JP2021088091A - Metal member for bonding to resin composition, method for producing metal-resin bonded body, and metal-resin bonded body - Google Patents

Metal member for bonding to resin composition, method for producing metal-resin bonded body, and metal-resin bonded body Download PDF

Info

Publication number
JP2021088091A
JP2021088091A JP2019218758A JP2019218758A JP2021088091A JP 2021088091 A JP2021088091 A JP 2021088091A JP 2019218758 A JP2019218758 A JP 2019218758A JP 2019218758 A JP2019218758 A JP 2019218758A JP 2021088091 A JP2021088091 A JP 2021088091A
Authority
JP
Japan
Prior art keywords
resin composition
metal member
flow direction
convex portion
convex portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019218758A
Other languages
Japanese (ja)
Other versions
JP7255465B2 (en
Inventor
章 中込
Akira Nakagome
章 中込
英二 奥村
Eiji Okumura
英二 奥村
徳雄 川中
Tokuo Kawanaka
徳雄 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2019218758A priority Critical patent/JP7255465B2/en
Publication of JP2021088091A publication Critical patent/JP2021088091A/en
Application granted granted Critical
Publication of JP7255465B2 publication Critical patent/JP7255465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a metal member that can improve bonding strength with a resin composition.SOLUTION: A metal member for bonding to a resin composition has a plurality of projections, each of which projects from a surface of the metal member that is for bonding to the resin composition, and has a different cross-sectional area in the cross section along the flow direction of the resin composition that is to flow in contact with the metal member at the time of bonding. The plurality of projections are arranged so that their cross-sectional areas become smaller in the cross sections along the flow direction as they go downstream in the flow direction.SELECTED DRAWING: Figure 1

Description

本開示は、樹脂組成物との接合用の金属部材、金属樹脂接合体の製造方法、および金属樹脂接合体に関する。 The present disclosure relates to a metal member for bonding with a resin composition, a method for producing a metal resin bonded body, and a metal resin bonded body.

接着剤を用いずに、樹脂と金属部材とを接合させた接合体を作製する方法が種々検討されている。しかし、本来異種材料である樹脂と金属とは、接合力に乏しいため、これらの接合力を向上させるための工夫が課題とされている。 Various methods for producing a bonded body in which a resin and a metal member are bonded without using an adhesive have been studied. However, since resins and metals, which are originally dissimilar materials, have poor bonding strength, it is an issue to devise ways to improve these bonding strengths.

たとえば、特許文献1には、アルミニウム合金製のアルミ形状体の表面に凹凸部を形成し、上記凹凸部の凹部に樹脂を進入させて固化させることにより、アルミ形状体と樹脂成形体との接合力を高める方法が記載されている。特許文献1によれば、凹部の一部から凹部の内部側につきだした突出部を形成したり、凹部の内部にさらに凹部または凸部を設けたりすることで、アルミ形状体と樹脂成形体との密着強度および気密性をより高めることができるとされている。 For example, in Patent Document 1, an uneven portion is formed on the surface of an aluminum shape body made of an aluminum alloy, and a resin is allowed to enter the concave portion of the uneven portion to be solidified, thereby joining the aluminum shape body and the resin molded body. Describes how to increase power. According to Patent Document 1, an aluminum shaped body and a resin molded body can be formed by forming a protruding portion protruding from a part of the concave portion to the inner side of the concave portion, or by further providing a concave portion or a convex portion inside the concave portion. It is said that the adhesion strength and airtightness of aluminum can be further improved.

また、特許文献2には、アルミニウム合金基材の表面を陽極酸化処理してナノ細孔を形成し、さらに上記表面をアルカリ性溶液で腐食処理して腐食細孔を形成することにより、上記アルミニウム合金基材と樹脂との接合力を高める方法が記載されている。特許文献2によれば、上記処理後のアルミニウム合金基材は、腐食細孔の内部に多数のナノ細孔が形成された構造を有するとされている。 Further, in Patent Document 2, the surface of an aluminum alloy base material is anodized to form nanopores, and the surface is corroded with an alkaline solution to form corroded pores. A method for increasing the bonding force between the base material and the resin is described. According to Patent Document 2, the aluminum alloy base material after the above treatment has a structure in which a large number of nanopores are formed inside the corroded pores.

また、特許文献3には、金属板の一方の表面に、凹部と、上記凹部の底面から他方の表面へと貫通する貫通孔を形成し、上記他方の表面を被覆し、かつ上記貫通孔を通して前記凹部の内部まで充填された樹脂層を形成することで、材料を問わずに上記金属板と上記樹脂層とを接合させることができると記載されている。特許文献3には、上記凹部の形成により窪んだ金属は、対応する反対側の上記他方の表面に突出していると記載されている。 Further, in Patent Document 3, a recess and a through hole penetrating from the bottom surface of the recess to the other surface are formed on one surface of the metal plate, the other surface is covered, and the through hole is passed through. It is described that the metal plate and the resin layer can be joined regardless of the material by forming the resin layer filled up to the inside of the recess. Patent Document 3 describes that the metal recessed due to the formation of the recesses protrudes to the other surface on the corresponding opposite side.

特開2011−121206号公報Japanese Unexamined Patent Publication No. 2011-121206 特表2015−509557号公報Special Table 2015-509557 特開2012−183705号公報Japanese Unexamined Patent Publication No. 2012-183705

特許文献1〜特許文献3に記載のように、樹脂組成物と金属部材との接合強度を高める観点から、金属部材の表面を加工する試みが多数行われている。特に、特許文献1に記載の突出部や、特許文献3に記載の貫通孔および凹部のように、樹脂を係止できる構造を形成すれば、樹脂組成物が金属部材から離脱しにくくなり、これらの接合強度はより高まると記載される。 As described in Patent Documents 1 to 3, many attempts have been made to process the surface of the metal member from the viewpoint of increasing the bonding strength between the resin composition and the metal member. In particular, if a structure capable of locking the resin is formed such as the protrusion described in Patent Document 1 and the through hole and the recess described in Patent Document 3, the resin composition is less likely to be separated from the metal member, and these It is stated that the joint strength of is higher.

しかし、本発明者らの知見によれば、特許文献1〜特許文献3に記載の方法でも、特に金属部材の厚みが大きくなったときには、樹脂組成物と金属部材との接合強度が期待したほどには高まらなかった。 However, according to the findings of the present inventors, even with the methods described in Patent Documents 1 to 3, the bonding strength between the resin composition and the metal member is expected to be high, especially when the thickness of the metal member is increased. Did not rise to.

本開示の目的は、樹脂組成物との接合強度をより高めることができる金属部材、上記樹脂組成物と金属部材とが接合した金属樹脂接合体の接合方法、および当該方法により作製される金属樹脂接合体を提供することにある。 An object of the present disclosure is a metal member capable of further increasing the bonding strength with the resin composition, a method for joining a metal-resin bonded body in which the resin composition and the metal member are bonded, and a metal resin produced by the method. The purpose is to provide a joint.

一態様に係る樹脂組成物との接合用の金属部材は、いずれも前記金属部材の前記樹脂組成物が接合する表面から突出している、接合時に前記金属部材に接触して流動する前記樹脂組成物の流動方向に沿った断面の断面積が異なる複数の凸部を有し、前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている。 The metal member for joining with the resin composition according to one aspect is the resin composition that protrudes from the surface to which the resin composition of the metal member is joined and that flows in contact with the metal member at the time of joining. The plurality of convex portions have a plurality of convex portions having different cross-sectional areas along the flow direction, and the plurality of convex portions have a smaller cross-sectional area along the flow direction toward the downstream side with respect to the flow direction. Is located in.

また、一態様に係る金属樹脂接合体の製造方法は、金属部材を型の内部に配置する工程と、前記金属部材が配置されている型の内部に樹脂組成物を射出する工程と、を有し、前記配置された金属部材は、前記射出された樹脂組成物の流動方向に沿った断面の形状が異なる複数の凸部を、前記射出された樹脂組成物が接触する表面に有し、前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている。 Further, the method for manufacturing a metal-resin bonded body according to one aspect includes a step of arranging a metal member inside a mold and a step of injecting a resin composition into the inside of a mold in which the metal member is arranged. However, the arranged metal member has a plurality of convex portions having different cross-sectional shapes along the flow direction of the injected resin composition on the surface in contact with the injected resin composition. The plurality of convex portions are arranged so that the cross-sectional area of the cross section along the flow direction becomes smaller toward the downstream side with respect to the flow direction.

また、一態様に係る金属樹脂接合体は、金属部材と、前記金属部材の表面に接合した樹脂組成物と、を有する金属樹脂接合体であって、前記金属部材は、前記樹脂組成物が接合した表面に、接合時に前記金属部材に接触して流動した前記樹脂組成物の流動方向に沿った断面の断面積が異なる複数の凸部を有し、前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている。 Further, the metal-resin bonded body according to one embodiment is a metal-resin bonded body having a metal member and a resin composition bonded to the surface of the metal member, and the metal member is bonded to the resin composition. The surface is provided with a plurality of convex portions having different cross-sectional areas in cross section along the flow direction of the resin composition that has flowed in contact with the metal member at the time of joining, and the plurality of convex portions are relative to the flow direction. It is arranged so that the cross-sectional area of the cross section along the flow direction becomes smaller toward the downstream side.

本開示によれば、樹脂組成物との接合強度をより高めることができる金属部材、上記樹脂組成物と金属部材とが接合した金属樹脂接合体の接合方法、および当該方法により作製される金属樹脂接合体が提供される。 According to the present disclosure, a metal member capable of further increasing the bonding strength with the resin composition, a method for bonding a metal-resin bonded body in which the resin composition and the metal member are bonded, and a metal resin produced by the method. Joins are provided.

図1は、第一の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。FIG. 1 is a schematic perspective view showing a metal member for joining with a resin composition according to the first embodiment. 図2Aは、金属部材に樹脂組成物を接合させる工程において、型に金属部材を配置する様子を示す模式図であり、図2Bは、コアを移動させて型を閉じる様子を示す模式図である。FIG. 2A is a schematic view showing how the metal member is arranged in the mold in the step of joining the resin composition to the metal member, and FIG. 2B is a schematic view showing how the core is moved to close the mold. .. 図3A、図3B、図3Cおよび図3Dは、金属部材に樹脂組成物を接合させる工程において、溶融した樹脂組成物をゲートから型の内部に射出する様子を示す模式図である。3A, 3B, 3C and 3D are schematic views showing how the molten resin composition is injected from the gate into the mold in the step of joining the resin composition to the metal member. 図4は、金属部材と固化した樹脂組成物とが接合した金属樹脂接合体を示す模式図である。FIG. 4 is a schematic view showing a metal-resin bonded body in which a metal member and a solidified resin composition are bonded. 図5は、樹脂組成物が固化するときに、凸部の両側から凸部を締め付けるように収縮して固化していく様子を示す模式図である。FIG. 5 is a schematic view showing how the resin composition shrinks and solidifies from both sides of the convex portion so as to tighten the convex portion when the resin composition solidifies. 図6は、第二の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。FIG. 6 is a schematic perspective view showing a metal member for joining with the resin composition according to the second embodiment. 図7は、第三の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。FIG. 7 is a schematic perspective view showing a metal member for joining with a resin composition according to a third embodiment. 図8は、第四の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。FIG. 8 is a schematic perspective view showing a metal member for joining with a resin composition according to a fourth embodiment. 図9は、第五の実施形態に関する、樹脂組成物との接合用の金属部材と、型の内部に射出されて金属部材に接触して流動している樹脂組成物と、の様子を示す、模式図である。FIG. 9 shows a state of the metal member for joining with the resin composition and the resin composition injected into the mold and flowing in contact with the metal member according to the fifth embodiment. It is a schematic diagram.

以下、本開示の複数の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこれらの実施形態により限定されるものではない。 Hereinafter, a plurality of embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below are examples, and the present invention is not limited to these embodiments.

[第一の実施形態]
図1は、第一の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。
[First Embodiment]
FIG. 1 is a schematic perspective view showing a metal member for joining with a resin composition according to the first embodiment.

図1に示すように、金属部材100は、板状の部材であって、一方の表面110に配置された、表面110から突出する複数の凸部120を有する。なお、一方の表面110は、樹脂組成物が接合する表面である。 As shown in FIG. 1, the metal member 100 is a plate-shaped member and has a plurality of convex portions 120 that are arranged on one surface 110 and project from the surface 110. One surface 110 is a surface to which the resin composition is bonded.

本実施形態において、複数の凸部120は、金属部材100の表面に独立して複数配置されたいずれも筒状の複数の突起である。なお、筒状である凸部120の形状は限定されず、円柱状、三角柱状、四角柱状、六角柱状、楕円柱状などの柱状、錐体状、錐台状、逆錐台状(逆テーパ状)などのいかなる形状であってもよい。本明細書において、筒状とは、金属部材100の表面110に沿った断面における当該部材の外周上の各点を結ぶ距離のうち、最大となる距離に対する最少となる距離の比0.5以上1.0以下となるような形状を意味する。 In the present embodiment, the plurality of convex portions 120 are a plurality of tubular protrusions that are independently arranged on the surface of the metal member 100. The shape of the convex portion 120, which is tubular, is not limited, and is columnar such as columnar, triangular columnar, square columnar, hexagonal columnar, elliptical columnar, pyramidal, pyramidal, inverted pyramidal (inverted taper). ) And other shapes. In the present specification, the tubular shape is a ratio of a minimum distance to a maximum distance of 0.5 or more among the distances connecting points on the outer circumference of the member in a cross section along the surface 110 of the metal member 100. It means a shape such that it is 1.0 or less.

複数の凸部120は、接合時に金属部材100に接触して表面110に沿って流動する樹脂組成物の流動方向(図1中、白抜き矢印方向。以下、単に「流動方向」ともいう。)に沿って、体積が次第に小さくなる(流通方向に沿った断面の断面積が次第に小さくなる)ような、形状および配置となっている。具体的には、流動方向に対する上流側に配置された凸部120aに対して、凸部120aよりも流動方向に対する下流側に配置された凸部120bは、体積がより小さい凸部となっている。同様に、凸部120bに対して、凸部120bよりも流動方向に対する下流側に配置された凸部120cは、体積がより小さい凸部となっている。また、凸部120cに対して、凸部120cよりも流動方向に対する下流側に配置された凸部120dは、体積がより小さい凸部となっている。 The plurality of convex portions 120 are in contact with the metal member 100 at the time of joining and flow along the surface 110 in the flow direction of the resin composition (in FIG. 1, the direction of the white arrow; hereinafter, also simply referred to as “flow direction”). The shape and arrangement are such that the volume gradually decreases (the cross-sectional area of the cross section along the flow direction gradually decreases). Specifically, the convex portion 120b arranged on the downstream side of the flow direction with respect to the convex portion 120a arranged on the upstream side with respect to the flow direction is a convex portion having a smaller volume. .. Similarly, the convex portion 120c arranged on the downstream side of the convex portion 120b in the flow direction is a convex portion having a smaller volume. Further, the convex portion 120d arranged on the downstream side of the convex portion 120c with respect to the flow direction is a convex portion having a smaller volume.

図2および図3は、金属部材100に樹脂組成物を接合させる様子を示す工程図である。 2 and 3 are process diagrams showing how the resin composition is bonded to the metal member 100.

まず、図2Aに示すように、型200に金属部材100を配置する。型200は、金属部材100が配置されるキャビティ210、および可動部であるコア220を有し、コア220には溶融した樹脂組成物を射出するゲート230が設けられている。 First, as shown in FIG. 2A, the metal member 100 is arranged in the mold 200. The mold 200 has a cavity 210 in which the metal member 100 is arranged and a core 220 which is a movable portion, and the core 220 is provided with a gate 230 for injecting the molten resin composition.

なお、金属部材100は、ゲート230から射出された樹脂組成物が金属部材100の表面に沿って流動する方向(流動方向)に対する下流側ほど、凸部120の体積がより小さくなるように、作製されている。そのため、型200の内部に配置された金属部材100は、ゲート230に近い位置の凸部120ほど体積がより大きくなっており、ゲート230から遠い位置の凸部120ほど体積がより小さくなっている。図2Aに示した白抜き矢印の方向は、図1に示した矢印と同様に、凸部120の体積がより小さくなっていく方向である。 The metal member 100 is manufactured so that the volume of the convex portion 120 becomes smaller toward the downstream side with respect to the direction in which the resin composition injected from the gate 230 flows along the surface of the metal member 100 (flow direction). Has been done. Therefore, the metal member 100 arranged inside the mold 200 has a larger volume as the convex portion 120 located closer to the gate 230, and a smaller volume as the convex portion 120 located farther from the gate 230. .. The direction of the white arrow shown in FIG. 2A is the direction in which the volume of the convex portion 120 becomes smaller, similar to the arrow shown in FIG.

次に、図2Bに示すように、コア220を移動させて型200を閉じる。このとき、型の内部を加熱していてもよい。 Next, as shown in FIG. 2B, the core 220 is moved to close the mold 200. At this time, the inside of the mold may be heated.

次に、図3Aに示すように、溶融した樹脂組成物300をゲート230から型200の内部に射出する。射出された樹脂組成物300は、金属部材100の表面110うち、まずゲート230の射出方向直下に位置する表面110に接触する。 Next, as shown in FIG. 3A, the molten resin composition 300 is injected from the gate 230 into the mold 200. The injected resin composition 300 first comes into contact with the surface 110 of the surface 110 of the metal member 100, which is located immediately below the injection direction of the gate 230.

図3Bおよび図3Cに示すように、射出された樹脂組成物300は、金属部材100の表面110に沿って流動して、型200の内部を充填していく。樹脂組成物の射出は、図3Dに示すように型200の内部が樹脂組成物300で略完全に充填されるまで行われる。 As shown in FIGS. 3B and 3C, the injected resin composition 300 flows along the surface 110 of the metal member 100 to fill the inside of the mold 200. The injection of the resin composition is carried out until the inside of the mold 200 is substantially completely filled with the resin composition 300 as shown in FIG. 3D.

その後、型200の冷却により樹脂組成物300を冷却して固化させることで、図4に示すように、金属部材100と固化した樹脂組成物300とが接合した金属樹脂接合体400を型200から取り出して得ることができる。なお、金属樹脂接合体400は、型200から取り出すときにゲート230の出口近辺で樹脂組成物を切断して、ゲート230内部の樹脂組成物と分断される。このとき分断後に金属樹脂接合体400側に付着した樹脂組成物は、その後、磨き処理などの後加工により上記付着した樹脂組成物を除去するが、完全に除去しきることは非常に困難であり、通常、図4に示すような射出痕410が固化した樹脂組成物300の表面に残存する。 Then, by cooling the resin composition 300 by cooling the mold 200 and solidifying it, as shown in FIG. 4, a metal resin bonded body 400 in which the metal member 100 and the solidified resin composition 300 are bonded is obtained from the mold 200. It can be taken out and obtained. When the metal resin bonded body 400 is taken out from the mold 200, the resin composition is cut near the outlet of the gate 230 to be separated from the resin composition inside the gate 230. At this time, the resin composition adhering to the metal resin bonded body 400 side after the division is then removed by post-processing such as polishing treatment, but it is very difficult to completely remove the adhering resin composition. Usually, the injection marks 410 as shown in FIG. 4 remain on the surface of the solidified resin composition 300.

ここで、金属は一般に熱伝導率が高い。そのため、図3A〜図3Dにおいて射出された樹脂組成物300が流動していくとき、樹脂組成物300が有する熱は、金属部材100に奪われ続けることになる。そのため、樹脂組成物300は、流動するにつれ、温度が低下していき、それに伴い粘度が上昇していき流動性が低下していく。そして、上記流動性が低下した樹脂組成物300は、金属部材100の表面に密に接触できないことがある。この状態で樹脂組成物300が冷却されて固化すると、金属部材100と樹脂組成物300との間に空隙が生じてしまい、樹脂組成物が金属部材100に十分に接合できず、これらの接合強度が高まりにくい。特に、金属部材100のうち、型200の内部でゲート230から遠い位置に配置される部位ほど、樹脂組成物300の温度低下および流動性低下による空隙の発生に伴う接合力の低下は、顕著である。 Here, the metal generally has a high thermal conductivity. Therefore, when the resin composition 300 injected in FIGS. 3A to 3D flows, the heat of the resin composition 300 is continuously taken away by the metal member 100. Therefore, as the resin composition 300 flows, the temperature decreases, and the viscosity of the resin composition 300 increases and the fluidity decreases. Then, the resin composition 300 having reduced fluidity may not be able to come into close contact with the surface of the metal member 100. If the resin composition 300 is cooled and solidified in this state, voids are formed between the metal member 100 and the resin composition 300, and the resin composition cannot be sufficiently bonded to the metal member 100, and the bonding strength thereof is increased. Is hard to increase. In particular, in the metal member 100, the portion of the metal member 100 that is located farther from the gate 230 inside the mold 200, the more remarkable the decrease in bonding force due to the generation of voids due to the decrease in temperature and fluidity of the resin composition 300 is remarkable. is there.

従来、金属部材の厚みを大きくすると樹脂組成物と金属部材との接合強度が高まりにくいことが知られている。これは、特に金属部材100の厚みが大きいときは、金属部材100はより多量の熱を奪うことができるため、上述した樹脂組成物300の温度低下および流動性低下による空隙の発生が起きやすいためだと考えられる。 Conventionally, it has been known that increasing the thickness of a metal member makes it difficult to increase the joint strength between the resin composition and the metal member. This is because, especially when the thickness of the metal member 100 is large, the metal member 100 can take a larger amount of heat, so that voids are likely to be generated due to the temperature decrease and the fluidity decrease of the resin composition 300 described above. It is thought that.

これに対し、本実施形態では、金属部材100が有する複数の凸部120が、樹脂組成物300から受け取った熱を保持する熱保持部として作用する。そのため、凸部120の周囲の樹脂組成物は、所定の温度を保ちやすく、流動性が低下しにくいため、凸部120の表面に密に接触した後に固化することができ、これにより空隙が発生しにくいと考えられる。 On the other hand, in the present embodiment, the plurality of convex portions 120 of the metal member 100 act as heat retaining portions for holding the heat received from the resin composition 300. Therefore, the resin composition around the convex portion 120 can easily maintain a predetermined temperature and the fluidity does not easily decrease, so that the resin composition can be solidified after being in close contact with the surface of the convex portion 120, whereby voids are generated. It is considered difficult to do.

また、本実施形態では、図5に示すように、樹脂組成物300が固化するときに、凸部120の両側から凸部120を締め付けるように図中矢印方向に収縮して固化していくため、冷却されて収縮した樹脂組成物300は、凸部120に強く固着するように固化していく。 Further, in the present embodiment, as shown in FIG. 5, when the resin composition 300 solidifies, it contracts and solidifies in the direction of the arrow in the figure so as to tighten the convex portions 120 from both sides of the convex portions 120. The cooled and shrunk resin composition 300 solidifies so as to be strongly adhered to the convex portion 120.

凸部120は、これらの作用によって、固化した樹脂組成物300と金属部材100との接合強度を高める。そのため、 The convex portion 120 enhances the bonding strength between the solidified resin composition 300 and the metal member 100 by these actions. so that,

一方で、凸部120は、樹脂組成物300から受け取った熱を保持するものの、その分の熱を樹脂組成物300から奪ってもいる。そのため、金属部材100が表面110に複数の凸部120を有すると、型200の内部で樹脂組成物300が流動する方向(流動方向)に対する下流側ほど、流動経路上の凸部120に樹脂組成物300の熱を奪われ、さらに凸部120に累積的に熱を奪われるため、樹脂組成物300の温度が極端に低下しやすい。そのため、単に複数の凸部120を配置しただけでは、流動方向に対する下流側における、流動性の低下に伴う接合強度の低下は十分には抑制しきれない。 On the other hand, although the convex portion 120 retains the heat received from the resin composition 300, the convex portion 120 also removes the heat from the resin composition 300. Therefore, when the metal member 100 has a plurality of convex portions 120 on the surface 110, the resin composition is formed on the convex portions 120 on the flow path toward the downstream side with respect to the flow direction (flow direction) of the resin composition 300 inside the mold 200. Since the heat of the object 300 is taken away and the heat is cumulatively taken away by the convex portion 120, the temperature of the resin composition 300 tends to be extremely lowered. Therefore, simply arranging the plurality of convex portions 120 cannot sufficiently suppress the decrease in joint strength due to the decrease in fluidity on the downstream side with respect to the flow direction.

本実施形態では、上述した本発明者らの新たな知見に基づき、流動方向下流側においても、凸部120の配置による接合強度の向上がより十分に奏されるように、金属部材100の表面110上の位置に応じて、複数の凸部120の体積を変化させている。 In the present embodiment, based on the above-mentioned new findings of the present inventors, the surface of the metal member 100 can be more sufficiently improved by arranging the convex portions 120 even on the downstream side in the flow direction. The volume of the plurality of convex portions 120 is changed according to the position on the 110.

具体的には、金属部材100は、流動方向に対する下流側に配置されて、温度が低下した樹脂組成物300と接触することになる凸部120cおよび凸部120dは、上流側に配置された凸部120aおよび凸部120bよりも体積を小さくされている。これにより、凸部120cおよび凸部120dが奪う熱の量を少なくして、流動方向に対する下流側における、樹脂組成物300の冷却による流動性の低下に伴う接合強度の低下を抑制している。 Specifically, the metal member 100 is arranged on the downstream side with respect to the flow direction, and the convex portion 120c and the convex portion 120d that come into contact with the resin composition 300 whose temperature has decreased are convexes arranged on the upstream side. The volume is made smaller than that of the portion 120a and the convex portion 120b. As a result, the amount of heat taken by the convex portion 120c and the convex portion 120d is reduced, and the decrease in the bonding strength due to the decrease in the fluidity due to the cooling of the resin composition 300 on the downstream side with respect to the flow direction is suppressed.

これにより、流動方向に対する下流側において樹脂組成物300の温度が極端に低下し、流動性も極端に低下することによる、下流側での接合強度の低下をより生じにくくすることができる。そのため、流動方向に対する上流側および下流側のいずれにおいても、凸部120が熱を保持して樹脂組成物300の流動性の低下による空隙の発生を抑制し、かつ樹脂組成物300が凸部120を締め付けるように収縮して固化していくことによる、接合強度の向上効果が十分に奏されるものと考えられる。 As a result, the temperature of the resin composition 300 is extremely lowered on the downstream side with respect to the flow direction, and the fluidity is also extremely lowered, so that it is possible to make it more difficult for the bonding strength to be lowered on the downstream side. Therefore, the convex portion 120 retains heat on both the upstream side and the downstream side with respect to the flow direction to suppress the generation of voids due to the decrease in the fluidity of the resin composition 300, and the resin composition 300 has the convex portion 120. It is considered that the effect of improving the joint strength is sufficiently exerted by shrinking and solidifying as if tightening.

なお、本実施形態において、それぞれの凸部120間の間隔は、一定でもよいし、変化していてもよい。たとえば、下流側において凸部120が熱を保持することによる接合強度の向上を意図して、流動方向に対する下流側ほど凸部120間の距離を小さくして(凸部120を密に配置して)もよいし、下流側において凸部120が奪う熱の量を少なくして接合強度の低下を抑制することを意図して、流動方向に対する下流側ほど凸部120間の距離を大きくして(凸部120を粗に配置して)もよい。これらは、金属部材100および樹脂組成物300の物性(熱の移動しやすさや樹脂組成物の流動性)、射出する樹脂組成物300の温度、型200を加熱する温度などに応じて、適宜設定することができる。 In the present embodiment, the interval between the convex portions 120 may be constant or may be changed. For example, in order to improve the joint strength by retaining heat by the convex portions 120 on the downstream side, the distance between the convex portions 120 is reduced toward the downstream side with respect to the flow direction (the convex portions 120 are arranged densely). ), Or, with the intention of reducing the amount of heat taken by the convex portion 120 on the downstream side and suppressing the decrease in joint strength, the distance between the convex portions 120 is increased toward the downstream side with respect to the flow direction (). The convex portion 120 may be roughly arranged). These are appropriately set according to the physical characteristics of the metal member 100 and the resin composition 300 (easiness of heat transfer and fluidity of the resin composition), the temperature of the resin composition 300 to be ejected, the temperature at which the mold 200 is heated, and the like. can do.

このようにして得られた金属樹脂接合体400(図4参照)は、金属部材100と、金属部材100の表面110に接合した樹脂組成物300と、を有し、金属部材100と樹脂組成物300とが接合している表面110には、複数の凸部120が配置されている。複数の凸部120は、射出痕410に近いほど体積が大きくなり、射出痕410に対して離れていく方向に体積が小さくなるように、配置されている。言い換えると、金属樹脂接合体400は、金属部材100と樹脂組成物300とが接合している表面110に、射出痕410に対して離れていく方向に沿った断面の断面積が異なる複数の凸部を有する。 The metal-resin bonded body 400 (see FIG. 4) thus obtained has a metal member 100 and a resin composition 300 bonded to the surface 110 of the metal member 100, and the metal member 100 and the resin composition. A plurality of convex portions 120 are arranged on the surface 110 to which the 300 is joined. The plurality of convex portions 120 are arranged so that the closer to the injection mark 410, the larger the volume, and the smaller the volume in the direction away from the injection mark 410. In other words, the metal-resin bonded body 400 has a plurality of protrusions having a different cross-sectional area on the surface 110 where the metal member 100 and the resin composition 300 are bonded in a direction away from the injection mark 410. Has a part.

なお、樹脂組成物300は、炭素繊維、ガラス繊維およびセルロースナノファイバーなどの強化繊維310を含む繊維強化樹脂組成物であってもよい。そして、強化繊維310は、型200の中を樹脂組成物300が流動する際に、樹脂組成物300の流動方向に沿って配向しやすい。このとき、複数の凸部120は、強化繊維310が配向している方向に沿って、体積が小さくなるように、配置されている。 The resin composition 300 may be a fiber-reinforced resin composition containing reinforcing fibers 310 such as carbon fibers, glass fibers and cellulose nanofibers. Then, when the resin composition 300 flows in the mold 200, the reinforcing fibers 310 are likely to be oriented along the flow direction of the resin composition 300. At this time, the plurality of convex portions 120 are arranged so that the volume becomes smaller along the direction in which the reinforcing fibers 310 are oriented.

上述の本実施形態によれば、特に金属部材の厚みが大きいときにも、金属部材と樹脂組成物との接合強度を高めることができる。 According to the above-described embodiment, the bonding strength between the metal member and the resin composition can be increased even when the thickness of the metal member is particularly large.

[第二の実施形態]
図6は、第二の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。
[Second Embodiment]
FIG. 6 is a schematic perspective view showing a metal member for joining with the resin composition according to the second embodiment.

図6に示すように、金属部材600は、板状の部材であって、一方の表面610に配置された複数の凸部620を有する。なお、一方の表面610は、樹脂組成物が接合する表面である。本実施形態は、複数の凸部620の形状のみが第一の実施形態とは異なる。そのため、第一の実施形態との相違点のみを説明し、重複する部分の説明は省略する。 As shown in FIG. 6, the metal member 600 is a plate-shaped member and has a plurality of convex portions 620 arranged on one surface 610. One surface 610 is a surface to which the resin composition is bonded. This embodiment differs from the first embodiment only in the shape of the plurality of convex portions 620. Therefore, only the differences from the first embodiment will be described, and the description of the overlapping parts will be omitted.

本実施形態において、複数の凸部620は、金属部材600の表面に独立して複数配置された、いずれも棒状の複数の突起である。それぞれの棒状の突起は、接合時に金属部材600に接触して表面610に沿って流動する樹脂組成物の流動方向(図6中、白抜き矢印方向)とは異なる方向に延びるように、表面610に沿って配置されている。本実施形態では、複数の凸部620は、いずれも流動方向とは直交する方向(図6中、斜線つき矢印方向)に沿って伸びるように、互いに間隔を空けて配置されている。 In the present embodiment, the plurality of convex portions 620 are a plurality of rod-shaped protrusions independently arranged on the surface of the metal member 600. The surface 610 is such that each rod-shaped protrusion extends in a direction different from the flow direction (in the direction of the white arrow in FIG. 6) of the resin composition that comes into contact with the metal member 600 at the time of joining and flows along the surface 610. It is arranged along. In the present embodiment, the plurality of convex portions 620 are arranged at intervals from each other so as to extend along a direction orthogonal to the flow direction (in FIG. 6, the direction of the shaded arrow).

なお、棒状である凸部620の形状は限定されず、三角柱状、四角柱状、六角柱状、楕円柱状などのいかなる形状であってもよい。本明細書において、棒状とは、金属部材600の表面610に沿った断面における当該部材の外周上の各点を結ぶ距離のうち、最大となる距離に対する最少となる距離の比0.5未満となるような形状を意味する。 The shape of the rod-shaped convex portion 620 is not limited, and may be any shape such as a triangular columnar shape, a square columnar shape, a hexagonal columnar shape, and an elliptical columnar shape. In the present specification, the rod shape means that the ratio of the minimum distance to the maximum distance among the distances connecting the points on the outer circumference of the metal member 600 in the cross section along the surface 610 is less than 0.5. It means a shape that becomes.

複数の凸部620は、樹脂組成物300の流動方向(図6中、白抜き矢印方向)に沿って、流動方向への凸部の幅が次第に小さくなる(流通方向に沿った断面の断面積が次第に小さくなる)ような、形状および配置となっている。具体的には、流動方向に対する上流側に配置された凸部620aに対して、凸部620aよりも流動方向に対する下流側に配置された凸部620bは、上記凸部の幅がより小さい凸部となっている。同様に、凸部620bに対して、凸部620bよりも流動方向に対する下流側に配置された凸部620cは、上記凸部の幅がより小さい凸部となっている。 In the plurality of convex portions 620, the width of the convex portions in the flow direction gradually decreases along the flow direction of the resin composition 300 (in the direction of the white arrow in FIG. 6) (cross-sectional area of the cross section along the distribution direction). The shape and arrangement are such that Specifically, with respect to the convex portion 620a arranged on the upstream side with respect to the flow direction, the convex portion 620b arranged on the downstream side with respect to the flow direction from the convex portion 620a is a convex portion having a smaller width of the convex portion. It has become. Similarly, the convex portion 620c arranged on the downstream side of the convex portion 620b in the flow direction with respect to the convex portion 620b is a convex portion having a smaller width of the convex portion.

本実施形態では、樹脂組成物300の流動方向に対する下流側に配置されて、温度が低下した樹脂組成物300と接触することになる凸部620bおよび凸部620cは、上流側に配置された凸部620aよりも流通方向への凸部の幅(流通方向に沿った断面の断面積)を小さくされている。これにより、金属部材600は、それぞれの凸部620が熱を保持することにより樹脂組成物300の接合強度を高めつつ、凸部620bおよび凸部620cが奪う熱の量を少なくして、流動方向に対する下流側における、樹脂組成物300の冷却による流動性の低下に伴う接合強度の低下を抑制している。 In the present embodiment, the convex portion 620b and the convex portion 620c arranged on the downstream side with respect to the flow direction of the resin composition 300 and coming into contact with the resin composition 300 whose temperature has decreased are the convex portions arranged on the upstream side. The width of the convex portion in the distribution direction (cross-sectional area of the cross section along the distribution direction) is made smaller than that of the portion 620a. As a result, the metal member 600 increases the bonding strength of the resin composition 300 by retaining heat in each of the convex portions 620, while reducing the amount of heat taken by the convex portions 620b and the convex portions 620c in the flow direction. On the downstream side of the resin composition 300, the decrease in bonding strength due to the decrease in fluidity due to cooling is suppressed.

本実施形態では、それぞれの凸部620は、側面として、流動方向に対する上流側を向いた第一面622と、流動方向に対する下流側を向いた第二面624と、を有する。このような凸部620は、射出されて金属部材600に接触した樹脂組成物300が冷却されて収縮するとき、第一面622と第二面624とをより強固に締め付けるように収縮させるので、金属部材600と樹脂組成物300との接合強度をより高めることができる。 In the present embodiment, each convex portion 620 has, as side surfaces, a first surface 622 facing upstream with respect to the flow direction and a second surface 624 facing downstream with respect to the flow direction. Such a convex portion 620 contracts so as to tighten the first surface 622 and the second surface 624 more firmly when the resin composition 300 injected and in contact with the metal member 600 is cooled and contracts. The bonding strength between the metal member 600 and the resin composition 300 can be further increased.

本実施形態でも、特に金属部材の厚みが大きいときにも、金属部材と樹脂組成物との接合強度を高めることができる。 Also in this embodiment, the bonding strength between the metal member and the resin composition can be increased even when the thickness of the metal member is particularly large.

また、本実施形態では、冷却して収縮するときに締め付ける凸部の面積を大きくできるため、金属部材と樹脂組成物との接合強度をより高めることができる。 Further, in the present embodiment, since the area of the convex portion to be tightened when cooling and shrinking can be increased, the bonding strength between the metal member and the resin composition can be further increased.

なお、複数の凸部620は、互いに平行であってもよいし、非平行であって互いにずれた方向に延びていてもよい。 The plurality of convex portions 620 may be parallel to each other, or may be non-parallel and extend in a direction deviating from each other.

[第三の実施形態]
図7は、第三の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。
[Third Embodiment]
FIG. 7 is a schematic perspective view showing a metal member for joining with a resin composition according to a third embodiment.

図7に示すように、金属部材700は、板状の部材であって、一方の表面710に配置された凸部720を有する。なお、一方の表面710は、樹脂組成物が接合する表面である。本実施形態は、凸部720の形状のみが第二の実施形態とは異なる。そのため、第二の実施形態との相違点のみを説明し、重複する部分の説明は省略する。 As shown in FIG. 7, the metal member 700 is a plate-shaped member and has a convex portion 720 arranged on one surface 710. One surface 710 is a surface to which the resin composition is bonded. This embodiment differs from the second embodiment only in the shape of the convex portion 720. Therefore, only the differences from the second embodiment will be described, and the description of the overlapping parts will be omitted.

本実施形態において、凸部720は、金属部材700の表面に複数配置されたいずれも棒状の複数の第一凸部720a、第一凸部720b、第一凸部720cおよび第一凸部720dと、これらの凸部を接続するいずれも棒状の第二凸部730a、第二凸部730b、第二凸部730cおよび第二凸部730dと、を有する。 In the present embodiment, the convex portions 720 include a plurality of rod-shaped first convex portions 720a, first convex portions 720b, first convex portions 720c, and first convex portions 720d, all of which are arranged on the surface of the metal member 700. , Each of which connects these convex portions has a rod-shaped second convex portion 730a, a second convex portion 730b, a second convex portion 730c, and a second convex portion 730d.

それぞれの棒状の第一凸部720a、第一凸部720b、第一凸部720cおよび第一凸部720dは、接合時に金属部材700に接触して表面710に沿って流動する樹脂組成物の流動方向(図7中、白抜き矢印方向)とは異なる方向に延びるように、表面710に沿って配置されている。本実施形態では、第一凸部720a、第一凸部720b、第一凸部720cおよび第一凸部720dは、いずれも流動方向とは直交する方向(図7中、斜線つき矢印方向)に沿って伸びるように、互いに間隔を空けて配置されている。 The rod-shaped first convex portion 720a, first convex portion 720b, first convex portion 720c, and first convex portion 720d come into contact with the metal member 700 at the time of joining and flow along the surface 710. It is arranged along the surface 710 so as to extend in a direction different from the direction (in the direction of the white arrow in FIG. 7). In the present embodiment, the first convex portion 720a, the first convex portion 720b, the first convex portion 720c, and the first convex portion 720d are all in the direction orthogonal to the flow direction (in FIG. 7, the direction of the shaded arrow). They are spaced apart from each other so that they extend along.

複数の第一凸部720a、第一凸部720b、第一凸部720cおよび第一凸部720dは、樹脂組成物300の流動方向(図7中、白抜き矢印方向)に沿って、流動方向への凸部の幅が次第に小さくなる(流通方向に沿った断面の断面積が次第に小さくなる)ような、形状および配置となっている。具体的には、流動方向に対する上流側に配置された第一凸部720aに対して、第一凸部720aよりも流動方向に対する下流側に配置された第一凸部720bは、上記凸部の幅がより小さい凸部となっている。同様に、第一凸部720bに対して、第一凸部720bよりも流動方向に対する下流側に配置された第一凸部720cは、上記凸部の幅がより小さい凸部となっており、第一凸部720cに対して、第一凸部720cよりも流動方向に対する下流側に配置された第一凸部720dは、上記凸部の幅がより小さい凸部となっている。 The plurality of first convex portions 720a, first convex portion 720b, first convex portion 720c, and first convex portion 720d flow directions along the flow direction of the resin composition 300 (in the direction of the white arrow in FIG. 7). The shape and arrangement are such that the width of the convex portion to the arrow gradually decreases (the cross-sectional area of the cross section along the distribution direction gradually decreases). Specifically, with respect to the first convex portion 720a arranged on the upstream side with respect to the flow direction, the first convex portion 720b arranged on the downstream side with respect to the flow direction from the first convex portion 720a is the convex portion. It is a convex part with a smaller width. Similarly, the first convex portion 720c arranged on the downstream side of the first convex portion 720b in the flow direction with respect to the first convex portion 720b is a convex portion having a smaller width of the convex portion. The first convex portion 720d arranged on the downstream side of the first convex portion 720c in the flow direction with respect to the first convex portion 720c is a convex portion having a smaller width of the convex portion.

それぞれの棒状の第二凸部730a、第二凸部730b、第二凸部730cおよび第二凸部730dは、それぞれの第一凸部が延びる方向とは異なる方向(図7中、斜線つき矢印方向)に延びるように、表面710に沿って配置されている。本実施形態では、第二凸部730a、第二凸部730b、第二凸部730cおよび第二凸部730dは、いずれも同一の方向に沿って伸びるように、互いに間隔を空けて配置されている。 The rod-shaped second convex portion 730a, second convex portion 730b, second convex portion 730c, and second convex portion 730d are in different directions from the direction in which the first convex portion extends (in FIG. 7, arrows with diagonal lines). It is arranged along the surface 710 so as to extend in the direction). In the present embodiment, the second convex portion 730a, the second convex portion 730b, the second convex portion 730c, and the second convex portion 730d are all arranged at intervals so as to extend in the same direction. There is.

複数の第二凸部730a、第二凸部730b、第二凸部730cおよび第二凸部730dは、いずれも同一の幅(図7中、斜線つき矢印方向への幅)を有し、同一間隔で配置されている。なお、それぞれの第二凸部の形状および配置はこれらに限定されることはなく、たとえば流動方向に対する下流側ほど、第二凸部の幅は細くなっていてもよい。 The plurality of second convex portions 730a, second convex portion 730b, second convex portion 730c, and second convex portion 730d all have the same width (width in the direction of the shaded arrow in FIG. 7) and are the same. They are arranged at intervals. The shape and arrangement of each of the second convex portions is not limited to these, and the width of the second convex portion may be narrower toward the downstream side with respect to the flow direction, for example.

本実施形態でも、樹脂組成物300の流動方向に対する下流側に配置されて、温度が低下した樹脂組成物300と接触することになる第一凸部720cおよび第一凸部720dは、上流側に配置された第一凸部720aおよび第一凸部720bよりも流通方向への凸部の幅(流通方向に沿った断面の断面積)を小さくされている。これにより、金属部材700は、それぞれの第一凸部が熱を保持することにより樹脂組成物300の接合強度を高めつつ、第一凸部720cおよび第一凸部720dが奪う熱の量を少なくして、流動方向に対する下流側における、樹脂組成物300の冷却による流動性の低下に伴う接合強度の低下を抑制している。 Also in the present embodiment, the first convex portion 720c and the first convex portion 720d, which are arranged on the downstream side of the resin composition 300 in the flow direction and come into contact with the resin composition 300 whose temperature has decreased, are on the upstream side. The width of the convex portion in the distribution direction (cross-sectional area of the cross section along the distribution direction) is made smaller than that of the arranged first convex portion 720a and the first convex portion 720b. As a result, in the metal member 700, the amount of heat taken by the first convex portion 720c and the first convex portion 720d is reduced while increasing the bonding strength of the resin composition 300 by retaining heat in each of the first convex portions. As a result, the decrease in joint strength due to the decrease in fluidity due to cooling of the resin composition 300 on the downstream side with respect to the flow direction is suppressed.

また、本実施形態では、それぞれの第一凸部720a、第一凸部720b、第一凸部720cおよび第一凸部720dは、流動方向に対する上流側を向いた第一面722と、流動方向に対する下流側を向いた第二面724と、を有する。このような凸部720は、射出されて金属部材700に接触した樹脂組成物300が冷却されて収縮するとき、第一面722と第二面724とをより強固に締め付けるように収縮させるので、金属部材700と樹脂組成物300との接合強度をより高めることができる。 Further, in the present embodiment, the first convex portion 720a, the first convex portion 720b, the first convex portion 720c, and the first convex portion 720d are the first surface 722 facing upstream with respect to the flow direction and the flow direction. It has a second surface 724 facing downstream with respect to. When the resin composition 300 that has been injected and is in contact with the metal member 700 is cooled and contracted, such a convex portion 720 contracts so that the first surface 722 and the second surface 724 are tightened more firmly. The bonding strength between the metal member 700 and the resin composition 300 can be further increased.

なお、複数の第二凸部730は、互いに平行であってもよいし、非平行であって互いにずれた方向に延びていてもよい。また、複数の第二凸部730は、流動方向と同一方向に延びていてもよいし、流動方向に対して異なる方向に延びていてもよい。 The plurality of second convex portions 730 may be parallel to each other, or may be non-parallel and extend in a direction deviating from each other. Further, the plurality of second convex portions 730 may extend in the same direction as the flow direction, or may extend in different directions with respect to the flow direction.

また、複数の第二凸部730は、金属部材700の表面からの高さ(以下、単に「高さ」ともいう。)が複数の第一凸部と同じであってもよいし、第一凸部とは異なっていてもよい。また、複数の第二凸部の凸部間で高さが異なっていてもよいし、同様に、複数の第一凸部の凸部間で高さが異なっていてもよい。 Further, the height of the plurality of second convex portions 730 from the surface of the metal member 700 (hereinafter, also simply referred to as “height”) may be the same as that of the plurality of first convex portions, or the first It may be different from the convex part. Further, the height may be different between the convex portions of the plurality of second convex portions, and similarly, the height may be different between the convex portions of the plurality of first convex portions.

さらに、本実施形態では、射出されて金属部材700に接触した樹脂組成物300が冷却されて収縮するとき、第二凸部730をも締め付けるように強固に収縮できるので、金属部材700と樹脂組成物300との接合強度をより高めることができる。 Further, in the present embodiment, when the resin composition 300 injected and in contact with the metal member 700 is cooled and contracts, the resin composition can be firmly contracted so as to also tighten the second convex portion 730, so that the metal member 700 and the resin composition can be contracted. The bonding strength with the object 300 can be further increased.

[第四の実施形態]
図8は、第四の実施形態に関する、樹脂組成物との接合用の金属部材を示す、模式的な斜視図である。
[Fourth Embodiment]
FIG. 8 is a schematic perspective view showing a metal member for joining with a resin composition according to a fourth embodiment.

図8に示すように、金属部材800は、板状の部材であって、一方の表面810に配置された複数の凸部820を有する。なお、一方の表面810は、樹脂組成物が接合する表面である。本実施形態は、凸部820の形状のみが第一の実施形態とは異なる。そのため、第一の実施形態との相違点のみを説明し、重複する部分の説明は省略する。 As shown in FIG. 8, the metal member 800 is a plate-shaped member and has a plurality of convex portions 820 arranged on one surface 810. One surface 810 is a surface to which the resin composition is bonded. This embodiment differs from the first embodiment only in the shape of the convex portion 820. Therefore, only the differences from the first embodiment will be described, and the description of the overlapping parts will be omitted.

本実施形態において、複数の凸部820は、金属部材800の表面に独立して複数配置されたいずれも筒状の複数の突起である。 In the present embodiment, the plurality of convex portions 820 are a plurality of tubular protrusions that are independently arranged on the surface of the metal member 800.

複数の凸部820は、接合時に金属部材800に接触して表面810に沿って流動する樹脂組成物の流動方向(図8中、複数の白抜き矢印方向。以下、単に「流動方向」ともいう。)に沿って、体積が次第に小さくなる(流通方向に沿った断面の断面積が次第に小さくなる)ような、形状および配置となっている。 The plurality of convex portions 820 are in contact with the metal member 800 at the time of joining and flow along the surface 810 in the flow direction (the directions of the plurality of white arrows in FIG. 8; hereinafter, also simply referred to as “flow direction”. The shape and arrangement are such that the volume gradually decreases (the cross-sectional area of the cross section along the flow direction gradually decreases) along the.).

具体的には、複数の凸部820は、金型200中で樹脂組成物300が最初に接触する地点Pに最も近い位置に配置された凸部820aと、地点Pに対して放射状に配置された、体積がより小さい凸部820b、凸部820cおよび凸部820dと、を有する。凸部820b、凸部820cおよび凸部820dは、地点Pから離れるほど、体積が小さくなるような形状および配置となっている。 Specifically, the plurality of convex portions 820 are arranged radially with respect to the convex portions 820a arranged at the position closest to the point P where the resin composition 300 first contacts in the mold 200 and the point P. It also has a convex portion 820b, a convex portion 820c, and a convex portion 820d having a smaller volume. The convex portion 820b, the convex portion 820c, and the convex portion 820d are shaped and arranged so that the volume becomes smaller as the distance from the point P increases.

本実施形態でも、樹脂組成物300の流動方向に対する下流側に配置されて、温度が低下した樹脂組成物300と接触することになる凸部820cおよび凸部820dは、上流側に配置された凸部820aおよび凸部820bよりも体積流(流通方向に沿った断面の断面積)を小さくされている。これにより、金属部材800は、それぞれの凸部820が熱を保持することにより樹脂組成物300の接合強度を高めつつ、凸部820bおよび凸部820cが奪う熱の量を少なくして、流動方向に対する下流側における、樹脂組成物300の冷却による流動性の低下に伴う接合強度の低下を抑制している。 Also in the present embodiment, the convex portion 820c and the convex portion 820d arranged on the downstream side with respect to the flow direction of the resin composition 300 and coming into contact with the resin composition 300 whose temperature has decreased are the convex portions arranged on the upstream side. The volume flow (cross-sectional area of the cross section along the flow direction) is made smaller than that of the portion 820a and the convex portion 820b. As a result, the metal member 800 increases the bonding strength of the resin composition 300 by retaining heat in each of the convex portions 820, and reduces the amount of heat taken by the convex portions 820b and the convex portion 820c in the flow direction. On the downstream side of the resin composition 300, the decrease in bonding strength due to the decrease in fluidity due to cooling is suppressed.

そのため、本実施形態でも、特に金属部材の厚みが大きいときにも、金属部材と樹脂組成物との接合強度を高めることができる。 Therefore, also in the present embodiment, the bonding strength between the metal member and the resin composition can be increased even when the thickness of the metal member is particularly large.

なお、本実施形態では、複数の独立した筒状の凸部820が放射状に配置されている例を示したが、それぞれの凸部は、地点Pを中心とした環状の突起であってもよく、上記環状の突起は、それぞれ異なる位置に形成された切り欠きを有してもよい。 In the present embodiment, a plurality of independent tubular convex portions 820 are arranged radially, but each convex portion may be an annular protrusion centered on the point P. , The annular protrusion may have notches formed at different positions.

[第五の実施形態]
図9は、第五の実施形態に関する、樹脂組成物との接合用の金属部材900と、型の内部に射出されて金属部材900に接触して流動している樹脂組成物300と、の様子を示す、模式図である。
[Fifth Embodiment]
FIG. 9 shows a state of the metal member 900 for joining with the resin composition and the resin composition 300 which is injected into the mold and is in contact with the metal member 900 and is flowing according to the fifth embodiment. It is a schematic diagram which shows.

本実施形態において、凸部920は、金属部材900の樹脂組成物と接する表面910とは反対側の表面912から抜き加工されて、内部に空洞部922を有する。 In the present embodiment, the convex portion 920 is punched from the surface 912 on the side opposite to the surface 910 in contact with the resin composition of the metal member 900, and has a hollow portion 922 inside.

本実施形態によれば、凸部920がその内部に断熱性の大気が充填された空洞部922を有するため、凸部920の保温効果が高まっている。そのため、凸部920の周囲の樹脂組成物300は冷却されにくく、流動性の低下による空隙の発生がより顕著に抑制され、金属部材900と樹脂組成物300との接合強度がより高まる。 According to the present embodiment, since the convex portion 920 has a hollow portion 922 filled with a heat insulating atmosphere inside the convex portion 920, the heat retaining effect of the convex portion 920 is enhanced. Therefore, the resin composition 300 around the convex portion 920 is hard to be cooled, the generation of voids due to the decrease in fluidity is suppressed more remarkably, and the bonding strength between the metal member 900 and the resin composition 300 is further increased.

なお、凸部920は、第一の実施形態〜第四の実施形態で説明したいずれの突起であってもよい。また、金属部材900が有するすべての凸部920が空洞部922を有してもよいし、一部の凸部920のみが空洞部922を有してもよい。たとえば、樹脂組成物の温度が低下しにくい流動方向に対する上流側の突起には空洞部を設けず、樹脂組成物の温度が低下しやすい流動方向に対する下流側の凸部920にのみ空洞部922を設けてもよい。 The convex portion 920 may be any of the protrusions described in the first to fourth embodiments. Further, all the convex portions 920 included in the metal member 900 may have the hollow portion 922, or only a part of the convex portions 920 may have the hollow portion 922. For example, no cavity is provided in the protrusion on the upstream side in the flow direction in which the temperature of the resin composition is likely to decrease, and the cavity 922 is provided only in the convex portion 920 on the downstream side in the flow direction in which the temperature of the resin composition tends to decrease. It may be provided.

また、空洞部922の内部は大気充填されていてでもよいし、真空であってもよいし、伝熱性が低い液体などで充填されていてもよい。 Further, the inside of the cavity portion 922 may be filled with air, may be in a vacuum, or may be filled with a liquid having low heat transfer property.

また、空洞部922は、抜き加工以外の公知の方法により形成されていてもよい。 Further, the cavity portion 922 may be formed by a known method other than punching.

[その他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Other Embodiments]
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.

たとえば、上述の第一の実施形態では、複数の凸部が、単一の側面を有する円柱形である例を説明したが、角柱形などの、第二の実施形態と同様に側面に第一面と第二面を有する形状の凸部としてもよい。 For example, in the first embodiment described above, the example in which the plurality of convex portions are cylindrical having a single side surface has been described, but the first embodiment has the same side surface as in the second embodiment such as a prismatic shape. It may be a convex portion having a shape having a surface and a second surface.

また、複数の凸部を逆テーパ状とすることは、金属部材と樹脂組成物との接合強度を高める観点から好ましい。 Further, it is preferable to make the plurality of convex portions into a reverse taper shape from the viewpoint of increasing the bonding strength between the metal member and the resin composition.

また、上述の各実施形態では、金属部材が板状である例を説明したが、金属部材は板状以外のいかなる形状であってもよい。また、凸部は、金属部材の一面のみに配置されていてもよいし、いずれも樹脂組成物が接合する複数の面に配置されていてもよい。また、凸部が配置される面は、平面であってもよいし、曲面などの平面以外の面であってもよい。 Further, in each of the above-described embodiments, the example in which the metal member has a plate shape has been described, but the metal member may have any shape other than the plate shape. Further, the convex portion may be arranged only on one surface of the metal member, or may be arranged on a plurality of surfaces to which the resin composition is bonded. Further, the surface on which the convex portion is arranged may be a flat surface or a surface other than a flat surface such as a curved surface.

また、上述の各実施形態では、1つのゲートから型の内部に溶融した樹脂組成物を射出する例を説明したが、複数のゲートから型の内部に溶融した樹脂組成物を射出してもよい。このとき、金属部材は、それぞれのゲートから射出された樹脂組成物が到達する範囲内に、それぞれのゲートからの距離に応じて体積または幅(流動方向に沿った断面の断面積)が変化する複数の凸部を有すればよい。 Further, in each of the above-described embodiments, the example of injecting the molten resin composition into the mold from one gate has been described, but the molten resin composition may be injected from a plurality of gates into the inside of the mold. .. At this time, the volume or width (cross-sectional area of the cross section along the flow direction) of the metal member changes according to the distance from each gate within the range reached by the resin composition injected from each gate. It suffices to have a plurality of convex portions.

また、金属部材は、体積または幅(流動方向に沿った断面の断面積)が異なる2つの突起を有すればよいが、それぞれ体積または幅(流動方向に沿った断面の断面積)が異なる3つ以上の突起を有することが好ましい。 Further, the metal member may have two protrusions having different volumes or widths (cross-sectional area of the cross section along the flow direction), but each has a different volume or width (cross-sectional area of the cross section along the flow direction) 3. It is preferable to have one or more protrusions.

また、金属部材は、レーザー加工、ブラスト処理および化学的処理などの方法により、ナノメートル〜マイクロメートルオーダーのミクロ凹凸が形成されていてもよい。特に、本開示では、金属部材の表面に凸部を設けるため、凸部の周囲における樹脂組成物の流動性が低下しにくい。そのため、樹脂組成物がミクロ凹凸の内部にも入り込みやすく、ミクロ凹凸を形成した金属部材と樹脂組成物との接合強度もより高めやすい。 Further, the metal member may have micro-concavities and convexities on the order of nanometer to micrometer formed by a method such as laser processing, blasting treatment and chemical treatment. In particular, in the present disclosure, since the convex portion is provided on the surface of the metal member, the fluidity of the resin composition around the convex portion is unlikely to decrease. Therefore, the resin composition easily penetrates into the micro-concavities and convexities, and the bonding strength between the metal member forming the micro-concavities and the resin composition is also likely to be increased.

本開示によれば、金属部材と樹脂組成物との接合強度をより高めることができる。特に、金属部材の厚みが大きいときにも、上記接合強度をより高めることができるので、金属樹脂接合体の用途が拡大されることが期待される。 According to the present disclosure, the bonding strength between the metal member and the resin composition can be further increased. In particular, even when the thickness of the metal member is large, the bonding strength can be further increased, so that it is expected that the use of the metal resin bonded body will be expanded.

100、600、700、800、900 金属部材
110、610、710、810、910 表面
120、120a、120b、120c、120d、620,620a、620b、620c、720、820、820a、820b、820c、820d、920 凸部
200 型
210 キャビティ
220 コア
230 ゲート
300 樹脂組成物
310 強化繊維
400 金属樹脂接合体
410 射出痕
622、722 第一面
624、724 第二面
720a、720b、720c、720d 第一凸部
730、730a、730b、730c、730d 第二凸部
912 表面
922 空洞部
100, 600, 700, 800, 900 Metal members 110, 610, 710, 810, 910 Surface 120, 120a, 120b, 120c, 120d, 620, 620a, 620b, 620c, 720, 820, 820a, 820b, 820c, 820d , 920 Convex part 200 type 210 Cavity 220 Core 230 Gate 300 Resin composition 310 Reinforcing fiber 400 Metal resin joint 410 Injection marks 622, 722 First surface 624, 724 Second surface 720a, 720b, 720c, 720d First convex part 730, 730a, 730b, 730c, 730d Second convex part 912 Surface 922 Cavity part

Claims (10)

樹脂組成物との接合用の金属部材であって、
いずれも前記金属部材の前記樹脂組成物が接合する表面から突出している、接合時に前記金属部材に接触して流動する前記樹脂組成物の流動方向に沿った断面の断面積が異なる複数の凸部を有し、
前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている、
樹脂組成物との接合用の金属部材。
A metal member for joining with a resin composition.
A plurality of convex portions having different cross-sectional areas along the flow direction of the resin composition that flow in contact with the metal member at the time of joining, all of which project from the surface to which the resin composition of the metal member is joined. Have,
The plurality of convex portions are arranged so that the cross-sectional area of the cross section along the flow direction becomes smaller toward the downstream side with respect to the flow direction.
A metal member for joining with a resin composition.
前記複数の凸部は、互いに独立して配置されている複数の筒状の突起である、請求項1に記載の樹脂組成物との接合用の金属部材。 The metal member for joining with the resin composition according to claim 1, wherein the plurality of convex portions are a plurality of tubular protrusions arranged independently of each other. 前記複数の凸部は、いずれも前記流動方向とは異なる方向に沿って伸びるように配置された複数の棒状の突起である、請求項1に記載の樹脂組成物との接合用の金属部材。 The metal member for joining with the resin composition according to claim 1, wherein the plurality of convex portions are a plurality of rod-shaped protrusions arranged so as to extend in a direction different from the flow direction. 前記複数の凸部を接続する、前記流動方向または前記流動方向とは異なる方向に沿って伸びるように配置された棒状の突起を有する、請求項1〜3のいずれか1項に記載の樹脂組成物との接合用の金属部材。 The resin composition according to any one of claims 1 to 3, which has rod-shaped protrusions that connect the plurality of protrusions and are arranged so as to extend in the flow direction or in a direction different from the flow direction. A metal member for joining with an object. 前記複数の凸部は、少なくとも1つの凸部が、前記流動方向に対する上流側を向いた第一面と、前記流動方向に対する下流側を向いた前記第一面とは異なる第二面と、を有する、請求項1〜4のいずれか1項に記載の樹脂組成物との接合用の金属部材。 The plurality of convex portions include a first surface in which at least one convex portion faces the upstream side in the flow direction and a second surface different from the first surface in which the convex portion faces the downstream side in the flow direction. A metal member for joining with the resin composition according to any one of claims 1 to 4. 前記複数の凸部は、内部に空洞部を有する、請求項1〜5のいずれか1項に記載の樹脂組成物との接合用の金属部材。 The metal member for joining with the resin composition according to any one of claims 1 to 5, wherein the plurality of convex portions have a hollow portion inside. 金属部材を型の内部に配置する工程と、
前記金属部材が配置されている型の内部に樹脂組成物を射出する工程と、を有し、
前記配置された金属部材は、前記射出された樹脂組成物の流動方向に沿った断面の形状が異なる複数の凸部を、前記射出された樹脂組成物が接触する表面に有し、
前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている、
金属樹脂接合体の製造方法。
The process of arranging the metal member inside the mold and
It has a step of injecting a resin composition into a mold in which the metal member is arranged.
The arranged metal member has a plurality of convex portions having different cross-sectional shapes along the flow direction of the injected resin composition on the surface in contact with the injected resin composition.
The plurality of convex portions are arranged so that the cross-sectional area of the cross section along the flow direction becomes smaller toward the downstream side with respect to the flow direction.
A method for manufacturing a metal resin bonded body.
金属部材と、前記金属部材の表面に接合した樹脂組成物と、を有する金属樹脂接合体であって、
前記金属部材は、前記樹脂組成物が接合した表面に、接合時に前記金属部材に接触して流動した前記樹脂組成物の流動方向に沿った断面の断面積が異なる複数の凸部を有し、
前記複数の凸部は、前記流動方向に対する下流側ほど、前記流動方向に沿った断面の断面積がより小さくなるように配置されている、
金属樹脂接合体。
A metal-resin bonded body comprising a metal member and a resin composition bonded to the surface of the metal member.
The metal member has a plurality of convex portions having different cross-sectional areas in cross sections along the flow direction of the resin composition that flowed in contact with the metal member at the time of joining on the surface to which the resin composition was joined.
The plurality of convex portions are arranged so that the cross-sectional area of the cross section along the flow direction becomes smaller toward the downstream side with respect to the flow direction.
Metal resin joint.
前記樹脂組成物は、射出痕を有し、
前記流動方向は、前記射出痕に対して離れていく方向である、
請求項8に記載の金属樹脂接合体。
The resin composition has injection marks and has injection marks.
The flow direction is a direction away from the injection mark.
The metal-resin bonded body according to claim 8.
前記樹脂組成物は、強化繊維を含む繊維強化樹脂組成物であり、
前記流動方向は、前記強化繊維が配向している方向である、
請求項8または9に記載の金属樹脂接合体。
The resin composition is a fiber-reinforced resin composition containing reinforcing fibers.
The flow direction is the direction in which the reinforcing fibers are oriented.
The metal resin joint according to claim 8 or 9.
JP2019218758A 2019-12-03 2019-12-03 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY Active JP7255465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218758A JP7255465B2 (en) 2019-12-03 2019-12-03 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218758A JP7255465B2 (en) 2019-12-03 2019-12-03 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY

Publications (2)

Publication Number Publication Date
JP2021088091A true JP2021088091A (en) 2021-06-10
JP7255465B2 JP7255465B2 (en) 2023-04-11

Family

ID=76218969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218758A Active JP7255465B2 (en) 2019-12-03 2019-12-03 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY

Country Status (1)

Country Link
JP (1) JP7255465B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071500A (en) * 1993-06-14 1995-01-06 Nippon Plast Co Ltd Manufacture of synthetic resin product having skin member
JPH10154783A (en) * 1996-11-26 1998-06-09 Fuji Electric Co Ltd Resin sealed semiconductor device
JP2013107273A (en) * 2011-11-21 2013-06-06 Daicel Corp Method of manufacturing composite molded body
JP2019119094A (en) * 2017-12-28 2019-07-22 株式会社デンソー Resin molded body manufacturing system and resin molded body manufacturing method
JP2019126989A (en) * 2018-01-25 2019-08-01 日立金属株式会社 Metal/resin joint body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071500A (en) * 1993-06-14 1995-01-06 Nippon Plast Co Ltd Manufacture of synthetic resin product having skin member
JPH10154783A (en) * 1996-11-26 1998-06-09 Fuji Electric Co Ltd Resin sealed semiconductor device
JP2013107273A (en) * 2011-11-21 2013-06-06 Daicel Corp Method of manufacturing composite molded body
JP2019119094A (en) * 2017-12-28 2019-07-22 株式会社デンソー Resin molded body manufacturing system and resin molded body manufacturing method
JP2019126989A (en) * 2018-01-25 2019-08-01 日立金属株式会社 Metal/resin joint body

Also Published As

Publication number Publication date
JP7255465B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
EP3498416B1 (en) Bonded structure of heterogeneous materials and method for manufacturing same
US20160167353A1 (en) Systems and methods for joining components
US11255392B2 (en) Torque bar and methods for making
EP2956259B1 (en) Part obtained by selective melting of a powder comprising a main element and rigid secondary elements
JP6474006B2 (en) Injection mold
KR102106253B1 (en) Reel member, film container, and reel member manufacturing method
US10556385B2 (en) Composite component for a motor vehicle
TW201615319A (en) Junction structure and method for manufacturing junction structure
CN107733184A (en) The resin injection device and resin method for implanting of laminated iron core
JP2017071165A (en) Method for joining metal component and resin, and integral molding of metal component and resin
US20050258577A1 (en) Method of producing unitary multi-element ceramic casting cores and integral core/shell system
JP2011240685A (en) Seal structure for metallic composite joint body and method of manufacturing the same
JP2021088091A (en) Metal member for bonding to resin composition, method for producing metal-resin bonded body, and metal-resin bonded body
WO2011115115A1 (en) Method for attaching thin cylindrical element to mold core, process for producing cylindrical container, and mold core
JP2021088092A (en) Metal member for bonding to resin composition, method for producing metal-resin bonded body, and metal-resin bonded body
JP6032057B2 (en) Resin molded part and manufacturing method thereof
JP2021088093A (en) Metal member for bonding to fiber-reinforced resin composition, method for producing metal-resin bonded body, and metal-resin bonded body
JP2014531345A (en) Compression molding of composite pseudo-isotropic flakes
JP4704868B2 (en) Chassis frame manufacturing method and chassis frame for large flat display device
JP2007061867A (en) Die for die-casting and method for producing die for die-casting
US20150352754A1 (en) Method of manufacturing resin molded body, and press die for resin molding
CA3030278C (en) Molded resin article and method of manufacturing same
JP6671123B2 (en) Reel member, film container, and method of manufacturing reel member
JP5746882B2 (en) Manufacturing method for thick molded products
JP5549154B2 (en) Hollow molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150