JP2021083433A - Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum - Google Patents
Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum Download PDFInfo
- Publication number
- JP2021083433A JP2021083433A JP2019217338A JP2019217338A JP2021083433A JP 2021083433 A JP2021083433 A JP 2021083433A JP 2019217338 A JP2019217338 A JP 2019217338A JP 2019217338 A JP2019217338 A JP 2019217338A JP 2021083433 A JP2021083433 A JP 2021083433A
- Authority
- JP
- Japan
- Prior art keywords
- acid sequence
- amino acid
- seq
- antigen
- binding molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Mycology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、抗原結合分子、核酸組成物、ベクター組成物、細胞およびBifidobacterium longumの精製方法に関する。 The present invention relates to methods for purifying antigen-binding molecules, nucleic acid compositions, vector compositions, cells and Bifidobacterium longum.
ヒトの腸管、主に大腸には約1000種類、100兆個にも及ぶ腸内細菌(腸内細菌叢(そう)や腸内フローラとよばれる)が生息しているといわれている。ヒトの腸内細菌は、互いに密接な関係を持ちながら複雑にバランスをとっており、個人によって極めて多様で異なり、更に食事・在住国などの要因によっても異なることが知られている。 It is said that about 1000 types and 100 trillion intestinal bacteria (called intestinal flora (so) and intestinal flora) inhabit the human intestine, mainly the large intestine. It is known that human intestinal bacteria are closely related to each other and are intricately balanced, and are extremely diverse and different depending on the individual, and also differ depending on factors such as diet and country of residence.
近年、腸内細菌の中で、ヒトの健康に対してポジティブな効果をもたらす細菌として、Bifidobacterium longum(以下、「B.longum」と記す)が知られている。この、B.longumに対する抗体作製報告例がある(例えば、非特許文献1)。 In recent years, among the intestinal bacteria, Bifidobacterium longum (hereinafter referred to as "B. longum") is known as a bacterium that has a positive effect on human health. This, B. There is an example of producing an antibody against longum (for example, Non-Patent Document 1).
非特許文献1に開示される抗体はBifidobacterium属の他の種類の細菌に対しても交差性が示されており、特異性に関して改善の余地がある。 The antibody disclosed in Non-Patent Document 1 has been shown to be cross-reactive with other types of bacteria of the genus Bifidobacterium, and there is room for improvement in terms of specificity.
本発明はこのような背景を鑑みてなされたものであり、B.longumに対して特異性の高い抗原結合分子を提供することを目的とする。 The present invention has been made in view of such a background, and B.I. An object of the present invention is to provide an antigen-binding molecule having high specificity for longum.
上記課題を解決するための本発明の主たる発明は、抗原結合分子であって、Bifidobacterium longumに結合する。 The main invention of the present invention for solving the above-mentioned problems is an antigen-binding molecule that binds to Bifidobacterium longum.
その他本願が開示する課題やその解決方法については、発明の実施形態の欄および図面により明らかにされる。 Other problems disclosed in the present application and solutions thereof will be clarified in the columns and drawings of the embodiments of the invention.
本発明によれば、Bifidobacterium longumに対して特異性の高い抗原結合分子が得られる。 According to the present invention, an antigen-binding molecule having high specificity for Bifidobacterium longum can be obtained.
本発明の実施形態の内容を列記して説明する。本発明は、以下のような構成を備える。
[項目1]
Bifidobacterium longumに結合することを特徴とする、抗原結合分子。
[項目2]
他のBifidobacterium属に結合しないこと、
を特徴とする、項目1に記載の抗原結合分子。
[項目3]
前記他のBifidobacterium属は、Bifidobacterium pseudocatenulatum、Bifidobacterium infantis、Bifidobacterium breve、Bifidobacterium pseudolongum、Bifidobacterium adolescentisであること、
を特徴とする、項目2に記載の抗原結合分子。
[項目4]
前記抗原結合分子は、抗体、抗体断片またはペプチドであり、
アミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列、
を含むことを特徴とする、項目1から3のいずれか一項に記載の抗原結合分子。
[項目5]
前記抗原結合分子は、抗体または抗体断片であり、
重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
を含むことを特徴とする、項目4に記載の抗原結合分子。
[項目6]
配列番号3のアミノ酸配列、または配列番号3に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR1領域と、
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、
を含むことを特徴とする、項目5に記載の抗原結合分子。
[項目7]
項目1から6のいずれか一項に記載の抗原結合分子をコードする核酸配列、または複数の核酸配列を含むことを特徴とする核酸組成物。
[項目8]
項目7に記載の核酸配列、または複数の核酸配列を含むベクター組成物、または複数のベクターを含むことを特徴とするベクター組成物。
[項目9]
項目8に記載のベクター組成物を含むことを特徴とする細胞。
[項目10]
項目1から6のいずれか一項に記載の抗原結合分子を用いて、Bifidobacterium longumを含む試料からBifidobacterium longumを単離する、Bifidobacterium longumの精製方法。
The contents of the embodiments of the present invention will be described in a list. The present invention has the following configurations.
[Item 1]
An antigen-binding molecule characterized by binding to Bifidobacterium longum.
[Item 2]
Do not bind to other Bifidobacterium genera,
The antigen-binding molecule according to Item 1.
[Item 3]
The other genus Bifidobacterium is Bifidobacterium pseudobacterium, Bifidobacterium influenza, Bifidobacterium breve, Bifidobacterium pseudobacterium, Bifidobacterium, Bifidobacterium.
2. The antigen-binding molecule according to item 2.
[Item 4]
The antigen-binding molecule is an antibody, antibody fragment or peptide.
As the amino acid sequence, the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8.
The antigen-binding molecule according to any one of items 1 to 3, wherein the antigen-binding molecule comprises.
[Item 5]
The antigen-binding molecule is an antibody or antibody fragment.
An amino acid sequence having 90% or more homology with the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as a heavy chain amino acid sequence.
An amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain.
The antigen-binding molecule according to item 4, wherein the antigen-binding molecule comprises.
[Item 6]
A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence of SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 7.
A VLCDR3 region containing an amino acid sequence of SEQ ID NO: 8 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8.
5. The antigen-binding molecule according to item 5, wherein the antigen-binding molecule comprises.
[Item 7]
A nucleic acid composition comprising a nucleic acid sequence encoding the antigen-binding molecule according to any one of items 1 to 6, or a plurality of nucleic acid sequences.
[Item 8]
The nucleic acid sequence according to item 7, or a vector composition containing a plurality of nucleic acid sequences, or a vector composition comprising a plurality of vectors.
[Item 9]
A cell comprising the vector composition according to
[Item 10]
A method for purifying Bifidobacterium longum, which isolates Bifidobacterium longum from a sample containing Bifidobacterium longum using the antigen-binding molecule according to any one of items 1 to 6.
<実施の形態の詳細>
本実施形態に係る抗原結合分子は、例えば、特定の抗原と強く特異的に結合するモノクローナル抗体、ポリクローナル抗体、少なくとも2つの異なるエピトープ結合断片から形成される多特異性抗体(例えば、二重特異性抗体)、ヒト抗体、ヒト化抗体、ラクダ科抗体、キメラ抗体、短鎖Fv、一本鎖抗体、単一ドメイン抗体、ドメイン抗体、Fab断片、F(ab‘)2断片、抗体断片ジスルフィド結合Fv、および抗イディオタイプ抗体、細胞内抗体、抗体断片、並びに、上記のいずれかのエピトープ結合断片を包含し、また、ポリペプチド、ペプチド、核酸、合成低分子、合成高分子などが挙げられる。
<Details of the embodiment>
The antigen-binding molecule according to the present embodiment is, for example, a monoclonal antibody that strongly and specifically binds to a specific antigen, a polyclonal antibody, or a multispecific antibody formed from at least two different epitope-binding fragments (for example, bispecificity). Antibody), human antibody, humanized antibody, camel family antibody, chimeric antibody, short chain Fv, single chain antibody, single domain antibody, domain antibody, Fab fragment, F (ab') 2 fragment, antibody fragment disulfide-bound Fv , And anti-idiotype antibodies, intracellular antibodies, antibody fragments, and any of the above epitope-binding fragments, including polypeptides, peptides, nucleic acids, synthetic small molecules, synthetic polymers, and the like.
本実施形態では、抗原結合分子の一例として、モノクローナル抗体について図面を参照しながら説明する。 In this embodiment, as an example of an antigen-binding molecule, a monoclonal antibody will be described with reference to the drawings.
本実施形態に係る抗原結合分子としてのモノクローナル抗体(以下、本抗体と記す)は、B.longumに対して特異性の高いものである。このため、本実施形態に係る抗原結合分子を用いることで、B.longumを含む試料から、B.longumを単離し、または濃縮することが可能となる。 The monoclonal antibody (hereinafter referred to as the present antibody) as the antigen-binding molecule according to the present embodiment is described in B.I. It is highly specific for longum. Therefore, by using the antigen-binding molecule according to the present embodiment, B.I. From the sample containing longum, B. longum. It is possible to isolate or concentrate longum.
本実施形態において、本抗体は、他のBifidobacterium属に結合しないことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、B.longumを単離し、または濃縮することが可能となる。 In this embodiment, it is preferable that the antibody does not bind to other Bifidobacterium spp. As a result, B. From samples such as feces containing bacteria other than longum, B. longum. It is possible to isolate or concentrate longum.
本実施形態において、B.longum以外の他のBifidobacterium属としては、例えば、Bifidobacterium pseudocatenulatum、Bifidobacterium infantis、Bifidobacterium breve、Bifidobacterium pseudolongum、Bifidobacterium adolescentisが挙げられる。 In this embodiment, B.I. Examples of the genus Bifidobacterium other than longum include Bifidobacterium pseudobacterium, Bifidobacterium infantis, Bifidobacterium breve, and Bifidobacterium bacteria.
本実施形態において、本抗体は、グラム陽性菌、グラム陰性菌に対して交差性がないことが好ましい。これにより、本抗体を用いることで、他の細菌が多く含まれる糞便などから、B.longumを単離、濃縮することが可能である。 In the present embodiment, it is preferable that the antibody is not cross-reactive with Gram-positive and Gram-negative bacteria. As a result, by using this antibody, it is possible to obtain B.I. It is possible to isolate and concentrate longum.
また、本実施形態において、本抗体は、任意のアイソタイプ(例えば、IgG、IgA、IgM、IgD、IgA、およびIgY)、またはこれらのサブアイソタイプ、またはアロタイプのものでもあってもよい。 Further, in the present embodiment, the antibody may be of any isotype (eg, IgG, IgA, IgM, IgD, IgA, and IgY), or a subisotype thereof, or an allotype.
更に、本実施形態において、本抗体は、任意の哺乳動物、例として、限定されるものではないが、ヒト、サル、ウサギ、ブタ、ウマ、ラット、イヌ、ネコ、マウス、ヒツジ、ラクダなど、または他の動物、例えば鳥類(例えばニワトリ)に由来するものであってもよい。 Further, in the present embodiment, the antibody is used in any mammal, such as, but not limited to, humans, monkeys, rabbits, pigs, horses, rats, dogs, cats, mice, sheep, camels, etc. Alternatively, it may be derived from another animal, such as a bird (eg, a chicken).
本実施形態では、本抗体のアミノ酸配列の一部を以下に開示する。本実施形態において、以下に開示するアミノ酸配列と、70%の相同性を有することが好ましく、75%の相同性を有することがより好ましく、更に80%の相同性を有することが好ましく、更に85%の相同性を有することが好ましく、更に90%の相同性を有することが好ましく、更に95%の相同性を有することが好ましく、100%同一である方が好ましい機能を発揮する。 In this embodiment, a part of the amino acid sequence of the present antibody is disclosed below. In the present embodiment, it is preferable to have 70% homology with the amino acid sequence disclosed below, more preferably 75% homology, further preferably 80% homology, and further 85. It is preferable to have% homology, further 90% homology, further 95% homology, and 100% homology to exert a preferable function.
以下に本抗体のアミノ酸配列の一部を示す。式1は配列番号3であり、式2は配列番号4であり、式3は配列番号5であり、式4は配列番号6であり、式5は配列番号7であり、式6は配列番号8である。なお、別途配列表に記載した、配列番号1に示すのは本抗体の重鎖アミノ酸配列であり、配列番号2に示すのは本抗体の軽鎖アミノ酸配列である。
[式1]
Gly Phe Thr Phe Thr Asp Tyr Tyr Met Ser
[式2]
Phe Ile Arg Asn Lys Ala Lys Ala Tyr Thr Ile Glu Tyr Ser Ala Ser Val
[式3]
Glu Arg Gly Gly Phe Asp Tyr
[式4]
Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu His
[式5]
Lys Val Ser Asn Arg Phe Ser
[式6]
Ser Gln Ser Thr His Val Pro Trp Thr
A part of the amino acid sequence of this antibody is shown below. Equation 1 is SEQ ID NO: 3, Equation 2 is SEQ ID NO: 4, Equation 3 is SEQ ID NO: 5, Equation 4 is SEQ ID NO: 6, Equation 5 is SEQ ID NO: 7, and Equation 6 is SEQ ID NO: It is 8. The heavy chain amino acid sequence of the present antibody is shown in SEQ ID NO: 1 and the light chain amino acid sequence of the present antibody is shown in SEQ ID NO: 2, which are separately described in the sequence listing.
[Equation 1]
Gly Ph The Thr The Thr Asp Tyr Tyr Met Ser
[Equation 2]
The Ile Arg Asn Lys Ala Lys Ala Tyr Thr Ile Glu Tyr Ser Ala Ser Val
[Equation 3]
Glu Arg Gly Gly Phe Asp Tyr
[Equation 4]
Arg Ser Ser Grn Ser Leu Val His Ser Asn Gly Asn Thr Thr Leu His
[Equation 5]
Lys Val Ser Asn Arg The Ser
[Equation 6]
Ser Grn Ser Thr His Val Pro Trp Thr
すなわち、本実施形態において、本抗体はアミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、または濃縮することが可能となる。 That is, in the present embodiment, the present antibody has 90% or more homology as an amino acid sequence with respect to the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8. It preferably contains an amino acid sequence having sex. The present antibody preferably contains, as an amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than longum, more accurately B. longum. It is possible to isolate or concentrate longum.
本実施形態において、本抗体は、重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列とを含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、または濃縮することが可能となる。 In the present embodiment, the present antibody is 90% or more homologous to the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as a heavy chain amino acid sequence. 90% or more homology between the amino acid sequence having sex and the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain. It is preferable to include an amino acid sequence having. The present antibody preferably contains, as an amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than longum, more accurately B. longum. It is possible to isolate or concentrate longum.
本実施形態において、本抗体は、
配列番号3のアミノ酸配列、または配列番号3に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR1領域と、
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、を含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、または濃縮することが可能となる。
In this embodiment, the antibody is
A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence of SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 7.
It preferably contains the amino acid sequence of SEQ ID NO: 8 or the VLCDR3 region containing an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8. The present antibody preferably contains, as an amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than longum, more accurately B. longum. It is possible to isolate or concentrate longum.
本抗体は、B.longumの表面抗原に結合し得るが、他のポリペプチドに特異的に結合しないことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、または濃縮することが可能となる。 This antibody is based on B.I. It can bind to the surface antigen of longum, but preferably does not specifically bind to other polypeptides. As a result, B. From samples such as feces containing bacteria other than longum, more accurately B. longum. It is possible to isolate or concentrate longum.
本実施形態では、本抗体のアミノ酸配列の一部をコードする塩基配列を以下に開示する。本実施形態において、以下に開示する塩基配列と、70%の相同性を有することが好ましく、75%の相同性を有することがより好ましく、更に80%の相同性を有することが好ましく、更に85%の相同性を有することが好ましく、更に90%の相同性を有することが好ましく、更に95%の相同性を有することが好ましく、100%同一である方が好ましい機能を発揮する。 In the present embodiment, the base sequence encoding a part of the amino acid sequence of the present antibody is disclosed below. In the present embodiment, it is preferable to have 70% homology with the base sequence disclosed below, more preferably 75% homology, further preferably 80% homology, and further 85. It is preferable to have% homology, further 90% homology, further 95% homology, and 100% homology to exert a preferable function.
以下に本抗体の塩基配列の一部を示す。式7は配列番号11であり、式8は配列番号12であり、式9は配列番号13であり、式10は配列番号14であり、式11は配列番号15であり、式12は配列番号16である。なお、別途配列表に記載した、配列番号9に示すのは本抗体の重鎖アミノ酸配列の全長をコードする塩基配列であり、配列番号10に示すのは軽鎖アミノ酸配列の全長をコードする塩基配列である。
[式7]
GGGTTCACCTTCACTGATTACTACATGAGC
[式8]
TTTATTAGAAACAAAGCTAAAGCTTACACAATAGAGTACAGTGCATCTGTG
[式9]
GAGAGGGGAGGTTTTGACTAC
[式10]
AGATCTAGTCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACAT
[式11]
AAAGTTTCCAACCGATTTTCT
[式12]
TCTCAAAGTACACATGTTCCGTGGACG
A part of the base sequence of this antibody is shown below. Equation 7 is SEQ ID NO: 11,
[Equation 7]
GGGTTCCACTTCACTGATTTACCATGAGC
[Equation 8]
TTTATTAGAAACAAAGCTAAAGCTTACACATAGAGGTACAGTGCATCTGTG
[Equation 9]
GAGAGGGGGAGGGTTTTGACTAC
[Equation 10]
AGATTAGTCAGAGCCTTGTACACAGTAATGGAAACACTATTTACAT
[Equation 11]
AAAGTTTCCAACCGATTTTCT
[Equation 12]
TCTCAAAGTACACATGTTCCGTGGACG
すなわち、本実施形態において、本抗体のアミノ酸配列をコードする塩基配列として、配列番号11から16のいずれかに記載のアミノ酸配列、または配列番号11から16のいずれかに記載の塩基配列に対して90%以上の相同性を有する塩基配列を含むことが好ましい。これにより、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、または濃縮することが可能となる。 That is, in the present embodiment, as the base sequence encoding the amino acid sequence of the present antibody, with respect to the amino acid sequence set forth in any of SEQ ID NOs: 11 to 16 or the base sequence set forth in any of SEQ ID NOs: 11 to 16. It preferably contains a base sequence having 90% or more homology. As a result, B. From samples such as feces containing bacteria other than longum, more accurately B. longum. It is possible to isolate or concentrate longum.
本実施形態において、核酸組成物とは、本実施形態に係る抗原結合分子をコードする核酸配列、または複数の核酸配列を含む核酸組成物も含む。また、本実施形態では、前記核酸配列、または複数の核酸配列を含むベクター組成物、または複数のベクター組成物も含む。更に、本実施形態では、前記ベクターをも含む。本実施形態において、ベクターとは、連結している別の核酸を運搬する核酸分子を意味する。ベクターの1例としてプラスミドがある。前記プラスミドは、その中に別のDNA断片をライゲーションすることでできる、環状の二本鎖DNAである。また、ベクターの1例として、ウイルスベクターがある。前記ウイルスベクターは、別のDNA断片をウイルスゲノム中にライゲーションすることができる。ある種のベクターは、導入される宿主細胞の中で、自律的に複製することができる。なお、一例として、宿主細胞のゲノム中に組み込むことができるベクターもある。当該ゲノム中に組み込むことができるベクターは、宿主のゲノムと一緒に複製される。 In the present embodiment, the nucleic acid composition also includes a nucleic acid sequence encoding an antigen-binding molecule according to the present embodiment, or a nucleic acid composition containing a plurality of nucleic acid sequences. The present embodiment also includes the nucleic acid sequence, a vector composition containing a plurality of nucleic acid sequences, or a plurality of vector compositions. Further, in this embodiment, the vector is also included. In this embodiment, the vector means a nucleic acid molecule that carries another linked nucleic acid. One example of a vector is a plasmid. The plasmid is a circular double-stranded DNA formed by ligating another DNA fragment therein. Moreover, as an example of a vector, there is a virus vector. The viral vector can ligate another DNA fragment into the viral genome. Certain vectors can replicate autonomously in the host cell into which they are introduced. As an example, there is also a vector that can be integrated into the genome of a host cell. Vectors that can be integrated into the genome are replicated with the host's genome.
本実施形態において、細胞とは、その中に発現ベクターが導入されている細胞を意味する。宿主細胞としては、細菌細胞、微生物細胞、植物細胞、または動物細胞があげられる。 In the present embodiment, the cell means a cell into which an expression vector is introduced. Host cells include bacterial cells, microbial cells, plant cells, or animal cells.
本実施形態において、上記の抗体は、例えば、ハイブリドーマを作製する手法であり、二次リンパ組織移植(Secondary Lymphoid Organ Transplantation;SLOT)施術を含んだ免疫法によって得ることができる。SLOT施術に関して、特許第5996437号、段落0031から段落0058に記載の方法により行うことができる。本抗体の作製方法の一例を以下に説明する。 In the present embodiment, the antibody, for example, a method of producing a hybridoma, secondary lymphoid tissue transplantation; can be obtained by (S econdary L ymphoid O rgan T ransplantation SLOT) immunization containing treatment. The SLOT procedure can be performed by the method described in Japanese Patent No. 5996437, paragraphs 0031 to 0058. An example of the method for producing this antibody will be described below.
−80℃で保存していた、健常者から単離したB.longum1株(以下、B.longum Jih1 strain)のグリセロールストックから、20μlを5mlのGAM液体培地に添加し、アネロパック(登録商標)ケンキ(三菱ガス化学社製)を用いて37℃で24時間培養する。次に、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて200mlのGAM液体培地2本に対し、培養液をそれぞれ2ml添加し、更に24時間培養する。合計400mlの培養液を、7500r.p.m、15分間、4℃で遠心分離し、上清を除く。ペレットに滅菌したリン酸緩衝生理食塩水(以下、PBSと記する)を加え洗浄を行なう。菌体の洗浄は合計3回行なう。回収した菌体の一部を、VD−800R凍結乾燥機(TAITEC社製)を用いて24時間乾燥し、乾燥重量と菌体重量の比率を求める。菌体/PBSが100μg/100μlになるように滅菌済みPBSで希釈し、以下、抗原として使用する。 B. isolated from healthy subjects stored at -80 ° C. From the glycerol stock of the longum1 strain (hereinafter referred to as B. longum Jih1 strain), 20 μl is added to 5 ml of GAM liquid medium and cultured at 37 ° C. for 24 hours using Aneropack (registered trademark) Kenki (manufactured by Mitsubishi Gas Chemical Company, Inc.). .. Next, in an anaerobic chamber BACTRON 300 (manufactured by SHEL LAB), 2 ml of a culture solution is added to each of two 200 ml GAM liquid media, and the cells are further cultured for 24 hours. A total of 400 ml of the culture solution was added to 7500 r. p. Centrifuge at 4 ° C for 15 minutes and remove the supernatant. Wash the pellets by adding sterilized phosphate buffered saline (hereinafter referred to as PBS). Wash the cells 3 times in total. A part of the collected bacterial cells is dried for 24 hours using a VD-800R freeze-dryer (manufactured by TAITEC), and the ratio of the dry weight to the bacterial cell weight is determined. Dilute with sterilized PBS so that the cell / PBS becomes 100 μg / 100 μl, and use it as an antigen below.
次に、調整した前記抗原を用いて免疫を行う。前記抗原に、免疫増強剤であるImject Alum Adjuvant(Invitrogen社製)を等量加えた(以下、腹腔内投与用抗原と記す)のちに、マウスの腹腔内(i.p.)投与をする。尾微静脈投与(i.v.)の際には、前記抗原のみを、マウスに追加投与する。BALBマウス5匹に、当該腹腔内投与用抗原を、隔週2回のi.p.投与をする。当該5匹のマウスのうち、3匹は二次リンパ組織移植(Secondary Lymphoid Organ Transplantation;SLOT)施術をしない通常免疫群(Conventional immunize group)とし,残り2匹から脾臓を摘出し、SLOT施術に用いる。 Next, immunization is performed using the prepared antigen. Immunity Alum Adjuvant (manufactured by Invitrogen), which is an immunopotentiator, is added to the antigen in an equal amount (hereinafter referred to as an antigen for intraperitoneal administration), and then the mouse is intraperitoneally (ip) administered. At the time of caudal venule administration (iv), only the antigen is additionally administered to the mouse. The antigen for intraperitoneal administration was administered to 5 BALB mice twice a week. p. Administer. Of the five mice, 3 mice in secondary lymphoid tissue transplantation; and (S econdary L ymphoid O rgan T ransplantation SLOT) usually immunized group without the treatment (Conventional immunize group), the spleen was excised from 2 mice rest, Used for SLOT treatment.
前記SLOT施術をしたマウスに、最終免疫をi.v.経路にて実施した後、脾臓を摘出し、ミエローマ細胞と融合することにより、ハイブリドーマの作製を行なう。得られたハイブリドーマの中から、抗原に対し特異的反応を示し、かつ他の細菌への交差性の低い抗体を産生する能力を持つものを、フローサイトメトリーにより選抜する。 The mice subjected to the SLOT treatment were immunized with i. v. After carrying out by the route, the spleen is removed and fused with myeloma cells to prepare a hybridoma. From the obtained hybridomas, those that show a specific reaction to the antigen and have the ability to produce an antibody having low cross-reactivity to other bacteria are selected by flow cytometry.
以下に実施例を挙げて、本発明をより具体的に説明する。ただし、これらの実施例は説明のためのものであり、本発明の技術的範囲を制限するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustration purposes only and do not limit the technical scope of the present invention.
本実施形態の一例であるモノクローナル抗体の作製にあたり、まず抗原であるB.longumの調整を行った。 In preparing the monoclonal antibody, which is an example of the present embodiment, first, the antigen B.I. The longum was adjusted.
−80℃で保存していた、健常者から単離したB.longum Jih1株のグリセロールストックから、20μlを5mlのGAM液体培地(日水製薬株式会社製)に添加し、アネロパック(登録商標)ケンキ(三菱ガス化学社製)を用いて37℃で24時間培養した。次に、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて200mlのGAM液体培地2本に対し、培養液をそれぞれ2ml添加し、更に24時間培養した。合計400mlの培養液を、7500r.p.m、15分間、4℃で遠心分離し、上清を除いた。残ったペレットに滅菌PBSを加え洗浄を行なった。菌体の洗浄は合計3回行なった。回収した菌体の一部を、VD−800R凍結乾燥機(TAITEC社製)を用いて24時間乾燥し、乾燥重量と菌体重量の比率を求めた。菌体/PBSが100μg/100μlになるように滅菌済みPBSで希釈し、以下、抗原として使用した。 B. isolated from healthy subjects stored at -80 ° C. From the glycerol stock of the longum Jih strain, 20 μl was added to 5 ml of GAM liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.) and cultured at 37 ° C. for 24 hours using Aneropack (registered trademark) Kenki (manufactured by Mitsubishi Gas Chemical Company, Inc.). .. Next, 2 ml of each of the culture solutions was added to two 200 ml GAM liquid media in an anaerobic chamber BACTRON 300 (manufactured by SHEL LAB), and the cells were further cultured for 24 hours. A total of 400 ml of the culture solution was added to 7500 r. p. The supernatant was removed by centrifugation at 4 ° C. for 15 minutes. Sterilized PBS was added to the remaining pellets for washing. The cells were washed 3 times in total. A part of the recovered cells was dried for 24 hours using a VD-800R freeze-dryer (manufactured by TAITEC), and the ratio of the dry weight to the cell weight was determined. The cells / PBS were diluted with sterilized PBS so as to be 100 μg / 100 μl, and used as an antigen below.
次に、調整した前記抗原を用いて免疫を行った。前記抗原に、免疫増強剤であるImject Alum Adjuvant(Invitrogen社製)を等量加えた(以下、調整済抗原と記す)のちに、マウスの腹腔内(i.p.)投与を行った。尾微静脈(i.v.)投与の際には、前記抗原のみを、マウスに追加投与した。BALBマウス5匹に、当該調整済抗原を、隔週2回のi.p.投与をした。当該5匹のマウスのうち、3匹はSLOT施術をしない通常免疫群(Conventional immunize group)とし,残り2匹から脾臓を摘出し、SLOT施術に用いた。 Next, immunization was performed using the prepared antigen. An equal amount of an immunopotentiator, Immuno Alum Adjuvant (manufactured by Invitrogen) was added to the antigen (hereinafter referred to as adjusted antigen), and then intraperitoneal (ip) administration of mice was performed. When the tail venule (iv) was administered, only the antigen was additionally administered to the mice. The adjusted antigen was applied to 5 BALB mice twice a week i. p. It was administered. Of the five mice, three were in the conventional immune group without SLOT treatment, and the spleens were removed from the remaining two mice and used for SLOT treatment.
前記SLOT施術をしたマウスに、最終免疫をi.v.経路にて実施したあと、脾臓を摘出し、ミエローマ細胞と融合することにより、ハイブリドーマの作製を行なった。 The mice subjected to the SLOT treatment were immunized with i. v. After carrying out by the route, the spleen was removed and fused with myeloma cells to prepare a hybridoma.
次に、作製したハイブリドーマの中から、抗原に対し特異的反応を示す抗体を産生する能力を持つものをフローサイトメトリーにより選抜した。 Next, from the produced hybridomas, those having the ability to produce an antibody showing a specific reaction to the antigen were selected by flow cytometry.
前記選抜した、いくつかのハイブリドーマが産生する抗体に関して、特異性と、他の細菌への交差性を検討した。前記抗原として使用した、健常者から単離したB.longum Jih1株に加え、他のBifidobacterium属細菌として、理化学研究所バイオリソースセンターの微生物材料開発室(JCM)より購入した細菌種(図1)を、第1試験細菌群として検討対象とした。 The specificity and cross-reactivity to other bacteria of the selected antibodies produced by some hybridomas were examined. B. isolated from healthy subjects used as the antigen. In addition to the longum Jih1 strain, as another Bifidobacterium genus bacterium, a bacterial species (Fig. 1) purchased from the Japan Collection of Microorganisms (JCM) of the RIKEN BioResource Center was used as the first test bacterial group.
第1試験細菌群の培養条件(以下、試験用培養条件1と記す)は以下の通りである。GAM液体培地(日水製薬株式会社製)5mlに対して、各細菌のグリセロールストックより20μlを添加し、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて24時間培養した。 The culture conditions of the first test bacterial group (hereinafter referred to as test culture condition 1) are as follows. To 5 ml of GAM liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.), 20 μl was added from the glycerol stock of each bacterium, and the cells were cultured in an anaerobic chamber BACTRON 300 (manufactured by SHEL LAB) for 24 hours.
第1試験細菌群は、以下に示すグラム染色法を用いて、培養後に単一細菌であることを確認した。5μlの前記菌培養液をスライドガラスに塗布し、火炎固定した。クリスタル紫を各スポットあたり100μlずつ作用させ,1分間染色したのち水洗した。次に、ヨウ素を100μl作用させ,30秒染色したのち水洗した。ヨウ素液染色をもう一度繰り返した。エタノール/アセトン混合脱色液を各スポットあたり100μlずつ作用させ,水洗し乾燥した。最後に、パイフェル溶液を100μl作用させ、1分間染色したのち水洗した。乾燥後,光学顕微鏡下で観察しToupView(ToupTek Photonics社製)を用いて画像を取得した。 The first test bacterial group was confirmed to be a single bacterium after culturing using the Gram stain method shown below. 5 μl of the above-mentioned bacterial culture solution was applied to a slide glass and fixed by flame. 100 μl of crystal violet was allowed to act on each spot, stained for 1 minute, and then washed with water. Next, 100 μl of iodine was allowed to act, the mixture was stained for 30 seconds, and then washed with water. Iodine solution staining was repeated once more. An ethanol / acetone mixed decolorizing solution was allowed to act in an amount of 100 μl per spot, washed with water and dried. Finally, 100 μl of the Paifel solution was allowed to act, stained for 1 minute, and then washed with water. After drying, it was observed under an optical microscope and an image was acquired using ToupView (manufactured by ToupTek Photonics).
特異性と交差性の検討のため、抗体を含む細胞培養上清(以下、含抗体上清)を調整した。50mlの細胞培養培地が含まれたフラスコに2X106の前記ハイブリドーマ細胞を添加し、37℃ 5% CO2 環境下で一週間培養した。フラスコ内の溶液を50mlチューブに移し、1000 rpm,5min,4℃で遠心分離した。夾雑物を除くために上清を0.22umフィルターを通し、50mlチューブに回収した。最終濃度0.05%になるようにNaN3を加え、使用まで4℃で保管した。 In order to examine the specificity and cross-reactivity, a cell culture supernatant containing an antibody (hereinafter referred to as an antibody-containing supernatant) was prepared. Adding the hybridoma cells 2X10 a flask cell culture medium was included in 50 ml 6, and one week cultured under 37 ℃ 5% CO 2 environment. The solution in the flask was transferred to a 50 ml tube and centrifuged at 1000 rpm, 5 min, 4 ° C. The supernatant was filtered through a 0.22 um filter to remove contaminants and collected in 50 ml tubes. NaN 3 was added to a final concentration of 0.05%, and the mixture was stored at 4 ° C. until use.
含抗体上清中の抗体の特異性と交差性の測定にはフローサイトメーターAccuri C6 plus(BD社製)を用いた。前記試験用培養条件1に従い、対象の細菌種を培養し、当該培養液を8000×g,5min,4℃で遠心分離し、培養上清を除いた。その後、PBSにて二回洗浄した後、菌体ペレットをPBSで再懸濁した。分光光度計Nanodrop(登録商標) 2000 C(Thermo Fisher Scientific社製)でOD値(光学濃度)を測定し、大腸菌における菌体数変換式である1OD660=8×108 cells/mlに基づき,2%BSA/PBSで1×107 cells/tubeまたは1×108 cells/tubeに希釈した。希釈後、17,800×g,5min,4℃で遠心分離して上清を除き、残ったペレットに含抗体上清を100μl加えて懸濁し、30min、4℃で静置した。また、第1試験細菌群と反応性をもたないIgG1 Isotype Control(SIGMA社製)をネガティブコントロールとし、同様に第1試験細菌群と反応させた。その後、滅菌済みPBSを1ml加え洗浄し、17,800×g,5 min,4℃で遠心分離し,上清を除去した。この過程を二回繰り返した後、二次抗体を100μlずつ添加し、30min,4℃で静置し、検討に使用した。なお、二次抗体はGoat anti−Mouse IgG (H+L) Cross−Adsorbed Secondary Antibody, Alexa Fluor(登録商標) 488(Thermo Fisher Scientific社製)を2%BSA/PBSで500倍希釈したものを用いた。更に、FACS測定の直前に、死細菌と区別するため、Propidium iodide(PI: Invitrogen社製)を1μlずつ添加した。取得されたFCS version 3.0ファイルは、FlowJo(FlowJo LLC)にて解析した。 A flow cytometer Accuri C6 plus (manufactured by BD) was used to measure the specificity and cross-reactivity of the antibody in the antibody-containing supernatant. According to the test culture condition 1, the target bacterial species was cultured, and the culture solution was centrifuged at 8000 × g, 5 min, 4 ° C., and the culture supernatant was removed. Then, after washing twice with PBS, the cell pellet was resuspended with PBS. The OD value (optical concentration) was measured with a spectrophotometer Nanodrop (registered trademark) 2000 C (manufactured by Thermo Fisher Scientific), and based on 1OD 660 = 8 × 10 8 cells / ml, which is a cell number conversion formula in Escherichia coli. It was diluted with 2% BSA / PBS to 1 × 10 7 cells / tube or 1 × 10 8 cells / tube. After dilution, the mixture was centrifuged at 17,800 × g, 5 min, 4 ° C. to remove the supernatant, and 100 μl of the antibody-containing supernatant was added to the remaining pellets for suspension, and the mixture was allowed to stand at 4 ° C. for 30 minutes. In addition, IgG1 Isotype Control (manufactured by SIGMA), which has no reactivity with the first test bacterial group, was used as a negative control, and was similarly reacted with the first test bacterial group. Then, 1 ml of sterilized PBS was added and washed, and the mixture was centrifuged at 17,800 × g, 5 min, 4 ° C., and the supernatant was removed. After repeating this process twice, 100 μl of the secondary antibody was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes and used for the study. The secondary antibody was obtained by diluting Goat anti-mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor (registered trademark) 488 (manufactured by Thermo Fisher Scientific) with 2% BSA / PBS. Further, immediately before the FACS measurement, 1 μl of Propidium iodide (PI: manufactured by Invitrogen) was added to distinguish it from dead bacteria. The acquired FCS version 3.0 file was analyzed by FlowJo (FlowJo LLC).
図2には、Jih1と名付けたハイブリドーマの培養上清(以下、Jih1培養上清と記す)を、含抗体上清として用いた、前記FACSの結果を示す。当該結果は、Jih1培養上清に含まれる抗体(以下、Jih1抗体と記す)は、B.longumには結合するが、その他図1に示した他のBifidobacterium属には結合しないことを示した。 FIG. 2 shows the results of the FACS using a hybridoma culture supernatant named Jih1 (hereinafter referred to as Jih1 culture supernatant) as an antibody-containing supernatant. The results show that the antibody contained in the Jih1 culture supernatant (hereinafter referred to as Jih1 antibody) is described in B.I. It was shown that it binds to longum but not to other Bifidobacterium genus shown in FIG.
次に、Bifidobacterium属以外のグラム陽性菌およびグラム陰性菌に対する交差反応性を検討するため、JCMより購入した細菌種(図3に示す。以下、第2試験細菌群と記す)とJih1培養上清の反応性を調べた。各細菌の培養条件は前記試験用培養条件1と同様であり、培養上清は段落0044に記載したものと同様であり、FACSの手法は段落0045に記載したものを用いた。 Next, in order to examine the cross-reactivity with Gram-positive and Gram-negative bacteria other than the genus Bifidobacterium, the bacterial species purchased from JCM (shown in FIG. 3, hereinafter referred to as the second test bacterial group) and the Jih1 culture supernatant. The reactivity of was examined. The culture conditions of each bacterium were the same as those described in the test culture condition 1, the culture supernatant was the same as that described in paragraph 0044, and the FACS method used was that described in paragraph 0045.
図4には、第2試験細菌群に対し、Jih1培養上清を反応させたFACSの結果を示す。当該結果は、Jih1培養上清は第2試験細菌群には反応しないことを示した。これにより、Jih1抗体はB.longumに対して特異性が高く、他の細菌に対して交差性が低い抗体であることが証明された。 FIG. 4 shows the results of FACS in which the Jih1 culture supernatant was reacted with the second test bacterial group. The results showed that the Jih1 culture supernatant did not react with the second test bacterial group. As a result, the Jih1 antibody becomes B.I. It proved to be an antibody with high specificity for longum and low cross-reactivity to other bacteria.
次に、Jih1抗体の有用性を示すため、B.longumおよび図5に記載した計6種類の腸内細菌基準株を混合した疑似腸内細菌叢から、Magnetic−activated cell sorting(MACS、登録商標)を用いて、B.longumを単離、濃縮できるかどうかの検討を行った。 Next, in order to show the usefulness of the Jih1 antibody, B.I. From the pseudo-intestinal flora, which is a mixture of longum and a total of 6 types of gut microbiota reference strains shown in FIG. 5, using Magnetic-active cell sorting (MACS, registered trademark), B. longum. It was examined whether longum could be isolated and concentrated.
含抗体上清中の抗体の特異性と交差性の測定にはフローサイトメーターAccuri C6 plus(BD社製)を用いた。前記試験用培養条件1に従い、対象の前記腸内細菌基準株を培養し、当該培養液を8000×g,5min,4℃で遠心分離し、培養上清を除いた。その後、PBSにて二回洗浄した後、菌体ペレットをPBSで再懸濁した。分光光度計Nanodrop(登録商標) 2000 C(Thermo Fisher Scientific社製)でOD値(光学濃度)を測定し、大腸菌における菌体数変換式である1OD660=8×108 cells/mlに基づき,2%BSA/PBSで1×107 cells/tubeに希釈した。希釈後、17,800×g,5min,4℃で遠心分離して上清を除き、残ったペレットに含抗体上清を100μl加えて懸濁し、30min、4℃で静置した。また、前記腸内細菌基準株と反応性をもたないIgG1 Isotype Control(SIGMA社製)をネガティブコントロールとし、同様に腸内細菌基準株と反応させた。その後、滅菌済みPBSを1ml加え洗浄し、17,800×g、5min、4℃で遠心分離し,上清を除去した。この過程を三回繰り返した後、二次抗体を100μlずつ添加し、30min,4℃で静置し、検討に使用した。MACS(登録商標)に用いる二次抗体として、Anti−mouse IgG PE標識抗体(abcam社製)を2%BSA/PBSで2000倍希釈したものを用いた。一次抗体洗浄時と同様の方法にて洗浄を行った後、2%BSA/PBSを400μl加え、測定まで4℃で保存した。取得されたFCSファイルは、解析ソフトFlowJo version 10.5.3で解析した。 A flow cytometer Accuri C6 plus (manufactured by BD) was used to measure the specificity and cross-reactivity of the antibody in the antibody-containing supernatant. According to the test culture condition 1, the target strain of the intestinal bacterium was cultured, and the culture solution was centrifuged at 8000 × g, 5 min, 4 ° C., and the culture supernatant was removed. Then, after washing twice with PBS, the cell pellet was resuspended with PBS. The OD value (optical concentration) was measured with a spectrophotometer Nanodrop (registered trademark) 2000 C (manufactured by Thermo Fisher Scientific), and based on 1OD 660 = 8 × 10 8 cells / ml, which is a cell number conversion formula in Escherichia coli. It was diluted with 2% BSA / PBS to 1 × 10 7 cells / tube. After dilution, the mixture was centrifuged at 17,800 × g, 5 min, 4 ° C. to remove the supernatant, and 100 μl of the antibody-containing supernatant was added to the remaining pellets for suspension, and the mixture was allowed to stand at 4 ° C. for 30 minutes. In addition, IgG1 Isotype Control (manufactured by SIGMA), which has no reactivity with the gut microbiota reference strain, was used as a negative control and was similarly reacted with the gut microbiota reference strain. Then, 1 ml of sterilized PBS was added and washed, and the mixture was centrifuged at 17,800 × g, 5 minutes at 4 ° C., and the supernatant was removed. After repeating this process three times, 100 μl of the secondary antibody was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes and used for the study. As the secondary antibody used for MACS (registered trademark), an Anti-mouse IgG PE-labeled antibody (manufactured by abcam) diluted 2000-fold with 2% BSA / PBS was used. After washing in the same manner as in the primary antibody washing, 400 μl of 2% BSA / PBS was added, and the mixture was stored at 4 ° C. until measurement. The acquired FCS file was analyzed with the analysis software FlowJo version 10.5.3.
1%BSA/PBSで20倍希釈したAnti−PE標識 MACS(登録商標) beads(Miltenyi Biotec社製)を、前記培養液に200μlずつ添加し、15min,4℃で反応させた。滅菌済みPBSを1ml加え懸濁し、14000r.p.m.、5min、4℃で遠心分離し上清を除去した。この洗浄工程を合計3回行った後、0.5%BSA/PBS(2mM EDTA含有)液500μlで懸濁した。この懸濁液をMACS(登録商標) midi column(Miltenyi Biotec社製)を用いて分離し、磁気ビーズが結合した標的分画(Elution)およびその他の分画(Flow Through)に分離した。これらの分離した溶液を8,000×g,15min,4℃で遠心分離し,2%BSA/PBS400μlに懸濁した。Accuri C6 plus(BD社製)を用いてMACS(登録商標)による分離前と分離後における各種細菌懸濁液、Flow ThroughとElutionと、Jih1培養上清との反応性を解析した。取得されたFCSファイルは、解析ソフトFlowJo version 10.5.3で解析した。またFlow ThroughとElutionの一部は14000r.p.m.、10min、4℃で菌体ペレットを回収し、使用まで−80℃にて保管した。 Anti-PE-labeled MACS® beads (manufactured by Miltenyi Biotec) diluted 20-fold with 1% BSA / PBS were added to the culture medium in an amount of 200 μl each and reacted at 15 min and 4 ° C. 1 ml of sterilized PBS was added and suspended, and 14000 r. p. m. The supernatant was removed by centrifugation at 5 minutes and 4 ° C. After performing this washing step a total of 3 times, the mixture was suspended in 500 μl of 0.5% BSA / PBS (containing 2 mM EDTA) solution. The suspension was separated using a MACS® midi volume (manufactured by Miltenyi Biotec) and separated into a target fraction (Elution) to which magnetic beads were bound and another fraction (Flow Through). These separated solutions were centrifuged at 8,000 xg, 15 min, 4 ° C. and suspended in 400 μl of 2% BSA / PBS. Using Accuri C6 plus (manufactured by BD), the reactivity of various bacterial suspensions, Flow Through and Elution, with the Jih1 culture supernatant before and after separation by MACS® was analyzed. The acquired FCS file was analyzed with the analysis software FlowJo version 10.5.3. In addition, a part of Flow Through and Elution is 14000r. p. m. Bacterial pellets were collected at 10 min and 4 ° C and stored at −80 ° C until use.
図6に、MACS(登録商標)の検討結果を示す。Jih1抗体に反応せず流れ出たFlow Throughと、Jih1抗体に反応した後、抗体からはがしたElutionには、流れ出たものに差があることが判明した。 FIG. 6 shows the examination results of MACS (registered trademark). It was found that there was a difference between the Flow Through that flowed out without reacting with the Jih1 antibody and the Elution that flowed out from the antibody after reacting with the Jih1 antibody.
次に、Flow ThroughとElutionに含まれる菌体の種類について、RT(Real Time)−PCRを用いて確認をした。 Next, the types of bacterial cells contained in Flow Through and Elution were confirmed using RT (Real Time) -PCR.
段落0051において、−80℃で保存したFlow ThroughとElutionの菌体に対して、400μlのTE10を加え溶解し、そこにLysozyme(300 mg/ml)(WAKO社製)を20μl加えた。当該サンプルをローテーションしながら37℃,8h反応させた。その後、当該サンプルに、精製されたAchromopeptidase(登録商標)(20000units/ml)(WAKO社製)を12μl加えて混合し、更にローテーションしながら37℃,8h反応させた。その後、50μlの10%SDS(pH7.2)を加えて混合し、更にProteinase K(25 mg/ml)(MERCK社製)を12μl加え、ヒートブロック(Waken社製)を用いて55℃で一晩インキュベートした。更に、500μlのPhenol/Chloroform/Isoamylalcohol(25:24:1)を加え、Micro Mixer(TAITEC社製)を用いて最大速度で3min撹拌したのち、17,800×g,10 min,20℃で遠心分離し,上清を採取した。当該上清に、再度500μlのPhenol/Chloroform/Isoamylalcoholを加え、同様に撹拌し遠心分離した後に上清を採取した。回収した上清に40μlの3M Sodium Acetateを加え混合し、1mlの冷やした100%Ethanolを加え、ボルテックスで撹拌した後に−80℃で1時間静置した。その後、17,800×g、10 min、4℃で遠心分離し上清を捨て、70%Ethanolを500μl加え、転倒混和した。17,800×g、10 min、4℃で遠心分離し上清を捨て、遠心エバポレーターでチューブ内の水分を蒸発させた。残った沈殿は生成された核酸であり、当該沈殿に、TE10を100μl加え、Micro Mixerを用いて最大速度で1min撹拌後、80μlを別チューブに移し、RNaseA(10mg/ml)を1μl加え、37℃,一晩インキュベートした。 In paragraph 0051, 400 μl of TE10 was added and dissolved in the cells of Flow Through and Elution stored at −80 ° C., and 20 μl of Lysozyme (300 mg / ml) (manufactured by WAKO) was added thereto. The sample was reacted at 37 ° C. for 8 hours while rotating. Then, 12 μl of purified Achromopeptidase (registered trademark) (20000 units / ml) (manufactured by WAKO) was added to the sample, mixed, and further reacted at 37 ° C. for 8 hours while rotating. Then, 50 μl of 10% SDS (pH 7.2) is added and mixed, and then 12 μl of Proteinase K (25 mg / ml) (manufactured by MERCK) is added, and 1 at 55 ° C. using a heat block (manufactured by Waken). Incubated evening. Further, 500 μl of Phenol / Chloroform / Isoamyl alcohol (25: 24: 1) was added, and the mixture was stirred at a maximum speed of 3 min using a Micro Mixer (manufactured by TAITEC), and then centrifuged at 17,800 × g, 10 min, 20 ° C. It was separated and the supernatant was collected. To the supernatant, 500 μl of Phenol / Chloroform / Isoamyl alcohol was added again, and the supernatant was collected after stirring and centrifuging in the same manner. 40 μl of 3M Sodium Acatete was added to the collected supernatant, mixed, 1 ml of chilled 100% Ethanol was added, and the mixture was stirred with vortex and allowed to stand at −80 ° C. for 1 hour. Then, the mixture was centrifuged at 17,800 × g, 10 min, 4 ° C., the supernatant was discarded, 500 μl of 70% ethanol was added, and the mixture was inverted and mixed. Centrifugation at 17,800 xg, 10 min, 4 ° C. was performed, the supernatant was discarded, and the water content in the tube was evaporated with a centrifugal evaporator. The remaining precipitate is the produced nucleic acid. To the precipitate, 100 μl of TE10 was added, and after stirring for 1 min at the maximum speed using a Micro Mixer, 80 μl was transferred to another tube, 1 μl of RNaseA (10 mg / ml) was added, and 37 Incubated overnight at ° C.
前記取得した核酸を用いて、Nanodropを用いてDNA濃度を測定し、Pure Water(Wako社製)を用いてサンプル濃度を100ngに希釈し、−30℃で保存した。測定したDNA濃度に基づき、100ngに希釈したDNAをPure Waterを用いて10倍希釈した。希釈したDNAを鋳型とし、SYBR(登録商標) Premix Ex Taq2(TaKaRa社製)を用いて、RT−PCRを行った。PCR条件は初期変性95℃、30sec→(96℃、30sec、55℃、45sec、72℃、1min)×40サイクル、で実施した。使用したプライマーを図7に示す。解析方法は、Eubacteriumを標的とし16S rRNA配列特異的プライマー(図7)により増幅された遺伝子発現量を基準に、B.longum特異的プライマー(図7)とBacteroides属菌特異的プライマー(図7)により増幅された遺伝子発現量を比較Ct法により解析した。 Using the obtained nucleic acid, the DNA concentration was measured using Nanodrop, the sample concentration was diluted to 100 ng using Pure Water (manufactured by Wako), and stored at −30 ° C. Based on the measured DNA concentration, the DNA diluted to 100 ng was diluted 10-fold with Pure Water. RT-PCR was performed using diluted DNA as a template and SYBR® Premix Ex Taq2 (manufactured by TakaRa). The PCR conditions were initial denaturation 95 ° C., 30 sec → (96 ° C., 30 sec, 55 ° C., 45 sec, 72 ° C., 1 min) × 40 cycles. The primers used are shown in FIG. The analysis method was based on the gene expression level amplified by 16S rRNA sequence-specific primers (Fig. 7) targeting Eubacterium. The gene expression levels amplified by the longum-specific primer (Fig. 7) and the Bacteroides genus-specific primer (Fig. 7) were analyzed by the comparative Ct method.
図8にRT−PCRの結果を示す。B.longum特異的プライマーを用いた結果は、Elution中にB.longumが含まれていることを証明した。これにより、Jih1抗体を用いて、B.longumを特異的に単離、濃縮できることが判明した。 FIG. 8 shows the results of RT-PCR. B. Results using longum-specific primers show that B. longum-specific primers were used during Elution. It proved to contain longum. As a result, using the Jih1 antibody, B.I. It was found that longum can be specifically isolated and concentrated.
更に、単離、濃縮したB.longumが、培養可能かどうかを検討した。 Furthermore, isolated and concentrated B.I. It was examined whether longum could be cultivated.
MACS分離前の培養液、分離後のFlow Through、Elutionの各溶液を17,800×g、5 min、4℃で遠心分離し,2%BSA/PBSで400μlに懸濁した。当該懸濁した溶液を50μl、滅菌済みコンラージ棒を用いて菌液を寒天培地に撒き、培養した。24h培養した後、プレート上に形成されたコロニーを撮影した。 The culture solution before MACS separation and each solution of Flow Through and Elution after separation were centrifuged at 17,800 × g, 5 min, and 4 ° C., and suspended in 400 μl with 2% BSA / PBS. 50 μl of the suspended solution was sprinkled on an agar medium using a sterilized spreader and cultured. After culturing for 24 hours, the colonies formed on the plate were photographed.
図9に単離、濃縮したB.longumの培養試験の結果を示す。MACS分離前の培養液ではコロニーが形成された。また、前記RT−PCRの結果からB.longumが単離されているElutionでもコロニーの形成が見られたが、前記RT−PCRの結果からB.longumが単離されていないFlow Throughではコロニーの形成が見られなかった。 B. isolated and concentrated in FIG. The result of the culture test of longum is shown. Colonies were formed in the culture medium before MACS separation. In addition, from the results of the RT-PCR, B. Colony formation was also observed in Elution where longum was isolated, but from the results of the RT-PCR, B. longum was observed. No colony formation was observed in Flow Through, in which longum was not isolated.
Jih1抗体を産生するハイブリドーマの維持は以下のように行った。ハイブリドーマが保存された凍結バイアルチューブを37℃で急速解凍した。1mlのハイブリドーマ細胞溶液に10mlの細胞培養培地(RPMI/10%FCS/1%ピルビン酸ナトリウム溶液/1X penicillin− streptomycin−グルタミン溶液(GIBCO社製))を添加し、1000rpm,5min,4℃で遠心分離した。上清を除去し、1mlの培地で再懸濁したのちに、14mlの培地が入った培養フラスコに移し、37℃、5%、CO2環境下で培養した。飽和状態に達する直前に細胞液を10倍になるように継代を続けた。
The maintenance of hybridomas producing Jih1 antibody was performed as follows. Frozen vial tubes containing hybridomas were rapidly thawed at 37 °
更に、シークエンス解析のために、以下のようにJih1抗体産生ハイブリドーマ細胞の調整を行った。培養したハイブリドーマを回収し、1000rpm,5min,4℃で遠心分離した。上清を除き、10mlの滅菌PBSに細胞を再懸濁した。1000rpm,5min,4℃で遠心分離し、滅菌PBSを加え、血球計算版を用いて細胞数を数えた。細胞を2X107/mlになるように調整し、100μlの細胞溶液を新しいチューブ分取し、そこにRNA laterを900μl加え懸濁し、4℃で一晩インキュベートし、当該サンプルをDNAシークエンス解析に用いた。 Furthermore, for sequence analysis, Jih1 antibody-producing hybridoma cells were prepared as follows. The cultured hybridoma was collected and centrifuged at 1000 rpm, 5 min, and 4 ° C. The supernatant was removed and the cells were resuspended in 10 ml sterile PBS. Centrifugation was performed at 1000 rpm, 5 min, and 4 ° C., sterile PBS was added, and the number of cells was counted using a hemocytometer. The cells were adjusted to 2 x 10 7 / ml, 100 μl of cell solution was dispensed into a new tube, 900 μl of RNA later was added and suspended, and the sample was incubated overnight at 4 ° C. and the sample was used for DNA sequence analysis. There was.
以上示したように、得られた抗体は、B.longumに対して高い特異性を有し、B.longumを特異的に精製することができる。このため、本抗体は、B.longum以外の細菌も含む糞便などの試料から、より精度よくB.longumを単離し、更には濃縮することができるため、医薬、ヘルスケア等の分野において貢献することができる。このように、本実施形態により、腸内細菌叢を構成する腸内細菌の中の一つであるB.longumに対し高い特異性を持つ抗原結合分子と、当該抗原結合分子を用いてB.longumを含む細菌集団から、標的とするB.longumのみを効率よく単離、濃縮することができる。 As shown above, the obtained antibody was obtained from B.I. It has high specificity for longum, and B. longum. Longum can be specifically purified. Therefore, this antibody is based on B.I. From samples such as feces containing bacteria other than longum, more accurately B. longum. Since longum can be isolated and further concentrated, it can contribute to the fields of medicine, health care and the like. As described above, according to the present embodiment, B. cerevisiae, which is one of the intestinal bacteria constituting the intestinal flora. Using an antigen-binding molecule having high specificity for longum and the antigen-binding molecule, B. longum is used. From a bacterial population containing longum, target B. longum. Only longum can be efficiently isolated and concentrated.
上述した実施形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiments are merely examples for facilitating the understanding of the present invention, and are not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes an equivalent thereof.
Claims (10)
を特徴とする、請求項1に記載の抗原結合分子。 Do not bind to other Bifidobacterium genera,
The antigen-binding molecule according to claim 1.
を特徴とする、請求項2に記載の抗原結合分子。 The other genus Bifidobacterium is Bifidobacterium pseudobacterium, Bifidobacterium influenza, Bifidobacterium breve, Bifidobacterium pseudobacterium, Bifidobacterium, Bifidobacterium.
2. The antigen-binding molecule according to claim 2.
アミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列、
を含むことを特徴とする、請求項1から3のいずれか一項に記載の抗原結合分子。 The antigen-binding molecule is an antibody, antibody fragment or peptide.
As the amino acid sequence, the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8.
The antigen-binding molecule according to any one of claims 1 to 3, wherein the antigen-binding molecule comprises.
重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
を含むことを特徴とする、請求項4に記載の抗原結合分子。 The antigen-binding molecule is an antibody or antibody fragment.
An amino acid sequence having 90% or more homology with the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as a heavy chain amino acid sequence.
An amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain.
The antigen-binding molecule according to claim 4, wherein the antigen-binding molecule comprises.
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、
を含むことを特徴とする、請求項5に記載の抗原結合分子。 A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence of SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology with respect to the amino acid sequence set forth in SEQ ID NO: 7.
A VLCDR3 region containing an amino acid sequence of SEQ ID NO: 8 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8.
The antigen-binding molecule according to claim 5, wherein the antigen-binding molecule comprises.
A method for purifying Bifidobacterium longum, which isolates Bifidobacterium longum from a sample containing Bifidobacterium longum using the antigen-binding molecule according to any one of claims 1 to 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019217338A JP2021083433A (en) | 2019-11-29 | 2019-11-29 | Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum |
PCT/JP2020/044146 WO2021107072A1 (en) | 2019-11-29 | 2020-11-27 | Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019217338A JP2021083433A (en) | 2019-11-29 | 2019-11-29 | Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021083433A true JP2021083433A (en) | 2021-06-03 |
Family
ID=76088583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019217338A Pending JP2021083433A (en) | 2019-11-29 | 2019-11-29 | Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021083433A (en) |
WO (1) | WO2021107072A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1227152A1 (en) * | 2001-01-30 | 2002-07-31 | Société des Produits Nestlé S.A. | Bacterial strain and genome of bifidobacterium |
-
2019
- 2019-11-29 JP JP2019217338A patent/JP2021083433A/en active Pending
-
2020
- 2020-11-27 WO PCT/JP2020/044146 patent/WO2021107072A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2021107072A1 (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7357661B2 (en) | Identification of polynucleotides associated with the sample | |
TWI502068B (en) | Gram-positive bacteria specific binding compounds | |
US8338172B2 (en) | Methods for obtaining immortalized antibody secreting cells | |
EA018030B1 (en) | Human binding molecules having killing activity against staphylococci and use thereof | |
JP2022058341A (en) | Antibodies targeting a galactan-based o-antigen of klebsiella pneumoniae | |
EP2185718B1 (en) | Human monoclonal antibodies and methods for producing the same | |
WO2023216826A1 (en) | Monoclonal antibody a38 against rift valley fever virus and use | |
WO2022061594A1 (en) | Sars-cov-2 spike protein binding molecule and use thereof | |
CN115386006A (en) | anti-GPRC 5D antibody, preparation method and application thereof | |
Schardt et al. | Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening | |
JP2018535671A (en) | K. Antibodies targeting P. pneumoniae mannan-based O antigen | |
CN115386007A (en) | anti-GPRC 5D antibody, preparation method and application thereof | |
WO2021107072A1 (en) | Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum | |
Roscioli et al. | Anti-capsule human monoclonal antibodies protect against hypervirulent and pandrug-resistant Klebsiella pneumoniae | |
JP2022103708A (en) | Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei | |
CN109503712B (en) | Monoclonal antibody ZKns2E11 and application thereof | |
CN115975015A (en) | Peste des petits ruminants virus (PPRV) F protein nano antibody and preparation, purification and neutralization test method thereof | |
WO2020089203A1 (en) | Composition for the treatment of antibody deficiencies | |
WO2023219175A1 (en) | Method and composition both for treating or diagnosing inflammatory bowel disease (ibd) | |
CN117106077B (en) | Fully human monoclonal antibodies that specifically bind to staphylococcus aureus Hla toxin | |
US20230265172A1 (en) | Humanized antibody specific to bacillus anthracis protective antigen and preparation method thereof | |
JP2023106636A (en) | Human anti-tetanus toxin antibodies | |
Wang et al. | Human monoclonal antibodies against Staphylococcus aureus A protein identified by high-throughput single-cell sequencing of phase I clinical volunteers' B cells | |
Rooijakkers et al. | Agnostic B cell selection approach identifies antibodies against K. pneumoniae that synergistically drive complement activation. | |
Lee et al. | Development of a novel sandwich immunoassay based on targeting recombinant Francisella outer membrane protein A for the diagnosis of tularemia |