JP2021085514A - Rotary switch valve and refrigeration cycle system - Google Patents

Rotary switch valve and refrigeration cycle system Download PDF

Info

Publication number
JP2021085514A
JP2021085514A JP2019217459A JP2019217459A JP2021085514A JP 2021085514 A JP2021085514 A JP 2021085514A JP 2019217459 A JP2019217459 A JP 2019217459A JP 2019217459 A JP2019217459 A JP 2019217459A JP 2021085514 A JP2021085514 A JP 2021085514A
Authority
JP
Japan
Prior art keywords
valve
sub
valve seat
main
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019217459A
Other languages
Japanese (ja)
Other versions
JP7187428B2 (en
Inventor
宏光 木村
Hiromitsu Kimura
宏光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019217459A priority Critical patent/JP7187428B2/en
Priority to CN202011251232.6A priority patent/CN112879597B/en
Publication of JP2021085514A publication Critical patent/JP2021085514A/en
Application granted granted Critical
Publication of JP7187428B2 publication Critical patent/JP7187428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

To suppress deformation due to swelling or creeping, and to ensure the stably seal property and operability of a pressure equalization hole by a sub valve, in a rotary switch valve equipped with a sub valve opening/closing a pressure equalization path of a main valve and a refrigeration cycle system.SOLUTION: A rotary switch valve is equipped with a main valve 1 arranged on a valve seat 31 in a valve chamber 4A of a case member 4 so as to rotate about an axis X, and a sub valve 2 opening/closing a pressure equalization hole 14a formed on a sub valve seat plate 14 of the main valve 1. The pressure equalization hole 14a is opened to flat the main valve 1 from the valve seat 31 in the axial direction X and rotate the main valve 1, thereby switching a channel communicating to a port of the valve seat 1. A sub valve seat member 14 of the main valve 1 is made from a material that is not a high polymer material such as metal or ceramics.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプ式の冷凍サイクル等に用いられ、冷媒の流路を切り換えるロータリー式切換弁及び冷凍サイクルシステムに関する。 The present invention relates to a rotary switching valve and a refrigerating cycle system used for a heat pump type refrigerating cycle or the like and switching a flow path of a refrigerant.

従来、この種のロータリー式切換弁(四方切換弁)として例えば特許第4602593号公報(特許文献1)に開示されたものがある。特許文献1のものは、冷房から暖房または暖房から冷房に切り換えるとき、弁座上の主弁を回転させるものであるが、この主弁を回転させる際に、副弁により主弁の均圧孔を開とし、主弁にかかる圧力差を軽減するような構造が用いられている。すなわち、副弁が回転して均圧孔を開いて、主弁を圧力差にて弁座から浮かせた状態で回転させた後、副弁が反回転することにより均圧孔を閉じ、主弁を着座させるものである。 Conventionally, as this type of rotary switching valve (four-way switching valve), for example, there is one disclosed in Japanese Patent No. 4602595 (Patent Document 1). In Patent Document 1, when switching from cooling to heating or from heating to cooling, the main valve on the valve seat is rotated, and when the main valve is rotated, the pressure equalizing hole of the main valve is used by the sub valve. A structure is used that reduces the pressure difference applied to the main valve. That is, the sub-valve rotates to open the pressure equalizing hole, the main valve is rotated while floating from the valve seat due to the pressure difference, and then the sub-valve rotates counter-rotating to close the pressure equalizing hole and the main valve. Is to be seated.

特許第4602593号公報Japanese Patent No. 4602593

特許文献1のものは、弁座に対する主弁のシール性を確保するため、主弁は弾性体であるPAやPPS等の高分子材料により形成されている。すなわち、副弁が摺動する副弁座も高分子材料となっている。しかし、切換弁本体内に流れる高温冷媒の影響により、以下のような問題がある。PAやPPS等の高分子材料は高温冷媒や冷凍機油により膨潤してしまう。膨潤すると副弁座の弁座面が歪んでしまうため、副弁による均圧孔のシール性が悪化し、システム効率が低下してしまう。なお、膨潤は高分子材料の溶解の際に見られ、高分子鎖の間に溶媒分子が入り込むことで体積膨張する現象である。 In Patent Document 1, the main valve is made of a polymer material such as PA or PPS, which is an elastic body, in order to ensure the sealing property of the main valve with respect to the valve seat. That is, the auxiliary valve seat on which the auxiliary valve slides is also made of a polymer material. However, due to the influence of the high temperature refrigerant flowing in the switching valve body, there are the following problems. Polymer materials such as PA and PPS swell due to high temperature refrigerant and refrigerating machine oil. When it swells, the valve seat surface of the auxiliary valve seat is distorted, so that the sealing property of the pressure equalizing hole by the auxiliary valve deteriorates and the system efficiency decreases. The swelling is observed when the polymer material is dissolved, and is a phenomenon in which the volume expands due to the entry of solvent molecules between the polymer chains.

また、切換弁本体内の高温冷媒により主弁が高温になることがあり、さらに副弁は圧力差により主弁(副弁座)に押しつけられているため、PAやPPS等の高分子材料ではクリープにより副弁座の弁座面が変形してしまう。この変形によりシール性が悪化するとともに、さらにクリープが進むと切換動作時に副弁が引っ掛かって作動不良を起こすという問題がある。 In addition, the main valve may become hot due to the high temperature refrigerant in the switching valve body, and the sub valve is pressed against the main valve (sub valve seat) due to the pressure difference. The valve seat surface of the secondary valve seat is deformed by creep. This deformation deteriorates the sealing property, and if creep progresses further, there is a problem that the auxiliary valve is caught during the switching operation and causes a malfunction.

本発明は、主弁の均圧路を開閉する副弁を備えたロータリー式切換及び冷凍サイクルシステムにおいて、膨潤やクリープによる変形を抑制し、副弁による均圧孔の安定したシール性と作動性を確保することを課題とする。 The present invention suppresses deformation due to swelling and creep in a rotary switching and refrigeration cycle system equipped with a sub-valve that opens and closes the pressure equalizing path of the main valve, and stable sealing and operability of the pressure equalizing hole by the sub-valve. The challenge is to secure.

本発明のロータリー式切換弁は、ケース部材の弁室内で弁座上に軸線を中心として回転可能に配設された主弁と、前記主弁の上部に設けられた副弁座に形成された均圧孔を開閉する副弁とを備え、前記均圧孔を開として該主弁を回転させることで、前記弁座のポートに連通する流路を切り換えるロータリー式切換弁において、前記主弁の前記副弁座の部位が高分子材料でない材質となっていることを特徴とする。 The rotary switching valve of the present invention is formed on a main valve rotatably arranged on a valve seat on a valve seat in a valve chamber of a case member and a sub valve seat provided above the main valve. In a rotary switching valve that has an auxiliary valve that opens and closes the pressure equalizing hole and that switches the flow path communicating with the port of the valve seat by opening the pressure equalizing hole and rotating the main valve, the main valve The sub-valve seat is made of a material other than a polymer material.

この際、前記副弁座の高分子材料でない材質は、融点が970℃以上であることを特徴とするロータリー式切換弁が好ましい。 At this time, as the non-polymer material of the auxiliary valve seat, a rotary switching valve characterized by having a melting point of 970 ° C. or higher is preferable.

また、前記副弁座の高分子材料でない材質は、金属またはセラミックスであることを特徴とするロータリー式切換弁が好ましい。 Further, the material of the auxiliary valve seat that is not a polymer material is preferably a rotary type switching valve characterized by being metal or ceramics.

また、前記主弁が主弁本体と該主弁本体の前記副弁座側に設けられた副弁座板とから構成され、前記副弁座板が前記高分子材料でない材質でなる前記副弁座の部位を構成していることをするロータリー式切換弁が好ましい。 Further, the main valve is composed of a main valve main body and a sub valve seat plate provided on the sub valve seat side of the main valve main body, and the sub valve seat plate is made of a material other than the polymer material. A rotary switching valve that constitutes the seat portion is preferred.

また、前記主弁本体に低圧流路に連通する均圧路が形成されるとともに、前記副弁座板に前記均圧孔が形成され、前記主弁本体および/または前記副弁座板に、前記均圧路と前記均圧孔とを連通する連通溝が形成されていることを特徴とするロータリー式切換弁が好ましい Further, a pressure equalizing path communicating with the low pressure flow path is formed in the main valve main body, and the pressure equalizing hole is formed in the sub valve seat plate, so that the main valve main body and / or the sub valve seat plate is formed. A rotary switching valve characterized in that a communication groove for communicating the pressure equalizing path and the pressure equalizing hole is formed is preferable.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、流路切換弁とを含む冷凍サイクルシステムであって、前記ロータリー式切換が、前記流路切換弁として用いられていることを特徴とする。 The refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an expansion valve, an evaporator, and a flow path switching valve, and the rotary type switching serves as the flow path switching valve. It is characterized by being used.

本発明のロータリー式切換弁及び冷凍サイクルシステムによれば、主弁の副弁座の部位が高分子材料でない材質となっているので、副弁座に膨潤やクリープによる変形が生じず、副弁による均圧孔の安定したシール性を確保することができる。 According to the rotary switching valve and the refrigeration cycle system of the present invention, since the part of the auxiliary valve seat of the main valve is made of a material other than a polymer material, the auxiliary valve seat is not deformed by swelling or creep, and the auxiliary valve is not deformed. It is possible to secure a stable sealing property of the pressure equalizing hole.

本発明の第1実施形態におけるロータリー式切換弁の主弁の着座状態の要部縦断面図である。It is a vertical sectional view of the main part of the main valve of the rotary type switching valve in the first embodiment of the present invention in a seated state. 第1実施形態におけるロータリー式切換弁の主弁の浮上状態の要部縦断面図である。It is a vertical sectional view of the main part of the main valve of the rotary type switching valve in the first embodiment in a floating state. 第1実施形態におけるロータリー式切換弁の主弁の上面図である。It is a top view of the main valve of the rotary type switching valve in 1st Embodiment. 第1実施形態におけるロータリー式切換弁の主弁の底面図である。It is the bottom view of the main valve of the rotary type switching valve in 1st Embodiment. 第1実施形態におけるロータリー式切換弁の副弁の底面図である。It is the bottom view of the auxiliary valve of the rotary type switching valve in 1st Embodiment. 第1実施形態におけるロータリー式切換弁の弁座の上面図である。It is the top view of the valve seat of the rotary type switching valve in 1st Embodiment. 第1実施形態におけるロータリー式切換弁の切換途中の状態を説明する図である。It is a figure explaining the state in the process of switching of the rotary type switching valve in 1st Embodiment. 本発明の第2実施形態におけるロータリー式切換弁の主弁の着座状態の要部縦断面図である。It is a vertical sectional view of the main part of the main valve of the rotary type switching valve in the second embodiment of the present invention in a seated state. 第2実施形態におけるロータリー式切換弁の主弁の上面図である。It is the top view of the main valve of the rotary type switching valve in 2nd Embodiment. 第2実施形態におけるロータリー式切換弁の副弁の底面図である。It is a bottom view of the auxiliary valve of the rotary type switching valve in the 2nd Embodiment. 本発明の実施形態の冷凍サイクルシステムを示す図である。It is a figure which shows the refrigeration cycle system of embodiment of this invention.

次に、本発明のロータリー式切換弁及び冷凍サイクルシステムの実施形態について図面を参照して説明する。図1は本発明の第1実施形態におけるロータリー式切換弁の主弁の着座状態の要部縦断面図、図2は同ロータリー式切換弁の主弁の浮上状態の要部縦断面図、図3は同ロータリー式切換弁の主弁の上面図、図4は同ロータリー式切換弁の主弁の底面図、図5は同ロータリー式切換弁の副弁の底面図、図6は同ロータリー式切換弁の弁座の上面図である。なお、以下の説明における「上下」の概念は図1及び図2の図面における上下に対応する。 Next, an embodiment of the rotary switching valve and the refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a main part of a rotary switching valve in a seated state according to the first embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of a main part of a rotary switching valve in a floating state. 3 is a top view of the main valve of the rotary switching valve, FIG. 4 is a bottom view of the main valve of the rotary switching valve, FIG. 5 is a bottom view of the sub valve of the rotary switching valve, and FIG. 6 is a rotary type. It is a top view of the valve seat of a switching valve. The concept of "upper and lower" in the following description corresponds to upper and lower in the drawings of FIGS. 1 and 2.

この第1実施形態のロータリー式切換弁100は、主弁1と、副弁2と、弁座部材3と、ケース部材4と、駆動部5と、中心軸6とを有している。弁座部材3は薄型円柱状の弁座31とこの弁座31の外周に形成されたフランジ部32とで構成されている。また、ケース部材4には略円筒状の弁室4Aが形成されている。弁室4A内には、主弁1、副弁2、駆動部5及び中心軸6が収容されており、中心軸6が、主弁1、副弁2及び駆動部5を貫通して、弁座部材3とケース部材4との間に固定されている。そして、ケース部材4の弁室4Aの開口部に弁座31が嵌合され、フランジ部32をケース部材4の下端に当接させるようにして、弁座部材3がケース部材4に取り付けられている。 The rotary switching valve 100 of the first embodiment has a main valve 1, a sub valve 2, a valve seat member 3, a case member 4, a drive unit 5, and a central shaft 6. The valve seat member 3 is composed of a thin cylindrical valve seat 31 and a flange portion 32 formed on the outer periphery of the valve seat 31. Further, a substantially cylindrical valve chamber 4A is formed in the case member 4. The main valve 1, the sub valve 2, the drive unit 5, and the central shaft 6 are housed in the valve chamber 4A, and the central shaft 6 penetrates the main valve 1, the sub valve 2, and the drive unit 5 to valve. It is fixed between the seat member 3 and the case member 4. Then, the valve seat 31 is fitted into the opening of the valve chamber 4A of the case member 4, and the valve seat member 3 is attached to the case member 4 so that the flange portion 32 is brought into contact with the lower end of the case member 4. There is.

主弁1は一部が樹脂で形成された外周が円形の部材であり、弁座31側の袴部11と円筒状のピストン部12と軸受け部13とを一体に形成した「主弁本体」と、「副弁座の部位」である後述の副弁座板14と、を備えて構成されている。ピストン部12の周囲にはピストンリング12aが配設されている。そして、中心の軸受け部13を中心軸6が貫通することで、主弁1は中心軸6の軸線Xの回りに回動自在に配設されている。また、弁室4Aの上部のピストン部12が収容される空間は円柱状のガイド孔41となっており、主弁1はピストンリング12aをガイド孔41の側面に摺動させて中心軸6の軸線X方向に移動可能となっている。そして、ガイド孔41の上端の下面は、後述のように主弁1が弁座部材3の弁座31から浮上したときに、ピストン部12の上端面121が当接するストッパ部411となっている。また、ピストン部12の上端の4か所には連通溝12Aが形成されている。 The main valve 1 is a member having a circular outer circumference, which is partially made of resin, and is a "main valve body" in which a hakama portion 11 on the valve seat 31 side, a cylindrical piston portion 12, and a bearing portion 13 are integrally formed. And a sub-valve seat plate 14 which will be described later, which is a "part of the sub-valve seat". A piston ring 12a is arranged around the piston portion 12. The central shaft 6 penetrates the central bearing portion 13, so that the main valve 1 is rotatably arranged around the axis X of the central shaft 6. Further, the space in which the piston portion 12 above the valve chamber 4A is accommodated is a columnar guide hole 41, and the main valve 1 slides the piston ring 12a on the side surface of the guide hole 41 to form a central shaft 6. It can be moved in the X direction of the axis. The lower surface of the upper end of the guide hole 41 is a stopper portion 411 that the upper end surface 121 of the piston portion 12 comes into contact with when the main valve 1 rises from the valve seat 31 of the valve seat member 3 as described later. .. Further, communication grooves 12A are formed at four locations at the upper end of the piston portion 12.

また、主弁1の袴部11には、軸線Xの片側においてドーム状に穿たれた低圧流路11Aが形成されるとともに、低圧流路11Aの天井の中央には、ピストン部12の内側に連通する均圧路11aが形成されている。また、袴部11の弁座部材3側の底面には低圧流路11Aの外周を囲うように摺動リブ111が形成されるとともに、摺動リブ111の軸線Xとは反対側の2か所に摺動リブ112,112が形成されている。さらに、袴部11は、低圧流路11Aに対して軸線Xの反対側に後述のDポート31Dが常時開放している高圧空間11Bが形成され、この高圧空間11Bの外側は略90°の範囲において開口されており、この開口部分の軸線X周り方向の両端は、それぞれストップピン当接部113となっている。このストップピン当接部113は後述の弁座31に設けられたストップピン31aに当接する。 Further, a low pressure flow path 11A formed in a dome shape on one side of the axis X is formed in the hakama portion 11 of the main valve 1, and in the center of the ceiling of the low pressure flow path 11A, inside the piston portion 12. A pressure equalizing path 11a that communicates is formed. Further, sliding ribs 111 are formed on the bottom surface of the hakama portion 11 on the valve seat member 3 side so as to surround the outer circumference of the low pressure flow path 11A, and two places on the side opposite to the axis X of the sliding ribs 111. Sliding ribs 112 and 112 are formed on the surface. Further, in the hakama portion 11, a high-pressure space 11B in which the D port 31D described later is always open is formed on the opposite side of the axis X with respect to the low-pressure flow path 11A, and the outside of the high-pressure space 11B is in a range of approximately 90 °. Both ends of the opening portion in the direction around the axis X are stop pin contact portions 113, respectively. The stop pin contact portion 113 contacts the stop pin 31a provided on the valve seat 31, which will be described later.

また、図3に示すように、ピストン部12の内側の底部には、金属板(この例ではSUS)からなる副弁座板14が配設されている。この副弁座板14は「副弁座の部位」であり、この副弁座板14は高分子材料でない材質となっている。この例では金属板(SUS)であるが、セラミックス製でもよい。副弁座板14には、均圧路11aに対応する位置に均圧孔14aが形成されている。また、ピストン部12の内周面の一部は略90°の範囲において軸線X側に突出した突出部15が形成され、この突出部15の軸線X周り方向の両端は、それぞれ副弁係止部15aとされている。なお、この副弁係止部15aは後述する副弁2の主弁係止部21aに当接する。 Further, as shown in FIG. 3, an auxiliary valve seat plate 14 made of a metal plate (SUS in this example) is arranged on the inner bottom portion of the piston portion 12. The sub-valve seat plate 14 is a "part of the sub-valve seat", and the sub-valve seat plate 14 is made of a material other than a polymer material. In this example, it is a metal plate (SUS), but it may be made of ceramics. A pressure equalizing hole 14a is formed in the auxiliary valve seat plate 14 at a position corresponding to the pressure equalizing passage 11a. Further, a part of the inner peripheral surface of the piston portion 12 is formed with a protruding portion 15 projecting toward the axis X side in a range of approximately 90 °, and both ends of the protruding portion 15 in the direction around the axis X are respectively engaged with auxiliary valves. It is said to be part 15a. The sub-valve locking portion 15a comes into contact with the main valve locking portion 21a of the sub-valve 2, which will be described later.

図5に示すように、副弁2は、主弁1のピストン部12の副弁収容室内に収納される略半円盤状のフランジ部21とその中央のボス部22とを有しており、このボス部22の中心には略長方形の角孔22aが形成されている。また、フランジ部21の主弁1側の面には円環状に突出したスライド弁部23が形成されている。このスライド弁部23の軸線Xからの距離は、前記主弁1における副弁座板14の均圧孔14aの軸線Xからの距離と等しくなっている。さらに、フランジ部21の軸線X周りの周上には半径方向の端面をなす主弁係止部21aとなっており、この2つの主弁係止部21aは、前記主弁1の2つの副弁係止部15aに対して択一的に係止する。 As shown in FIG. 5, the sub-valve 2 has a substantially semi-disk-shaped flange portion 21 housed in the sub-valve accommodating chamber of the piston portion 12 of the main valve 1 and a boss portion 22 at the center thereof. A substantially rectangular square hole 22a is formed in the center of the boss portion 22. Further, a slide valve portion 23 protruding in an annular shape is formed on the surface of the flange portion 21 on the main valve 1 side. The distance of the slide valve portion 23 from the axis X is equal to the distance of the pressure equalizing hole 14a of the auxiliary valve seat plate 14 in the main valve 1 from the axis X. Further, a main valve locking portion 21a forming a radial end surface is formed on the circumference of the flange portion 21 around the axis X, and these two main valve locking portions 21a are the two sub-valves of the main valve 1. It is selectively locked to the valve locking portion 15a.

図6に示すように、弁座31には、弁室4Aと圧縮機の冷媒の吐出側に連通されるDポート31D、低圧流路11Aと圧縮機の冷媒の吸入側に連通されるSポート31S、室外熱交換器側に連通されるC切換ポート31C及び室内熱交換器側に連通されるE切換ポート31Eが、それぞれ形成されている。なお、これらのポートはそれぞれ90°づつ離間する位置に開口されている。 As shown in FIG. 6, the valve seat 31 has a D port 31D that communicates with the valve chamber 4A and the refrigerant discharge side of the compressor, and an S port that communicates with the low pressure flow path 11A and the refrigerant suction side of the compressor. The 31S, the C switching port 31C communicating with the outdoor heat exchanger side, and the E switching port 31E communicating with the indoor heat exchanger side are formed, respectively. It should be noted that these ports are opened at positions separated by 90 ° from each other.

図1に示すように、駆動部5は、中心軸6に回動可能に配置されたウォームホイール51と、このウォームホイール51に歯合されたウォーム歯車52とを有し、このウォーム歯車52は図示しないモータの駆動軸に固定されている。ウォームホイール51は副弁2側に突出するカム部51aを有しており、ウォームホイール51は、このカム部51aによって中心軸6に回転可能に配置されている。また、このカム部51aは副弁2の前記略長方形の角孔22aに嵌合されている。これにより、副弁2はウォームホイール51に対して軸線X周りの回動が規制された状態で軸線X方向にのみ摺動可能となり、この副弁2はウォームホイール51と共に協働して回動する。また、ウォームホイール51と副弁2との間には、副弁2を主弁1側に付勢するコイルバネ53が配設されている。 As shown in FIG. 1, the drive unit 5 has a worm wheel 51 rotatably arranged on the central shaft 6 and a worm gear 52 meshed with the worm wheel 51, and the worm gear 52 has the worm gear 52. It is fixed to the drive shaft of a motor (not shown). The worm wheel 51 has a cam portion 51a protruding toward the auxiliary valve 2, and the worm wheel 51 is rotatably arranged on the central shaft 6 by the cam portion 51a. Further, the cam portion 51a is fitted into the substantially rectangular square hole 22a of the auxiliary valve 2. As a result, the sub-valve 2 can slide only in the axis X direction with the rotation around the axis X restricted with respect to the worm wheel 51, and the sub-valve 2 rotates in cooperation with the worm wheel 51. To do. Further, a coil spring 53 for urging the sub valve 2 toward the main valve 1 is arranged between the worm wheel 51 and the sub valve 2.

以上の構成により、図1の状態では、図7(A)に示すように、副弁2のスライド弁部23は副弁座板14の均圧孔14aを閉じている。そして、駆動部5が作動すると、ウォーム歯車52とウォームホイール51の駆動力が、ウォームホイール51のカム部51aを介して副弁2に回転力が加わり、副弁2が軸線X周りに回転する。副弁2が回転すると、スライド弁部23が主弁1の副弁座板14上を摺動し、図7(B)の位置でスライド弁部23が副弁座板14の均圧孔14aから外れ、この均圧孔14aが開く。これにより、主弁1における均圧路11aが開き、主弁1の上部の流体の圧力が低圧流路11A内(低圧側)へ逃げる。これにより、主弁1にかかる圧力差が軽減され、圧力差による押しつけ力が軽減され、主弁1の回転(流路切換)が容易になる。 With the above configuration, in the state of FIG. 1, as shown in FIG. 7A, the slide valve portion 23 of the sub valve 2 closes the pressure equalizing hole 14a of the sub valve seat plate 14. Then, when the drive unit 5 operates, the driving force of the worm gear 52 and the worm wheel 51 applies a rotational force to the sub-valve 2 via the cam portion 51a of the worm wheel 51, and the sub-valve 2 rotates around the axis X. .. When the sub-valve 2 rotates, the slide valve portion 23 slides on the sub-valve seat plate 14 of the main valve 1, and the slide valve portion 23 slides on the sub-valve seat plate 14 of the main valve 1 at the position shown in FIG. The pressure equalizing hole 14a is opened. As a result, the pressure equalizing passage 11a in the main valve 1 is opened, and the pressure of the fluid above the main valve 1 escapes into the low pressure flow path 11A (low pressure side). As a result, the pressure difference applied to the main valve 1 is reduced, the pressing force due to the pressure difference is reduced, and the rotation (flow path switching) of the main valve 1 becomes easy.

ここで、主弁1のピストンリング12a(及びピストン部12)とガイド孔41とのクリアランス及び、中心軸6と軸受け部13のクリアランスを介して高圧の流体がピストン部12の上部へ流れ込むが、このピストン部12の上部へ流れ込む流量を、均圧孔141aから逃げる流量よりも小さく設定することで、ピストンリング12aの上下に圧力差が発生し、主弁1をが弁座31から浮上させ、主弁1の回転を更に容易にすることもできする。そして、主弁1が浮上すると、主弁1のピストン部12の上端面121がケース部材4のストッパ部411に当接する。 Here, a high-pressure fluid flows into the upper part of the piston portion 12 through the clearance between the piston ring 12a (and the piston portion 12) of the main valve 1 and the guide hole 41 and the clearance between the central shaft 6 and the bearing portion 13. By setting the flow rate flowing into the upper part of the piston portion 12 to be smaller than the flow rate escaping from the pressure equalizing hole 141a, a pressure difference is generated above and below the piston ring 12a, and the main valve 1 is lifted from the valve seat 31. The rotation of the main valve 1 can be made easier. Then, when the main valve 1 floats, the upper end surface 121 of the piston portion 12 of the main valve 1 comes into contact with the stopper portion 411 of the case member 4.

副弁2を更に回転させると、副弁2の主弁係止部21aが主弁1の副弁係止部15aに当接し、副弁2と主弁1とが一体となって回転する。そして、弁座31の上面に設けたストップピン31aに主弁1のストップピン当接部113が当接し、この所定位置で回転が止まる。次に、駆動部5のウォームホイール51を反回転させると、副弁2が反回転し、この副弁2のスライド弁部23が副弁座板14上を摺動し、この副弁座板14の均圧孔14aを閉じる。これにより、均圧路11aが閉じられ、主弁1の上部に圧力が溜まり、主弁1の上部と低圧流路11A内(低圧側)との圧力差により、主弁1が弁座31に着座する。 When the sub-valve 2 is further rotated, the main valve locking portion 21a of the sub-valve 2 comes into contact with the sub-valve locking portion 15a of the main valve 1, and the sub-valve 2 and the main valve 1 rotate integrally. Then, the stop pin contact portion 113 of the main valve 1 comes into contact with the stop pin 31a provided on the upper surface of the valve seat 31, and the rotation stops at this predetermined position. Next, when the worm wheel 51 of the drive unit 5 is counter-rotated, the sub-valve 2 is counter-rotated, and the slide valve portion 23 of the sub-valve 2 slides on the sub-valve seat plate 14. The pressure equalizing hole 14a of 14 is closed. As a result, the pressure equalizing passage 11a is closed, pressure is accumulated in the upper part of the main valve 1, and the pressure difference between the upper part of the main valve 1 and the inside of the low pressure flow path 11A (low pressure side) causes the main valve 1 to become the valve seat 31. Sit down.

また、ピストン部12の上端の4か所の連通溝12Aの開口面積は、ピストンリング12aとガイド孔41とのクリアランスの面積より大きくなっており、このような連通溝12Aを設けることで、主弁1が浮上してピストン部12の上端面121がケース部材4のストッパ部411に当接した状態で、ピストン部12の外周とガイド孔41とのクリアランスの高圧がピストン部12の背空間(主弁1の主な上部空間)にも供給されるようになる。したがって、ピストンリング12aの上下の圧力差が軽減され、主弁1(上端面121)のストッパ部411への押圧力を軽減できる。したがって、上端面121とストッパ部411との摩擦力を確実に確保でき、主弁1の切換動作に必要な動力を削減でき、安定した切り換え動作が得られる。なお、上記のような連通溝はケース部材4のストッパ部411側に設けてもよい。 Further, the opening area of the four communication grooves 12A at the upper end of the piston portion 12 is larger than the clearance area between the piston ring 12a and the guide hole 41. With the valve 1 floating and the upper end surface 121 of the piston portion 12 in contact with the stopper portion 411 of the case member 4, the high pressure of the clearance between the outer circumference of the piston portion 12 and the guide hole 41 is the back space of the piston portion 12. It will also be supplied to the main upper space of the main valve 1). Therefore, the pressure difference between the upper and lower sides of the piston ring 12a is reduced, and the pressing force of the main valve 1 (upper end surface 121) on the stopper portion 411 can be reduced. Therefore, the frictional force between the upper end surface 121 and the stopper portion 411 can be reliably secured, the power required for the switching operation of the main valve 1 can be reduced, and a stable switching operation can be obtained. The communication groove as described above may be provided on the stopper portion 411 side of the case member 4.

また、以上のような切換動作時には、副弁2のスライド弁部23が副弁座板14上を摺動するが、この副弁座板14は切換弁本体内の高温冷媒に晒されるとともに、圧力差による荷重とコイルばねによる荷重がかかり、副弁シール部が副弁座板14に押し付けられる。しかし、この副弁座板14は、前記のように「高分子材料でない材質」となっているので、この副弁座板14に膨潤やクリープによる変形が生じず、副弁2による均圧孔141aの安定したシール性と作動性を確保することができる。 Further, during the switching operation as described above, the slide valve portion 23 of the sub valve 2 slides on the sub valve seat plate 14, and the sub valve seat plate 14 is exposed to the high temperature refrigerant in the switching valve main body and is also exposed to the high temperature refrigerant. A load due to the pressure difference and a load due to the coil spring are applied, and the sub-valve seal portion is pressed against the sub-valve seat plate 14. However, since the sub-valve seat plate 14 is made of a “material that is not a polymer material” as described above, the sub-valve seat plate 14 is not deformed by swelling or creep, and the pressure equalizing hole by the sub-valve 2 is formed. The stable sealing property and operability of 141a can be ensured.

また、一般に、クリープは使用温度が材料の融点(絶対温度)の30%を超えると発生する為、切換弁本体内に100℃程度の高温冷媒が流れることを考慮すると、副弁座板14には融点が970℃以上である材質を用いるのが好ましい。なお、高分子材料と、高分子材料でない金属及びセラミックスの、各融点の例を次表1に示す。

Figure 2021085514
In addition, since creep generally occurs when the operating temperature exceeds 30% of the melting point (absolute temperature) of the material, considering that a high-temperature refrigerant of about 100 ° C. flows into the switching valve body, the auxiliary valve seat plate 14 It is preferable to use a material having a melting point of 970 ° C. or higher. Table 1 below shows examples of melting points of polymer materials and metals and ceramics that are not polymer materials.
Figure 2021085514

図8は本発明の第2実施形態におけるロータリー式切換弁の主弁の着座状態の要部縦断面図、図9は同ロータリー式切換弁の主弁の上面図、図10は同ロータリー式切換弁の副弁の底面図であり、この第2実施形態において第1実施形態と同様な部材、同様な要素には第1実施形態と同じ符号を付記して詳細な説明は省略する。この第2実施形態において第1実施形態と異なる点は、主弁1の均圧路11aの部位と副弁2のスライド弁部23′の位置及び副弁座板14の均圧孔14a′の位置である。 FIG. 8 is a vertical sectional view of a main part of the main valve of the rotary switching valve according to the second embodiment of the present invention in a seated state, FIG. 9 is a top view of the main valve of the rotary switching valve, and FIG. 10 is a rotary switching. It is a bottom view of the sub-valve of the valve, and in this second embodiment, the same members as those in the first embodiment and the same elements are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted. The difference between the second embodiment and the first embodiment is that the pressure equalizing passage 11a of the main valve 1, the position of the slide valve portion 23'of the sub valve 2, and the pressure equalizing hole 14a'of the sub valve seat plate 14 are different. The position.

この第2実施形態では、副弁座板14の裏側において、均圧路11aから中心軸6側に架けて連通溝11cが形成されている。また、副弁座板14の均圧孔14a′は連通溝11cの中心軸6側の端部に対応する位置(半径方向の位置)に形成されている。さらに、副弁2のスライド弁部23′は、副弁座板14の均圧孔14a′に対応する位置に形成されている。すなわち、連通溝11cは均圧路11aと均圧孔14a′とを連通している。 In this second embodiment, a communication groove 11c is formed on the back side of the auxiliary valve seat plate 14 so as to extend from the pressure equalizing passage 11a to the central shaft 6 side. Further, the pressure equalizing hole 14a'of the auxiliary valve seat plate 14 is formed at a position (radial position) corresponding to the end portion of the communication groove 11c on the central axis 6 side. Further, the slide valve portion 23'of the auxiliary valve 2 is formed at a position corresponding to the pressure equalizing hole 14a'of the auxiliary valve seat plate 14. That is, the communication groove 11c communicates the pressure equalizing path 11a with the pressure equalizing hole 14a'.

この第2実施形態によれば、均圧孔14aを開閉するために、副弁2を回動するときスライド弁部23′が副弁座板14上を摺動するが、スライド弁部23′が第1実施形態のスライド弁部23よりも中心軸6に近い位置にあるため、副弁2を回動するためのトルクが第1実施形態の場合よりも小さくなる。 According to this second embodiment, when the auxiliary valve 2 is rotated in order to open and close the pressure equalizing hole 14a, the slide valve portion 23'slides on the auxiliary valve seat plate 14, but the slide valve portion 23' Is located closer to the central axis 6 than the slide valve portion 23 of the first embodiment, so that the torque for rotating the sub valve 2 is smaller than that of the first embodiment.

このように、実施形態のロータリー式切換弁100では、主弁1が主弁本体を構成するピストン部12と、このピストン部12と別部材からなる副弁座板14とから構成されている。したがって、第2実施形態のようにピストン部12と副弁座板14との間において均圧路11aと均圧孔14a′とを連通する連通溝11cを容易に形成することができる。なお、この第2実施形態では、「連通溝」をピストン部12に形成しているが、この「連通溝」は副弁座板14に形成してもよいし、この「連通溝」はピストン部12と副弁座板14との両方に形成してもよい。 As described above, in the rotary type switching valve 100 of the embodiment, the main valve 1 is composed of a piston portion 12 constituting the main valve main body and a sub valve seat plate 14 formed of the piston portion 12 and a separate member. Therefore, as in the second embodiment, a communication groove 11c that communicates the pressure equalizing passage 11a and the pressure equalizing hole 14a'can be easily formed between the piston portion 12 and the auxiliary valve seat plate 14. In the second embodiment, the "communication groove" is formed in the piston portion 12, but the "communication groove" may be formed in the auxiliary valve seat plate 14, and this "communication groove" is the piston. It may be formed on both the portion 12 and the auxiliary valve seat plate 14.

図11は実施形態の冷凍サイクルシステムを示す図であり、空気調和機の冷凍サイクルシステムの例である。空気調和機は、圧縮機50、室外熱交換器60,膨張弁70、室内熱交換器80、実施形態のロータリー式切換弁100を有しており、これらの各要素は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。 FIG. 11 is a diagram showing a refrigeration cycle system of the embodiment, and is an example of a refrigeration cycle system of an air conditioner. The air conditioner includes a compressor 50, an outdoor heat exchanger 60, an expansion valve 70, an indoor heat exchanger 80, and a rotary switching valve 100 of the embodiment, and each of these elements is illustrated by a conduit. It constitutes a heat pump type refrigeration cycle system.

冷凍サイクルシステムの流路は実施形態のロータリー式切換弁100により冷房運転および暖房運転の2通りの流路に切換えられ、冷房運転時には図11(A)の状態となり、暖房運転時には図11(B)の状態となる。なお、この図11に示すロータリー式切換弁100は弁座部3の裏側から見た状態として、要部の位置関係のみを示し、主弁1の一部の破線表示と実線は弁座と当接した部分を図示してある。また、前記Sポート31S、Dポート31D、E切換ポート31E、C切換ポート31Cは符号を省略し、それぞれ「S」、「D」、「E」、「C」の記号で示してある。 The flow path of the refrigeration cycle system is switched to two flow paths, a cooling operation and a heating operation, by the rotary switching valve 100 of the embodiment, and the state shown in FIG. 11 (A) is obtained during the cooling operation, and FIG. 11 (B) is obtained during the heating operation. ). The rotary switching valve 100 shown in FIG. 11 shows only the positional relationship of the main parts as viewed from the back side of the valve seat portion 3, and the broken line display and the solid line of a part of the main valve 1 correspond to the valve seat. The contacted part is shown in the figure. Further, the S port 31S, the D port 31D, the E switching port 31E, and the C switching port 31C are designated by the symbols "S", "D", "E", and "C", respectively, with the reference numerals omitted.

図11(A)の冷房運転時には、ロータリー式切換弁100において主弁の低圧流路11AによりSポート「S」がE切換ポート「E」に接続され、高圧空間11BによりDポート「D」がC切換ポート「C」に接続される。そして、図に矢印で示すように、圧縮機50で圧縮された流体としての冷媒がロータリー式切換弁100のDポート「D」に流入してC切換ポート「C」から室外熱交換器60に流入され、室外熱交換器60から流出する冷媒が、膨張弁70に流入される。そして、この膨張弁70で冷媒が膨張され、室内熱交換器80に供給される。この室内熱交換器80から流出する冷媒は、ロータリー式切換弁100でE切換ポート「E」からSポート「S」に流れ、Sポート「S」から圧縮機50へ循環される。 During the cooling operation of FIG. 11A, the S port “S” is connected to the E switching port “E” by the low pressure flow path 11A of the main valve in the rotary switching valve 100, and the D port “D” is connected by the high pressure space 11B. It is connected to the C switching port "C". Then, as shown by an arrow in the figure, the refrigerant as a fluid compressed by the compressor 50 flows into the D port “D” of the rotary switching valve 100, and flows from the C switching port “C” to the outdoor heat exchanger 60. The refrigerant that flows in and flows out from the outdoor heat exchanger 60 flows into the expansion valve 70. Then, the refrigerant is expanded by the expansion valve 70 and supplied to the indoor heat exchanger 80. The refrigerant flowing out of the indoor heat exchanger 80 flows from the E switching port “E” to the S port “S” through the rotary switching valve 100, and is circulated from the S port “S” to the compressor 50.

図11(B)の暖房運転時には、ロータリー式切換弁100において主弁の低圧流路11AによりSポート「S」がC切換ポート「C」に接続され、高圧空間11BによりDポート「D」がE切換ポート「E」に接続される。そして、図に矢印で示すように、圧縮機50で圧縮された冷媒がロータリー式切換弁100のDポート「D」に流入してE切換ポート「E」から室内熱交換器80に流入され、室内熱交換器80から流出する冷媒が、膨張弁70に流入される。そして、この膨張弁70で冷媒が膨張され、室外熱交換器60に供給される。この室外熱交換器60から流出する冷媒は、ロータリー式切換弁100でC切換ポート「C」からSポート「S」に流れ、Sポート「S」から圧縮機50へ循環される。 During the heating operation of FIG. 11B, the S port “S” is connected to the C switching port “C” by the low pressure flow path 11A of the main valve in the rotary switching valve 100, and the D port “D” is connected by the high pressure space 11B. It is connected to the E switching port "E". Then, as shown by an arrow in the figure, the refrigerant compressed by the compressor 50 flows into the D port “D” of the rotary switching valve 100 and flows into the indoor heat exchanger 80 from the E switching port “E”. The refrigerant flowing out of the indoor heat exchanger 80 flows into the expansion valve 70. Then, the refrigerant is expanded by the expansion valve 70 and supplied to the outdoor heat exchanger 60. The refrigerant flowing out of the outdoor heat exchanger 60 flows from the C switching port “C” to the S port “S” through the rotary switching valve 100, and is circulated from the S port “S” to the compressor 50.

なお、上記第1、第2実施形態においては、モータの駆動軸の回転を副弁の回転に伝える歯車機構として、ウォーム歯車52とウォームホイール51によるウォーム歯車機構で説明してきたが、ウォーム歯車機構に限定するものではなく、その他の歯車機構を使用しても良い。例えば、平歯車や、遊星歯車機構等としても良い。 In the first and second embodiments, the worm gear mechanism using the worm gear 52 and the worm wheel 51 has been described as the gear mechanism that transmits the rotation of the drive shaft of the motor to the rotation of the auxiliary valve. Other gear mechanisms may be used without limitation. For example, a spur gear, a planetary gear mechanism, or the like may be used.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design changes, etc. within the range not deviating from the gist of the present invention, etc. Even if there is, it is included in the present invention.

1 主弁
11 袴部
11A 低圧流路
11B 高圧空間
11a 均圧路
111 摺動リブ
112 摺動リブ
113 ストップピン当接部
12 ピストン部
12A 連通溝
12a ピストンリング
121 上端面
13 軸受け部
14 副弁座板
14a 均圧孔
15 突出部
15a 副弁係止部
2 副弁
21 フランジ部
21a 主弁係止部
22 ボス部
22a 角孔
23 スライド弁部
3 弁座部材
31 弁座
31D Dポート
31S Sポート
31E E切換ポート
31C C切換ポート
31a ストップピン
32 フランジ部
4 ケース部材
4A 弁室
41 ガイド孔
411 ストッパ部
5 駆動部
51 ウォームホイール
51a カム部
52 ウォーム歯車
53 コイルバネ
6 中心軸
X 軸線
50 圧縮機
60 室外熱交換器
70 膨張弁
80 室内熱交換器
100 ロータリー式切換弁
1 Main valve 11 Flange part 11A Low pressure flow path 11B High pressure space 11a Pressure equalizing path 111 Sliding rib 112 Sliding rib 113 Stop pin contact part 12 Piston part 12A Communication groove 12a Piston ring 121 Upper end surface 13 Bearing part 14 Sub valve seat Plate 14a Pressure equalizing hole 15 Protruding part 15a Sub valve locking part 2 Sub valve 21 Flange part 21a Main valve locking part 22 Boss part 22a Square hole 23 Slide valve part 3 Valve seat member 31 Valve seat 31D D port 31S S port 31E E Switching port 31C C Switching port 31a Stop pin 32 Flange part 4 Case member 4A Valve chamber 41 Guide hole 411 Stopper part 5 Drive part 51 Worm wheel 51a Cam part 52 Warm gear 53 Coil spring 6 Central axis X Axis line 50 Compressor 60 Outdoor heat Exchanger 70 Expansion valve 80 Indoor heat exchanger 100 Rotary type switching valve

Claims (6)

ケース部材の弁室内で弁座上に軸線を中心として回転可能に配設された主弁と、前記主弁の上部に設けられた副弁座に形成された均圧孔を開閉する副弁とを備え、前記均圧孔を開として該主弁を回転させることで、前記弁座のポートに連通する流路を切り換えるロータリー式切換弁において、
前記主弁の前記副弁座の部位が高分子材料でない材質となっていることを特徴とするロータリー式切換弁。
A main valve that is rotatably arranged on the valve seat on the valve seat in the valve chamber of the case member and a sub-valve that opens and closes a pressure equalizing hole formed in the sub-valve seat provided above the main valve. In a rotary type switching valve that switches the flow path communicating with the port of the valve seat by opening the pressure equalizing hole and rotating the main valve.
A rotary switching valve characterized in that the portion of the auxiliary valve seat of the main valve is made of a material other than a polymer material.
前記副弁座の部位の高分子材料でない材質は、融点が970℃以上であることを特徴とする請求項1に記載のロータリー式切換弁。 The rotary switching valve according to claim 1, wherein the non-polymer material of the sub-valve seat portion has a melting point of 970 ° C. or higher. 前記副弁座の部位の高分子材料でない材質は、金属またはセラミックスであることを特徴とする請求項2に記載のロータリー式切換弁。 The rotary switching valve according to claim 2, wherein the material of the sub-valve seat portion that is not a polymer material is metal or ceramics. 前記主弁が主弁本体と該主弁本体の前記副弁座側に設けられた副弁座板とから構成され、前記副弁座板が前記高分子材料でない材質でなる前記副弁座の部位を構成していることをする請求項1乃至3のいずれか一項に記載のロータリー式切換弁。 The main valve is composed of a main valve main body and a sub valve seat plate provided on the sub valve seat side of the main valve main body, and the sub valve seat plate is made of a material other than the polymer material. The rotary switching valve according to any one of claims 1 to 3, wherein the portion constitutes a part. 前記主弁本体に低圧流路に連通する均圧路が形成されるとともに、前記副弁座板に前記均圧孔が形成され、前記主弁本体および/または前記副弁座板に、前記均圧路と前記均圧孔とを連通する連通溝が形成されていることを特徴とする請求項4に記載のロータリー式切換弁。 A pressure equalizing path communicating with the low pressure flow path is formed in the main valve main body, and the pressure equalizing hole is formed in the sub valve seat plate, and the main valve main body and / or the sub valve seat plate is formed with the same pressure equalizing hole. The rotary type switching valve according to claim 4, wherein a communication groove for communicating the pressure path and the pressure equalizing hole is formed. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、流路切換弁とを含む冷凍サイクルシステムであって、請求項1乃至5のいずれか一項に記載のロータリー式切換が、前記流路切換弁として用いられている
ことを特徴とする冷凍サイクルシステム。
A refrigeration cycle system including a compressor, a condenser, an expansion valve, an evaporator, and a flow path switching valve, wherein the rotary switching according to any one of claims 1 to 5 is the flow. A refrigeration cycle system characterized in that it is used as a path switching valve.
JP2019217459A 2019-11-29 2019-11-29 Rotary switching valve and refrigeration cycle system Active JP7187428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019217459A JP7187428B2 (en) 2019-11-29 2019-11-29 Rotary switching valve and refrigeration cycle system
CN202011251232.6A CN112879597B (en) 2019-11-29 2020-11-11 Rotary switching valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217459A JP7187428B2 (en) 2019-11-29 2019-11-29 Rotary switching valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021085514A true JP2021085514A (en) 2021-06-03
JP7187428B2 JP7187428B2 (en) 2022-12-12

Family

ID=76043012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217459A Active JP7187428B2 (en) 2019-11-29 2019-11-29 Rotary switching valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7187428B2 (en)
CN (1) CN112879597B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133662U (en) * 1982-03-05 1983-09-08 株式会社日立製作所 switching valve
JP2001295951A (en) * 2000-02-10 2001-10-26 Fuji Koki Corp Four-way selector valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve
WO2009147932A1 (en) * 2008-06-02 2009-12-10 株式会社鷺宮製作所 Flow path selector valve
JP2010084939A (en) * 2008-09-08 2010-04-15 Fuji Koki Corp Four-way switch valve
JP2019132347A (en) * 2018-01-31 2019-08-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137267B2 (en) * 1999-01-28 2008-08-20 忠弘 大見 Orifice built-in valve
JP4208441B2 (en) * 2001-08-20 2009-01-14 日本電産サンキョー株式会社 Valve drive device
JP2009275834A (en) * 2008-05-15 2009-11-26 Saginomiya Seisakusho Inc Flow path selector valve
US9726406B2 (en) * 2012-02-10 2017-08-08 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve
JP2016040477A (en) * 2014-08-12 2016-03-24 株式会社鷺宮製作所 Control valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133662U (en) * 1982-03-05 1983-09-08 株式会社日立製作所 switching valve
JP2001295951A (en) * 2000-02-10 2001-10-26 Fuji Koki Corp Four-way selector valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve
WO2009147932A1 (en) * 2008-06-02 2009-12-10 株式会社鷺宮製作所 Flow path selector valve
JP2010084939A (en) * 2008-09-08 2010-04-15 Fuji Koki Corp Four-way switch valve
JP2019132347A (en) * 2018-01-31 2019-08-08 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Also Published As

Publication number Publication date
CN112879597B (en) 2023-09-22
CN112879597A (en) 2021-06-01
JP7187428B2 (en) 2022-12-12

Similar Documents

Publication Publication Date Title
JP5389570B2 (en) Multi-way selector valve
US11754072B2 (en) Compressor having capacity modulation assembly
CN109340107B (en) Compressor with capacity modulation system
US8763640B2 (en) Rotary valve
JP5087677B2 (en) Flow path switching valve
JP5611699B2 (en) Multi-way selector valve
JP6634572B2 (en) Butterfly valve
CN109973393A (en) Compressor discharge valve module
JP5261992B2 (en) Scroll compressor
US9022759B2 (en) Capacity modulated scroll compressor
JP2021085514A (en) Rotary switch valve and refrigeration cycle system
JP7227931B2 (en) Rotary switching valve
JP7187427B2 (en) Rotary switching valve and refrigeration cycle system
JP2022103053A (en) Rotary switching valve
JP2019152246A (en) Motor valve
JP5316345B2 (en) Flow control valve
JP7425719B2 (en) Rotary type switching valve
CN114688305B (en) Rotary switching valve
JP2002005317A (en) Rotary four-way valve
JP2022025520A (en) Selector valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7187428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150