JP2021085087A - Hot-dip metal coated steel sheet - Google Patents

Hot-dip metal coated steel sheet Download PDF

Info

Publication number
JP2021085087A
JP2021085087A JP2019216684A JP2019216684A JP2021085087A JP 2021085087 A JP2021085087 A JP 2021085087A JP 2019216684 A JP2019216684 A JP 2019216684A JP 2019216684 A JP2019216684 A JP 2019216684A JP 2021085087 A JP2021085087 A JP 2021085087A
Authority
JP
Japan
Prior art keywords
hot
region
steel sheet
dip
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019216684A
Other languages
Japanese (ja)
Other versions
JP7339531B2 (en
Inventor
哲也 鳥羽
Tetsuya Toba
哲也 鳥羽
泰平 金藤
Yasuhei Kanefuji
泰平 金藤
邦彦 東新
Kunihiko Toshin
邦彦 東新
森下 敦司
Atsushi Morishita
敦司 森下
橋本 茂
Shigeru Hashimoto
茂 橋本
裕人 安井
Hiroto Yasui
裕人 安井
雄策 中川
Yusaku Nakagawa
雄策 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019216684A priority Critical patent/JP7339531B2/en
Priority to CN202080080805.5A priority patent/CN114729439B/en
Priority to KR1020227016475A priority patent/KR102676570B1/en
Priority to PCT/JP2020/025959 priority patent/WO2021106259A1/en
Priority to TW109131296A priority patent/TWI813903B/en
Publication of JP2021085087A publication Critical patent/JP2021085087A/en
Application granted granted Critical
Publication of JP7339531B2 publication Critical patent/JP7339531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

To provide a hot-dip metal coated steel sheet capable of intentionally expressing a character, a design and the like on the surface of a plated layer, excellent in those durability and excellent in corrosion resistance.SOLUTION: A hot-dip metal coated steel sheet includes a steel sheet and a hot-dip metal coated layer formed on the surface of the steel plate. The hot-dip metal coated layer including, in the average composition, Al:0-90 mass%, Mg:0-10 mass% and the remainder consisting of Zn and impurities has a pattern part arranged to be a predetermined shape and a non-pattern part; the pattern part and the non-pattern part include one or both of first and second regions, respectively; and the absolute value of a difference between the area ratio of the first region in the pattern part and that in the non-pattern part is 30% or more.SELECTED DRAWING: None

Description

本発明は、溶融めっき鋼板に関する。 The present invention relates to a hot-dip galvanized steel sheet.

溶融めっき鋼板は、耐食性に優れており、その中でもZn−Al−Mg系溶融めっき鋼板は、特に優れた耐食性を備えている。このような溶融めっき鋼板は、建材、家電、自動車分野等種々の製造業において広く使用されており、近年、その使用量が増加している。 The hot-dip galvanized steel sheet has excellent corrosion resistance, and among them, the Zn-Al-Mg-based hot-dip galvanized steel sheet has particularly excellent corrosion resistance. Such hot-dip galvanized steel sheets are widely used in various manufacturing industries such as building materials, home appliances, and automobile fields, and their amounts have been increasing in recent years.

ところで、溶融めっき鋼板の溶融めっき層の表面に、文字、模様、デザイン画などを現すことを目的として、溶融めっき層に印刷や塗装などの工程を施すことにより、文字、模様、デザイン画などを溶融めっき層の表面に現す場合がある。 By the way, for the purpose of displaying characters, patterns, design images, etc. on the surface of the hot-dip plating layer of the hot-dip plating steel plate, the hot-dip plating layer is subjected to processes such as printing and painting to produce characters, patterns, design images, etc. It may appear on the surface of the hot-dip plating layer.

しかし、溶融めっき層に印刷や塗装などの工程を行うと、文字やデザイン等を施すためのコストや時間が増大する問題がある。更に、印刷や塗装によって文字やデザイン等をめっき層の表面に現す場合は、需要者から高い支持を得ている金属光沢外観が失われるだけでなく、塗膜自体の経時劣化や塗膜の密着性の経時劣化の問題から、耐久性が劣り、時間とともに文字やデザイン等が消失してしまう恐れがある。また、インクをスタンプすることで文字やデザイン等をめっき層の表面に現す場合は、コストや時間は比較的抑えられるものの、インクによって、溶融めっき層の耐食性が低下する懸念がある。更に、溶融めっき層の研削によって意匠等を現す場合は、意匠等の耐久性は優れるものの、研削箇所の溶融めっき層の厚みが大幅に減少することから耐食性低下が必然であり、めっき特性の低下が懸念される。 However, when a process such as printing or painting is performed on the hot-dip plating layer, there is a problem that the cost and time for applying characters, designs, and the like increase. Furthermore, when characters, designs, etc. are displayed on the surface of the plating layer by printing or painting, not only the metallic luster appearance, which is highly favored by consumers, is lost, but also the coating film itself deteriorates over time and the coating film adheres. Due to the problem of sexual deterioration over time, the durability is inferior, and there is a risk that characters, designs, etc. will disappear over time. Further, when characters, designs, etc. are displayed on the surface of the plating layer by stamping the ink, although the cost and time can be relatively reduced, there is a concern that the ink may reduce the corrosion resistance of the hot-dip plating layer. Further, when the design or the like is revealed by grinding the hot-dip plating layer, the durability of the design or the like is excellent, but the thickness of the hot-dip galvanizing layer at the ground portion is significantly reduced, so that the corrosion resistance is inevitably lowered and the plating characteristics are lowered. Is a concern.

下記特許文献に示されるように、Zn−Al−Mg系溶融めっき鋼板に対する様々な技術開発がなされているが、めっき層の表面に文字やデザイン等を現した場合にその耐久性を向上させる技術は知られていない。 As shown in the following patent documents, various technological developments have been made for Zn-Al-Mg-based hot-dip galvanized steel sheets, but technologies for improving the durability of Zn-Al-Mg-based hot-dip galvanized steel sheets when characters or designs appear on the surface of the plating layer. Is not known.

Zn−Al−Mg系溶融めっき鋼板に関し、Zn−Al−Mg系溶融めっき鋼板にみられる梨地状のめっき外観をより美麗とすることを目的とする従来技術は存在する。
例えば、特許文献1は、キメが細かく、かつ平滑な光沢部が多い梨地状の外観を有するZn−Al−Mg系溶融めっき鋼板、すなわち、単位面積当たりの白色部の個数が多く、そして、光沢部の面積の割合が大きいという良好な梨地状の外観を有するZn−Al−Mg系溶融めっき鋼板が記載されている。また、特許文献1においては、好ましくない梨地の状態を、不定形な白色部と円形状の光沢部とが混在して表面に点在した表面外観を呈している状態であることが記載されている。
また、特許文献4は、Al/MgZn/Znの三元共晶組織を微細化させることで、全体的にめっき層の光沢度が増し、外観均一性が向上した高耐食性溶融亜鉛めっき鋼板が記載されている。
しかしながら、めっき層の表面に文字等を現した場合に、その耐久性を向上させ、かつ、耐食性を低下させないようにする技術は、従来から知られていなかった。
Regarding the Zn-Al-Mg-based hot-dip galvanized steel sheet, there is a conventional technique for improving the satin-like plating appearance seen in the Zn-Al-Mg-based hot-dip galvanized steel sheet.
For example, Patent Document 1 describes a Zn-Al-Mg-based hot-dip galvanized steel sheet having a satin-like appearance with fine texture and many smooth glossy portions, that is, a large number of white portions per unit area and gloss. A Zn-Al-Mg-based hot-dip galvanized steel sheet having a good satin-like appearance in which the ratio of the area of the portion is large is described. Further, Patent Document 1 describes that an unfavorable satin finish is a state in which an amorphous white portion and a circular glossy portion are mixed to exhibit a surface appearance scattered on the surface. There is.
Further, Patent Document 4 describes a highly corrosion-resistant hot-dip galvanized steel sheet in which the glossiness of the plating layer is increased as a whole and the appearance uniformity is improved by refining the ternary eutectic structure of Al / MgZn 2 / Zn. Are listed.
However, a technique for improving the durability and not lowering the corrosion resistance when characters or the like appear on the surface of the plating layer has not been known conventionally.

特許第5043234号公報Japanese Patent No. 5043234 特許第5141899号公報Japanese Patent No. 5141899 特許第3600804号公報Japanese Patent No. 360804 国際公開第2013/002358号International Publication No. 2013/002358

本発明は、上記事情に鑑みてなされたものであり、めっき層の表面に文字やデザイン等を現すことができ、それらの耐久性に優れ、また、耐食性にも優れた溶融めっき鋼板を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides a hot-dip galvanized steel sheet capable of displaying characters, designs, etc. on the surface of a plating layer, having excellent durability thereof, and also having excellent corrosion resistance. That is the issue.

本発明の要旨は以下の通りである。
[1] 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:0〜90質量%、Mg:0〜10質量%を含有し、残部がZnおよび不純物を含み、
前記溶融めっき層に、所定の形状となるように配置されたパターン部と、非パターン部とが形成され、
前記パターン部及び前記非パターン部は、それぞれ、下記決定方法によって規定される第1領域または第2領域のうちの一方または両方を含み、
前記パターン部における前記第1領域の面積率と、前記非パターン部における前記第1領域の面積率との差が、絶対値で30%以上であることを特徴とする溶融めっき鋼板。
[決定方法] 前記溶融めっき層の表面に1mm間隔で仮想格子線を描き、次いで、前記仮想格子線によって区画される複数の領域毎に、各領域の重心点Gを中心とする円Sを描く。前記円Sは、前記円Sの内部に含まれる前記溶融めっき層の表面境界線の合計長さが10mmとなるように直径Rを設定する。複数の領域の円Sの直径Rのうち最大の直径Rmaxと最小の直径Rminとの平均値を基準直径Raveとし、直径Rが基準直径Rave未満の円Sを有する領域を第1領域とし、直径Rが基準直径Rave以上の円Sを有する領域を第2領域とする。
[2] 前記溶融めっき層が、平均組成で、Al:4〜22質量%、Mg:0〜10質量%を含有し、残部がZnおよび不純物を含むことを特徴とする[1]に記載の溶融めっき鋼板。
[3] 前記溶融めっき層が、更に、平均組成で、Si:0.0001〜2質量%を含有することを特徴とする[1]または[2]に記載の溶融めっき鋼板。
[4] 前記溶融めっき層が、更に、平均組成で、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.001〜2質量%含有することを特徴とする[1]乃至[3]の何れか一項に記載の溶融めっき鋼板。
[5] 前記パターン部が、直線部、曲線部、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状となるように配置されていることを特徴とする[1]乃至[4]の何れか一項に記載の溶融めっき鋼板。
[6] 前記パターン部が、意図的に形成されたものであることを特徴とする[1]乃至[5]の何れか一項に記載の溶融めっき鋼板。
[7] 前記溶融めっき層の付着量が前記鋼板両面合計で30〜600g/mであることを特徴とする[1]乃至[6]のいずれか一項に記載の溶融めっき鋼板。
The gist of the present invention is as follows.
[1] A steel plate and a hot-dip galvanized layer formed on the surface of the steel plate are provided.
The hot-dip plating layer contains Al: 0 to 90% by mass and Mg: 0 to 10% by mass in average composition, and the balance contains Zn and impurities.
A patterned portion and a non-patterned portion arranged so as to have a predetermined shape are formed on the hot-dip plating layer.
The patterned portion and the non-patterned portion include one or both of the first region and the second region defined by the following determination method, respectively.
A galvanized steel sheet characterized in that the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion is 30% or more in absolute value.
[Determination Method] Virtual grid lines are drawn on the surface of the hot-dip plating layer at 1 mm intervals, and then a circle S centered on the center of gravity point G of each region is drawn for each of a plurality of regions partitioned by the virtual grid lines. .. The diameter R of the circle S is set so that the total length of the surface boundary lines of the hot-dip plating layer contained inside the circle S is 10 mm. The average value of the maximum diameter Rmax and the minimum diameter Rmin among the diameters R of the circles S of the plurality of regions is defined as the reference diameter Rave, and the region having the circle S whose diameter R is less than the reference diameter Rave is defined as the first region. The region having a circle S in which R is equal to or larger than the reference diameter Rave is defined as the second region.
[2] The method according to [1], wherein the hot-dip plating layer contains Al: 4 to 22% by mass and Mg: 0 to 10% by mass in an average composition, and the balance contains Zn and impurities. Hot-dip galvanized steel sheet.
[3] The hot-dip galvanized steel sheet according to [1] or [2], wherein the hot-dip galvanized layer further contains Si: 0.0001 to 2% by mass in an average composition.
[4] The hot-dip plating layer further has an average composition of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM. The hot-dip galvanized steel sheet according to any one of [1] to [3], which contains 0.001 to 2% by mass of any one or more of Hf and C in total.
[5] The pattern portion is arranged so as to have a shape obtained by any one of a straight portion, a curved portion, a dot portion, a figure, a number, a symbol, a pattern or a character, or a combination of two or more of them. The hot-dip galvanized steel sheet according to any one of [1] to [4].
[6] The hot-dip galvanized steel sheet according to any one of [1] to [5], wherein the pattern portion is intentionally formed.
[7] The hot-dip galvanized steel sheet according to any one of [1] to [6], wherein the amount of adhesion of the hot-dip galvanized layer is 30 to 600 g / m 2 in total on both sides of the steel sheet.

本発明によれば、溶融めっき層の表面を、溶融めっき層の表面に現れる境界線の密度が比較的高い部分に含まれる第1領域と、溶融めっき層の表面に現れる境界線の密度が比較的低い部分に含まれる第2領域とに区分し、パターン部における第1領域の面積率と、非パターン部における第1領域の面積率との差を絶対値で30%以上とすることで、パターン部と非パターン部とを境界線の密度の違いによって肉眼で判別できるようになる。これにより、溶融めっき層の表面に文字やデザイン等を現した場合に、それらの耐久性に優れ、また、耐食性にも優れた溶融めっき鋼板を提供できる。 According to the present invention, the surface of the hot-dip plating layer is compared with the first region included in the portion where the density of the boundary line appearing on the surface of the hot-dip plating layer is relatively high and the density of the boundary line appearing on the surface of the hot-dip plating layer. By dividing into the second region included in the target low portion and setting the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion to 30% or more in absolute value, The pattern portion and the non-pattern portion can be discriminated with the naked eye by the difference in the density of the boundary line. As a result, when characters, designs, etc. appear on the surface of the hot-dip galvanized layer, it is possible to provide a hot-dip galvanized steel sheet having excellent durability and corrosion resistance.

図1は、本実施形態の溶融めっき鋼板における第1領域及び第2領域の決定方法を説明する模式図である。FIG. 1 is a schematic view illustrating a method of determining a first region and a second region in the hot-dip galvanized steel sheet of the present embodiment. 図2は、本実施形態の溶融めっき鋼板における第1領域及び第2領域の決定方法を説明する模式図である。FIG. 2 is a schematic view illustrating a method of determining a first region and a second region in the hot-dip galvanized steel sheet of the present embodiment. 図3は、実施例のNo.1の溶融めっき層の表面の撮像データに2値化処理を行って得た境界線を示す模式図である。FIG. 3 shows No. 3 of the embodiment. It is a schematic diagram which shows the boundary line obtained by performing the binarization process on the imaging data of the surface of the hot-dip plating layer of 1. 図4は、実施例のNo.1の第1領域の走査型電子顕微鏡による拡大写真である。FIG. 4 shows No. 4 of the embodiment. 1 is a magnified photograph of the first region of No. 1 by a scanning electron microscope. 図5は、実施例のNo.1の第2領域の走査型電子顕微鏡による拡大写真である。FIG. 5 shows No. 5 of the embodiment. It is a magnified photograph by a scanning electron microscope of the second region of 1. 図6は、本実施形態の一例である溶融めっき鋼板の表面を示す拡大平面図。FIG. 6 is an enlarged plan view showing the surface of a hot-dip galvanized steel sheet which is an example of the present embodiment.

以下、本発明の実施形態である溶融めっき鋼板について説明する。
本実施形態の溶融めっき鋼板は、鋼板と、鋼板の表面に形成された溶融めっき層と、を備え、溶融めっき層は、平均組成で、Al:0〜90質量%、Mg:0〜10質量%を含有し、残部がZnおよび不純物を含み、溶融めっき層に、所定の形状となるように配置されたパターン部と、非パターン部とが形成され、パターン部及び非パターン部は、それぞれ、下記決定方法によって規定される第1領域または第2領域のうちの一方または両方を含み、パターン部における第1領域の面積率と、非パターン部における第2領域の面積率との差が、絶対値で30%以上である溶融めっき鋼板である。
Hereinafter, the hot-dip galvanized steel sheet according to the embodiment of the present invention will be described.
The hot-dip galvanized steel sheet of the present embodiment includes a steel sheet and a hot-dip plating layer formed on the surface of the steel sheet, and the hot-dip plating layer has an average composition of Al: 0 to 90% by mass and Mg: 0 to 10 mass. % Is contained, the balance contains Zn and impurities, and a patterned portion and a non-patterned portion are formed in the hot-dip plating layer so as to have a predetermined shape, and the patterned portion and the non-patterned portion are respectively formed. The difference between the area ratio of the first region in the pattern portion and the area ratio of the second region in the non-pattern portion is absolute, including one or both of the first region and the second region defined by the following determination method. It is a hot-dip galvanized steel sheet having a value of 30% or more.

決定方法は、次の通りである。溶融めっき層の表面に1mm間隔で仮想格子線を描き、次いで、仮想格子線によって区画される複数の領域毎に、各領域の重心点Gを中心とする円Sを描く。前記円Sは、前記円Sの内部に含まれる溶融めっき層の表面境界線の合計長さが10mmとなるように直径Rを設定する。複数の領域の円Sの直径Rのうち最大の直径Rmaxと最小の直径Rminとの平均値を基準直径Raveとし、直径Rが基準直径Rave未満の円Sを有する領域を第1領域とし、直径Rが基準直径Rave以上の円Sを有する領域を第2領域とする。 The determination method is as follows. Virtual grid lines are drawn on the surface of the hot-dip plating layer at 1 mm intervals, and then a circle S centered on the center of gravity point G of each region is drawn for each of a plurality of regions partitioned by the virtual grid lines. The diameter R of the circle S is set so that the total length of the surface boundary lines of the hot-dip plating layer contained inside the circle S is 10 mm. The average value of the maximum diameter Rmax and the minimum diameter Rmin among the diameters R of the circles S of a plurality of regions is defined as the reference diameter Rave, and the region having the circle S whose diameter R is less than the reference diameter Rave is defined as the first region. The region having a circle S in which R is equal to or larger than the reference diameter Rave is defined as the second region.

溶融めっき層に現れる境界線は、例えば、めっき表面に現れる結晶粒界や、めっき表面の明度の高い部分と明度の低い部分との境界を例示できる。 The boundary line appearing on the hot-dip plating layer can exemplify, for example, the grain boundaries appearing on the plating surface and the boundary between the high-brightness portion and the low-brightness portion of the plating surface.

めっき表面に現れる結晶粒界の密度が高い部分に含まれる領域、または、結晶粒界の密度が低い部分に含まれる領域が、めっき表面において直線部や文字のような形状となるように配置されると、めっき表面に直線部や文字があると認識される。 The region included in the portion with high density of grain boundaries appearing on the plating surface or the region included in the portion with low density of grain boundaries is arranged so as to have a shape like a straight line portion or a character on the plating surface. Then, it is recognized that there are straight lines and characters on the plating surface.

同様に、めっき表面の明暗の境界密度が高い部分に含まれる領域、または、めっき表面の明暗の境界密度が低い部分に含まれる領域が、めっき表面において直線部や文字のような形状となるように配置されると、めっき表面に直線部や文字があると認識される。 Similarly, the region included in the portion of the plating surface where the boundary density between light and dark is high, or the region included in the portion where the boundary density between light and dark is low on the plating surface is shaped like a straight line or a character on the plating surface. When placed in, it is recognized that there are straight lines and letters on the plating surface.

そこで、本発明者らは、めっき表面に現れる境界線の密度によって、溶融めっき層の表面を第1領域と第2領域に区分することを試みた。 Therefore, the present inventors have attempted to divide the surface of the hot-dip plating layer into a first region and a second region according to the density of the boundary line appearing on the plating surface.

本実施形態の溶融めっき鋼板では、溶融めっき層の表面に1mm間隔で仮想格子線を描いた場合、仮想格子線によって区画される複数の領域をそれぞれ、各区画領域を中心とした近傍における溶融めっき層の表面境界線の密度に応じて、第1領域または第2領域のいずれかに区分する。 In the hot-dip galvanized steel sheet of the present embodiment, when virtual grid lines are drawn on the surface of the hot-dip plating layer at 1 mm intervals, a plurality of regions partitioned by the virtual grid lines are melt-plated in the vicinity centered on each compartment region. It is divided into either a first region or a second region according to the density of the surface boundary line of the layer.

第1領域は、溶融めっき層の表面に現れる境界線の密度が高い部分に含まれる領域である。また、第2領域は、溶融めっき層の表面に現れる境界線の密度が低い部分に含まれる領域である。溶融めっき層において第1領域が集まった箇所と、第2領域が集まった箇所とは、境界線の密度が異なるため、第1領域及び第2領域が異なって見える。 The first region is a region included in a portion having a high density of boundary lines appearing on the surface of the hot-dip plating layer. Further, the second region is a region included in a portion where the density of the boundary line appearing on the surface of the hot-dip plating layer is low. Since the density of the boundary line is different between the portion where the first region is gathered and the portion where the second region is gathered in the hot-dip plating layer, the first region and the second region look different.

溶融めっき層の表面に、文字、図形、線、ドットなどが視認できるようにするためには、これらの文字等を構成するパターン部と、それ以外の非パターン部とが、識別できるようになればよい。そのためには、パターン部における第1領域の面積割合と、非パターン部おける第1領域の面積割合とが、異なっていればよい。 In order to make characters, figures, lines, dots, etc. visible on the surface of the hot-dip plating layer, the patterned parts constituting these characters and other non-patterned parts should be distinguishable. Just do it. For that purpose, the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion may be different.

具体的には、パターン部における第1領域の面積率と、非パターン部における第1領域の面積率との差が、絶対値で30%以上であるとよい。これにより、パターン部と非パターン部とが識別可能になる。 Specifically, the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion is preferably 30% or more in absolute value. This makes it possible to distinguish between the patterned portion and the non-patterned portion.

例えば、パターン部に第1領域が多く含まれる場合、パターン部には境界線が多く見える。この場合、非パターン部における第1領域の面積割合を小さくする。非パターン部は、第1領域の面積割合が小さいため、相対的に第2領域の面積割合が高くなり、これにより非パターン部は、境界線が少なく見える。これにより、境界線が多く見えるパターン部と、境界線が少なく見える非パターン部とを肉眼で識別できるようになる。 For example, when the pattern portion includes a large number of first regions, many boundary lines can be seen in the pattern portion. In this case, the area ratio of the first region in the non-patterned portion is reduced. Since the area ratio of the first region is small in the non-patterned portion, the area ratio of the second region is relatively high, so that the non-patterned portion looks like having few boundary lines. This makes it possible to visually distinguish between a pattern portion in which a large number of boundary lines can be seen and a non-pattern portion in which a small number of boundary lines can be seen.

また、パターン部に第2領域が多く含まれる場合、パターン部には境界線が少なく見える。この場合、非パターン部における第2領域の面積割合を小さくし、第1領域の面積割合を多くする。非パターン部は、第1領域の面積割合が多いため、非パターン部は境界線が多く見える。これにより、境界線が少なく見えるパターン部と、境界線が多く見える非パターン部とを肉眼で識別できるようになる。 Further, when the pattern portion includes a large amount of the second region, the pattern portion seems to have few boundary lines. In this case, the area ratio of the second region in the non-patterned portion is reduced, and the area ratio of the first region is increased. Since the non-patterned portion has a large area ratio of the first region, many boundary lines can be seen in the non-patterned portion. This makes it possible to visually distinguish between a pattern portion in which the boundary line appears to be small and a non-pattern portion in which the boundary line appears to be large.

このように、パターン部における第1領域の面積率と非パターン部における第1領域の面積率との差が絶対値で30%以上になると、パターン部と非パターン部の外観が異なるようになるため、パターン部を明確に識別できるようになる。すなわち、めっき層表面の可視光像において、パターン部及び非パターン部の色相、明度、彩度等の差が大きくなるため、パターン部と非パターン部が識別可能になる。 As described above, when the difference between the area ratio of the first region in the patterned portion and the area ratio of the first region in the non-patterned portion is 30% or more in absolute value, the appearance of the patterned portion and the non-patterned portion becomes different. Therefore, the pattern portion can be clearly identified. That is, in the visible light image on the surface of the plating layer, the difference in hue, lightness, saturation, etc. between the patterned portion and the non-patterned portion becomes large, so that the patterned portion and the non-patterned portion can be distinguished.

一方、パターン部における第1領域の面積率と非パターン部における第1領域の面積率との差が絶対値で30%未満になると、パターン部と非パターン部の外観の差がなくなり、パターン部を明確に識別できなくなる。すなわち、めっき層表面の可視光像において、パターン部及び非パターン部の色相、明度、彩度等の差が小さくなるため、パターン部と非パターン部を識別できなくなる。 On the other hand, when the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-patterned portion is less than 30% in absolute value, the difference in appearance between the patterned portion and the non-patterned portion disappears, and the pattern portion Can no longer be clearly identified. That is, in the visible light image on the surface of the plating layer, the difference in hue, lightness, saturation, etc. between the patterned portion and the non-patterned portion becomes small, so that the patterned portion and the non-patterned portion cannot be distinguished.

以上のように、パターン部及び非パターン部における第1領域の存在割合の一例を示したが、パターン部における第1領域の面積率と非パターン部における第1領域の面積率との差が絶対値で30%以上であれば、パターン部及び非パターン部のそれぞれにおける第1領域の存在割合を限定する必要はない。 As described above, an example of the existence ratio of the first region in the patterned portion and the non-patterned portion is shown, but the difference between the area ratio of the first region in the patterned portion and the area ratio of the first region in the non-patterned portion is absolute. If the value is 30% or more, it is not necessary to limit the abundance ratio of the first region in each of the patterned portion and the non-patterned portion.

以下、本発明の実施形態を溶融めっき鋼板について説明する。 Hereinafter, embodiments of the present invention will be described with respect to the hot-dip galvanized steel sheet.

溶融めっき層の下地となる鋼板は、材質に特に制限はない。詳細は後述するが、材質として、一般鋼などを特に制限はなく用いることができ、Alキルド鋼や一部の高合金鋼も適用することも可能であり、形状にも特に制限はない。鋼板に対して後述する溶融めっき法を適用することで、本実施形態に係る溶融めっき層が形成される。 The material of the steel sheet used as the base of the hot-dip plating layer is not particularly limited. Although the details will be described later, general steel or the like can be used as the material without particular limitation, Al killed steel or some high alloy steel can also be applied, and the shape is not particularly limited. By applying the hot-dip plating method described later to the steel sheet, the hot-dip plating layer according to the present embodiment is formed.

次に、溶融めっき層の化学成分について説明する。
溶融めっき層は、平均組成で、Al:0〜90質量%、Mg:0〜10質量%を含有し、残部としてZnおよび不純物を含む。より好ましくは、平均組成で、Al:4〜22質量%、Mg:1〜10質量%を含有し、残部としてZnおよび不純物を含む。更に好ましくは、平均組成で、Al:4〜22質量%、Mg:1〜10質量%を含有し、残部としてZnおよび不純物からなる。また、溶融めっき層は、平均組成で、Si:0.0001〜2質量%を含有していてもよい。更に、溶融めっき層は、平均組成で、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を合計で、0.001〜2質量%含有していてもよい。
Next, the chemical composition of the hot-dip galvanized layer will be described.
The hot-dip plating layer contains Al: 0 to 90% by mass and Mg: 0 to 10% by mass in average composition, and contains Zn and impurities as the balance. More preferably, the average composition contains Al: 4 to 22% by mass, Mg: 1 to 10% by mass, and Zn and impurities as the balance. More preferably, the average composition contains Al: 4 to 22% by mass and Mg: 1 to 10% by mass, and the balance is Zn and impurities. Further, the hot-dip plating layer may contain Si: 0.0001 to 2% by mass in an average composition. Further, the melt-plated layer has an average composition of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, C. A total of 0.001 to 2% by mass of any one or more of the above may be contained.

Alの含有量は、平均組成で0〜90質量%、好ましくは4〜22質量%の範囲である。Alは、耐食性を確保するために含有させるとよい。溶融めっき層中のAlの含有量が4質量%以上であれば、耐食性を向上させる効果がより高まる。90%以下であれば、めっき層を安定して形成できる。22質量%を超えると耐食性を向上させる効果が飽和する。耐食性の観点から、好ましくは5〜18質量%とする。より好ましくは6〜16質量%とする。 The Al content is in the range of 0 to 90% by mass, preferably 4 to 22% by mass in average composition. Al may be contained in order to ensure corrosion resistance. When the Al content in the hot-dip plating layer is 4% by mass or more, the effect of improving the corrosion resistance is further enhanced. If it is 90% or less, the plating layer can be stably formed. If it exceeds 22% by mass, the effect of improving corrosion resistance is saturated. From the viewpoint of corrosion resistance, it is preferably 5 to 18% by mass. More preferably, it is 6 to 16% by mass.

Mgの含有量は、平均組成で0〜10質量%、好ましくは1〜10質量%の範囲である。Mgは、耐食性を向上させるために含有させるとよい。溶融めっき層中のMgの含有量が1質量%以上であれば、耐食性を向上させる効果がより高まる。10質量%を超えるとめっき浴でのドロス発生が著しくなり、安定的に溶融めっき鋼板を製造するのが困難となる。耐食性とドロス発生のバランスの観点から、好ましくは1.5〜6質量%とする。より好ましくは2〜5質量%の範囲とする。 The content of Mg is in the range of 0 to 10% by mass, preferably 1 to 10% by mass in average composition. Mg is preferably contained in order to improve the corrosion resistance. When the Mg content in the hot-dip plating layer is 1% by mass or more, the effect of improving the corrosion resistance is further enhanced. If it exceeds 10% by mass, dross is significantly generated in the plating bath, and it becomes difficult to stably produce a hot-dip galvanized steel sheet. From the viewpoint of the balance between corrosion resistance and dross generation, it is preferably 1.5 to 6% by mass. More preferably, it is in the range of 2 to 5% by mass.

Al及びMgはそれぞれ0%であってもよい。すなわち、本実施形態の溶融めっき鋼板の溶融めっき層は、Zn−Al−Mg系溶融めっき層に限定されるものではなく、Zn−Al系溶融めっき層であってもよく、溶融亜鉛めっき層であってもよく、合金化溶融亜鉛めっき層であってもよい。 Al and Mg may be 0%, respectively. That is, the hot-dip galvanizing layer of the hot-dip galvanized steel sheet of the present embodiment is not limited to the Zn-Al-Mg-based hot-dip galvanizing layer, and may be a Zn-Al-based hot-dip galvanizing layer. It may be an alloyed hot-dip galvanized layer.

また、溶融めっき層は、Siを0.0001〜2質量%の範囲で含有していてもよい。
Siは、溶融めっき層の密着性を向上させる場合があるので、含有させてもよい。Siを0.0001質量%以上含有させることで密着性を向上させる効果が発現するため、Siを0.0001質量%以上含有させることが好ましい。一方、2質量%を超えて含有させてもめっき密着性を向上させる効果が飽和するため、Siの含有量は2質量%以下とする。めっき密着性の観点からは、0.0010〜1質量%の範囲としてもよく、0.0100〜0.8質量%の範囲としてもよい。
Further, the hot-dip plating layer may contain Si in the range of 0.0001 to 2% by mass.
Si may be contained because it may improve the adhesion of the hot-dip galvanized layer. Since the effect of improving the adhesion is exhibited by containing 0.0001% by mass or more of Si, it is preferable to contain 0.0001% by mass or more of Si. On the other hand, even if the content exceeds 2% by mass, the effect of improving the plating adhesion is saturated, so the Si content is set to 2% by mass or less. From the viewpoint of plating adhesion, the range may be 0.0010 to 1% by mass, or 0.0100 to 0.8% by mass.

溶融めっき層中には、平均組成で、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cの1種又は2種以上を合計で0.001〜2質量%を含有していてもよい。これらの元素を含有することで、さらに耐食性を改善することができる。REMは、周期律表における原子番号57〜71の希土類元素の1種または2種以上である。 In the hot-dip plating layer, the average composition is Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, C. 1 type or 2 or more types of the above may be contained in a total amount of 0.001 to 2% by mass. By containing these elements, the corrosion resistance can be further improved. REM is one or more rare earth elements having atomic numbers 57 to 71 in the periodic table.

溶融めっき層の化学成分の残部は、亜鉛及び不純物である。不純物には、亜鉛ほかの地金中に不可避的に含まれるもの、めっき浴中で、鋼が溶解することによって含まれるものがある。 The rest of the chemical composition of the hot-dip plating layer is zinc and impurities. Impurities include those that are inevitably contained in zinc and other bullions, and those that are contained by melting steel in a plating bath.

なお、溶融めっき層の平均組成は、次のような方法で測定できる。まず、めっきを浸食しない塗膜剥離剤(例えば、三彩化工社製ネオリバーSP−751)で表層塗膜を除去した後に、インヒビター(例えば、スギムラ化学工業社製ヒビロン)入りの塩酸で溶融めっき層を溶解し、得られた溶液を誘導結合プラズマ(ICP)発光分光分析に供することで求めることができる。また、表層塗膜を有しない場合は、表層塗膜の除去作業を省略できる。 The average composition of the hot-dip plating layer can be measured by the following method. First, the surface coating is removed with a coating remover that does not erode the plating (for example, Neo River SP-751 manufactured by Sansai Kako), and then a hot-dip plating layer is used with hydrochloric acid containing an inhibitor (for example, Hiviron manufactured by Sugimura Chemical Industrial). Can be determined by dissolving the solution and subjecting the obtained solution to inductively coupled plasma (ICP) emission spectroscopic analysis. Further, when the surface layer coating film is not provided, the work of removing the surface layer coating film can be omitted.

次に、溶融めっき層の組織について説明する。以下に説明する組織は、溶融めっき層が平均組成で、Al:4〜22質量%、Mg:1〜10質量%、Siを0〜2質量%を含有する場合の組織である。 Next, the structure of the hot-dip plating layer will be described. The structure described below is a structure when the hot-dip plating layer has an average composition and contains Al: 4 to 22% by mass, Mg: 1 to 10% by mass, and Si in 0 to 2% by mass.

Al、Mg及びZnを含有する溶融めっき層は、〔Al相〕と、〔Al/Zn/MgZnの三元共晶組織〕とを含んでいる。〔Al/Zn/MgZnの三元共晶組織〕の素地中に、〔Al相〕が包含された形態を有している。更に、〔Al/Zn/MgZnの三元共晶組織〕の素地中に、〔MgZn相〕や〔Zn相〕が含まれていてもよい。また、Siを添加した場合には、〔Al/Zn/MgZnの三元共晶組織〕の素地中に、〔MgSi相〕が含まれていても良い。 The hot-dip galvanizing layer containing Al, Mg and Zn contains [Al phase] and [ternary eutectic structure of Al / Zn / MgZn 2]. It has a form in which [Al phase] is included in the substrate of [Al / Zn / MgZn 2 ternary eutectic structure]. Further, [MgZn 2 phase] and [Zn phase] may be contained in the base material of [Al / Zn / MgZn 2 ternary eutectic structure]. Further, when Si is added , [Mg 2 Si phase] may be contained in the base material of [Al / Zn / MgZn 2 ternary eutectic structure].

ここで、〔Al/Zn/MgZnの三元共晶組織〕とは、Al相と、Zn相と金属間化合物MgZn相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離して現れる。また、該三元共晶組織中のZn相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。該三元共晶組織中のMgZn相は、Zn−Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられるがその量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/MgZnの三元共晶組織〕と表す。 Here, the [ternary eutectic structure of Al / Zn / MgZn 2 ] is a ternary eutectic structure of the Al phase, the Zn phase and the metal compound MgZn 2 phase, and this ternary eutectic structure is defined. The Al phase formed corresponds to, for example, the "Al" phase at high temperature in the ternary equilibrium diagram of Al-Zn-Mg (an Al solid solution that dissolves Zn and contains a small amount of Mg). Is. The Al ″ phase at high temperature usually appears as a fine Al phase and a fine Zn phase at room temperature. Further, the Zn phase in the ternary eutectic structure dissolves a small amount of Al as a solid solution, and in some cases, Is a Zn solid solution in which a smaller amount of Mg is dissolved. The MgZn two phase in the ternary eutectic structure is a metal existing in the vicinity of Zn: about 84% by mass in the binary system equilibrium state diagram of Zn—Mg. It is an intercompound phase. As far as the state diagram is concerned, it is considered that other additive elements are not dissolved in each phase, or even if they are dissolved, the amount is very small, but the amount is clear by ordinary analysis. In this specification, the ternary eutectic structure consisting of these three phases is referred to as [Al / Zn / MgZn 2 ternary eutectic structure].

また、〔Al相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相はめっき浴のAlやMg濃度に応じて固溶するZn量やMg量が相違する。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl″相の形骸を留めたものであると見てよい。状態図で見る限りこの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられるが通常の分析では明確に区別できないため、この高温でのAl″相に由来し且つ形状的にはAl″相の形骸を留めている相を本明細書では〔Al相〕と呼ぶ。この〔Al相〕は前記の三元共晶組織を形成しているAl相とは顕微鏡観察において明瞭に区別できる。 The [Al phase] is a phase that looks like an island with a clear boundary in the base of the ternary eutectic structure, for example, at a high temperature in the ternary equilibrium state diagram of Al-Zn-Mg. It corresponds to the "Al" phase "(Al solid solution that dissolves Zn in a solid solution and contains a small amount of Mg). The amount of Zn and Mg that dissolve in the Al "phase at high temperature differs depending on the concentration of Al and Mg in the plating bath. The Al" phase at this high temperature is usually fine Al phase and fine Zn at room temperature. Although separated into phases, the island-like shape seen at room temperature can be seen as retaining the skeleton of the Al ″ phase at high temperature. As far as the state diagram is concerned, other additive elements are dissolved in this phase. It is considered that the amount is very small even if it is not plated or is dissolved in solid solution, but it cannot be clearly distinguished by ordinary analysis. The retained phase is referred to as [Al phase] in the present specification. This [Al phase] can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.

また、〔Zn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔Zn相〕は前記の三元共晶組織を形成しているZn相とは顕微鏡観察において明瞭に区別できる。本発明のめっき層には、製造条件により〔Zn相〕が含まれる場合も有るが、実験では加工部耐食性向上に与える影響はほとんど見られなかったため、めっき層に〔Zn相〕が含まれても特に問題はない。 The [Zn phase] is a phase that looks like an island with a clear boundary in the substrate of the ternary eutectic structure, and actually contains a small amount of Al and a small amount of Mg in a solid solution. There is also. As far as the phase diagram is concerned, it is considered that other additive elements are not solid-solved in this phase, or even if they are solid-solved, the amount is extremely small. This [Zn phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation. The plating layer of the present invention may contain [Zn phase] depending on the manufacturing conditions, but since the experiment showed almost no effect on the improvement of corrosion resistance of the processed portion, the plating layer contained [Zn phase]. There is no particular problem.

また、〔MgZn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることもある。状態図で見る限りこの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔MgZn相〕は前記の三元共晶組織を形成しているMgZn相とは顕微鏡観察において明瞭に区別できる。本発明のめっき層には、製造条件により〔MgZn相〕が含まれない場合も有るが、ほとんどの製造条件ではめっき層中に含まれる。 Further, the [MgZn 2- phase] is a phase that looks like an island with a clear boundary in the base material of the ternary eutectic structure, and in reality, a small amount of Al may be dissolved as a solid solution. As far as the phase diagram is concerned, it is considered that other additive elements are not solid-solved in this phase, or even if they are solid-solved, the amount is extremely small. This [MgZn 2 phase] can be clearly distinguished from the MgZn 2 phase forming the ternary eutectic structure by microscopic observation. The plating layer of the present invention may not contain [MgZn 2- phase] depending on the production conditions, but it is contained in the plating layer under most production conditions.

また、〔MgSi相〕とは、Siを添加した場合のめっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りZn、Al、その他の添加元素は固溶していないか、固溶していても極微量であると考えられる。この〔MgSi相〕はめっき中では顕微鏡観察において明瞭に区別できる。 Further, the [Mg 2 Si phase] is a phase that looks like an island with a clear boundary in the solidified structure of the plating layer when Si is added. As far as the phase diagram is concerned, it is considered that Zn, Al and other additive elements are not solid-solved, or even if they are solid-solved, they are in a very small amount. This [Mg 2 Si phase] can be clearly distinguished by microscopic observation during plating.

次に、溶融めっき層の表層におけるパターン部、非パターン部、第1領域及び第2領域について説明する。 Next, the patterned portion, the non-patterned portion, the first region and the second region on the surface layer of the hot-dip plating layer will be described.

本実施形態の溶融めっき層の表層には、所定の形状となるように配置されたパターン部と、非パターン部とが形成される。パターン部は、直線部、曲線部、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状となるように配置されていることが好ましい。また、非パターン部は、パターン部以外の領域である。また、パターン部の形状は、ドット抜けのように一部が欠けていても、全体として認識できれば許容される。また、非パターン部は、パターン部の境界を縁取るような形状であってもよい。 On the surface layer of the hot-dip plating layer of the present embodiment, a patterned portion and a non-patterned portion arranged so as to have a predetermined shape are formed. The pattern portion is preferably arranged so as to have a shape obtained by any one of a straight line portion, a curved portion, a dot portion, a figure, a number, a symbol, a pattern or a character, or a combination of two or more of these. .. The non-patterned portion is an area other than the patterned portion. Further, the shape of the pattern portion is acceptable as long as it can be recognized as a whole even if a part of the pattern portion is missing such as missing dots. Further, the non-patterned portion may have a shape that borders the boundary of the patterned portion.

溶融めっき層表面に、直線部、曲線部、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状が配置されている場合に、これらの領域をパターン部とし、それ以外の領域を非パターン部とすることができる。パターン部と非パターン部の境界は、肉眼で把握することができる。パターン部と非パターン部の境界は、光学顕微鏡や拡大鏡などによる拡大像から把握してもよい。 When any one of straight lines, curved lines, dots, figures, numbers, symbols, patterns or letters, or a combination of two or more of them is arranged on the surface of the hot-dip plating layer, these Area can be a pattern part, and the other area can be a non-pattern part. The boundary between the patterned portion and the non-patterned portion can be grasped with the naked eye. The boundary between the patterned portion and the non-patterned portion may be grasped from a magnified image obtained by an optical microscope or a magnifying glass.

パターン部は、肉眼、拡大鏡下または顕微鏡下でパターン部の存在を判別可能な程度の大きさに形成されるとよい。また、非パターン部は、溶融めっき層(溶融めっき層の表面)の大部分を占める領域であり、非パターン部内にパターン部が配置される場合がある。パターン部は、非パターン部内において所定の形状に配置されている。具体的には、パターン部は、非パターン部内おいて、直線部、曲線部、図形、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状となるように配置されている。パターン部の形状を調整することによって、溶融めっき層の表面に、直線部、曲線部、図形、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状が現される。例えば、溶融めっき層の表面には、パターン部からなる文字列、数字列、記号、マーク、線図、デザイン画あるいはこれらの組合せ等が現される。この形状は、後述する製造方法によって意図的若しくは人工的に形成された形状であり、自然に形成されたものではない。 The pattern portion may be formed in a size that allows the presence of the pattern portion to be discriminated with the naked eye, under a magnifying glass, or under a microscope. Further, the non-patterned portion is a region that occupies most of the hot-dip plating layer (the surface of the hot-dip plating layer), and the patterned portion may be arranged in the non-patterned portion. The pattern portion is arranged in a predetermined shape in the non-pattern portion. Specifically, in the non-patterned part, the pattern part is a straight line part, a curved part, a figure, a dot part, a figure, a number, a symbol, a pattern or a character, or a combination of two or more of them. It is arranged so as to have a curved shape. By adjusting the shape of the pattern part, one of straight lines, curved lines, figures, dots, figures, numbers, symbols, patterns or letters, or two or more of them, can be placed on the surface of the hot-dip plating layer. The combined shape of is shown. For example, on the surface of the hot-dip plating layer, a character string composed of a pattern portion, a numerical string, a symbol, a mark, a line diagram, a design drawing, a combination thereof, or the like appears. This shape is a shape intentionally or artificially formed by a manufacturing method described later, and is not naturally formed.

このように、パターン部及び非パターン部は、溶融めっき層の表面に形成された領域である。パターン部及び非パターン部には、それぞれ、第1領域または第2領域のうちの1種または2種が含まれる。 As described above, the patterned portion and the non-patterned portion are regions formed on the surface of the hot-dip plating layer. The patterned portion and the non-patterned portion include one or two of the first region or the second region, respectively.

第1領域は、溶融めっき層の表面に現れる境界線の密度が高い部分に含まれる領域である。また、第2領域は、溶融めっき層の表面に現れる境界線の密度が低い部分に含まれる領域である。溶融めっき層において第1領域が集まった箇所と、第2領域が集まった箇所とは、境界線の密度が異なるため、識別可能である。 The first region is a region included in a portion having a high density of boundary lines appearing on the surface of the hot-dip plating layer. Further, the second region is a region included in a portion where the density of the boundary line appearing on the surface of the hot-dip plating layer is low. In the hot-dip plating layer, the place where the first region is gathered and the place where the second region is gathered are identifiable because the density of the boundary line is different.

次に、第1領域及び第2領域の決定方法について、図1を参照して説明する。
図1に示すように、溶融めっき層の表面に1mm間隔で仮想格子線Kを描く。図1では仮想格子線を一点鎖線で示している。なお、図1には、溶融めっき層の現れる境界線は図示していない。次いで、仮想格子線Kによって区画される複数の領域Mを設定する。各領域Mの形状は、1辺が1mmの正方形である。ここで設定した領域が、第1領域または第2領域のいずれかになる。次いで、仮想格子線Kによって区画される複数の領域M毎に、各領域の重心点Gを設定する。次いで、重心点Gを中心とする円Sを描く。円Sの直径Rは、円Sの内部に含まれる溶融めっき層の表面境界線の合計長さが10mmとなるように設定する。
Next, a method of determining the first region and the second region will be described with reference to FIG.
As shown in FIG. 1, virtual grid lines K are drawn on the surface of the hot-dip plating layer at 1 mm intervals. In FIG. 1, the virtual grid line is shown by a long-dotted chain line. Note that FIG. 1 does not show the boundary line where the hot-dip galvanized layer appears. Next, a plurality of regions M partitioned by the virtual grid line K are set. The shape of each region M is a square with a side of 1 mm. The area set here becomes either the first area or the second area. Next, the center of gravity point G of each region is set for each of the plurality of regions M partitioned by the virtual grid line K. Next, a circle S centered on the center of gravity point G is drawn. The diameter R of the circle S is set so that the total length of the surface boundary lines of the hot-dip plating layer contained inside the circle S is 10 mm.

図2(a)及び図2(b)には、任意の領域Mに対応する円Sを示す。図2(a)及び図2(b)では、溶融めっき層の表面に現れる境界線を示している。図2(a)及び図2(b)に示す境界線は、いずれも合計長さが10mmとなっている。本実施形態では、円S内に含まれる境界線Lの合計長さが10mmになるように円Sの直径を調整する。そのため、図2(a)に示すように、領域M及びその近傍に境界線Lが多く存在する場合は、円Sの直径Rは比較的小さくなる。一方、図2(b)に示すように、領域M及びその近傍に境界線Lが比較的少ない場合は、円Sの直径Rは比較的大きくなる。すべての領域について円Sを描き、それぞれの円Sの直径Rを決定する。 2 (a) and 2 (b) show a circle S corresponding to an arbitrary region M. 2 (a) and 2 (b) show the boundary line appearing on the surface of the hot-dip galvanized layer. The boundary lines shown in FIGS. 2 (a) and 2 (b) have a total length of 10 mm. In the present embodiment, the diameter of the circle S is adjusted so that the total length of the boundary line L included in the circle S is 10 mm. Therefore, as shown in FIG. 2A, when a large number of boundary lines L exist in the region M and its vicinity, the diameter R of the circle S becomes relatively small. On the other hand, as shown in FIG. 2B, when the boundary line L is relatively small in the region M and its vicinity, the diameter R of the circle S is relatively large. Circles S are drawn for all regions and the diameter R of each circle S is determined.

そして、複数の領域Mの円Sのうち最大の直径Rmaxと最小の直径Rminとの平均値を基準直径Raveとし、直径Rが基準直径Rave未満の円Sを有する領域を第1領域とし、直径Rが基準直径Rave以上の円Sを有する領域を第2領域とする。第1領域は、図2(a)に示すような、境界線Lが多く存在する部分に含まれる領域となり、一方、第2領域は、図2(b)に示すような、境界線Lが少なく存在する部分に含まれる領域となる。 Then, the average value of the maximum diameter Rmax and the minimum diameter Rmin among the circles S of the plurality of regions M is set as the reference diameter Rave, and the region having the circle S whose diameter R is less than the reference diameter Rave is set as the first region. The region having a circle S in which R is equal to or larger than the reference diameter Rave is defined as the second region. The first region is a region included in a portion where a large number of boundary lines L are present as shown in FIG. 2 (a), while the second region has a boundary line L as shown in FIG. 2 (b). It is an area included in the part that exists less.

溶融めっき層に現れる境界線は、例えば、めっき表面に現れる結晶粒界や、めっき表面の明度の高い部分と明度の低い部分との境界を例示することができる。なお、明度の高い部分と明度の低い部分との境界は、めっき表面の撮像を2値化処理することによって得られる境界線としてもよい。 The boundary line appearing on the hot-dip plating layer can exemplify, for example, the grain boundaries appearing on the plating surface and the boundary between the high-brightness portion and the low-brightness portion of the plating surface. The boundary between the high-brightness portion and the low-brightness portion may be a boundary line obtained by binarizing the imaging of the plating surface.

パターン部には、仮想格子線によって区画された複数の領域が含まれており、各領域は、第1領域または第2領域の何れかに分類される。また、非パターン部にも、仮想格子線によって区画された複数の領域が含まれており、各領域は、第1領域または第2領域の何れかに分類される。すなわち、パターン部は、第1領域または第2領域のいずれかのみを含んでいてもよく、第1領域、第2領域の両方を含んでいてもよい。同様に、非パターン部は、第1領域または第2領域のいずれかのみを含んでいてもよく、第1領域、第2領域の両方を含んでいてもよい。 The pattern portion includes a plurality of regions partitioned by virtual grid lines, and each region is classified into either a first region or a second region. Further, the non-patterned portion also includes a plurality of regions partitioned by virtual grid lines, and each region is classified into either a first region or a second region. That is, the pattern portion may include only either the first region or the second region, or may include both the first region and the second region. Similarly, the non-patterned portion may include only either the first region or the second region, or may include both the first region and the second region.

ここで、パターン部においては、第1領域及び第2領域のそれぞれの面積分率を求めることができる。そして、第1領域の面積分率が高くなると、パターン部には比較的多くの境界線が含まれる。一方、パターン部における第2領域の面積分率が高くなると、パターン部には比較的少ない境界線が含まれる。このように、パターン部の外観は、第1領域、第2領域の面積率に依存する。 Here, in the pattern portion, the surface integral of each of the first region and the second region can be obtained. Then, when the surface integral of the first region becomes high, the pattern portion includes a relatively large number of boundary lines. On the other hand, when the surface integral of the second region in the pattern portion becomes high, the pattern portion includes a relatively small number of boundary lines. As described above, the appearance of the pattern portion depends on the area ratio of the first region and the second region.

一方、非パターン部においても、第1領域及び第2領域のそれぞれの面積分率を求めることができる。パターン部と同様、非パターン部の外観は、第1領域、第2領域の面積分率に依存する。 On the other hand, even in the non-patterned portion, the surface integral of each of the first region and the second region can be obtained. Similar to the patterned portion, the appearance of the non-patterned portion depends on the surface integral of the first region and the second region.

そして、パターン部における第1領域の面積割合と、非パターン部における第1領域の面積割合との差が、絶対値で30%以上の場合に、パターン部と非パターン部とを識別できるようになる。面積割合の差が30%未満では、パターン部における第1領域の面積割合と、非パターン部における第1領域の面積割合との差が小さく、パターン部及び非パターン部の外観が似たような外観になり、パターン部を識別することが困難になる。面積割合の差は、大きければ大きいほどよく、40%以上であることがより好ましく、60%以上であることが更に好ましい。 Then, when the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-patterned portion is 30% or more in absolute value, the pattern portion and the non-pattern portion can be distinguished. Become. When the difference in the area ratio is less than 30%, the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-patterned portion is small, and the appearances of the patterned portion and the non-patterned portion are similar. It becomes an appearance and it becomes difficult to identify the pattern part. The larger the difference in area ratio, the better, more preferably 40% or more, and even more preferably 60% or more.

パターン部及び非パターン部は、肉眼で識別可能であってもよく、拡大鏡下または顕微鏡下で識別可能であってもよい。拡大鏡下または顕微鏡下で識別可能とは、例えば、パターン部で構成される形状が50倍以下の視野で識別可能であればよい。50倍以下の視野であれば、パターン部と非パターン部は、その外観の違いにより、識別可能である。パターン部と非パターン部は、好ましくは20倍以下、さらに好ましくは10倍以下、より好ましくは5倍以下で識別可能である。 The patterned portion and the non-patterned portion may be distinguishable with the naked eye, and may be distinguishable under a magnifying glass or a microscope. Distinguishable under a magnifying glass or a microscope means that, for example, the shape composed of the pattern portion can be identified in a field of view of 50 times or less. If the field of view is 50 times or less, the patterned portion and the non-patterned portion can be identified by the difference in appearance. The patterned portion and the non-patterned portion can be distinguished by preferably 20 times or less, more preferably 10 times or less, and more preferably 5 times or less.

本実施形態に係る溶融めっき鋼板は、溶融めっき層の表面に化成処理皮膜層や塗膜層を有してもよい。ここで、化成処理皮膜層や塗膜層の種類は特に限定されず、公知の化成処理皮膜層や塗膜層を用いることができる。 The hot-dip galvanized steel sheet according to the present embodiment may have a chemical conversion treatment film layer or a coating film layer on the surface of the hot-dip plating layer. Here, the type of the chemical conversion-treated film layer or the coating film layer is not particularly limited, and a known chemical conversion-treated film layer or coating film layer can be used.

次に、本実施形態の溶融めっき鋼板の製造方法を説明する。
本実施形態の溶融めっき鋼板は、製鋼、鋳造、熱間圧延を経て製造された鋼板に対して、溶融めっきを行う。鋼板を製造する際には、更に、酸洗、熱延板焼鈍、冷間圧延、冷延板焼鈍を行ってもよい。溶融めっきは、鋼板を溶融めっき浴に連続通板させる連続式溶融めっき法でもよく、鋼板を所定の形状に加工した鋼材または鋼板自体を、溶融めっき浴に浸漬してから引き上げるどぶ付け式めっき法でもよい。
Next, a method for manufacturing the hot-dip galvanized steel sheet of the present embodiment will be described.
In the hot-dip galvanized steel sheet of the present embodiment, hot-dip plating is performed on a steel sheet manufactured through steelmaking, casting, and hot rolling. When producing a steel sheet, pickling, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing may be further performed. The hot-dip galvanizing method may be a continuous hot-dip galvanizing method in which a steel sheet is continuously passed through a hot-dip galvanizing bath. But it may be.

溶融めっき浴は、Al:0〜90質量%、Mg:0〜10質量%を含有し、残部としてZnおよび不純物を含むことが好ましい。また、溶融めっき浴は、Al:4〜22質量%、Mg:1〜10質量%を含有し、残部がZnおよび不純物を含むものでもよい。更に、溶融めっき浴は、Si:0.0001〜2質量%を含有してもよい。更にまた、溶融めっき浴は、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.001〜2質量%含有してもよい。なお、本実施形態の溶融めっき層の平均組成は、溶融めっき浴の組成とほぼ同じである。 The hot-dip plating bath preferably contains Al: 0 to 90% by mass and Mg: 0 to 10% by mass, and contains Zn and impurities as the balance. Further, the hot-dip plating bath may contain Al: 4 to 22% by mass and Mg: 1 to 10% by mass, and the balance may contain Zn and impurities. Further, the hot-dip plating bath may contain Si: 0.0001 to 2% by mass. Furthermore, the hot-dip plating bath is any one of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, and C. One type or two or more types may be contained in a total amount of 0.001 to 2% by mass. The average composition of the hot-dip galvanized layer of the present embodiment is almost the same as the composition of the hot-dip galvanized bath.

溶融めっき浴の温度は、組成によって異なるが、例えば、400〜500℃の範囲が好ましい。溶融めっき浴の温度がこの範囲であれば、所望の溶融めっき層を形成できるためである。
また、溶融めっき層の付着量は、溶融めっき浴から引き上げられた鋼板に対してガスワイピング等の手段で調整すればよい。溶融めっき層の付着量は、鋼板両面の合計の付着量が30〜600g/mの範囲になるように調整することが好ましい。付着量が30g/m未満の場合、溶融めっき鋼板の耐食性が低下するので好ましくない。付着量が600g/m超の場合、鋼板に付着した溶融金属の垂れが発生して、溶融めっき層の表面を平滑にすることができなくなるため好ましくない。
The temperature of the hot-dip plating bath varies depending on the composition, but is preferably in the range of 400 to 500 ° C., for example. This is because if the temperature of the hot-dip plating bath is within this range, a desired hot-dip plating layer can be formed.
Further, the amount of adhesion of the hot-dip galvanized layer may be adjusted by means such as gas wiping with respect to the steel sheet pulled up from the hot-dip galvanized bath. The amount of adhesion of the hot-dip plating layer is preferably adjusted so that the total amount of adhesion on both sides of the steel sheet is in the range of 30 to 600 g / m 2. If the adhesion amount is less than 30 g / m 2 , the corrosion resistance of the hot-dip galvanized steel sheet is lowered, which is not preferable. If the amount of adhesion exceeds 600 g / m 2, the molten metal adhering to the steel sheet will hang down and the surface of the hot-dip plating layer cannot be smoothed, which is not preferable.

溶融めっき浴から引き上げた直後の鋼板または鋼材に対して、めっきの最終凝固温度以上の非酸化性ガスを溶融状態の金属にガスノズルによって局所的に吹き付ける。非酸化性ガスとしては、窒素やアルゴンを用いるとよい。また、組成によって最適な温度域は異なるが、溶融金属の温度が(最終凝固温度−5)℃〜(最終凝固温度+5)℃の範囲にあるときに、非酸化性ガスの吹き付けを行うとよい。更に、非酸化性ガスの温度は、最終凝固温度以上とすることが好ましい。例えば、Al:11%、Mg:3%のめっき組成においては、溶融金属の温度が330〜340℃のときにガス温度が最終凝固温度以上である非酸化性ガスの吹き付けを行うとよい。非酸化性ガスが吹き付けられた周辺では、溶融金属の冷却速度が低下し、これにより、表面に現れる境界または結晶粒界が粗大になる。従って、非酸化性ガスの吹き付け量と範囲を調整することによって、表面に現れる境界または結晶粒界の大きさを任意に調整できるようになる。これにより、パターン部及び非パターン部の形状を任意に調整でき、かつ、パターン部及び非パターン部を肉眼で判別できるようになる。 A non-oxidizing gas having a temperature equal to or higher than the final solidification temperature of plating is locally sprayed onto the molten metal by a gas nozzle on the steel sheet or steel material immediately after being pulled up from the hot-dip plating bath. Nitrogen or argon may be used as the non-oxidizing gas. Although the optimum temperature range differs depending on the composition, it is preferable to spray the non-oxidizing gas when the temperature of the molten metal is in the range of (final solidification temperature -5) ° C to (final solidification temperature + 5) ° C. .. Further, the temperature of the non-oxidizing gas is preferably equal to or higher than the final solidification temperature. For example, in a plating composition of Al: 11% and Mg: 3%, it is preferable to spray a non-oxidizing gas having a gas temperature equal to or higher than the final solidification temperature when the temperature of the molten metal is 330 to 340 ° C. In the vicinity where the non-oxidizing gas is blown, the cooling rate of the molten metal is reduced, which results in coarse boundaries or grain boundaries appearing on the surface. Therefore, by adjusting the spray amount and range of the non-oxidizing gas, the size of the boundary or grain boundary appearing on the surface can be arbitrarily adjusted. As a result, the shapes of the patterned portion and the non-patterned portion can be arbitrarily adjusted, and the patterned portion and the non-patterned portion can be discriminated with the naked eye.

溶融めっき層の表面に化成処理層を形成する場合には、溶融めっき層を形成した後の溶融めっき鋼板に対して、化成処理を行う。化成処理の種類は特に限定されず、公知の化成処理を用いることができる。
また、溶融めっき層の表面や化成処理層の表面に塗膜層を形成する場合には、溶融めっき層を形成した後、又は、化成処理層を形成した後の溶融めっき鋼板に対して、塗装処理を行う。塗装処理の種類は特に限定されず、公知の塗装処理を用いることができる。
When a chemical conversion treatment layer is formed on the surface of the hot-dip plating layer, the hot-dip galvanized steel sheet after the hot-dip plating layer is formed is subjected to chemical conversion treatment. The type of chemical conversion treatment is not particularly limited, and a known chemical conversion treatment can be used.
When a coating film layer is formed on the surface of the hot-dip plating layer or the surface of the chemical conversion treatment layer, the hot-dip galvanized steel sheet after the hot-dip plating layer is formed or the chemical conversion treatment layer is formed is coated. Perform processing. The type of coating treatment is not particularly limited, and a known coating treatment can be used.

本実施形態の溶融めっき鋼板は、溶融めっき層の表面を、溶融めっき層の表面に現れる境界線の密度が比較的高い部分に存在する第1領域と、溶融めっき層の表面に現れる境界線の密度が比較的低い部分に存在する第2領域とに区分し、パターン部における第1領域の面積率と、非パターン部における第1領域の面積率との差を30%以上とすることで、パターン部と非パターン部とを識別できるようになる。形成されたパターン部及び非パターン部は、印刷や塗装によって形成されたものではないため、耐久性が高くなっている。また、パターン部及び非パターン部が印刷や塗装によって形成されたものではないため、溶融めっき層の耐食性への影響もない。更に、パターン部及び非パターン部は、溶融めっき層の表面を研削等によって形成したものではない。従って、パターン部における溶融めっき層の厚みと、非パターン部における溶融めっき層の厚みとの差はみられない。よって、本実施形態の溶融めっき鋼板は、耐食性に優れたものとなる。 In the hot-dip galvanized steel sheet of the present embodiment, the surface of the hot-dip plating layer is composed of a first region existing in a portion where the density of the boundary line appearing on the surface of the hot-dip plating layer is relatively high and a boundary line appearing on the surface of the hot-dip plating layer. By dividing it into a second region existing in a portion having a relatively low density and setting the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion to 30% or more. The patterned part and the non-patterned part can be distinguished. The formed patterned portion and non-patterned portion are not formed by printing or painting, and therefore have high durability. Further, since the patterned portion and the non-patterned portion are not formed by printing or painting, there is no influence on the corrosion resistance of the hot-dip galvanized layer. Further, the patterned portion and the non-patterned portion are not formed by grinding or the like on the surface of the hot-dip galvanized layer. Therefore, there is no difference between the thickness of the hot-dip plating layer in the patterned portion and the thickness of the hot-dip plating layer in the non-patterned portion. Therefore, the hot-dip galvanized steel sheet of the present embodiment has excellent corrosion resistance.

本実施形態によれば、所定の形状に成形したパターン部の耐久性が高く、耐食性等の好適なめっき特性を有する溶融めっき鋼板を提供できる。特に本実施形態では、めっき浴から引き上げ後の溶融金属の温度が(最終凝固温度−5)℃〜(最終凝固温度+5)℃の範囲にあるときに、溶融めっき層の表面に非酸化性ガスをガスノズルによって局所的に吹き付けることで、凝固後の溶融めっき層の表面に現れる境界または結晶粒界の大きさを任意に調整して、パターン部または非パターン部の範囲を意図的若しくは人工的な形状にすることができ、直線部、曲線部、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状となるようにパターン部を配置できる。これにより、溶融めっき層の表面に、印刷、塗装または研削を行うことなく様々な意匠、商標、その他の識別マークを表すことができ、鋼板の出所の識別性やデザイン性等を高めることができる。また、パターン部によって、工程管理や在庫管理などに必要な情報や需要者が求める任意の情報を、溶融めっき鋼板に付与することもできる。これにより、溶融めっき鋼板の生産性の向上にも寄与することができる。 According to the present embodiment, it is possible to provide a hot-dip galvanized steel sheet having high durability and suitable plating characteristics such as corrosion resistance of a pattern portion formed into a predetermined shape. In particular, in the present embodiment, when the temperature of the molten metal after being pulled up from the plating bath is in the range of (final solidification temperature −5) ° C. to (final solidification temperature + 5) ° C., a non-oxidizing gas is applied to the surface of the molten plating layer. By locally spraying with a gas nozzle, the size of the boundary or crystal grain boundary appearing on the surface of the melt-plated layer after solidification can be arbitrarily adjusted to intentionally or artificially adjust the range of the patterned or non-patterned portion. The pattern part can be made into a shape, and the pattern part is arranged so as to have a shape in which any one of a straight part, a curved part, a dot part, a figure, a number, a symbol, a pattern or a character, or two or more kinds of these are combined. it can. As a result, various designs, trademarks, and other identification marks can be displayed on the surface of the hot-dip plating layer without printing, painting, or grinding, and the distinctiveness and design of the source of the steel sheet can be improved. .. Further, the pattern unit can add information necessary for process control, inventory control, etc., and arbitrary information required by the consumer to the hot-dip galvanized steel sheet. This can also contribute to the improvement of the productivity of the hot-dip galvanized steel sheet.

次に、本発明の実施例を説明する。鋼板を脱脂、水洗した後に、還元焼鈍、めっき浴浸漬、付着量制御、冷却を行うことで、表2に示すNo.1〜32のZn−Al−Mg系溶融めっき鋼板を製造した。めっき浴から鋼板を引き上げた際に、溶融金属の温度が(最終凝固温度−5)℃〜(最終凝固温度+5)℃の範囲にあるときに、鋼板表面の溶融金属に、非酸化性ガスの一種である窒素ガスを加熱した状態でガスノズルから吹き付けた。窒素ガスの吹き付け条件は表1に示す通りとした。表1に示すガス温度は、いずれも、最終凝固温度以上であった。その後、冷却して溶融金属を完全に凝固させた。窒素ガスの吹き付けによって、一辺が50mmの正方形パターンが現れるように制御した。ただし、No.30については、溶融金属の温度が(最終凝固温度−5)℃〜(最終凝固温度+5)℃の範囲よりも高い温度にあるときに、窒素ガスをガスノズルによって吹き付けた。 Next, examples of the present invention will be described. After degreasing and washing the steel sheet with water, reduction annealing, plating bath immersion, adhesion amount control, and cooling were performed to obtain the No. 1 shown in Table 2. The Zn-Al-Mg-based hot-dip galvanized steel sheets of 1-32 were manufactured. When the temperature of the molten metal is in the range of (final solidification temperature -5) ° C to (final solidification temperature +5) ° C when the steel plate is pulled up from the plating bath, the molten metal on the surface of the steel plate is exposed to non-oxidizing gas. A kind of nitrogen gas was sprayed from a gas nozzle in a heated state. The conditions for spraying nitrogen gas were as shown in Table 1. The gas temperatures shown in Table 1 were all equal to or higher than the final solidification temperature. After that, it was cooled to completely solidify the molten metal. By spraying nitrogen gas, it was controlled so that a square pattern having a side of 50 mm appeared. However, No. For No. 30, nitrogen gas was blown by the gas nozzle when the temperature of the molten metal was higher than the range of (final solidification temperature −5) ° C. to (final solidification temperature + 5) ° C.

また、上記と同様にしてZn−Al−Mg系溶融めっき鋼板を製造した。その後、溶融めっき層の表面に、インクジェット法により、一辺が50mmの正方形パターンを印刷した。この結果をNo.33として表2に示す。 Further, a Zn-Al-Mg-based hot-dip galvanized steel sheet was produced in the same manner as described above. Then, a square pattern having a side of 50 mm was printed on the surface of the hot-dip galvanized layer by an inkjet method. This result is referred to as No. It is shown in Table 2 as 33.

更に、上記と同様にしてZn−Al−Mg系溶融めっき鋼板を製造した。その後、溶融めっき層の表面を研削して、一辺が50mmの正方形パターンを形成した。この結果をNo.34として表2に示す。 Further, a Zn-Al-Mg-based hot-dip galvanized steel sheet was produced in the same manner as described above. Then, the surface of the hot-dip galvanized layer was ground to form a square pattern having a side of 50 mm. This result is referred to as No. It is shown in Table 2 as 34.

得られた溶融めっき鋼板について、パターン部及び非パターン部に含まれる第1領域及び第2領域の面積率を求めた。まず、パターン部及び非パターン部の境界は、溶融めっき層の表面を肉眼で観察することにより特定した。肉眼での境界の特定が難しい場合は、拡大鏡や光学顕微鏡の拡大像を利用した。境界の判別が難しい例では、窒素ガスの吹き付け範囲に基づき境界を設定し、第1領域及び第2領域の面積率を評価した。 With respect to the obtained galvanized steel sheet, the area ratios of the first region and the second region included in the patterned portion and the non-patterned portion were determined. First, the boundary between the patterned portion and the non-patterned portion was identified by visually observing the surface of the hot-dip galvanized layer. When it was difficult to identify the boundary with the naked eye, a magnified image of a magnifying glass or an optical microscope was used. In the case where it is difficult to determine the boundary, the boundary was set based on the blowing range of nitrogen gas, and the area ratios of the first region and the second region were evaluated.

次に、正方形のパターン(表2ではパターン部と表記)及びそれ以外の領域(表2では非パターン部と表記)に含まれる各領域の面積率は、下記の決定方法により求めた。
図1に示すように、溶融めっき層の表面に1mm間隔で仮想格子線Kを描いた。なお、図1には、溶融めっき層の現れる境界線は図示していない。次いで、仮想格子線Kによって区画される複数の領域Mを設定した。各領域Mの形状は、1辺が1mmの正方形であった。次いで、仮想格子線Kによって区画される複数の領域M毎に、各領域の重心点Gを設定した。次いで、重心点Gを中心とする円Sを描いた。円Sの直径Rは、溶融めっき層の表面に現れる境界線の合計長さが10mmとなるように調整した。
Next, the area ratio of each region included in the square pattern (denoted as the pattern portion in Table 2) and the other regions (denoted as the non-pattern portion in Table 2) was determined by the following determination method.
As shown in FIG. 1, virtual grid lines K were drawn on the surface of the hot-dip plating layer at 1 mm intervals. Note that FIG. 1 does not show the boundary line where the hot-dip galvanized layer appears. Next, a plurality of regions M partitioned by the virtual grid line K were set. The shape of each region M was a square with a side of 1 mm. Next, the center of gravity point G of each region was set for each of the plurality of regions M partitioned by the virtual grid line K. Next, a circle S centered on the center of gravity point G was drawn. The diameter R of the circle S was adjusted so that the total length of the boundary lines appearing on the surface of the hot-dip plating layer was 10 mm.

そして、複数の領域Mの円Sのうち最大の直径Rmaxと最小の直径Rminとの平均値を基準直径Raveとし、直径Rが基準直径Rave未満の円Sを有する領域を第1領域とし、直径Rが基準直径Rave以上の円Sを有する領域を第2領域とした。 Then, the average value of the maximum diameter Rmax and the minimum diameter Rmin among the circles S of the plurality of regions M is set as the reference diameter Rave, and the region having the circle S whose diameter R is less than the reference diameter Rave is set as the first region. The region having a circle S in which R is equal to or larger than the reference diameter Rave was defined as the second region.

溶融めっき層に現れる境界線は、めっき表面の明度の高い部分と明度の低い部分との境界とした。この境界は、めっき表面の撮像データにおいて、明度の値を2値化処理することによって得た境界線とした。溶融めっき層の表面の2値化処理後の境界線の一例を図3に示す。 The boundary line appearing on the hot-dip plating layer was defined as the boundary between the high-brightness portion and the low-brightness portion of the plating surface. This boundary was defined as the boundary line obtained by binarizing the brightness value in the imaging data of the plating surface. FIG. 3 shows an example of the boundary line after the binarization treatment on the surface of the hot-dip plating layer.

そして、正方形のパターン及びそれ以外の部分における第1領域及び第2領域の面積率をそれぞれ求め、第1領域の面積率の差の絶対値を求めた。 Then, the area ratios of the first region and the second region in the square pattern and the other portions were obtained, respectively, and the absolute value of the difference in the area ratios of the first region was obtained.

[識別性]
正方形状のパターン部を施した試験板の、製造した直後の初期状態のものと、6ヶ月間屋外暴露した経時状態のものを対象に、下記の判定基準に基づいて目視評価した。初期状態、経時状態とも、◎〜△を合格とした。
[Identity]
The test plates provided with the square pattern portion, which were in the initial state immediately after production and in the aged state where they were exposed outdoors for 6 months, were visually evaluated based on the following criteria. In both the initial state and the time-lapse state, ◎ to △ were accepted.

◎:5m先からでもパターン部を視認できる。
○:5m先からはパターン部を視認できないが、3m先からの視認性は高い。
△:3m先からはパターン部を視認できないが、1m先からの視認性は高い。
×:1m先からパターン部を視認できない。
⊚: The pattern part can be visually recognized even from 5 m away.
◯: The pattern portion cannot be visually recognized from 5 m ahead, but the visibility is high from 3 m ahead.
Δ: The pattern portion cannot be visually recognized from 3 m ahead, but the visibility is high from 1 m ahead.
X: The pattern part cannot be visually recognized from 1 m ahead.

[耐食性]
試験板を150×70mmに切断し、JASO−M609に準拠した腐食促進試験CCTを30サイクル試験した後、錆発生状況を調査し、下記の判定基準に基づいて評価した。◎〜△を合格とした。
[Corrosion resistance]
The test plate was cut to a size of 150 × 70 mm, and a corrosion acceleration test CCT conforming to JASO-M609 was tested for 30 cycles, and then the rust generation state was investigated and evaluated based on the following criteria. ◎ ~ △ were accepted.

◎:錆発生がなく、パターン部と非パターン部ともに美麗な意匠外観を維持している。
○:錆発生はないが、パターン部と非パターン部にごくわずかな意匠外観変化が認められる。
△:意匠外観がやや損なわれているが、パターン部と非パターン部が目視で区別できる。
×:パターン部と非パターン部の外観品位が著しく低下しており、目視で区別できない。
⊚: No rust is generated, and both the patterned part and the non-patterned part maintain a beautiful design appearance.
◯: No rust was generated, but a slight change in the design appearance was observed in the patterned part and the non-patterned part.
Δ: The appearance of the design is slightly impaired, but the patterned portion and the non-patterned portion can be visually distinguished.
X: The appearance quality of the patterned portion and the non-patterned portion is significantly deteriorated and cannot be visually distinguished.

表2に示すように、No.1〜No.29の本発明例のZn−Al−Mg系溶融めっき鋼板は、識別性及び耐食性の両方に優れていた。図4に、No.1のパターン部の走査型電子顕微鏡による観察結果を示し、図5に、No.1の非パターン部の走査型電子顕微鏡による観察結果を示す。パターン部は非パターン部に比べて、第1領域の面積率が大きく異なっており、パターン部と非パターン部との識別が可能であることがわかる。 As shown in Table 2, No. 1-No. The Zn-Al-Mg-based hot-dip galvanized steel sheet of the 29th example of the present invention was excellent in both discriminative property and corrosion resistance. In FIG. 4, No. The observation result of the pattern part of No. 1 by the scanning electron microscope is shown, and FIG. The observation result by the scanning electron microscope of the non-pattern part of 1 is shown. It can be seen that the area ratio of the first region of the patterned portion is significantly different from that of the non-patterned portion, and the patterned portion and the non-patterned portion can be distinguished from each other.

No.30については、溶融金属の温度が(最終凝固温度−5)℃〜(最終凝固温度+5)℃の範囲よりも高い温度にあるときに、窒素ガスをガスノズルによって吹き付けたため、パターン部における第1領域の面積率と、非パターン部における第1領域の面積率との差が30%未満になり、パターン部の識別性が低下した。
また、No.31及びNo.32は、溶融めっき層の組成が本発明の範囲から外れており、6ヶ月間屋外暴露した後の識別性が低下した。
No. Regarding 30, when the temperature of the molten metal was higher than the range of (final solidification temperature -5) ° C. to (final solidification temperature +5) ° C., nitrogen gas was blown by the gas nozzle, so that the first region in the pattern portion. The difference between the area ratio of the non-patterned portion and the area ratio of the first region in the non-patterned portion was less than 30%, and the distinctiveness of the patterned portion was lowered.
In addition, No. 31 and No. In No. 32, the composition of the hot-dip plating layer was out of the scope of the present invention, and the distinctiveness after outdoor exposure for 6 months was deteriorated.

一方、インクジェット法で正方形状のパターン部を印刷したNo.33は、6ヶ月間の屋外暴露によってパターン部が薄くなり、意匠性が低下した。
また、研削によって碁盤目状のパターンを形成したNo.34は、研削した箇所のめっき層の厚みが低下し、研削箇所での耐食性が低下した。
なお、No.1〜6、10〜34のめっき層には、Al相と、Al/Zn/MgZnの三元共晶組織とを含んでいた。
On the other hand, No. 1 in which a square pattern portion was printed by an inkjet method. In No. 33, the pattern portion was thinned by outdoor exposure for 6 months, and the design was deteriorated.
In addition, No. 1 in which a grid-like pattern was formed by grinding. In No. 34, the thickness of the plating layer at the ground portion was reduced, and the corrosion resistance at the ground portion was reduced.
In addition, No. The plating layers 1 to 6 and 10 to 34 contained an Al phase and a ternary eutectic structure of Al / Zn / MgZn 2.

図6には、文字列(アルファベット)をパターン部によって表した溶融めっき鋼板の表面を示す。
本発明によれば、溶融めっき鋼板の表面に、文字やマークからなるパターン部を任意に表すことができるようになる。
FIG. 6 shows the surface of a hot-dip galvanized steel sheet in which a character string (alphabet) is represented by a pattern portion.
According to the present invention, a pattern portion composed of characters and marks can be arbitrarily represented on the surface of a hot-dip galvanized steel sheet.

Figure 2021085087
Figure 2021085087

Figure 2021085087
Figure 2021085087

Claims (7)

鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:0〜90質量%、Mg:0〜10質量%を含有し、残部がZnおよび不純物を含み、
前記溶融めっき層に、所定の形状となるように配置されたパターン部と、非パターン部とが形成され、
前記パターン部及び前記非パターン部は、それぞれ、下記決定方法によって規定される第1領域または第2領域のうちの一方または両方を含み、
前記パターン部における前記第1領域の面積率と、前記非パターン部における前記第1領域の面積率との差が、絶対値で30%以上であることを特徴とする溶融めっき鋼板。
[決定方法] 前記溶融めっき層の表面に1mm間隔で仮想格子線を描き、次いで、前記仮想格子線によって区画される複数の領域毎に、各領域の重心点Gを中心とする円Sを描く。前記円Sは、前記円Sの内部に含まれる前記溶融めっき層の表面境界線の合計長さが10mmとなるように直径Rを設定する。複数の領域の円Sの直径Rのうち最大の直径Rmaxと最小の直径Rminとの平均値を基準直径Raveとし、直径Rが基準直径Rave未満の円Sを有する領域を第1領域とし、直径Rが基準直径Rave以上の円Sを有する領域を第2領域とする。
A steel plate and a hot-dip galvanized layer formed on the surface of the steel plate are provided.
The hot-dip plating layer contains Al: 0 to 90% by mass and Mg: 0 to 10% by mass in average composition, and the balance contains Zn and impurities.
A patterned portion and a non-patterned portion arranged so as to have a predetermined shape are formed on the hot-dip plating layer.
The patterned portion and the non-patterned portion include one or both of the first region and the second region defined by the following determination method, respectively.
A galvanized steel sheet characterized in that the difference between the area ratio of the first region in the pattern portion and the area ratio of the first region in the non-pattern portion is 30% or more in absolute value.
[Determination Method] Virtual grid lines are drawn on the surface of the hot-dip plating layer at 1 mm intervals, and then a circle S centered on the center of gravity point G of each region is drawn for each of a plurality of regions partitioned by the virtual grid lines. .. The diameter R of the circle S is set so that the total length of the surface boundary lines of the hot-dip plating layer contained inside the circle S is 10 mm. The average value of the maximum diameter Rmax and the minimum diameter Rmin among the diameters R of the circles S of the plurality of regions is defined as the reference diameter Rave, and the region having the circle S whose diameter R is less than the reference diameter Rave is defined as the first region. The region having a circle S in which R is equal to or larger than the reference diameter Rave is defined as the second region.
前記溶融めっき層が、平均組成で、Al:4〜22質量%、Mg:0〜10質量%を含有し、残部がZnおよび不純物を含むことを特徴とする請求項1に記載の溶融めっき鋼板。 The hot-dip galvanized steel sheet according to claim 1, wherein the hot-dip galvanized layer contains Al: 4 to 22% by mass and Mg: 0 to 10% by mass in an average composition, and the balance contains Zn and impurities. .. 前記溶融めっき層が、更に、平均組成で、Si:0.0001〜2質量%を含有することを特徴とする請求項1または請求項2に記載の溶融めっき鋼板。 The hot-dip galvanized steel sheet according to claim 1 or 2, wherein the hot-dip galvanized layer further contains Si: 0.0001 to 2% by mass in an average composition. 前記溶融めっき層が、更に、平均組成で、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.001〜2質量%含有することを特徴とする請求項1乃至請求項3の何れか一項に記載の溶融めっき鋼板。 The hot-dip plating layer further has an average composition of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, The hot-dip galvanized steel sheet according to any one of claims 1 to 3, wherein the hot-dip galvanized steel sheet contains any one or more of C in a total amount of 0.001 to 2% by mass. 前記パターン部が、直線部、曲線部、ドット部、図形、数字、記号、模様若しくは文字のいずれか1種またはこれらのうちの2種以上を組合せた形状となるように配置されていることを特徴とする請求項1乃至請求項4の何れか一項に記載の溶融めっき鋼板。 The pattern portion is arranged so as to have a shape obtained by any one of a straight line portion, a curved portion, a dot portion, a figure, a number, a symbol, a pattern or a character, or a combination of two or more of them. The hot-dip galvanized steel sheet according to any one of claims 1 to 4, which is characteristic. 前記パターン部が、意図的に形成されたものであることを特徴とする請求項1乃至請求項5の何れか一項に記載の溶融めっき鋼板。 The hot-dip galvanized steel sheet according to any one of claims 1 to 5, wherein the pattern portion is intentionally formed. 前記溶融めっき層の付着量が前記鋼板両面合計で30〜600g/mであることを特徴とする請求項1乃至請求項6のいずれか一項に記載の溶融めっき鋼板。 The hot-dip galvanized steel sheet according to any one of claims 1 to 6, wherein the amount of adhesion of the hot-dip galvanized layer is 30 to 600 g / m 2 in total on both sides of the steel sheet.
JP2019216684A 2019-11-29 2019-11-29 Hot dip plated steel sheet Active JP7339531B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019216684A JP7339531B2 (en) 2019-11-29 2019-11-29 Hot dip plated steel sheet
CN202080080805.5A CN114729439B (en) 2019-11-29 2020-07-02 Hot dip plated steel sheet
KR1020227016475A KR102676570B1 (en) 2019-11-29 2020-07-02 hot dip galvanized steel sheet
PCT/JP2020/025959 WO2021106259A1 (en) 2019-11-29 2020-07-02 Hot dip coated steel sheet
TW109131296A TWI813903B (en) 2019-11-29 2020-09-11 hot-dip galvanized steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216684A JP7339531B2 (en) 2019-11-29 2019-11-29 Hot dip plated steel sheet

Publications (2)

Publication Number Publication Date
JP2021085087A true JP2021085087A (en) 2021-06-03
JP7339531B2 JP7339531B2 (en) 2023-09-06

Family

ID=76085816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216684A Active JP7339531B2 (en) 2019-11-29 2019-11-29 Hot dip plated steel sheet

Country Status (1)

Country Link
JP (1) JP7339531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230084519A (en) * 2021-12-03 2023-06-13 닛폰세이테츠 가부시키가이샤 Zn-based coated steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279416A (en) * 2000-03-29 2001-10-10 Nippon Steel Corp Galvanized steel wire having enhanced friction and its manufacturing apparatus
JP2006265630A (en) * 2005-03-24 2006-10-05 Asahi Tec Corp Production method for metal product and the metal product
WO2011001662A1 (en) * 2009-06-30 2011-01-06 新日本製鐵株式会社 Zn-Al-Mg HOT-DIP COATED STEEL SHEET AND PROCESS FOR PRODUCTION THEREOF
WO2013002358A1 (en) * 2011-06-30 2013-01-03 新日鐵住金株式会社 High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
JP2017218647A (en) * 2016-06-09 2017-12-14 日新製鋼株式会社 MOLTEN Zn-BASED PLATED STEEL SHEET HAVING LINEAR PATTERN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279416A (en) * 2000-03-29 2001-10-10 Nippon Steel Corp Galvanized steel wire having enhanced friction and its manufacturing apparatus
JP2006265630A (en) * 2005-03-24 2006-10-05 Asahi Tec Corp Production method for metal product and the metal product
WO2011001662A1 (en) * 2009-06-30 2011-01-06 新日本製鐵株式会社 Zn-Al-Mg HOT-DIP COATED STEEL SHEET AND PROCESS FOR PRODUCTION THEREOF
WO2013002358A1 (en) * 2011-06-30 2013-01-03 新日鐵住金株式会社 High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
JP2017218647A (en) * 2016-06-09 2017-12-14 日新製鋼株式会社 MOLTEN Zn-BASED PLATED STEEL SHEET HAVING LINEAR PATTERN

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230084519A (en) * 2021-12-03 2023-06-13 닛폰세이테츠 가부시키가이샤 Zn-based coated steel sheet
CN116547405A (en) * 2021-12-03 2023-08-04 日本制铁株式会社 Zn-based coated steel sheet
KR102620034B1 (en) 2021-12-03 2024-01-03 닛폰세이테츠 가부시키가이샤 Zn-based plated steel sheet

Also Published As

Publication number Publication date
JP7339531B2 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP6648871B1 (en) Zn-Al-Mg based hot-dip coated steel sheet and method for producing the same
JP7328542B2 (en) Hot dip plated steel sheet
JP7328543B2 (en) Hot dip plated steel sheet
JP7381865B2 (en) Zn-Al-Mg hot-dipped steel sheet
JP7381864B2 (en) Zn-Al-Mg hot-dipped steel sheet
CN114787411B (en) Hot dip galvanized steel sheet excellent in bending workability and corrosion resistance and method for producing same
CN113994018A (en) Plated steel material
JP7339531B2 (en) Hot dip plated steel sheet
JP7328541B2 (en) Hot dip plated steel sheet
WO2021106259A1 (en) Hot dip coated steel sheet
KR102658299B1 (en) Zn-Al-Mg hot dip galvanized steel sheet
JP7415193B2 (en) Hot-dipped steel plate
JP7410448B1 (en) Hot-dipped steel sheet
KR102676570B1 (en) hot dip galvanized steel sheet
JP7486011B2 (en) Hot-dip galvanized steel sheet
JP2022124269A (en) Hot dipped steel sheet
TWI840251B (en) Molten-coated steel plate
JP7440819B1 (en) Hot-dipped steel plate
JP7415194B2 (en) Hot-dipped steel sheet
CN117561347A (en) High corrosion-resistant plated steel sheet excellent in corrosion resistance and surface quality, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R151 Written notification of patent or utility model registration

Ref document number: 7339531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151