及び2−エチルヘキシルメタクリレート等が挙げられ、さらに好ましくはプロピルアクリレート、プロピルメタクリレート、ブチルメタクリレート及びブチルアクリレートであり、より好ましくはブチルアクリレート及びブチルメタクリレートであり、特に好ましくはブチルメタクリレートである。 Examples of the (meth) acrylate alkyl ester (h) include (meth) acrylate alkyl esters having 1 to 12 carbon atoms in the alkyl group, and preferred ones are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and the like. Examples thereof include propyl acrylate, propyl methacrylate, butyl methacrylate, butyl acrylate, lauryl acrylate and 2-ethylhexyl methacrylate, more preferably propyl acrylate, propyl methacrylate, butyl methacrylate and butyl acrylate, and more preferably butyl acrylate and butyl methacrylate. Yes, particularly preferably butyl methacrylate.

樹脂(A2)を構成するアルキル(メタ)アクリルアミド(a1)とビニルアルキルアミド(a2)のモル数は、アルキル(メタ)アクリルアミド(a1)とビニルアルキルアミド(a2)との合計モル数が(メタ)アクリル酸アルキルエステル(h)のモル数を基準として計算される比率[{(a1)+(a2)}/(h)]として85/15〜95/5であることが好ましく、87/13〜93/7がさらに好ましい。また、樹脂(A2)におけるN−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計使用量は、樹脂(A2)の構成単量体の合計重量を基準として50〜99.9重量%が好ましく、98〜99.8重量%がさらに好ましい。 The total number of moles of alkyl (meth) acrylamide (a1) and vinylalkylamide (a2) constituting the resin (A2) is the total number of moles of alkyl (meth) acrylamide (a1) and vinylalkylamide (a2) (meth). ) The ratio [{(a1) + (a2)} / (h)] calculated based on the number of moles of the acrylic acid alkyl ester (h) is preferably 85/15 to 95/5, preferably 87/13. ~ 93/7 is more preferable. The total amount of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) used in the resin (A2) is 50 to 99 based on the total weight of the constituent monomers of the resin (A2). 9.9% by weight is preferable, and 98 to 99.8% by weight is more preferable.

樹脂(A2)において、構成単量体中のN−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計重量の架橋剤(c)の重量に対する重量比率[{(a1)+(a2)}/(c)]は、生物活性物質(E)の溶出挙動の温度依存性等の観点から、95/5〜99.9/0.1が好ましく、99.0/1.0〜99.8/0.2がさらに好ましい。 In the resin (A2), the weight ratio of the total weight of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) in the constituent monomer to the weight of the cross-linking agent (c) [{(a1) + (A2)} / (c)] is preferably 95 / 5-99.9 / 0.1 from the viewpoint of temperature dependence of the elution behavior of the biologically active substance (E), 99.0 / 1. 0 to 99.8 / 0.2 is more preferable.

温度応答性架橋樹脂粒子(A)としては、アルキル(メタ)アクリルアミド(a1)及び/又はN−ビニルアルキルアミド(a2)、架橋剤(c)並びに(メタ)アクリル酸(塩)(b)を必須構成単量体とする樹脂(A3)からなる粒子を含み、樹脂粒子(A3)を構成する樹脂の構成単量体の合計モル数に対する(メタ)アクリル酸(塩)(b)のモル数の割合が5モル%未満であることも好ましい。なお、本明細書中、「(メタ)アクリル酸(塩)」は、(メタ)アクリル酸及び/又はその塩を指す。樹脂(A3)が(メタ)アクリル酸(塩)(b)を構成単量体の合計モル数を基準として5モル%未満(好ましくは0.01モル%以上5モル%未満、より好ましくは0.01〜3モル%)の割合で含むと、(メタ)アクリル酸(塩)(b)を含まない場合に比べてLCSTの高い樹脂となる。 Examples of the temperature-responsive crosslinked resin particles (A) include alkyl (meth) acrylamide (a1) and / or N-vinylalkylamide (a2), a crosslinking agent (c), and (meth) acrylic acid (salt) (b). The number of moles of (meth) acrylic acid (salt) (b) with respect to the total number of moles of the constituent monomers of the resin containing the particles made of the resin (A3) as the essential constituent monomer (A3). It is also preferable that the ratio of is less than 5 mol%. In the present specification, "(meth) acrylic acid (salt)" refers to (meth) acrylic acid and / or a salt thereof. The resin (A3) contains (meth) acrylic acid (salt) (b) in an amount of less than 5 mol% (preferably 0.01 mol% or more and less than 5 mol%, more preferably 0) based on the total number of moles of the constituent monomers. When it is contained in a ratio of .01 to 3 mol%), it becomes a resin having a higher LCST than when it does not contain (meth) acrylic acid (salt) (b).

(メタ)アクリル酸(塩)(b)としては、(メタ)アクリル酸のアルカリ金属塩(ナトリウム塩、カリウム塩及びリチウム塩等)、アンモニウム塩及びアミン塩等が挙げられる。これらのうち吸水性等の観点から、アクリル酸のアルカリ金属塩が好ましく、アクリル酸のナトリウム塩がより好ましい。 Examples of the (meth) acrylic acid (salt) (b) include alkali metal salts (sodium salt, potassium salt, lithium salt, etc.) of (meth) acrylic acid, ammonium salts, amine salts, and the like. Of these, an alkali metal salt of acrylic acid is preferable, and a sodium salt of acrylic acid is more preferable from the viewpoint of water absorption and the like.

樹脂(A3)を構成するアルキル(メタ)アクリルアミド(a1)とビニルアルキルアミド(a2)のモル数は、アルキル(メタ)アクリルアミド(a1)とビニルアルキルアミド(a2)との合計モル数が(メタ)アクリル酸アルキルエステル(h)のモル数を基準として計算される比率[{(a1)+(a2)}/(h)]として85/15〜95/5であることが好ましく、87/13〜93/7がさらに好ましい。また、樹脂(A3)におけるN−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計使用量は、樹脂(A3)の構成単量体の合計重量を基準として50〜99.9重量%が好ましく、98〜99.8重量%がさらに好ましい The total number of moles of alkyl (meth) acrylamide (a1) and vinylalkylamide (a2) constituting the resin (A3) is the total number of moles of alkyl (meth) acrylamide (a1) and vinylalkylamide (a2) (meth). ) The ratio [{(a1) + (a2)} / (h)] calculated based on the number of moles of the acrylic acid alkyl ester (h) is preferably 85/15 to 95/5, preferably 87/13. ~ 93/7 is more preferable. The total amount of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) used in the resin (A3) is 50 to 99 based on the total weight of the constituent monomers of the resin (A3). 9.9% by weight is preferable, and 98 to 99.8% by weight is more preferable.

樹脂(A3)において、構成単量体中のN−アルキル(メタ)アクリルアミド(a1)及びN−ビニルアルキルアミド(a2)の合計重量の架橋剤(c)の重量に対する重量比率[{(a1)+(a2)}/(c)]は、生物活性物質(E)の溶出挙動の温度依存性等の観点から、95/5〜99.9/0.1が好ましく、96/4〜98.5/1.5がさらに好ましい。 In the resin (A3), the weight ratio of the total weight of N-alkyl (meth) acrylamide (a1) and N-vinylalkylamide (a2) in the constituent monomers to the weight of the cross-linking agent (c) [{(a1) + (A2)} / (c)] is preferably 95 / 5-99.9 / 0.1 from the viewpoint of temperature dependence of the elution behavior of the biologically active substance (E), 96/4 to 98. 5 / 1.5 is even more preferred.

前記の樹脂(A1)、(A2)及び(A3)において、他の単量体を構成単量体として共重合しても良い。共重合する他の単量体の種類及び共重合する比率を調整することにより樹脂のLCSTを調節でき、疎水性単量体と共重合することでLCSTを低温側へ、親水性単量体と共重合することでLCSTを高温側に移動させることができる。 In the above resins (A1), (A2) and (A3), other monomers may be copolymerized as constituent monomers. The LCST of the resin can be adjusted by adjusting the type of other monomers to be copolymerized and the ratio of copolymerization, and by copolymerizing with the hydrophobic monomer, the LCST can be moved to the low temperature side and the hydrophilic monomer. The LCST can be moved to the high temperature side by copolymerizing.

共重合可能な他の単量体のうち、親水性単量体として好ましいものとしては水酸基、ポリオキシエチレン鎖及びアミノ基等を有する単量体[ヒドロキシアルキル(メタ)アクリレート(ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート及びヒドロキシプロピルメタクリレート等)、ポリエチレングリコール(メタ)アクリレート(メトキシポリエチレングリコール(メタ)アクリレート等)、N−ビニル−2−ピロリドン及び(メタ)アクリルアミド等]があげられる。疎水性単量体として好ましいものとしては、アルキル基の炭素数が12を超えるアルキル(メタ)アクリルアミド[N−n−ドデシルアクリルアミド等のN−アルキル(メタ)アクリルアミド誘導体等]、N−(ω−グリシドキシアルキル)(メタ)アクリルアミド[N,N−ジグリシジルアクリルアミド、N−(4−グリシドキシブチル)アクリルアミド、N−(5−グリシドキシペンチル)アクリルアミド、N−(6−グリシドキシヘキシル)アクリルアミド、N,N−ジグリシジルメタクリルアミド、N−(4−グリシドキシペンチル)メタクリルアミド及びN−(5−グリシドキシヘキシル)メタクリルアミド]、(メタ)アクリロニトリル、カルボン酸ビニルエステル(酢酸ビニル等)、ハロゲン化ビニル(塩化ビニル等)、モノ又はジオレフィン(エチレン、プロピレン、ブテン、ブタジエン及びイソプレン等)、芳香族ビニル(スチレン及びα−メチルスチレン等)等があげられる。 Among other copolymerizable monomers, the preferred hydrophilic monomer is a monomer having a hydroxyl group, a polyoxyethylene chain, an amino group, or the like [hydroxyalkyl (meth) acrylate (hydroxyethyl methacrylate, hydroxy). Ethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, etc.), polyethylene glycol (meth) acrylate (methoxypolyethylene glycol (meth) acrylate, etc.), N-vinyl-2-pyrrolidone, (meth) acrylamide, etc.]. Preferred hydrophobic monomers include alkyl (meth) acrylamide having an alkyl group having more than 12 carbon atoms [N-alkyl (meth) acrylamide derivative such as Nn-dodecylacrylamide], N- (ω-). Glycydoxyalkyl) (meth) acrylamide [N, N-diglycidylacrylamide, N- (4-glycidoxybutyl) acrylamide, N- (5-glycidoxypentyl) acrylamide, N- (6-glycidoxy) Hexyl) acrylamide, N, N-diglycidylmethacrylamide, N- (4-glycidoxypentyl) methacrylicamide and N- (5-glycidoxyhexyl) methacrylicamide], (meth) acrylonitrile, vinyl carboxylate ester ( (Vinyl acetate, etc.), vinyl halide (vinyl chloride, etc.), mono or diolefin (ethylene, propylene, butene, butadiene, isoprene, etc.), aromatic vinyl (styrene, α-methylstyrene, etc.), and the like.

樹脂(A1)、(A2)及び(A3)において、さらに前記の他の単量体を共重合する場合、他の単量体の割合は本発明の被覆型農林園芸用粒状薬剤に使用する温度応答性架橋樹脂粒子(A)のLCSTに応じて調整される。 When the other monomers are further copolymerized in the resins (A1), (A2) and (A3), the proportion of the other monomers is the temperature used for the coated agricultural, forestry and horticultural granular chemicals of the present invention. It is adjusted according to the LCST of the responsive crosslinked resin particles (A).

樹脂(A1)、(A2)及び(A3)は、溶液重合法、乳化重合法、懸濁重合法及び噴霧重合法等の公知の方法(特開2004−83619号公報、特開2002−121230号公報及び特開平8−100010号公報等に記載の方法)で重合することができ、好ましい重合方法はラジカル重合開始剤を使用した溶液重合法(さらに好ましくは水溶液重合)である。ラジカル重合開始剤としては公知の開始剤を用いることができ、ラジカル重合条件(ラジカル重合開始剤の量、単量体濃度及び重合温度等)は温度応答性架橋樹脂粒子(A)を構成する樹脂の分子量等に応じて公知の条件から選択し調整して重合することができ、必要に応じて各種添加剤、連鎖移動剤(例えば、チオール化合物等)及び界面活性剤等を添加してもよい。 The resins (A1), (A2) and (A3) are known methods such as a solution polymerization method, an emulsion polymerization method, a suspension polymerization method and a spray polymerization method (Japanese Patent Laid-Open No. 2004-83319, JP-A-2002-121230). It can be polymerized by the method described in Japanese Patent Application Laid-Open No. 8-100010 and the like), and a preferable polymerization method is a solution polymerization method using a radical polymerization initiator (more preferably, an aqueous solution polymerization). A known initiator can be used as the radical polymerization initiator, and the radical polymerization conditions (amount of radical polymerization initiator, monomer concentration, polymerization temperature, etc.) are the resins constituting the temperature-responsive crosslinked resin particles (A). The polymerization can be carried out by selecting from known conditions according to the molecular weight and the like, and various additives, chain transfer agents (for example, thiol compounds, etc.), surfactants and the like may be added as necessary. ..

樹脂(A1)、(A2)及び(A3)の粒子は、溶液重合した後に溶媒を除去して得られた重合体を粉砕する方法、並びに懸濁重合法及び噴霧重合法等で得られた混合物から溶媒を除去して粒子を得る方法等で得ることが出来る。また、これらの方法で得られた粒子は、さらに篩い分け等の公知の方法で分級して温度応答性架橋樹脂粒子(A)として用いても良い。 The particles of the resins (A1), (A2) and (A3) are a mixture obtained by a method of pulverizing a polymer obtained by removing a solvent after solution polymerization and a suspension polymerization method, a spray polymerization method or the like. It can be obtained by a method of removing a solvent from the material to obtain particles or the like. Further, the particles obtained by these methods may be further classified by a known method such as sieving and used as the temperature-responsive crosslinked resin particles (A).

温度応答性架橋樹脂粒子(A)の形状は特に限定されず、球(真球を含む)及び楕円体等の形状(懸濁重合法及び噴霧重合法等で得られる)であっても、不定形(重合体を粉砕する方法で得られる)であってもよい。温度応答性架橋樹脂粒子(A)の粒子径は、被覆層を設ける生物活性物質(E)を含む粒子(P0)の粒子径に応じて調整することができるが、温度応答性樹脂粒子(A)の体積平均粒子径(D50)は、1〜200μmが好ましく、さらに好ましくは1〜150μmであり、より好ましくは40〜80μmである。温度応答性架橋樹脂粒子(A)の粒子径が上記範囲であると、前記の粒子(P0)の表面に均一な被覆層を形成しやすく好ましい。温度応答性架橋樹脂粒子(A)の体積平均粒子径は、JIS Z 8825に準じて、乾式粒度分布測定装置(ベックマン・コールター社製のLS 13 320等)で測定される。 The shape of the temperature-responsive crosslinked resin particles (A) is not particularly limited, and even shapes such as spheres (including true spheres) and ellipsoids (obtained by suspension polymerization method, spray polymerization method, etc.) are not acceptable. It may be in a fixed form (obtained by a method of crushing a polymer). The particle size of the temperature-responsive crosslinked resin particles (A) can be adjusted according to the particle size of the particles (P0) containing the bioactive substance (E) provided with the coating layer, but the temperature-responsive resin particles (A) ), The volume average particle size (D 50 ) is preferably 1 to 200 μm, more preferably 1 to 150 μm, and even more preferably 40 to 80 μm. When the particle size of the temperature-responsive crosslinked resin particles (A) is in the above range, a uniform coating layer is easily formed on the surface of the particles (P0), which is preferable. The volume average particle diameter of the temperature-responsive crosslinked resin particles (A) is measured by a dry particle size distribution measuring device (LS 13 320, etc. manufactured by Beckman Coulter) according to JIS Z 8825.

被覆樹脂(C)としては、生物活性物質(E)を含む粒子(P0)の表面に被覆層を形成することができれば制限無く使用することができる。なかでも生物活性物質(E)の溶出を制御する観点から、ポリウレタン樹脂、ポリオレフィン樹脂、アルキド樹脂及びこれらの2種以上の併用が好ましく、ポリウレタン樹脂及びポリエチレン樹脂が更に好ましく、ポリウレタン樹脂が特に好ましい。 The coating resin (C) can be used without limitation as long as a coating layer can be formed on the surface of the particles (P0) containing the biologically active substance (E). Among them, from the viewpoint of controlling the elution of the bioactive substance (E), a polyurethane resin, a polyolefin resin, an alkyd resin and two or more kinds thereof are preferably used in combination, a polyurethane resin and a polyethylene resin are more preferable, and a polyurethane resin is particularly preferable.

被覆樹脂(C)としてのポリウレタン樹脂としては、ポリオール成分、ポリイソシアネート及びアミン化合物を硬化させて得られるポリウレタン樹脂が好ましい。 As the polyurethane resin as the coating resin (C), a polyurethane resin obtained by curing a polyol component, a polyisocyanate and an amine compound is preferable.

ポリウレタン樹脂に用いるポリオール成分としては、ひまし油、ひまし油誘導体、及びそれらのエチレンオキサイド並びにプロピレンオキサイドなどのアルキレンオキサイドの付加物が挙げられる。ひまし油誘導体としては、ひまし油の一部加水分解物、ひまし油のジオール類(ひまし油をジオール類(例えばエチレングリコール、プロピレングリコール)でエステル交換したエステル交換体)、ひまし油とグリセリン、トリメチロールプロパンなどのポリオールとのエステル交換体を挙げることができる。なかでも、ひまし油をエチレングリコール又はプロピレングリコールでエステル交換した誘導体(エステル交換体)が好ましい。 Examples of the polyol component used in the polyurethane resin include castor oil, castor oil derivatives, ethylene oxide thereof, and adducts of alkylene oxide such as propylene oxide. Examples of the castor oil derivative include a partial hydrolyzate of castor oil, transesterified castor oil with diols (for example, ethylene glycol and propylene glycol), and a polyol such as glycerin and trimethylolpropane. The transesterifier of the above can be mentioned. Of these, a derivative (transesterified product) in which castor oil is transesterified with ethylene glycol or propylene glycol is preferable.

ポリイソシアネートは、特に限定されないが、芳香族系のポリイソシアネートが好ましく、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート、ポリフェニルポリメチレンポリイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシレンジイソシアネート、及びこれらの変性体(例えば、ウレア変性体、二量体、三量体、カルボジイミド体、アロハネート変性体及びビュレット変性体など)等が挙げられる。これらは2種類以上を併せて使用することができ、ポリイソシアネートとしては「粗製ポリイソシアネート」として市販されており工業用に公用されているものであってもよい。上記のうちMDI、粗製MDI、カルボジイミド化MDI(液状MDIともいう)、TDI及び粗製TDIが好ましい。 The polyisocyanate is not particularly limited, but an aromatic polyisocyanate is preferable, and tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate, polyphenyl polymethylene polyisocyanate, phenylenedi isocyanate, xylylene diisocyanate, and tetramethyl Examples thereof include xylene diisocyanate and modified products thereof (for example, urea modified product, dimer, trimeric body, carbodiimide body, alohanate modified product, bullet modified product, etc.). Two or more of these can be used together, and as the polyisocyanate, it may be commercially available as "crude polyisocyanate" and may be a publicly used one for industrial use. Of the above, MDI, crude MDI, carbodiimidinated MDI (also referred to as liquid MDI), TDI and crude TDI are preferable.

また、ポリイソシアネートは、上記のポリオール成分と反応してイソシアネート基末端プレポリマーとして使用することが好ましい。イソシアネート基末端プレポリマーを得るために用いるポリオール成分としては、上記のひまし油、及びひまし油誘導体が好ましい。
イソシアネート基末端プレポリマーは、ポリイソシアネートとポリオール成分とを公知の方法で反応することで得られ、ポリイソシアネートとポリオールとのNCO基/活性水素基の当量比を1.1〜50.0(好ましくは1.2〜25.0)として、30〜130℃(好ましくは40〜90℃)の反応温度で1〜5時間反応を行うことが好ましい。
Further, the polyisocyanate is preferably used as an isocyanate group-terminated prepolymer by reacting with the above-mentioned polyol component. As the polyol component used to obtain the isocyanate group-terminated prepolymer, the above-mentioned castor oil and castor oil derivative are preferable.
The isocyanate group-terminated prepolymer is obtained by reacting a polyisocyanate with a polyol component by a known method, and the equivalent ratio of NCO group / active hydrogen group between the polyisocyanate and the polyol is 1.1 to 50.0 (preferably). Is 1.2 to 25.0), and the reaction is preferably carried out at a reaction temperature of 30 to 130 ° C. (preferably 40 to 90 ° C.) for 1 to 5 hours.

アミン化合物としては、アルキルアミン(トリメチルアミン、トリエチルアミン、ジメチルエチルアミン及びジメチルイソプロピルアミン等)、及びアミン系ポリオール(ジ−又はトリ−エタノールアミン及びN−メチル−N,N’−ジエタノールアミン等の低分子アミン系ポリオール;エチレンジアミン、1,3−プロパンジアミン、1,6−ヘキサンジアミン等のアルキレンジアミン等にプロピレンオキサイド(以下POと略記する)又はエチレンオキサイド(以下EOと略記する)等のアルキレンオキサイド(以下AOと略記する)を付加したアミン系ポリオール等)があげられる。
アルキレンジアミンにAOを付加したアミン系ポリオールとしては、オキシプロピレン化エチレンジアミン及びオキシエチレン化エチレンジアミンが好ましく、N,N,N’,N’−テトラキス[2−ヒドロキシプロピル]エチレンジアミン、N,N,N’,N’−テトラキス[2−ヒドロキシエチル]エチレンジアミン、N,N,N’,N’−テトラキス[2−ヒドロキシプロピル]−1,3−プロパンジアミン、N,N,N’,N’−テトラキス[2−ヒドロキシエチル]−1,6−ヘキサンジアミン等が挙げられ、反応性と物性との観点から、N,N,N’,N’−テトラキス[2−ヒドロキシプロピル]エチレンジアミン、及びN,N,N’,N’−テトラキス[2−ヒドロキシエチル]エチレンジアミンがさらに好ましい。アミン化合物としてはアミン系ポリオールが好ましく用いられる。アミン系ポリオールを用いた場合には、得られるポリウレタン樹脂と、温度応答性樹脂粒子(A)との良好な相溶性が得られ、均一な被膜が容易に形成される。アミン系ポリオールは反応を促進すると共に架橋剤及び鎖延長剤としても働き、良好な硬化性と強靭な被膜物性が得られる。
Examples of the amine compound include alkylamines (trimethylamine, triethylamine, dimethylethylamine, dimethylisopropylamine, etc.) and amine-based polyols (di- or tri-ethanolamine and low-molecular-weight amines such as N-methyl-N, N'-diethanolamine). Polypoly; alkylenediamine such as ethylenediamine, 1,3-propanediamine, 1,6-hexanediamine, and alkylene oxide (hereinafter abbreviated as AO) such as propylene oxide (hereinafter abbreviated as PO) or ethylene oxide (hereinafter abbreviated as EO). Amine-based polyols to which (abbreviated) is added) can be mentioned.
As the amine-based polyol in which AO is added to alkylenediamine, oxypropylenediamine and oxyethylenediamine are preferable, and N, N, N', N'-tetrax [2-hydroxypropyl] ethylenediamine, N, N, N'. , N'-tetrakis [2-hydroxyethyl] ethylenediamine, N, N, N', N'-tetrakis [2-hydroxypropyl] -1,3-propanediamine, N, N, N', N'-tetrakis [ 2-Hydroxyethyl] -1,6-hexanediamine and the like can be mentioned, and from the viewpoint of reactivity and physical properties, N, N, N', N'-tetrax [2-hydroxypropyl] ethylenediamine, and N, N, N', N'-tetrax [2-hydroxyethyl] ethylenediamine are more preferred. As the amine compound, an amine-based polyol is preferably used. When an amine-based polyol is used, good compatibility between the obtained polyurethane resin and the temperature-responsive resin particles (A) can be obtained, and a uniform film can be easily formed. The amine-based polyol promotes the reaction and also acts as a cross-linking agent and a chain extender, so that good curability and tough film physical characteristics can be obtained.

被覆樹脂(C)としてのポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合物、ポリブテン、ブテン・エチレン共重合物及びブテン・プロピレン共重合物等があげられる。中でもポリエチレン及びポリプロピレンが好ましく、ポリエチレンがさらに好ましい。 Examples of the polyolefin resin as the coating resin (C) include polyethylene, polypropylene, ethylene / propylene copolymer, polybutene, butene / ethylene copolymer, butene / propylene copolymer and the like. Of these, polyethylene and polypropylene are preferable, and polyethylene is even more preferable.

被覆樹脂(C)としてのアルキド樹脂としては、特開2001―163691号公報等に記載の公知のアルキド樹脂を用いることができる。 As the alkyd resin as the coating resin (C), a known alkyd resin described in JP-A-2001-163691 or the like can be used.

本発明の被覆型農林園芸用粒状薬剤が有する被覆層は、前記の温度応答性架橋樹脂粒子(A)と前記の被覆樹脂(C)とを含み、生物活性物質(E)を含む粒子(P0)の表面の少なくとも一部に温度応答性架橋樹脂粒子(A)と被覆樹脂(C)とが付着していれば良い。なかでも被覆層が樹脂(C)中に温度応答性架橋樹脂粒子(A)が分散している構造を有することが好ましい。また、生物活性物質(E)の溶出を制御する観点から、粒子(P0)の表面全体に被覆層を有することが好ましい。 The coating layer contained in the coated granular agent for agriculture, forestry and gardening of the present invention contains the temperature-responsive crosslinked resin particles (A) and the coating resin (C), and contains particles (P0) containing a bioactive substance (E). ), The temperature-responsive crosslinked resin particles (A) and the coating resin (C) may be attached to at least a part of the surface. Above all, it is preferable that the coating layer has a structure in which the temperature-responsive crosslinked resin particles (A) are dispersed in the resin (C). Further, from the viewpoint of controlling the elution of the biologically active substance (E), it is preferable to have a coating layer on the entire surface of the particles (P0).

被覆層に含まれる温度応答性架橋樹脂粒子(A)の含有量は、生物活性物質(E)の溶出性等の観点から、温度応答性架橋樹脂粒子(A)と被覆樹脂(C)との合計重量に基づいて20〜95重量%が好ましく、25〜75重量%がさらに好ましく、30〜55重量%がより好ましい。 The content of the temperature-responsive crosslinked resin particles (A) contained in the coating layer is the temperature-responsive crosslinked resin particles (A) and the coating resin (C) from the viewpoint of elution of the bioactive substance (E) and the like. Based on the total weight, 20 to 95% by weight is preferable, 25 to 75% by weight is more preferable, and 30 to 55% by weight is more preferable.

被覆層に含まれる被覆樹脂(C)の含有量は、生物活性物質(E)の溶出性等の観点から、温度応答性樹脂粒子(A)と被覆樹脂(C)との合計重量に基づいて好ましくは5〜80重量%であり、さらに好ましくは45〜80重量%である。 The content of the coating resin (C) contained in the coating layer is based on the total weight of the temperature-responsive resin particles (A) and the coating resin (C) from the viewpoint of elution of the bioactive substance (E) and the like. It is preferably 5 to 80% by weight, more preferably 45 to 80% by weight.

被膜層の厚さは特に限定されないが、生物活性物質(E)の溶出性等の観点から、10〜300μmが好ましく、100〜250μmがさらに好ましい。被覆層の厚さは、被覆型農林園芸用粒状薬剤を粒子の中心を通るように切断した断面をJIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定する。 The thickness of the coating layer is not particularly limited, but is preferably 10 to 300 μm, more preferably 100 to 250 μm, from the viewpoint of elution of the biologically active substance (E) and the like. As for the thickness of the coating layer, the particles are observed with a digital microscope (manufactured by KEYENCE, VHX-200) in accordance with JIS 8827-1, which is a cross section obtained by cutting a coated granular chemical for agriculture, forestry and horticulture so as to pass through the center of the particles. Then, it is measured by image processing.

生物活性物質(E)を含む粒子(P0)の粒子表面に被覆層を形成する方法は、特に限定されないが、流動状態にある前記の粒子(P0)に前記の温度応答性架橋樹脂粒子(A)と前記の被覆樹脂(C)とを加えて混合する等の公知の方法を用いることができる。粒子(P0)を流動状態にするには、公知の流動化装置を用いて行うことができ、粉体層に気体を流す方法、粉体混合機(容器回転型混合機、リボン式混合機、ヘンシェルミキサ等)を用いる方法、及び振動コンベアを用いる方法等で行うことが出来る。流動状態にある前記の粒子(P0)と温度応答性架橋樹脂粒子(A)と被覆樹脂(C)との混合は、前記の流動化装置内に前記の粒子(P0)と温度応答性架橋樹脂粒子(A)と被覆樹脂(C)とを共存させて流動化することで行うことができる。なかでも、流動化状態にある粒子(P0)に溶媒に溶解した被覆樹脂(C)の溶液を添加し、さらに温度応答性架橋樹脂粒子(A)を添加して混合する方法、及び流動化状態にある粒子(P0)に液体状態にある被覆樹脂(C)の前駆体を添加し、さらに温度応答性架橋樹脂粒子(A)を添加して前記の前駆体を反応させながら混合する方法が好ましい方法としてあげられる。 The method for forming a coating layer on the particle surface of the particles (P0) containing the bioactive substance (E) is not particularly limited, but the temperature-responsive crosslinked resin particles (A) are formed on the particles (P0) in a flowing state. ) And the above-mentioned coating resin (C) can be added and mixed by a known method. The particles (P0) can be brought into a fluid state by using a known fluidizer, and a method of flowing a gas through the powder layer, a powder mixer (container rotary mixer, ribbon mixer, etc.). It can be performed by a method using a Henschel mixer or the like, a method using a vibrating conveyor, or the like. The mixing of the particles (P0) in a fluid state, the temperature-responsive crosslinked resin particles (A), and the coating resin (C) is carried out in the fluidizing device with the particles (P0) and the temperature-responsive crosslinked resin. This can be done by coexisting the particles (A) and the coating resin (C) and fluidizing them. Among them, a method of adding a solution of the coating resin (C) dissolved in a solvent to the particles (P0) in the fluidized state, and further adding and mixing the temperature-responsive crosslinked resin particles (A), and a fluidized state. It is preferable to add a precursor of the coating resin (C) in a liquid state to the particles (P0) in the above, further add the temperature-responsive crosslinked resin particles (A), and mix the precursors while reacting them. It can be mentioned as a method.

粒子(P0)の粒子表面に被覆層を形成する前記の方法において、粒子(P0)と温度応答性架橋樹脂粒子(A)と被覆樹脂(C)との重量比率は、粒子(P0)と温度応答性架橋樹脂粒子(A)及び被覆樹脂(C)との比率{[粒子(P0)]/{[(樹脂粒子(A)+被覆樹脂(C))}が16/1〜1/1であることが好ましい。 In the above method of forming a coating layer on the particle surface of the particles (P0), the weight ratio of the particles (P0), the temperature-responsive crosslinked resin particles (A), and the coating resin (C) is the temperature of the particles (P0). The ratio of the responsive crosslinked resin particles (A) and the coating resin (C) {[particles (P0)] / {[(resin particles (A) + coating resin (C))} is 16/1 to 1/1. It is preferable to have.

粒子(P0)の粒子表面に被覆層が形成されたかどうかは、目視により粒子表面の色の変化、粒子表面を指で触れた時の感触の変化、及びマイクロスコープを用いて測定される粒子径の変化等により確認することができる。 Whether or not a coating layer is formed on the particle surface of the particle (P0) is determined by visually changing the color of the particle surface, changing the feel when the particle surface is touched with a finger, and the particle size measured using a microscope. It can be confirmed by the change of.

本発明の被覆型農林園芸用粒状薬剤が有する被覆層にはLCSTが10〜40℃である温度応答性架橋樹脂粒子(A)及び被覆樹脂(C)以外のその他の添加成分を含んでもよい。その他の添加成分としては、被覆粒状肥料に添加され得る公知の成分が挙げられ、無機質粒子(タルク、カオリン、クレー及び珪酸塩粉末等)、有機微粒子、LCSTを持たない又はLCSTが10℃未満若しくは40℃を超える吸水性樹脂粒子、ラジカル安定剤、疎水性化合物(流動パラフィン等)及び界面活性剤等が挙げられる。
これらのその他の添加成分の添加量は、添加目的に応じて調整することができるが、LCSTを持たない吸水性樹脂粒子としてポリアクリル酸Na架橋(共)重合体粒子を用いる場合には、その添加量は少ない方が好ましく、長期間にわたって植物育成等の薬剤の効果を発揮させるという観点から、用いない方が好ましい。
The coating layer contained in the coated granular agent for agriculture, forestry and horticulture of the present invention may contain other additive components other than the temperature-responsive crosslinked resin particles (A) having an LCST of 10 to 40 ° C. and the coating resin (C). Other additive components include known components that can be added to coated granular fertilizers, such as inorganic particles (talc, kaolin, clay and silicate powder, etc.), organic fine particles, no LCST, or LCST below 10 ° C. Examples thereof include water-absorbent resin particles exceeding 40 ° C., radical stabilizers, hydrophobic compounds (liquid paraffin and the like), surfactants and the like.
The amount of these other additive components added can be adjusted according to the purpose of addition, but when sodium polyacrylate crosslinked (co) polymer particles are used as the water-absorbent resin particles having no LCST, the amount thereof is adjusted. It is preferable that the amount added is small, and it is preferable not to use it from the viewpoint of exerting the effect of the drug such as plant growth for a long period of time.

本発明の被覆型農林園芸用粒状薬剤を適用できる作物は限定されるものではなく、食用作物(イネ、ムギ、トウモロコシ、イモ及びマメ等)、飼料作物、工芸作物及び園芸作物[果樹、蔬菜(葉菜、果菜及び根菜等)及び花卉(1年草、2年草及び宿根草等)等]等に用いることができる。なかでも、土壌中の成分の影響を受けやすく温度条件への生育反応が鋭敏であり長期間にわたって肥料等を与える必要がある作物の栽培に好適に用いられる。また、本発明の被覆型農林園芸用粒状薬剤は、作物を栽培する土壌に散布して用いられ、被覆型農林園芸用粒状薬剤だけで散布して用いても、水と混合して散布して用いても良い。 The crops to which the coated agricultural, forestry and horticultural granular chemicals of the present invention can be applied are not limited, and food crops (rice, wheat, corn, potatoes, beans, etc.), forage crops, industrial crops and horticultural crops [fruit trees, vegetables (fruit trees, vegetables (fruit trees, vegetables)) It can be used for leafy vegetables, fruit vegetables, root vegetables, etc.) and flowers (1 year old plants, 2 year old plants, root vegetables, etc.)] and the like. Among them, it is suitably used for cultivating crops that are easily affected by components in soil, have a sensitive growth reaction to temperature conditions, and require fertilizer or the like for a long period of time. Further, the coated granular chemical for agriculture, forestry and horticulture of the present invention is used by spraying on the soil in which crops are cultivated, and even if it is sprayed only with the coated granular chemical for agriculture, forestry and horticulture, it is mixed with water and sprayed. You may use it.

また、本発明の被覆型農林園芸用粒状薬剤は、降雨や散水等による薬剤に含まれる生物活性物質の溶出を制御する被覆層の破壊が生じにくいため、長期間にわたって植物育成等の効果を発揮させることが可能なだけでなく、環境温度が上昇した場合の生物活性物質(E)の過剰溶出を制御できるので季節を跨いで栽培する場合など栽培期間中に温度の上昇が生じる作型において好ましく適用できる。 In addition, the coated granular chemicals for agriculture, forestry and horticulture of the present invention are less likely to destroy the coating layer that controls the elution of biologically active substances contained in the chemicals due to rainfall, watering, etc. Not only can it be allowed to grow, but also the excessive elution of the bioactive substance (E) when the environmental temperature rises can be controlled, which is preferable in cropping in which the temperature rises during the cultivation period, such as when cultivating across seasons. Applicable.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。温度応答性架橋樹脂粒子(A)及び被覆型農林園芸用粒状薬剤(F)等の特性値は下記の方法で測定した。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified,% indicates a weight% and a part indicates a weight part. The characteristic values of the temperature-responsive crosslinked resin particles (A) and the coated granular chemicals (F) for agriculture, forestry and horticulture were measured by the following methods.

<温度応答性架橋樹脂粒子(A)及び生物活性物質(E)を含む粒子(P0)の体積平均粒子径>
温度応答性架橋樹脂粒子(A)の体積平均粒子径は、JIS Z 8825に準じて測定した。測定には、乾式粒度分布測定装置(ベックマン・コールター社製、LS 13320)を用いた。 生物活性物質(E)として使用した尿素及びオンコル粒剤5の粒子の個数平均粒子径は、JIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。
<Volume average particle diameter of particles (P0) containing temperature-responsive crosslinked resin particles (A) and bioactive substance (E)>
The volume average particle diameter of the temperature-responsive crosslinked resin particles (A) was measured according to JIS Z 8825. A dry particle size distribution measuring device (LS 13320 manufactured by Beckman Coulter) was used for the measurement. The average number of particles of urea and oncol granules 5 used as the bioactive substance (E) was determined by observing the particles with a digital microscope (VHX-200, manufactured by KEYENCE) according to JIS 8827-1. It was measured by image processing.

<温度応答性架橋樹脂粒子(A)の下限臨界溶液温度(LCST)>
温度応答性架橋樹脂粒子(A)の1.0重量%水分散液を作製し、5〜60℃の範囲で1℃毎に前記の水分散液を加熱し、その温度を維持したまま水溶液の1℃毎の水分散液の光線透過率(波長670nm)をUV−vis分光光度計((株)島津製作所製、UV−2550)を用いて測定した。光線透過率が50%となった時の温度をLCSTとした。
<Lower critical solution temperature (LCST) of temperature-responsive crosslinked resin particles (A)>
A 1.0% by weight aqueous dispersion of the temperature-responsive crosslinked resin particles (A) was prepared, and the aqueous dispersion was heated every 1 ° C. in the range of 5 to 60 ° C., and the aqueous solution was prepared while maintaining the temperature. The light transmittance (wavelength 670 nm) of the aqueous dispersion at 1 ° C. was measured using a UV-vis spectrophotometer (UV-2550, manufactured by Shimadzu Corporation). The temperature when the light transmittance became 50% was defined as LCST.

<被覆型農林園芸用粒状薬剤(F)の個数平均粒子径>
被覆型農林園芸用粒状薬剤(F)の個数平均粒子径は、JIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。
<Number average particle size of coated granular chemicals (F) for agriculture, forestry and horticulture>
The number average particle size of the coated agricultural, forestry and horticultural granular chemicals (F) was measured by observing the particles with a digital microscope (manufactured by KEYENCE, VHX-200) and performing image processing according to JIS 8827-1. ..

<被覆層の膜厚>
被覆層の膜厚は、被覆型農林園芸用粒状薬剤(F)の重心を通るように切断し、切断面が観察できるように試料台に固定しJIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。被覆層が薬剤表面の一部に点在している場合には、断面から観察できる被覆層の膜厚の平均値とした。
<Film thickness of coating layer>
The film thickness of the coating layer is cut so as to pass through the center of gravity of the coated agricultural, forestry and horticultural granular chemicals (F), fixed to the sample table so that the cut surface can be observed, and according to JIS 8827-1, a digital microscope ( The particles were observed with a VHX-200) manufactured by KEYENCE, and measured by image processing. When the coating layers were scattered on a part of the drug surface, the average value of the film thickness of the coating layers observable from the cross section was used.

<製造例1>
反応容器にN−イソプロピルアクリルアミド10gとN,N−メチレンビスアクリルアミド0.025g、イオン交換水85gを加え、200rpmで撹拌しながら、70℃で30分間窒素置換を行った。続いて、5gのイオン交換水に2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(V−50)0.1gを溶解させ、この水溶液を系内に滴下することで重合を開始させ、重合は70℃で1時間かけて行った。反応終了後、樹脂分散液を遠心分離(15000rpm)することにより、樹脂と上澄み液を分離し、沈殿させた樹脂を水に再分散させた。この操作を3回繰り返した後、得られた樹脂を80℃にて減圧乾燥した。得られた乾燥物を凍結粉砕し、目開き75μmの標準ふるいと45μmの標準ふるいとを用いて分級して、45μmの標準ふるいの上に残った粒子をN−イソプロピルアクリルアミド架橋樹脂粒子(A−1)とした。得られた粒子(A−1)の体積平均粒子径は60μmであった。N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)の下限臨界溶液温度(LCST)は、32℃であった。
<Manufacturing example 1>
To the reaction vessel, 10 g of N-isopropylacrylamide, 0.025 g of N, N-methylenebisacrylamide, and 85 g of ion-exchanged water were added, and nitrogen substitution was carried out at 70 ° C. for 30 minutes while stirring at 200 rpm. Subsequently, 0.1 g of 2,2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) was dissolved in 5 g of ion-exchanged water, and this aqueous solution was added dropwise into the system to initiate polymerization. The polymerization was carried out at 70 ° C. for 1 hour. After completion of the reaction, the resin dispersion was centrifuged (15000 rpm) to separate the resin from the supernatant, and the precipitated resin was redispersed in water. After repeating this operation three times, the obtained resin was dried under reduced pressure at 80 ° C. The obtained dried product was freeze-milled, classified using a standard sieve having a mesh size of 75 μm and a standard sieve having a mesh size of 45 μm, and the particles remaining on the standard sieve having a mesh size of 45 μm were separated into N-isopropylacrylamide crosslinked resin particles (A-). It was set as 1). The volume average particle diameter of the obtained particles (A-1) was 60 μm. The lower limit critical solution temperature (LCST) of the N-isopropylacrylamide crosslinked resin particles (A-1) was 32 ° C.

なお、温度応答性架橋樹脂粒子(A)の体積平均粒子径は、JIS Z 8825に準じて測定した。測定には、乾式粒度分布測定装置(ベックマン・コールター社製、LS 13320)を用いた。
生物活性物質(E)として使用した尿素及びオンコル粒剤5の粒子の個数平均粒子径は、JIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。
The volume average particle diameter of the temperature-responsive crosslinked resin particles (A) was measured according to JIS Z 8825. A dry particle size distribution measuring device (LS 13320 manufactured by Beckman Coulter) was used for the measurement.
The average number of particles of urea and oncol granules 5 used as the bioactive substance (E) was determined by observing the particles with a digital microscope (VHX-200, manufactured by KEYENCE) according to JIS 8827-1. It was measured by image processing.

<製造例2>
製造例1において、N−イソプロピルアクリルアミドの代わりにN−ビニルノルマルプロピルアミドを用いること以外は、製造例1と同じ操作を行い、N−ビニルノルマルプロピルアミド架橋樹脂粒子(A−2)を作製した。得られたN−ビニルノルマルプロピルアミド架橋樹脂粒子(A−2)の体積平均粒子径は60μmであった。N−ビニルノルマルプロピルアミド架橋樹脂粒子(A−2)のLCSTは、32℃であった。
<Manufacturing example 2>
N-vinylnormalpropylamide crosslinked resin particles (A-2) were prepared by performing the same operation as in Production Example 1 except that N-vinylnormalpropylamide was used instead of N-isopropylacrylamide in Production Example 1. .. The volume average particle diameter of the obtained N-vinylnormal propylamide crosslinked resin particles (A-2) was 60 μm. The LCST of the N-vinylnormal propylamide crosslinked resin particles (A-2) was 32 ° C.

<製造例3>
反応容器にN−イソプロピルアクリルアミド5部とブチルメタクリレート0.6部と、N,N−メチレンビスアクリルアミド0.06部と、1,4−ジオキサン30部を加え、200rpmで撹拌しながら、25℃で5分間窒素置換を行った。続いて、アゾビスイソブチロニトリル(AIBN)0.1部を上記反応容器に添加することで重合を開始させ、重合は70℃で4時間かけて行った。反応終了後、メタノール/水=1/1混合溶液で再沈殿させ、減圧乾燥することによりN−イソプロピルアクリルアミド/ブチルメタクリレート架橋共重合体樹脂粒子(A−3)を得た。得られた粒子の体積平均粒子径(製造例1と同様に測定した)は60μmであった。N−イソプロピルアクリルアミド−ブチルメタクリレート架橋共重合体樹脂粒子(A−3)のLCSTは、20℃であった。
<Manufacturing example 3>
To the reaction vessel, add 5 parts of N-isopropylacrylamide, 0.6 part of butyl methacrylate, 0.06 part of N, N-methylenebisacrylamide, and 30 parts of 1,4-dioxane, and stir at 200 rpm at 25 ° C. Nitrogen substitution was performed for 5 minutes. Subsequently, 0.1 part of azobisisobutyronitrile (AIBN) was added to the above reaction vessel to initiate polymerization, and the polymerization was carried out at 70 ° C. for 4 hours. After completion of the reaction, the mixture was reprecipitated with a mixed solution of methanol / water = 1/1 and dried under reduced pressure to obtain N-isopropylacrylamide / butyl methacrylate crosslinked copolymer resin particles (A-3). The volume average particle size of the obtained particles (measured in the same manner as in Production Example 1) was 60 μm. The LCST of the N-isopropylacrylamide-butylmethacrylate crosslinked copolymer resin particles (A-3) was 20 ° C.

<製造例4>
反応容器にN−イソプロピルアクリルアミド5部とブチルメタクリレート0.6部と、アクリル酸0.1部と、N,N−メチレンビスアクリルアミド0.06部と、1,4−ジオキサン30部を加え、200rpmで撹拌しながら、25℃で5分間窒素置換を行った。続いて、アゾビスイソブチロニトリル(AIBN)0.1部を上記反応容器に添加することで重合を開始させ、重合は70℃で4時間かけて行った。反応終了後、メタノール/水=1/1混合溶液で再沈殿させ、減圧乾燥することによりN−イソプロピルアクリルアミド/ブチルメタクリレート/アクリル酸架橋共重合体樹脂粒子(A−4)を得た。得られた粒子の体積平均粒子径(製造例1と同様に測定した)は60μmであった。N−イソプロピルアクリルアミド−ブチルメタクリレート−アクリル酸架橋共重合体樹脂粒子(A−4)のLCSTは、20℃であった。
<Manufacturing example 4>
To the reaction vessel, add 5 parts of N-isopropylacrylamide, 0.6 part of butyl methacrylate, 0.1 part of acrylic acid, 0.06 part of N, N-methylenebisacrylamide, and 30 parts of 1,4-dioxane, and add 200 rpm. Nitrogen substitution was carried out at 25 ° C. for 5 minutes while stirring with. Subsequently, 0.1 part of azobisisobutyronitrile (AIBN) was added to the above reaction vessel to initiate polymerization, and the polymerization was carried out at 70 ° C. for 4 hours. After completion of the reaction, the mixture was reprecipitated with a mixed solution of methanol / water = 1/1 and dried under reduced pressure to obtain N-isopropylacrylamide / butyl methacrylate / acrylic acid crosslinked copolymer resin particles (A-4). The volume average particle size of the obtained particles (measured in the same manner as in Production Example 1) was 60 μm. The LCST of the N-isopropylacrylamide-butylmethacrylate-acrylic acid crosslinked copolymer resin particles (A-4) was 20 ° C.

<製造例5>
製造例1において、N−イソプロピルアクリルアミドの代わりにN−エチルアクリルアミドを用いること以外は、製造例1と同じ操作を行い、N−エチルアクリルアミド架橋樹脂粒子(A’−1)を作製した。得られたN−エチルアクリルアミド架橋樹脂粒子(A’−1)の体積平均粒子径(製造例1と同様に測定した)は60μmであった。ポリ(N−エチルアクリルアミド)架橋樹脂粒子(A’−1)のLCSTは、73℃であった。
<Manufacturing example 5>
In Production Example 1, N-ethylacrylamide crosslinked resin particles (A'-1) were prepared by performing the same operation as in Production Example 1 except that N-ethylacrylamide was used instead of N-isopropylacrylamide. The volume average particle size (measured in the same manner as in Production Example 1) of the obtained N-ethylacrylamide crosslinked resin particles (A'-1) was 60 μm. The LCST of the poly (N-ethylacrylamide) crosslinked resin particles (A'-1) was 73 ° C.

<製造例6>
反応容器にひまし油32部とジフェニルメタンジイソシアネート68部を仕込み、70℃で3時間反応させることで、NCO%が19%のイソシアネート基末端プレポリマー(C−1−2)を得た。
<Manufacturing example 6>
32 parts of castor oil and 68 parts of diphenylmethane diisocyanate were charged in a reaction vessel and reacted at 70 ° C. for 3 hours to obtain an isocyanate group-terminated prepolymer (C-1-2) having an NCO% of 19%.

<製造例7>
目開き150μmの標準ふるいと90μmの標準ふるいとを用いて分級したこと以外は製造例1と同様に行い、90μmの標準ふるいの上に残った粒子をN−イソプロピルアクリルアミド架橋樹脂粒子(A−5)とした。得られた粒子(A−5)の体積平均粒子径は120μmであった。N−イソプロピルアクリルアミド架橋重合体(A−5)の下限臨界溶液温度(LCST)は、32℃であった。
<Manufacturing example 7>
The same procedure as in Production Example 1 was carried out except that the particles were classified using a standard sieve having a mesh size of 150 μm and a standard sieve having a mesh size of 90 μm. ). The volume average particle diameter of the obtained particles (A-5) was 120 μm. The lower critical solution temperature (LCST) of the N-isopropylacrylamide crosslinked polymer (A-5) was 32 ° C.

<実施例1:被覆型農林園芸用粒状薬剤(F−1)>
46.9部の製造例1で製造したN−イソプロピルアクリルアミド架橋樹脂粒子(A−1、20.4部のひまし油、4.8部のアミン化合物(C−1−1)(ニューポールNP−300、三洋化成工業(株)製)、及び0.6部のエチルメチルケトンを混合した後、製造例5で製造した27.3部のイソシアネート基末端プレポリマー(C−1−2)を添加し、撹拌を行った。これにより、ひまし油、アミン化合物(C−1−1)、イソシアネート基末端プレポリマー(C−1−2)、及びN−イソプロピルアクリルアミド共樹脂粒子(A−1)を含む混合溶液を得た。噴流層による流動コーティング装置を用いて、装置内で浮遊しているオンコル粒剤5(OATアグリオ(株)製)(個数平均粒子径2mm)233.3部に対して、前記の混合溶液93.3部をスプレー噴霧で添加し被覆を行い、室温硬化させることで被覆型農林園芸用粒状薬剤(F−1)を作製した。
被覆型農林園芸用粒状薬剤(F−1)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−1)の個数平均粒子径は2360μmであった。
なお、ひまし油、アミン化合物(C−1−1)及びイソシアネート基末端プレポリマー(C−1−2)が反応することによって被覆樹脂であるポリウレタン樹脂(C−1)が形成される。
<Example 1: Coated agricultural, forestry and horticultural granular chemicals (F-1)>
46.9 parts of N-isopropylacrylamide crosslinked resin particles produced in Production Example 1 (A-1, 20.4 parts of castor oil, 4.8 parts of amine compound (C-1-1) (New Pole NP-300) , Sanyo Kasei Kogyo Co., Ltd., and 0.6 parts of ethyl methyl ketone were mixed, and then 27.3 parts of the isocyanate group-terminated prepolymer (C-1-2) produced in Production Example 5 was added. , Stirring, thereby mixing with castor oil, amine compound (C-1-1), isocyanate group-terminated prepolymer (C-1-2), and N-isopropylacrylamide co-resin particles (A-1). A solution was obtained. Using a flow coating device using a jet layer, 233.3 parts of Oncol granules 5 (manufactured by OAT Agrio Co., Ltd.) (number average particle size 2 mm) suspended in the device were described. 93.3 parts of the mixed solution of (F-1) was added by spray spraying, coated, and cured at room temperature to prepare a coated granular chemical (F-1) for agriculture, forestry and gardening.
The film thickness of the coating layer of the coated granular chemical (F-1) for agriculture, forestry and horticulture was 180 μm. The average particle size of the coated granular chemicals (F-1) for agriculture, forestry and horticulture was 2360 μm.
The reaction between castor oil, the amine compound (C-1-1) and the isocyanate group-terminated prepolymer (C-1-2) forms a polyurethane resin (C-1) as a coating resin.

被覆型農林園芸用粒状薬剤(F−1)の個数平均粒子径は、JIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。
被覆層の膜厚は、被覆型農林園芸用粒状薬剤の粒子の中心を通るように切断し、切断面が観察できるように試料台に固定しJIS 8827−1に準じて、デジタルマイクロスコープ(キーエンス社製、VHX−200)で粒子を観察し、画像処理することにより測定した。
なお、以下の実施例2〜23及び比較例1〜8における被覆型農林園芸用粒状薬剤(F)の個数平均粒子径と被覆層の膜厚も同様の方法で測定した
The average particle size of the coated granular chemicals (F-1) for agriculture, forestry and horticulture is determined by observing the particles with a digital microscope (VHX-200, manufactured by KEYENCE) and performing image processing in accordance with JIS 8827-1. It was measured.
The film thickness of the coating layer is cut so that it passes through the center of the particles of the coated agricultural, forestry and horticultural chemicals, fixed on the sample table so that the cut surface can be observed, and according to JIS 8827-1, a digital microscope (KEYENCE). The particles were observed with a VHX-200) manufactured by the same company and measured by image processing.
The number average particle size and the film thickness of the coating layer of the coated agricultural, forestry and horticultural granular chemicals (F) in Examples 2 to 23 and Comparative Examples 1 to 8 below were also measured by the same method.

<実施例2:被覆型農林園芸用粒状薬剤(F−2)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)の重量を26.1部に、ひまし油の使用量を28.4部に、アミン化合物の使用量を6.7部に、メチルエチルケトンの使用量を0.8部に、イソシアネート基末端プレポリマー(C−1−2)の使用量を38.0部に、オンコル粒剤の使用量を424.0部に変更した以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−2)を作製した。被覆型農林園芸用粒状薬剤(F−2)の被覆層の膜厚は160μmであった。被覆型農林園芸用粒状薬剤(F−2)の個数平均粒子径は2320μmであった。
<Example 2: Covered agricultural, forestry and horticultural granular chemicals (F-2)>
In Example 1, the weight of the N-isopropylacrylamide crosslinked resin particles (A-1) was 26.1 parts, the amount of castor oil used was 28.4 parts, the amount of amine compound used was 6.7 parts, and methyl ethyl ketone. Was changed to 0.8 parts, the amount of isocyanate group-terminated prepolymer (C-1-2) was changed to 38.0 parts, and the amount of oncol granules used was changed to 424.0 parts. The same operation as in Example 1 was carried out to prepare a coated type granular chemical for agriculture, forestry and gardening (F-2). The film thickness of the coating layer of the coated granular chemical (F-2) for agriculture, forestry and horticulture was 160 μm. The average particle size of the coated granular chemicals (F-2) for agriculture, forestry and horticulture was 2320 μm.

<実施例3:被覆型農林園芸用粒状薬剤(F−3)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)の使用量を72.6部に、ひまし油の使用量を10.5部に、アミン化合物の使用量を2.5部に、メチルエチルケトンの使用量を0.3部に、イソシアネート基末端プレポリマー(C−1−2)の使用量を14.1部に、オンコル粒剤の使用量を120.7部に変更した以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−3)を作製した。被覆型農林園芸用粒状薬剤(F−3)の被覆層の膜厚は200μmであった。被覆型農林園芸用粒状薬剤(F−3)の個数平均粒子径は2400μmであった。
<Example 3: Covered agricultural, forestry and horticultural granular chemicals (F-3)>
In Example 1, the amount of N-isopropylacrylamide crosslinked resin particles (A-1) used was 72.6 parts, the amount of castor oil used was 10.5 parts, and the amount of amine compound used was 2.5 parts. Except that the amount of methyl ethyl ketone used was changed to 0.3 parts, the amount of isocyanate group-terminated prepolymer (C-1-2) used was changed to 14.1 parts, and the amount of oncol granules used was changed to 120.7 parts. The same operation as in Example 1 was carried out to prepare a coated type granular chemical agent (F-3) for agriculture, forestry and gardening. The film thickness of the coating layer of the coated granular chemical (F-3) for agriculture, forestry and horticulture was 200 μm. The average particle size of the coated granular chemicals (F-3) for agriculture, forestry and horticulture was 2400 μm.

<実施例4:被覆型農林園芸用粒状薬剤(F−4)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)を製造例7で得られた体積平均粒子径が120μmであるN−イソプロピルアクリルアミド架橋樹脂粒子(A−5)に変更したこと以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−4)を作製した。被覆型農林園芸用粒状薬剤(F−4)の被膜の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−4)の個数平均粒子径は2360μmであった。
<Example 4: Covered agricultural, forestry and horticultural granular chemicals (F-4)>
Except that in Example 1, the N-isopropylacrylamide crosslinked resin particles (A-1) were changed to N-isopropylacrylamide crosslinked resin particles (A-5) having a volume average particle diameter of 120 μm obtained in Production Example 7. The same operation as in Example 1 was carried out to prepare a coated type granular chemical for agriculture, forestry and gardening (F-4). The film thickness of the coated granular chemical (F-4) for agriculture, forestry and horticulture was 180 μm. The average particle size of the coated granular chemicals (F-4) for agriculture, forestry and horticulture was 2360 μm.

<実施例5:被覆型農林園芸用粒状薬剤(F−5)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)の代わりに製造例2で製造したN−ビニルノルマルプロピルアミド架橋樹脂粒子(A−2)を用いた以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−5)を作製した。被覆型農林園芸用粒状薬剤(F−5)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−5)の個数平均粒子径は2360μmであった。
<Example 5: Coated agricultural, forestry and horticultural granular chemicals (F-5)>
Example 1 and Example 1 except that the N-vinylnormal propylamide crosslinked resin particles (A-2) produced in Production Example 2 were used instead of the N-isopropylacrylamide crosslinked resin particles (A-1). The same operation was carried out to prepare a coated type granular chemical for agriculture, forestry and horticulture (F-5). The film thickness of the coating layer of the coated granular chemical (F-5) for agriculture, forestry and horticulture was 180 μm. The average particle size of the coated granular chemicals (F-5) for agriculture, forestry and horticulture was 2360 μm.

<実施例6:被覆型農林園芸用粒状薬剤(F−6)>
実施例1において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−6)を作製した。被覆型農林園芸用粒状薬剤(F−6)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−6)の個数平均粒子径は3360μmであった。
<Example 6: Coated agricultural, forestry and horticultural granular chemicals (F-6)>
In Example 1, the same operation as in Example 1 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of Oncol granule 5, and a coated type agricultural, forestry and horticultural granular drug (F-) was used. 6) was prepared. The film thickness of the coating layer of the coated granular chemical (F-6) for agriculture, forestry and horticulture was 180 μm. The average particle size of the coated granular chemicals (F-6) for agriculture, forestry and horticulture was 3360 μm.

<実施例7:被覆型農林園芸用粒状薬剤(F−7)>
実施例2において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例2と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−7)を作製した。被覆型農林園芸用粒状薬剤(F−7)の被覆層の膜厚は160μmであった。被覆型農林園芸用粒状薬剤(F−7)の個数平均粒子径は3320μmであった。
<Example 7: Coated agricultural, forestry and horticultural granular chemicals (F-7)>
In Example 2, the same operation as in Example 2 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of Oncol granule 5, and a coated type agricultural, forestry and horticultural granular drug (F-) was used. 7) was prepared. The film thickness of the coating layer of the coated granular chemical (F-7) for agriculture, forestry and horticulture was 160 μm. The average particle size of the coated granular chemicals (F-7) for agriculture, forestry and horticulture was 3320 μm.

<実施例8:被覆型農林園芸用粒状薬剤(F−8)>
実施例3において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例3と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−8)を作製した。被覆型農林園芸用粒状薬剤(F−8)の被覆層の膜厚は200μmであった。被覆型農林園芸用粒状薬剤(F−8)の個数平均粒子径は3400μmであった。
<Example 8: Coated agricultural, forestry and horticultural granular chemicals (F-8)>
In Example 3, the same operation as in Example 3 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of Oncol granule 5, and the coated type agricultural, forestry and horticultural granular drug (F-) was used. 8) was prepared. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-8) was 200 μm. The average particle size of the coated granular chemicals (F-8) for agriculture, forestry and horticulture was 3400 μm.

<実施例9:被覆型農林園芸用粒状薬剤(F−9)>
実施例4において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例4と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−9)を作製した。被覆型農林園芸用粒状薬剤(F−9)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−9)の個数平均粒子径は3360μmであった。
<Example 9: Coated agricultural, forestry and horticultural granular chemicals (F-9)>
In Example 4, the same operation as in Example 4 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of Oncol granule 5, and a coated type agricultural, forestry and horticultural granular drug (F-) was used. 9) was prepared. The film thickness of the coating layer of the coated granular chemical (F-9) for agriculture, forestry and horticulture was 180 μm. The average particle size of the coated granular chemicals (F-9) for agriculture, forestry and horticulture was 3360 μm.

<実施例10:被覆型農林園芸用粒状薬剤(F−10)>
実施例5において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例5と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−10)を作製した。被覆型農林園芸用粒状薬剤(F−10)の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−10)の個数平均粒子径は3360μmであった。
<Example 10: Coated agricultural, forestry and horticultural granular chemicals (F-10)>
In Example 5, the same operation as in Example 5 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of Oncol granule 5, and a coated type agricultural, forestry and horticultural granular drug (F-) was used. 10) was prepared. The film thickness of the coated agricultural, forestry and horticultural granular chemicals (F-10) was 180 μm. The average particle size of the coated granular chemicals (F-10) for agriculture, forestry and horticulture was 3360 μm.

<実施例11:被覆型農林園芸用粒状薬剤(F−11)>
実施例1において、46.9部のN−イソプロピルアクリルアミド架橋樹脂粒子(A−1)を用いたことを、23.5部のN−イソプロピルアクリルアミド架橋樹脂粒子(A−1)と23.5部のN−ビニルノルマルプロピルアミド架橋樹脂粒子(A−2)とを併用して用いたことに変更したこと以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−11)を作製した。被覆型農林園芸用粒状薬剤(F−11)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−11)の個数平均粒子径は2360μmであった。
<Example 11: Coated agricultural, forestry and horticultural granular chemicals (F-11)>
In Example 1, 46.9 parts of N-isopropylacrylamide crosslinked resin particles (A-1) were used, and 23.5 parts of N-isopropylacrylamide crosslinked resin particles (A-1) and 23.5 parts were used. The same operation as in Example 1 was carried out except that it was changed to be used in combination with the N-vinylnormal propylamide crosslinked resin particles (A-2) of No. 1 in the coated type agricultural, forestry and gardening granular chemicals (F-11). ) Was prepared. The film thickness of the coating layer of the coating type granular chemicals for agriculture, forestry and horticulture (F-11) was 180 μm. The average particle size of the coated granular chemicals (F-11) for agriculture, forestry and horticulture was 2360 μm.

<実施例12:被覆型農林園芸用粒状薬剤(F−12)>
46.9部の製造例1で製造したN−イソプロピルアクリルアミド架橋樹脂粒子(A−1)と1.2部のポリエチレンと51.9部のデカンとを撹拌混合し、ポリエチレンをデカンに溶解して混合溶液を作製した。この混合溶液93.3部を噴流層による流動コーティング装置を用い、装置内で浮遊しているオンコル粒剤5(OATアグリオ(株)製)(個数平均粒子径2mm)233.3に対してスプレー噴霧で添加し被覆を行い、室温硬化させることで被覆型農林園芸用粒状薬剤(F−12)を作製した。被覆型農林園芸用粒状薬剤(F−1)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−12)は、(A−1)の粒子及び被覆樹脂であるポリエチレン樹脂(C−2)を含む被覆層を有する被覆型農林園芸用粒状薬剤である。(F−12)の個数平均粒子径は2360μmであった。
<Example 12: Coated agricultural, forestry and horticultural granular chemicals (F-12)>
The N-isopropylacrylamide crosslinked resin particles (A-1) produced in Production Example 1 of 46.9 parts, 1.2 parts of polyethylene and 51.9 parts of decan were stirred and mixed, and polyethylene was dissolved in the decan. A mixed solution was prepared. Using a fluidized coating device with a jet layer, spray 93.3 parts of this mixed solution on Oncol granules 5 (manufactured by OAT Agrio Co., Ltd.) (number average particle size 2 mm) 233.3 floating in the device. A coated type agricultural, forestry and horticultural granular chemical (F-12) was prepared by adding by spraying, coating, and curing at room temperature. The film thickness of the coating layer of the coated granular chemical (F-1) for agriculture, forestry and horticulture was 180 μm. The coated agricultural, forestry and horticultural granular chemical (F-12) is a coated agricultural, forestry and horticultural granular chemical having a coating layer containing the particles of (A-1) and the polyethylene resin (C-2) which is a coating resin. The number average particle size of (F-12) was 2360 μm.

<実施例13:被覆型農林園芸用粒状薬剤(F−13)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)の代わりに製造例3で製造したN−イソプロピルアクリルアミド/ブチルメタアクリレート架橋共樹脂粒子(A−3)を用いた以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−13)を作製した。被覆型農林園芸用粒状薬剤(F−13)の被覆層の膜厚は180μmであった。被覆型農林園芸用粒状薬剤(F−13)の個数平均粒子径は2360μmであった。
<Example 13: Coated agricultural, forestry and horticultural granular chemicals (F-13)>
In Example 1, the N-isopropylacrylamide / butyl methacrylate crosslinked co-resin particles (A-3) produced in Production Example 3 were used instead of the N-isopropylacrylamide crosslinked resin particles (A-1). The same operation as in Example 1 was carried out to prepare a coated type granular chemical for agriculture, forestry and horticulture (F-13). The film thickness of the coating layer of the coating type granular chemicals for agriculture, forestry and horticulture (F-13) was 180 μm. The average particle size of the coated granular chemicals (F-13) for agriculture, forestry and horticulture was 2360 μm.

<実施例14:被覆型農林園芸用粒状薬剤(F−14)>
実施例2において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)を製造例3で製造したN−イソプロピルアクリルアミド/ブチルメタアクリレート架橋共樹脂粒子(A−3)に変更したこと以外は、実施例2と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−14)を作製した。被覆型農林園芸用粒状薬剤(F−14)の膜厚は160μmであった。被覆型農林園芸用粒状薬剤(F−14)の個数平均粒子径は2320μmであった。
<Example 14: Coated agricultural, forestry and horticultural granular chemicals (F-14)>
Example 2 except that the N-isopropylacrylamide crosslinked resin particles (A-1) were changed to the N-isopropylacrylamide / butyl methacrylate crosslinked co-resin particles (A-3) produced in Production Example 3. The same operation as in No. 2 was carried out to prepare a coated type granular chemical for agriculture, forestry and horticulture (F-14). The film thickness of the coated agricultural, forestry and horticultural granular chemicals (F-14) was 160 μm. The average particle size of the coated granular chemicals (F-14) for agriculture, forestry and horticulture was 2320 μm.

<実施例15:被覆型農林園芸用粒状薬剤(F−15)>
実施例3において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)を製造例3で製造したN−イソプロピルアクリルアミド/ブチルメタアクリレート架橋共樹脂粒子(A−3)に変更したこと以外は、実施例3と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−15)を作製した。被覆型農林園芸用粒状薬剤(F−15)の膜厚は200μmであった。被覆型農林園芸用粒状薬剤(F−15)の個数平均粒子径は2400μmであった。
<Example 15: Coated agricultural, forestry and horticultural granular chemicals (F-15)>
Example 3 except that the N-isopropylacrylamide crosslinked resin particles (A-1) were changed to the N-isopropylacrylamide / butyl methacrylate crosslinked co-resin particles (A-3) produced in Production Example 3. The same operation as in No. 3 was carried out to prepare a coated type granular chemical for agriculture, forestry and horticulture (F-15). The film thickness of the coated agricultural, forestry and horticultural granular chemicals (F-15) was 200 μm. The average particle size of the coated granular chemicals (F-15) for agriculture, forestry and horticulture was 2400 μm.

<実施例16:被覆型農林園芸用粒状薬剤(F−16)>
実施例1において、N−イソプロピルアクリルアミド架橋樹脂粒子(A−1)を製造例4で製造したN−イソプロピルアクリルアミド/ブチルメタアクリレート/アクリル酸架橋共重合体樹脂粒子(A−4)に変更したこと以外は、実施例1と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−16)を作製した。被覆型農林園芸用粒状薬剤(F−16)の膜厚は180μm、個数平均粒子径は2360μmであった。
<Example 16: Coated agricultural, forestry and horticultural granular chemicals (F-16)>
In Example 1, the N-isopropylacrylamide crosslinked resin particles (A-1) were changed to the N-isopropylacrylamide / butyl methacrylate / acrylic acid crosslinked copolymer resin particles (A-4) produced in Production Example 4. Except for the above, the same operation as in Example 1 was carried out to prepare a coated type granular chemical for agriculture, forestry and gardening (F-16). The film thickness of the coated type agricultural, forestry and horticultural granular chemicals (F-16) was 180 μm, and the number average particle size was 2360 μm.

<実施例17:被覆型農林園芸用粒状薬剤(F−17)>
実施例13において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590を使用したこと以外は、実施例13と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−17)を作製した。被覆型農林園芸用粒状薬剤(F−17)の被覆層の膜厚は180μm、個数平均粒子径は3360μmであった。
<Example 17: Coated agricultural, forestry and horticultural granular chemicals (F-17)>
In Example 13, the same operation as in Example 13 was performed except that commercially available urea (number average particle size 3 mm) 1590 was used instead of Oncol granule 5, and a coated granular chemical for agriculture, forestry and horticulture (F-17) was used. ) Was prepared. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-17) was 180 μm, and the number average particle size was 3360 μm.

<実施例18:被覆型農林園芸用粒状薬剤(F−18)>
実施例14において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例14と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−18)を作製した。被覆型農林園芸用粒状薬剤(F−18)の被覆層の膜厚は160μm、個数平均粒子径は3320μmであった。
<Example 18: Coated agricultural, forestry and horticultural granular chemicals (F-18)>
In Example 14, the same operation as in Example 14 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of the on-col granule 5, and the coated type agricultural, forestry and horticultural granular drug (F-) was used. 18) was prepared. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-18) was 160 μm, and the number average particle size was 3320 μm.

<実施例19:被覆型農林園芸用粒状薬剤(F−19)>
実施例15において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例15と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−19)を作製した。被覆型農林園芸用粒状薬剤(F−19)の被覆層の膜厚は200μm、個数平均粒子径は3400μmであった。
<Example 19: Coated agricultural, forestry and horticultural granular chemicals (F-19)>
In Example 15, the same operation as in Example 15 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of the on-col granule 5, and the coated type agricultural, forestry and horticultural granular drug (F-) was used. 19) was prepared. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-19) was 200 μm, and the number average particle size was 3400 μm.

<実施例20:被覆型農林園芸用粒状薬剤(F−20)>
実施例16において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、実施例16と同じ操作を行い、被覆型農林園芸用粒状薬剤(F−20)を作製した。被覆型農林園芸用粒状薬剤(F−20)の被覆層の膜厚は180μm、個数平均粒子径は3360μmであった。
<Example 20: Coated agricultural, forestry and horticultural granular chemicals (F-20)>
In Example 16, the same operation as in Example 16 was performed except that 1590 parts of commercially available urea (number average particle size 3 mm) was used instead of the on-col granule 5, and the coated type agricultural, forestry and horticultural granular drug (F-) was used. 20) was prepared. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-20) was 180 μm, and the number average particle size was 3360 μm.

<実施例21:被覆型農林園芸用粒状薬剤(F−21)>
46.9部の製造例3で製造したN−イソプロピルアクリルアミド/ブチルメタアクリレート架橋共重合体樹脂粒子(A−3)と1.2部のポリエチレンと51.9部のデカンとを撹拌混合してポリエチレンをデカンに溶解し、混合溶液を作製した。この混合溶液93.3部を噴流層による流動コーティング装置を用い、装置内で浮遊しているオンコル粒剤5(OATアグリオ(株)製)(個数平均粒子径2mm)233.3部に対してスプレー噴霧で添加し被覆を行い、室温硬化させることで被覆型農林園芸用粒状薬剤(F−21)を作製した。被覆型農林園芸用粒状薬剤(F−21)の被覆層の膜厚は180μm、個数平均粒子径は2360μmであった。
<Example 21: Coated agricultural, forestry and horticultural granular chemicals (F-21)>
46.9 parts of N-isopropylacrylamide / butyl methacrylate crosslinked copolymer resin particles (A-3) produced in Production Example 3 and 1.2 parts of polyethylene and 51.9 parts of decan are stirred and mixed. Polyethylene was dissolved in decan to prepare a mixed solution. Using a fluidized coating device with a jet layer, 93.3 parts of this mixed solution was applied to 233.3 parts of Oncol granules 5 (manufactured by OAT Agrio Co., Ltd.) (number average particle size 2 mm) suspended in the device. A coated type agricultural, forestry and horticultural granular chemical (F-21) was prepared by adding by spraying, coating, and curing at room temperature. The film thickness of the coating layer of the coated type agricultural, forestry and horticultural granular chemicals (F-21) was 180 μm, and the number average particle size was 2360 μm.

<比較例1:比較用被覆型農林園芸用粒状薬剤(F’−1)>
実施例1において、ポリ(N−イソプロピルアクリルアミド)架橋重合体樹脂粒子(A−1)の代わりに製造例5で製造したポリ(N−エチルアクリルアミド)架橋重合体樹脂粒子(A’−1)を用いたこと以外は、実施例1と同じ操作を行い、比較用被覆型農林園芸用粒状薬剤(F’−1)を作製した。比較用被覆型農林園芸用粒状薬剤(F’−1)の被覆層の膜厚は180μm、個数平均粒子径は2360μmであった。
<Comparative Example 1: Comparative coated agricultural, forestry and horticultural granular chemicals (F'-1)>
In Example 1, instead of the poly (N-isopropylacrylamide) crosslinked polymer resin particles (A-1), the poly (N-ethylacrylamide) crosslinked polymer resin particles (A'-1) produced in Production Example 5 were used. The same operation as in Example 1 was carried out except that it was used, and a comparative coated type agricultural, forestry and horticultural granular drug (F'-1) was prepared. The film thickness of the coating layer of the comparative coated type agricultural, forestry and horticultural granular chemical (F'-1) was 180 μm, and the number average particle size was 2360 μm.

<比較例2:比較用被覆型農林園芸用粒状薬剤(F’−2)>
比較例1において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、比較例1と同じ操作を行い、比較用被覆型農林園芸用粒状薬剤(F’−2)を作製した。比較用被覆型農林園芸用粒状薬剤(F’−2)の被膜層の膜厚は180μm、個数平均粒子径は3360μmであった。
<Comparative Example 2: Comparative coated agricultural, forestry and horticultural granular chemicals (F'-2)>
In Comparative Example 1, the same operation as in Comparative Example 1 was performed except that 1590 parts of commercially available urea (number average particle diameter 3 mm) was used instead of Oncol granule 5, and a comparative coated type agricultural, forestry and horticultural granular drug (for comparison). F'-2) was prepared. The film thickness of the coating layer of the comparative coated type agricultural, forestry and horticultural granular chemicals (F'-2) was 180 μm, and the number average particle size was 3360 μm.

<比較例3:比較用被覆型農林園芸用粒状薬剤(F’−3)>
実施例1において、ポリ(N−イソプロピルアクリルアミド)架橋樹脂粒子(A−1)の代わりに、ポリアクリル酸Naの架橋樹脂粒子(A’−2)(商品名「サンフレッシュ ST−500MPSA」、三洋化成工業(株)製、体積平均粒子径35μm)を用いたこと以外は実施例1と同じ操作を行い、比較用被覆型農林園芸用粒状薬剤(F’−3)を作製した。比較用被覆型農林園芸用粒状薬剤(F’−3)の被覆層の膜厚は180μm、個数平均粒子径は2360μmであった。
<Comparative Example 3: Comparative coated agricultural, forestry and horticultural granular chemicals (F'-3)>
In Example 1, instead of the poly (N-isopropylacrylamide) crosslinked resin particles (A-1), the crosslinked resin particles (A'-2) of sodium polyacrylate (trade name "Sunfresh ST-500MPSA", Sanyo The same operation as in Example 1 was carried out except that a volume average particle diameter of 35 μm (manufactured by Kasei Kogyo Co., Ltd.) was used to prepare a coated granular chemical for agriculture, forestry and gardening (F'-3) for comparison. The film thickness of the coating layer of the comparative coated type agricultural, forestry and horticultural granular chemicals (F'-3) was 180 μm, and the number average particle size was 2360 μm.

<比較例4:比較用被覆型農林園芸用粒状薬剤(F’−4)>
比較例3において、オンコル粒剤5の代わりに市販の尿素(個数平均粒子径3mm)1590部を使用したこと以外は、比較例3と同じ操作を行い、比較用被覆型農林園芸用粒状薬剤(F’−4)を作製した。比較用被覆型農林園芸用粒状薬剤(F’−4)の被膜層の膜厚は180μm、個数平均粒子径は3360μmであった。
<Comparative Example 4: Comparative coated agricultural, forestry and horticultural granular chemicals (F'-4)>
In Comparative Example 3, the same operation as in Comparative Example 3 was performed except that 1590 parts of commercially available urea (number average particle diameter 3 mm) was used instead of Oncol granule 5, and a comparative coated type agricultural, forestry and horticultural granular drug (for comparison). F'-4) was prepared. The film thickness of the coating layer of the comparative coated type agricultural, forestry and horticultural granular chemicals (F'-4) was 180 μm, and the number average particle size was 3360 μm.

実施例(1〜21)及び比較例(1〜4)で得られた被覆型農林園芸用粒状薬剤(F1〜21)及び比較用被覆型農林園芸用粒状薬剤(F’1〜4)の組成及び粒子径などの特性値は表1〜3に示す。 Compositions of Coated Agricultural and Forestry Granular Agents (F1 to 21) and Comparative Coated Agricultural and Forestry Granular Agents (F'1 to 4) obtained in Examples (1 to 21) and Comparative Examples (1 to 4) And characteristic values such as particle size are shown in Tables 1 to 3.

実施例(1〜21)及び比較例(1〜4)で得られた被覆型農林園芸用粒状薬剤(F1〜21)及び比較用被覆型農林園芸用粒状薬剤(F’1〜4)をそれぞれ用いて以下の方法で溶出試験を行い、その結果を表1〜3に記載した。なお、温度応答性樹脂粒子(A)のLCSTが25℃を超える実施例1〜12については15℃での溶出率測定は行わず、温度応答性樹脂粒子(A)のLCSTが25℃未満である実施例13〜21については35℃での溶出率測定は行っていない。 The coated agricultural, forestry and horticultural granular agents (F1 to 21) and the comparative coated agricultural, forestry and horticultural granular agents (F'1 to 4) obtained in Examples (1 to 21) and Comparative Examples (1 to 4) are used, respectively. The dissolution test was carried out by the following method, and the results are shown in Tables 1 to 3. For Examples 1 to 12 in which the LCST of the temperature-responsive resin particles (A) exceeds 25 ° C., the elution rate was not measured at 15 ° C., and the LCST of the temperature-responsive resin particles (A) was less than 25 ° C. For certain Examples 13 to 21, the elution rate was not measured at 35 ° C.

<生物活性物質(E)の溶出率(30日後の溶出率及び80%に達する日数)>
尿素及びオンコル粒剤5からの生物活性物質(E)の溶出率の算出は以下の方法で行った。
被覆型農林園芸用粒状薬剤又は比較用被覆型農林園芸用粒状薬剤を3つのガラス容器(容積250mL)の底部にそれぞれ10g静置し、15℃、25℃または35℃に調整した水を3つのガラス容器のそれぞれに底部の被覆型農林園芸用粒状薬剤が浸るように200mL注いだ。直ぐにガラス容器の蓋を閉めて、水の温度に対応した温度(15℃、25℃又は35℃)に設定した小型環境試験機(エスペック社製、SU−222)に入れ、下記の方法で水中の生理活性物質(E)の濃度変化を測定した。
<Elution rate of biologically active substance (E) (dissolution rate after 30 days and number of days reaching 80%)>
The elution rate of the bioactive substance (E) from urea and oncol granules 5 was calculated by the following method.
10 g of coated agricultural, forestry and horticultural granular chemicals or comparative coated agricultural, forestry and horticultural granular chemicals were placed on the bottoms of three glass containers (volume 250 mL), respectively, and three waters adjusted to 15 ° C, 25 ° C or 35 ° C were added. 200 mL was poured into each of the glass containers so that the coated granular chemicals for agriculture, forestry and horticulture at the bottom were immersed. Immediately close the lid of the glass container and put it in a small environmental tester (SU-222, manufactured by ESPEC) set to a temperature (15 ° C, 25 ° C or 35 ° C) corresponding to the temperature of water, and underwater by the following method. The change in the concentration of the physiologically active substance (E) was measured.

<生理活性物質(E)が尿素の場合の溶出率>
前記の方法で小型環境試験機に入れたガラス容器中の水溶液について、7日ごとに1mLをサンプリングして、サンプリングした溶液10μLにウレアーゼを含む測定溶液80μLを加え、BioAssay Systems社のQuantiChrom Urea Assay Kit IIを使用して、検出装置としてBioTEK Instruments社のPowerWave XSを用いて尿素の吸収波長(557nm)における吸光度を測定し、所定濃度に調製した尿素濃度既知の水溶液から作成した検量線を用いて尿素の濃度を算出した。7日ごとのサンプリングによって得られる尿素溶出率[試験前の被覆型農林園芸用粒状薬剤又は比較用被覆型農林園芸用粒状薬剤10gに含まれる尿素の重量に対する溶出した尿素の重量]の値を、試験開始からの日数に対してプロットしグラフを描くことで、15℃、25℃又は35℃のそれぞれの温度における尿素溶出率が80%に達するまでに要する日数を求め、それぞれD15、D25及びD35とした。そして、D15、D25及びD35の値から、高温時温度依存指数(D15/D25)及び低温時温度依存指数(D25/D35)を得た。
小型環境試験機中に30日間置いたガラス容器中の水溶液に含まれる尿素を前記の方法と同様に測定し、試験前(水に入れる前)の被覆型農林園芸用粒状薬剤に含まれる尿素量(g)に対するガラス容器の水中へ溶解した尿素量(g)との比率を計算し、30日後の溶出率(%)とした。
<Elution rate when the bioactive substance (E) is urea>
For the aqueous solution in the glass container placed in the small environmental tester by the above method, 1 mL was sampled every 7 days, 80 μL of the measurement solution containing urease was added to 10 μL of the sampled solution, and QuantiChrom Urea Assay Kit of BioAssy Systems Co., Ltd. Using II, the absorbance at the absorption wavelength (557 nm) of urea was measured using PowerWave XS of BioTEK Instruments as a detection device, and urea was prepared using a calibration line prepared from an aqueous solution having a known urea concentration prepared at a predetermined concentration. The concentration of was calculated. The value of the urea elution rate obtained by sampling every 7 days [the weight of the eluted urea relative to the weight of the urea contained in 10 g of the coated type agricultural, forestry and horticultural granular drug before the test or the comparative coated type agricultural, forestry and horticultural granular drug]. By plotting and graphing the number of days from the start of the test, the number of days required for the urea elution rate to reach 80% at each temperature of 15 ° C, 25 ° C or 35 ° C was determined, and D15, D25 and D35, respectively. And said. Then, from the values of D15, D25 and D35, the high temperature temperature dependence index (D15 / D25) and the low temperature temperature dependence index (D25 / D35) were obtained.
The urea contained in the aqueous solution in the glass container placed in a small environmental tester for 30 days was measured in the same manner as described above, and the amount of urea contained in the coated agricultural, forestry and gardening granular chemicals before the test (before being put in water). The ratio of (g) to the amount of urea (g) dissolved in water in the glass container was calculated and used as the dissolution rate (%) after 30 days.

<生理活性物質(E)を含む粒子がオンコル粒剤5の場合の溶出率>
オンコル粒剤5中に含まれる生理活性物質(ベンフラカルブ:含有濃度5重量%)の吸収波長(280nm)における吸光度を測定したことと、ベンフラカルブの濃度が既知であるオルコン5の溶液から作成した検量線を用いること以外は前記の尿素の場合と同様にして、ベンフラカブルの溶出率が80%に達するまでに要する日数及び30日後の溶出率(%)を測定した。
<Elution rate when the particles containing the physiologically active substance (E) are Oncol granules 5>
The absorbance at the absorption wavelength (280 nm) of the physiologically active substance (benflacarb: content concentration 5% by weight) contained in Oncol granules 5 was measured, and a calibration curve prepared from a solution of Orcon 5 in which the concentration of benfracarb was known. The number of days required for the elution rate of benflacable to reach 80% and the elution rate (%) after 30 days were measured in the same manner as in the case of urea except that the above-mentioned urea was used.

<薬剤溶出試験後の被覆型農林園芸用粒状薬剤の形状>
前記の方法で低温時温度依存指数の測定を行い薬剤溶出率が80%に達した時点で被覆型農林園芸用粒状薬剤を水中から引き上げ、それを雨に濡れない様に屋根の下で屋外におき、3日間乾燥した。乾燥後の被覆型農林園芸用粒状薬剤の状態を目視観察し、その結果を表1〜3に記載した。
乾燥後の被覆型農林園芸用粒状薬剤の状態は、以下の基準で評価した。
○:被覆層の破壊がない。
×:被覆層が破壊されている。
<Shape of coated granular chemicals for agriculture, forestry and horticulture after chemical dissolution test>
The temperature dependence index at low temperature is measured by the above method, and when the chemical elution rate reaches 80%, the coated granular chemical for agriculture, forestry and horticulture is pulled out of the water, and it is taken outdoors under the roof so as not to get wet with rain. It was left to dry for 3 days. The state of the coated granular chemicals for agriculture, forestry and horticulture after drying was visually observed, and the results are shown in Tables 1 to 3.
The state of the coated granular chemicals for agriculture, forestry and horticulture after drying was evaluated according to the following criteria.
◯: There is no destruction of the coating layer.
X: The coating layer is destroyed.

Figure 2021088499
Figure 2021088499

Figure 2021088499
Figure 2021088499

Figure 2021088499
Figure 2021088499

表1〜3から、本願発明の被覆型農林園芸用粒状薬剤(F−1〜21)は比較用被覆型農林園芸用粒状薬剤と異なり水に浸した後に再び乾燥しても被覆層の破壊が起こらない。薬剤の放出を抑える被覆層の破壊が生じないため天候等の影響を受けずに長期間にわたって溶出速度の調整が可能である。また、溶出率が80%に達する日数も比較用被覆型農林園芸用粒状薬剤より長く、長期間にわたって農林園芸用粒状薬剤として使用することができる。また、比較例に比べて、本願実施例1〜12の被覆型農林園芸用粒状薬剤は高温時温度依存指数と30日後の溶出率の比(EL35/EL25)とがそれぞれより1に近く、実施例13〜21で得られた被覆型農林園芸用粒状薬剤は低温時温度依存指数と30日後の溶出率の比(EL25/EL15)とがそれぞれより1に近く、それぞれに含まれる温度応答性樹脂粒子のLCSTの前後での溶出挙動の変化が小さいという効果も有することが分かる。 From Tables 1 to 3, the coated agricultural, forestry and horticultural granular chemicals (F-1 to 21) of the present invention are different from the comparative coated agricultural, forestry and horticultural granular agents, and the coating layer is destroyed even if they are dried again after being immersed in water. It doesn't happen. Since the coating layer that suppresses the release of the drug is not destroyed, the elution rate can be adjusted for a long period of time without being affected by the weather or the like. In addition, the number of days when the dissolution rate reaches 80% is longer than that of the comparative coated type granular chemical for agriculture, forestry and horticulture, and it can be used as the granular chemical for agriculture, forestry and horticulture for a long period of time. Further, as compared with Comparative Examples, the coated agricultural, forestry and horticultural granular chemicals of Examples 1 to 12 of the present application were carried out because the ratio of the temperature dependence index at high temperature to the dissolution rate after 30 days (EL35 / EL25) was closer to 1, respectively. The coated agricultural, forestry and horticultural granular chemicals obtained in Examples 13 to 21 have a temperature-dependent index at low temperature and a ratio of elution rate after 30 days (EL25 / EL15) closer to 1, respectively, and the temperature-responsive resin contained therein. It can be seen that it also has the effect that the change in elution behavior of the particles before and after LCST is small.

本発明の被覆型農林園芸用粒状薬剤は天候等の影響を受けずに長期間にわたって被覆型農林園芸用粒状薬剤としての剤形を維持することが可能であり、肥料や農薬に用いた場合にその有効成分を植物に対して安定的に供給することができ、良好な生育と収量の向上をもたらす。 The coated granular chemical for agriculture, forestry and horticulture of the present invention can maintain the dosage form as the granular chemical for coated agriculture, forestry and horticulture for a long period of time without being affected by the weather, and when used as a fertilizer or pesticide. The active ingredient can be stably supplied to the plant, resulting in good growth and improved yield.

Claims (8)

生物活性物質(E)を含む粒子(P0)の粒子表面の少なくとも一部を被覆する被覆層を有する被覆型農林園芸用粒状薬剤であり、
前記被覆層が、水に対する下限臨界溶液温度が10〜40℃である温度応答性架橋樹脂粒子(A)と被覆樹脂(C)とを含む被覆型農林園芸用粒状薬剤。
A coated agricultural, forestry and horticultural granular drug having a coating layer that covers at least a part of the particle surface of the particles (P0) containing the bioactive substance (E).
A coated granular chemical for agriculture, forestry and horticulture, wherein the coating layer contains temperature-responsive crosslinked resin particles (A) and a coating resin (C) having a lower limit critical solution temperature of 10 to 40 ° C. with respect to water.
温度応答性樹脂粒子(A)が、アルキル基の炭素数が2〜6であるアルキル(メタ)アクリルアミド(a1)及び/又はN−ビニルアルキルアミド(a2)並びに架橋剤(c)を必須構成単量体とする樹脂(A1)からなる粒子を含む請求項1に記載の被覆型農林園芸用粒状薬剤。 The temperature-responsive resin particles (A) are essential constituents of alkyl (meth) acrylamide (a1) and / or N-vinylalkylamide (a2) having an alkyl group having 2 to 6 carbon atoms and a cross-linking agent (c). The coated granular agent for agriculture, forestry and gardening according to claim 1, which contains particles made of a resin (A1) as a weight. 温度応答性樹脂粒子(A)が、アルキル(メタ)アクリルアミド(a1)及び/又はビニルアルキルアミド(a2)、架橋剤(c)並びに(メタ)アクリル酸アルキルエステル(h)を必須構成単量体とする樹脂(A2)からなる粒子を含む請求項1又は2に記載の被覆型農林園芸用粒状薬剤。 The temperature-responsive resin particles (A) are essential constituent monomers of alkyl (meth) acrylamide (a1) and / or vinylalkylamide (a2), cross-linking agent (c) and (meth) acrylic acid alkyl ester (h). The coated granular agent for agriculture, forestry and gardening according to claim 1 or 2, which contains particles made of the resin (A2). アルキル(メタ)アクリルアミド(a1)とビニルアルキルアミド(a2)との合計モル数の(メタ)アクリル酸アルキルエステル(h)のモル数に対する比率[{(a1)+(a2)}/(h)]が85/15〜95/5である請求項3に記載の被覆型農林園芸用粒状薬剤。 Ratio of the total number of moles of alkyl (meth) acrylamide (a1) and vinyl alkylamide (a2) to the number of moles of (meth) acrylic acid alkyl ester (h) [{(a1) + (a2)} / (h) ] Is 85/15 to 95/5. The coated granular agent for agriculture, forestry and horticulture according to claim 3. 温度応答性樹脂粒子(A)が、アルキル(メタ)アクリルアミド(a1)及び/又はビニルアルキルアミド(a2)、架橋剤(c)並びに(メタ)アクリル酸(塩)(b)を必須構成単量体とする樹脂(A3)からなる粒子を含み、樹脂(A3)を構成する全ての単量体の合計モル数に対する(メタ)アクリル酸(塩)(b)のモル数の割合が5モル%未満である請求項1〜4のいずれかに記載の被覆型農林園芸用粒状薬剤。 The temperature-responsive resin particles (A) are essential constituents of alkyl (meth) acrylamide (a1) and / or vinylalkylamide (a2), cross-linking agent (c) and (meth) acrylic acid (salt) (b). The ratio of the number of moles of (meth) acrylic acid (salt) (b) to the total number of moles of all the monomers containing the body resin (A3) and constituting the resin (A3) is 5 mol%. The coated granular agent for agriculture, forestry and gardening according to any one of claims 1 to 4, which is less than. N−アルキル(メタ)アクリルアミド(a1)が、N−イソプロピルアクリルアミドである請求項2〜5のいずれかに記載の被覆型農林園芸用粒状薬剤。 The coated granular agent for agriculture, forestry and horticulture according to any one of claims 2 to 5, wherein N-alkyl (meth) acrylamide (a1) is N-isopropylacrylamide. 生物活性物質(E)を含む粒子(P0)の個数平均粒子径が0.3〜15mmである請求項1〜6のいずれかに記載の被覆型農林園芸用粒状薬剤。 The coated granular agent for agriculture, forestry and horticulture according to any one of claims 1 to 6, wherein the number average particle diameter of the particles (P0) containing the bioactive substance (E) is 0.3 to 15 mm. 被覆樹脂(C)が、ポリウレタン樹脂、ポリエチレン樹脂及びアルキド樹脂からなる群より選ばれる1種類以上の樹脂である請求項1〜7いずれかに記載の被覆型農林園芸用粒状薬剤。
The coated granular agent for agriculture, forestry and horticulture according to any one of claims 1 to 7, wherein the coating resin (C) is one or more kinds of resins selected from the group consisting of polyurethane resin, polyethylene resin and alkyd resin.
JP2020011321A 2019-11-27 2020-01-28 Covered agricultural, forestry, and horticultural granular chemicals Active JP7419083B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019214313 2019-11-27
JP2019214313 2019-11-27

Publications (2)

Publication Number Publication Date
JP2021088499A true JP2021088499A (en) 2021-06-10
JP7419083B2 JP7419083B2 (en) 2024-01-22

Family

ID=76219320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011321A Active JP7419083B2 (en) 2019-11-27 2020-01-28 Covered agricultural, forestry, and horticultural granular chemicals

Country Status (1)

Country Link
JP (1) JP7419083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094617A1 (en) 2021-05-26 2022-11-30 ASICS Corporation Plate, sole, and shoe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617530B2 (en) 2000-01-21 2011-01-26 クミアイ化学工業株式会社 Solid agrochemical composition
WO2005032512A2 (en) 2003-10-02 2005-04-14 Trustees Of Stevens Institute Of Technology Capsules of multilayered neutral polymer films associated by hydrogen bonding
JP5116220B2 (en) 2004-09-14 2013-01-09 ジェイカムアグリ株式会社 Coated granular fertilizer and method for producing the same
JP2008001550A (en) 2006-06-21 2008-01-10 Chisso Asahi Hiryo Kk Coated granular fertilizer
JP2010202482A (en) 2009-03-06 2010-09-16 Central Glass Co Ltd Coated granular fertilizer and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094617A1 (en) 2021-05-26 2022-11-30 ASICS Corporation Plate, sole, and shoe

Also Published As

Publication number Publication date
JP7419083B2 (en) 2024-01-22

Similar Documents

Publication Publication Date Title
US5129180A (en) Temperature sensitive seed germination control
CN102665408B (en) Plant growth regulation
KR100362798B1 (en) Coating pesticide granules, preparation method thereof and uses thereof
US20130216696A1 (en) Controlled, sustained release particles for treating seeds and plants and methods for making the particles
KR100481269B1 (en) Composition for the treatment of rice seeds
US6036971A (en) Coated granular pesticide method for producing the same and applications thereof
JP7419083B2 (en) Covered agricultural, forestry, and horticultural granular chemicals
EP0187341A1 (en) Coated seed and method of coating seeds
JPS6050762B2 (en) Pesticide composition whose release is controlled by temperature
JP4889894B2 (en) Coated bioactive substance, bioactive substance composition, and crop cultivation method
JP7399860B2 (en) coated bioactive material
KR20180050683A (en) Coated rice seeds and methods for their production
JP2004224609A (en) Coated biologically active substance particle
KR20170137863A (en) Coated rice seed and method for producing same
JP7037508B2 (en) Abiotic stress tolerance
JP4159776B2 (en) Coated bioactive substances
US10961454B2 (en) Method for reducing water stress in plants
CN1909791A (en) Improved granular formulation of neem seed extract and its process thereof
JP3621127B2 (en) Improved agrochemical formulation
JP4694810B2 (en) Water-retaining material for plant growth mainly composed of water-absorbent resin
KR920005558B1 (en) Controlled release formulation
SU1034596A3 (en) Granulated fungicidal composition for rice plant protection
JP7302941B2 (en) Rice seed bird damage prevention agent and rice seed bird damage prevention method
US3977861A (en) Herbicide composition
JPH09268103A (en) Coated granular agrochemical, its production and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150