JP2022103708A - Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei - Google Patents

Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei Download PDF

Info

Publication number
JP2022103708A
JP2022103708A JP2020218501A JP2020218501A JP2022103708A JP 2022103708 A JP2022103708 A JP 2022103708A JP 2020218501 A JP2020218501 A JP 2020218501A JP 2020218501 A JP2020218501 A JP 2020218501A JP 2022103708 A JP2022103708 A JP 2022103708A
Authority
JP
Japan
Prior art keywords
acid sequence
amino acid
seq
antigen
bacteroides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020218501A
Other languages
Japanese (ja)
Inventor
学 中藤
Gaku NAKATO
浄 井上
Kiyoshi Inoue
ひかる 井上
Hikaru Inoue
真嗣 福田
Shinji Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Keio University
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Kanagawa Institute of Industrial Science and Technology filed Critical Keio University
Priority to JP2020218501A priority Critical patent/JP2022103708A/en
Publication of JP2022103708A publication Critical patent/JP2022103708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To make Bacteroides dorei separable.SOLUTION: The present invention is an antigen-binding molecule that binds to Bacteroides dorei.SELECTED DRAWING: Figure 1

Description

本発明は、抗原結合分子、核酸組成物、ベクター組成物、細胞およびBacteroides doreiの精製方法に関する。 The present invention relates to antigen-binding molecules, nucleic acid compositions, vector compositions, cells and methods for purifying Bacteroides doriei.

ヒトの腸管、主に大腸には約1000種類、40兆個にも及ぶ腸内細菌(腸内細菌叢(そう)や腸内フローラとよばれる)が生息しているといわれている。ヒトの腸内細菌は、互いに密接な関係を持ちながら複雑にバランスをとっており、個人によって極めて多様で異なり、更に食事・在住国などの要因によっても異なることが知られている。 It is said that about 1000 types of intestinal bacteria (called intestinal flora (so) and intestinal flora) inhabit the human intestine, mainly the large intestine, as many as 40 trillion. It is known that human intestinal bacteria are closely related to each other and are intricately balanced, and are extremely diverse and different depending on the individual, and also differ depending on factors such as diet and country of residence.

ヒトの下部消化管に存在する腸内細菌として、Bacteroides属が知られている。Bacteroides属に対する抗原結合分子として、例えば、Bacteroides thetaiotaomicronに対する抗体(例えば、非特許文献1)、Bacteroides fragilisの構成成分に対する抗体作製報告例がある(例えば、非特許文献2)。 The genus Bacteroides is known as an intestinal bacterium present in the lower gastrointestinal tract of humans. As an antigen-binding molecule for the genus Bacteroides, for example, there are an antibody against Bacteroides thetaiotaomicron (for example, Non-Patent Document 1) and an example of producing an antibody against a component of Bacteroides fragilis (for example, Non-Patent Document 2).

インターネット<URL:https://www.funakoshi.co.jp/contents/132358>Internet <URL: https: // www. funakoshi. co. jp / contents / 132358> J Clin Microbiol. 1984 Sep; 20(3): 519-524. , PLoS One. 2017; 12(3): e0173128.J Clin Microbiol. 1984 Sep; 20 (3): 519-524. , PLoS One. 2017; 12 (3): e0173128.

Bacteroides属を含む細菌集団から、標的とする所定のBacteroides種を分離することが望まれている。 It is desired to isolate a given Bacteroides species of interest from a bacterial population containing the genus Bacteroides.

本発明の目的は、B.doreiを分離可能とすることである。 An object of the present invention is B.I. It is to make dorei separable.

上記課題を解決するための本発明の主たる発明は、抗原結合分子であって、Bacteroides doreiに結合する。 The main invention of the present invention for solving the above-mentioned problems is an antigen-binding molecule, which binds to Bacteroides doriei.

その他本願が開示する課題やその解決方法については、発明の実施形態の欄および図面により明らかにされる。 Other problems disclosed in the present application and solutions thereof will be clarified by the columns and drawings of the embodiments of the invention.

本発明によれば、B.doreiのみが分離可能となる。 According to the present invention, B.I. Only dorei can be separated.

本抗原結合分子の交差性の有無を検討した、Bacteroides属の、他の種類の細菌を示す図である。It is a figure which shows the other kind of bacteria of the genus Bacteroides which examined the presence or absence of the crossing of this antigen-binding molecule. 本抗原結合分子の、他のBacteroides属との交差性の有無を検討した結果を示す図である。It is a figure which shows the result of having examined whether or not this antigen-binding molecule has crossing with other Bacteroides genus. 本抗原結合分子の交差性の有無を検討した、グラム陰性菌、グラム陽性菌を示す図である。It is a figure which shows the gram-negative bacterium and the gram-positive bacterium which examined the presence or absence of the crossing of this antigen-binding molecule. 本抗原結合分子の、他のグラム陰性菌、グラム陽性菌との交差性の有無を検討した結果を示す図である。It is a figure which shows the result of having examined whether or not this antigen-binding molecule is crossed with other Gram-negative bacteria and Gram-positive bacteria. 本抗原結合分子を用いて、B.doreiの単離を行う検討をする際に用いた、腸内細菌基準株を示す図である。Using this antigen-binding molecule, B. It is a figure which shows the gut microbiota reference strain used in the examination to perform the isolation of dorei. 本抗原結合分子を用いて、MACS(登録商標)によりB.doreiの単離を行った結果を示す図である。Using this antigen-binding molecule, according to MACS®, B.I. It is a figure which shows the result of having performed the isolation of dorei. MACS(登録商標)によりB.doreiが単離できているかを調べるためのRT-PCRに用いた、核酸増幅用のプライマーの塩基配列を示す図である。B. by MACS®. It is a figure which shows the base sequence of the primer for nucleic acid amplification used for RT-PCR for investigating whether the dorei was isolated. RT-PCRの結果を示す図である。It is a figure which shows the result of RT-PCR. MACSにより単離したB.doreiを培養した結果を示す図である。B. isolated by MACS. It is a figure which shows the result of culturing dorei.

本発明の実施形態の内容を列記して説明する。本発明は、以下のような構成を備える。
[項目1]
Bacteroides doreiに結合することを特徴とする、抗原結合分子。
[項目2]
他のBacteroides属に属する細菌に結合しないこと、
を特徴とする、項目1に記載の抗原結合分子。
[項目3]
前記他のBacteroides属は、Bacteroides ovatus、Bacteroides stercoris、Bacteroides thetaiotaomicron、Bacteroides uniformis、Bacteroides vulgatusであること、
を特徴とする、項目2に記載の抗原結合分子。
[項目4]
前記抗原結合分子は、抗体、抗体断片またはペプチドであり、
アミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列、
を含むことを特徴とする、項目1から3のいずれか一項に記載の抗原結合分子。
[項目5]
前記抗原結合分子は、抗体または抗体断片であり、
重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
を含むことを特徴とする、項目4に記載の抗原結合分子。
[項目6]
配列番号3のアミノ酸配列、または配列番号3に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR1領域と、
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、
を含むことを特徴とする、項目5に記載の抗原結合分子。
[項目7]
項目1から6のいずれか一項に記載の抗原結合分子をコードする核酸配列、または複数の核酸配列を含むことを特徴とする核酸組成物。
[項目8]
項目7に記載の核酸配列、または複数の核酸配列を含むベクター組成物、または複数のベクターを含むことを特徴とするベクター組成物。
[項目9]
項目8に記載のベクター組成物を含むことを特徴とする細胞。
[項目10]
項目1から6のいずれか一項に記載の抗原結合分子を用いて、Bacteroides doreiを含む試料からBacteroides doreiを単離する、Bacteroides doreiの精製方法。
The contents of the embodiments of the present invention will be described in a list. The present invention has the following configurations.
[Item 1]
An antigen-binding molecule characterized by binding to Bacteroides dorei.
[Item 2]
Do not bind to other bacteria belonging to the genus Bacteroides,
1. The antigen-binding molecule according to item 1.
[Item 3]
The other Bacteroides genus is Bacteroides ovatus, Bacteroides stercoris, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides bulgats.
2. The antigen-binding molecule according to item 2.
[Item 4]
The antigen-binding molecule is an antibody, antibody fragment or peptide.
As the amino acid sequence, the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8.
The antigen-binding molecule according to any one of items 1 to 3, wherein the antigen-binding molecule comprises.
[Item 5]
The antigen-binding molecule is an antibody or antibody fragment.
An amino acid sequence having 90% or more homology with the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as the amino acid sequence of the heavy chain.
An amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain.
4. The antigen-binding molecule according to item 4, which comprises.
[Item 6]
A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 7.
A VLCDR3 region containing an amino acid sequence of SEQ ID NO: 8 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8.
5. The antigen-binding molecule according to item 5, which comprises.
[Item 7]
A nucleic acid composition comprising a nucleic acid sequence encoding the antigen-binding molecule according to any one of items 1 to 6, or a plurality of nucleic acid sequences.
[Item 8]
The nucleic acid sequence according to item 7, or a vector composition containing a plurality of nucleic acid sequences, or a vector composition comprising a plurality of vectors.
[Item 9]
A cell comprising the vector composition according to item 8.
[Item 10]
A method for purifying Bacteroides dorei, which isolates Bacteroides doriei from a sample containing Bacteroides doriei using the antigen-binding molecule according to any one of items 1 to 6.

<実施の形態の詳細>
本実施形態に係る抗原結合分子は、例えば、特定の抗原と強く特異的に結合するモノクローナル抗体、ポリクローナル抗体、少なくとも2つの異なるエピトープ結合断片から形成される多特異性抗体(例えば、二重特異性抗体)、ヒト抗体、ヒト化抗体、ラクダ科抗体、キメラ抗体、短鎖Fv、一本鎖抗体、単一ドメイン抗体、ドメイン抗体、Fab断片、F(ab‘)2断片、抗体断片ジスルフィド結合Fv、および抗イディオタイプ抗体、細胞内抗体、抗体断片、並びに、上記のいずれかのエピトープ結合断片を包含し、また、ポリペプチド、ペプチド、核酸、合成低分子、合成高分子などが挙げられる。
<Details of the embodiment>
The antigen-binding molecule according to the present embodiment is, for example, a monoclonal antibody that strongly and specifically binds to a specific antigen, a polyclonal antibody, and a multispecific antibody formed from at least two different epitope-binding fragments (for example, bispecificity). Antibody), human antibody, humanized antibody, camel family antibody, chimeric antibody, short chain Fv, single chain antibody, single domain antibody, domain antibody, Fab fragment, F (ab') 2 fragment, antibody fragment disulfide-bound Fv , And anti-idiotype antibodies, intracellular antibodies, antibody fragments, and any of the above epitope-binding fragments, including polypeptides, peptides, nucleic acids, synthetic small molecules, synthetic polymers and the like.

本実施形態では、抗原結合分子の一例として、モノクローナル抗体について図面を参照しながら説明する。 In this embodiment, as an example of an antigen-binding molecule, a monoclonal antibody will be described with reference to the drawings.

本実施形態に係る抗原結合分子としてのモノクローナル抗体(以下、本抗体と記す)は、B.doreiに対して特異性の高いものである。このため、本実施形態に係る抗原結合分子を用いることで、B.doreiを含む試料から、B.doreiを単離し、または濃縮することが可能となる。 The monoclonal antibody (hereinafter referred to as the present antibody) as the antigen-binding molecule according to the present embodiment is referred to as B.I. It is highly specific to dorei. Therefore, by using the antigen-binding molecule according to the present embodiment, B.I. From the sample containing dorei, B. It is possible to isolate or concentrate dorei.

本実施形態において、本抗体は、他のBacteroides属に結合しないことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、B.doreiを単離し、または濃縮することが可能となる。 In this embodiment, it is preferable that the antibody does not bind to other Bacteroides genera. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本実施形態において、B.dorei以外の他のBacteroides属としては、例えば、Bacteroides ovatus、Bacteroides stercoris、Bacteroides thetaiotaomicron、Bacteroides uniformis、Bacteroides vulgatusであること、が挙げられる。 In this embodiment, B.I. Examples of the genus Bacteroides other than dorie include, for example, Bacteroides ovatus, Bacteroides stercoris, Bacteroides thetaiotaomicron, Bacteroides uniformis, and Bacteroides bulgates.

本実施形態において、本抗体は、グラム陽性菌、グラム陰性菌に対して交差性がないことが好ましい。これにより、本抗体を用いることで、他の細菌が多く含まれる糞便などから、B.doreiを単離、濃縮することが可能である。 In the present embodiment, it is preferable that the antibody has no crossing property with Gram-positive bacteria and Gram-negative bacteria. As a result, by using this antibody, feces containing a large amount of other bacteria can be used. It is possible to isolate and concentrate dorei.

また、本実施形態において、本抗体は、任意のアイソタイプ(例えば、IgG、IgA、IgM、IgD、IgE、およびIgY)、またはこれらのサブアイソタイプ、またはアロタイプのものでもあってもよい。 Also, in this embodiment, the antibody may be of any isotype (eg, IgG, IgA, IgM, IgD, IgE, and IgY), or a subisotype or allotype thereof.

更に、本実施形態において、本抗体は、任意の哺乳動物、例として、限定されるものではないが、ヒト、サル、ウサギ、ブタ、ウマ、ラット、イヌ、ネコ、マウス、ヒツジ、ラクダなど、または他の動物、例えば鳥類(例えばニワトリ)に由来するものであってもよい。 Further, in the present embodiment, the antibody is used in any mammal, such as, but not limited to, humans, monkeys, rabbits, pigs, horses, rats, dogs, cats, mice, sheep, camels, and the like. Alternatively, it may be derived from another animal, such as a bird (eg, a chicken).

本実施形態では、本抗体のアミノ酸配列の一部を以下に開示する。本実施形態において、以下に開示するアミノ酸配列と、70%の相同性を有することが好ましく、75%の相同性を有することがより好ましく、更に80%の相同性を有することが好ましく、更に85%の相同性を有することが好ましく、更に90%の相同性を有することが好ましく、更に95%の相同性を有することが好ましく、100%同一である方が好ましい機能を発揮する。 In this embodiment, a part of the amino acid sequence of this antibody is disclosed below. In this embodiment, it is preferable to have 70% homology with the amino acid sequence disclosed below, more preferably 75% homology, further preferably 80% homology, and further 85. It is preferable to have a homology of%, a homology of 90% is preferable, a homology of 95% is preferable, and a homology of 100% is preferable.

以下に本抗体のアミノ酸配列の一部を示す。式1は配列番号1であり、式2は配列番号2であり、式3は配列番号3であり、式4は配列番号4であり、式5は配列番号5であり、式6は配列番号6であり、式7は配列番号7であり、式8は配列番号8である。なお、別途配列表に記載した、配列番号1に示すのは本抗体の重鎖アミノ酸配列であり、配列番号2に示すのは本抗体の軽鎖アミノ酸配列である。
[式1]
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ser Ser Gly Tyr Thr Phe Thr Asp Cys Ser Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly Trp Ile Asn Thr Glu Thr Asp Glu Pro Thr Tyr Ala Asp Asp Phe Gln Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ser Ser Thr Ala Tyr Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Cys Lys Tyr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
[式2]
Asp Val Val Val Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Ile Thr Tyr Leu Gln Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Thr Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Glu Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Ile Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
[式3]
Gly Tyr Thr Phe Thr Asp Cys Ser Met His
[式4]
Trp Ile Asn Thr Glu Thr Asp Glu Pro Thr Tyr Ala Asp Asp Phe Gln Gly
[式5]
Cys Lys Tyr Met Asp Tyr
[式6]
Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Ile Thr Tyr Leu Gln
[式7]
Lys Val Ser Thr Arg Phe Ser
[式8]
Ser Gln Ser Thr His Ile Pro Trp Thr
A part of the amino acid sequence of this antibody is shown below. Equation 1 is SEQ ID NO: 1, Equation 2 is SEQ ID NO: 2, Equation 3 is SEQ ID NO: 3, Equation 4 is SEQ ID NO: 4, Equation 5 is SEQ ID NO: 5, and Equation 6 is SEQ ID NO: 6, formula 7 is SEQ ID NO: 7, and formula 8 is SEQ ID NO: 8. In addition, the heavy chain amino acid sequence of this antibody is shown in SEQ ID NO: 1 and the light chain amino acid sequence of this antibody is shown in SEQ ID NO: 2, which are separately described in the sequence listing.
[Equation 1]
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ser Ser Gly Tyr Thr Phe Thr Asp Cys Ser Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly Trp Ile Asn Thr Glu Thr Asp Glu Pro Thr Tyr Ala Asp Asp Phe Gln Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ser Ser Thr Ala Tyr Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Cys Lys Tyr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
[Equation 2]
Asp Val Val Val Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Ile Thr Tyr Leu Gln Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Thr Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Glu Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Ile Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
[Equation 3]
Gly Tyr Thr Ph The Thr Asp Cys Ser Met His
[Equation 4]
Trp Ile Asn Thr Glu Thr Asp Glu Pro Thr Tyr Ala Asp Asp The Gln Gly
[Equation 5]
Cys Lys Tyr Met Asp Tyr
[Equation 6]
Arg Ser Ser Grn Ser Leu Val His Ser Asn Gly Ile Thr Thr Leu Grn
[Equation 7]
Lys Val Ser Thr Arg The Ser
[Equation 8]
Ser Grn Ser Thr His Ile Pro Trp Thr

すなわち、本実施形態において、本抗体はアミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、または濃縮することが可能となる。 That is, in the present embodiment, the amino acid sequence of the present antibody is 90% or more homologous to the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8. It preferably contains an amino acid sequence having sex. The present antibody preferably contains, as the amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本実施形態において、本抗体は、重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列とを含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、または濃縮することが可能となる。 In the present embodiment, the antibody has 90% or more homology with respect to the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as the amino acid sequence of the heavy chain. 90% or more homology between the amino acid sequence having sex and the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain, or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8. It is preferable to include an amino acid sequence having. The present antibody preferably contains, as the amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本実施形態において、本抗体は、
配列番号3のアミノ酸配列、または配列番号3に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR1領域と、
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、を含むことが好ましい。なお、本抗体は、好ましくはアミノ酸配列として、配列番号1、配列番号2のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、または濃縮することが可能となる。
In this embodiment, the antibody is
A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 7.
It preferably comprises an amino acid sequence of SEQ ID NO: 8 or a VLCDR3 region containing an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8. The present antibody preferably contains, as the amino acid sequence, an amino acid sequence having 90% or more homology with the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本抗体は、B.doreiの表面抗原に結合し得るが、他のポリペプチドに特異的に結合しないことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、または濃縮することが可能となる。 This antibody is described in B.I. It can bind to the surface antigen of dorei, but preferably does not specifically bind to other polypeptides. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本実施形態では、本抗体のアミノ酸配列の一部をコードする塩基配列を以下に開示する。本実施形態において、以下に開示する塩基配列と、70%の相同性を有することが好ましく、75%の相同性を有することがより好ましく、更に80%の相同性を有することが好ましく、更に85%の相同性を有することが好ましく、更に90%の相同性を有することが好ましく、更に95%の相同性を有することが好ましく、100%同一である方が好ましい機能を発揮する。 In this embodiment, the base sequence encoding a part of the amino acid sequence of the present antibody is disclosed below. In this embodiment, it is preferable to have 70% homology with the base sequence disclosed below, more preferably 75% homology, further preferably 80% homology, and further 85. It is preferable to have a homology of%, a homology of 90% is preferable, a homology of 95% is preferable, and a homology of 100% is preferable.

以下に本抗体の塩基配列の一部を示す。式9は配列番号9であり、式10は配列番号10であり、式11は配列番号11であり、式12は配列番号12であり、式13は配列番号13であり、式14は配列番号14であり、式15は配列番号15であり、式16は配列番号16である。なお、配列表に記載した、配列番号9に示すのは本抗体の重鎖アミノ酸配列の全長をコードする塩基配列であり、配列番号10に示すのは軽鎖アミノ酸配列の全長をコードする塩基配列である。
[式9]
CAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGTCTTCTGGTTATACCTTCACAGACTGTTCAATGCACTGGGTGCAGCAGGCCCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACTGAGACTGATGAGCCAACATATGCAGATGACTTCCAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTTCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCTAGATGTAAATATATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA
[式10]
GATGTTGTGGTGACCCAGACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCCTTGTACACAGTAATGGAATCACCTATTTACAGTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTCTCCACCCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAGGATCAGCAGAGTGGAGGCTGAGGAGCTGGGAGTTTATTTCTGCTCTCAAAGTACACATATTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAA
[式11]
GGTTATACCTTCACAGACTGTTCAATGCAC
[式12]
TGGATAAACACTGAGACTGATGAGCCAACATATGCAGATGACTTCCAGGGA
[式13]
TGTAAATATATGGACTAC
[式14]
AGATCTAGTCAGAGCCTTGTACACAGTAATGGAATCACCTATTTACAG
[式15]
AAAGTCTCCACCCGATTTTCT
[式16]
TCTCAAAGTACACATATTCCGTGGACG
A part of the base sequence of this antibody is shown below. Equation 9 is SEQ ID NO: 9, Equation 10 is SEQ ID NO: 10, Equation 11 is SEQ ID NO: 11, Equation 12 is SEQ ID NO: 12, Equation 13 is SEQ ID NO: 13, and Equation 14 is SEQ ID NO. 14, formula 15 is SEQ ID NO: 15, and formula 16 is SEQ ID NO: 16. The base sequence shown in SEQ ID NO: 9 is the base sequence encoding the full length of the heavy chain amino acid sequence of this antibody, and the base sequence shown in SEQ ID NO: 10 is the base sequence encoding the full length of the light chain amino acid sequence. Is.
[Equation 9]
CAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGTCTTCTGGTTATACCTTCACAGACTGTTCAATGCACTGGGTGCAGCAGGCCCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACTGAGACTGATGAGCCAACATATGCAGATGACTTCCAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTTCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCTAGATGTAAATATATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA
[Equation 10]
GATGTTGTGGTGACCCAGACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCCTTGTACACAGTAATGGAATCACCTATTTACAGTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTCTCCACCCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAGGATCAGCAGAGTGGAGGCTGAGGAGCTGGGAGTTTATTTCTGCTCTCAAAGTACACATATTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAA
[Equation 11]
GGTTATACCTTCAGACTGTTCAATGCAC
[Equation 12]
TGGATAAAACTGAGACTGATGACCAACATATGCAGAATGACTTCCAGGGA
[Equation 13]
TGTAAAATATGGACTAC
[Equation 14]
AGATTAGTCAGAGCCTTGTACACAGTAAGGAATCACTATTTACAG
[Equation 15]
AAAGTCTCCACCGATTTTCT
[Equation 16]
TCTCAAAgTACACATATTCCGTGGAGCG

すなわち、本実施形態において、本抗体のアミノ酸配列をコードする塩基配列として、配列番号11から16のいずれかに記載のアミノ酸配列、または配列番号11から16のいずれかに記載の塩基配列に対して90%以上の相同性を有する塩基配列を含むことが好ましい。これにより、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、または濃縮することが可能となる。 That is, in the present embodiment, as the base sequence encoding the amino acid sequence of the present antibody, with respect to the amino acid sequence set forth in any of SEQ ID NOs: 11 to 16 or the base sequence set forth in any of SEQ ID NOs: 11 to 16. It preferably contains a base sequence having 90% or more homology. As a result, B. From samples such as feces containing bacteria other than dorei, B. It is possible to isolate or concentrate dorei.

本実施形態において、核酸組成物とは、本実施形態に係る抗原結合分子をコードする核酸配列、または複数の核酸配列を含む核酸組成物も含む。また、本実施形態では、前記核酸配列、または複数の核酸配列を含むベクター組成物、または複数のベクター組成物も含む。更に、本実施形態では、前記ベクターをも含む。本実施形態において、ベクターとは、連結している別の核酸を運搬する核酸分子を意味する。ベクターの1例としてプラスミドがある。前記プラスミドは、その中に別のDNA断片をライゲーションすることでできる、環状の二本鎖DNAである。また、ベクターの1例として、ウイルスベクターがある。前記ウイルスベクターは、別のDNA断片をウイルスゲノム中にライゲーションすることができる。ある種のベクターは、導入される宿主細胞の中で、自律的に複製することができる。なお、一例として、宿主細胞のゲノム中に組み込むことができるベクターもある。当該ゲノム中に組み込むことができるベクターは、宿主のゲノムと一緒に複製される。 In the present embodiment, the nucleic acid composition also includes a nucleic acid sequence encoding an antigen-binding molecule according to the present embodiment, or a nucleic acid composition containing a plurality of nucleic acid sequences. The present embodiment also includes the nucleic acid sequence, a vector composition containing a plurality of nucleic acid sequences, or a plurality of vector compositions. Further, in this embodiment, the vector is also included. In this embodiment, the vector means a nucleic acid molecule that carries another linked nucleic acid. One example of a vector is a plasmid. The plasmid is a circular double-stranded DNA formed by ligating another DNA fragment therein. Moreover, as an example of a vector, there is a virus vector. The viral vector can ligate another DNA fragment into the viral genome. Certain vectors can replicate autonomously within the host cell into which they are introduced. As an example, there is also a vector that can be integrated into the genome of a host cell. Vectors that can be integrated into the genome are replicated with the host's genome.

本実施形態において、細胞とは、その中に発現ベクターが導入されている細胞を意味する。宿主細胞としては、細菌細胞、微生物細胞、植物細胞、または動物細胞があげられる。 In the present embodiment, the cell means a cell into which an expression vector is introduced. Host cells include bacterial cells, microbial cells, plant cells, or animal cells.

本実施形態において、抗体は以下の手法を用いて取得した。野生型マウス(BALB/cA)に免疫増強剤と抗原を混合したもので免疫し、そのマウスの脾臓を免疫不全マウス(C.B-17/Icr-scid/scid Jcl)に移植する。移植した免疫不全マウスに追加免疫を行った後、血清内における標的抗体の抗体価の上昇が観察されたマウスの脾臓を摘出しミエローマ細胞と融合することで樹立したハイブリドーマ由来の抗体である。 In this embodiment, the antibody was obtained using the following method. Wild-type mice (BALB / cA) are immunized with a mixture of immunopotentiator and antigen, and the spleen of the mice is transplanted into immunodeficient mice (CB-17 / Icr-scid / scid Jcl). It is a hybridoma-derived antibody established by performing booster immunization on transplanted immunodeficient mice and then fusing the spleen of the mouse in which an increase in the antibody titer of the target antibody in serum was observed with myeloma cells.

-80℃で保存していた、健常者から単離したB.dorei(以下、B.dorei単離株)のグリセロールストックから、20μLを5mLのGAM液体培地に添加し、アネロパック(登録商標)ケンキ(三菱ガス化学社製)を用いて37℃で24時間培養する。次に、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて200mLのGAM液体培地2本に対し、培養液をそれぞれ2mL添加し、更に24時間培養する。合計400mLの培養液を、7500rpm、15分間、4℃で遠心分離し、上清を除く。ペレットに滅菌したリン酸緩衝生理食塩水(以下、PBSと記する)を加え洗浄を行う。菌体の洗浄は合計3回行う。回収した菌体の一部を、VD-800R凍結乾燥機(TAITEC社製)を用いて24時間乾燥し、乾燥重量と菌体重量の比率を求める。菌体/PBSが100μg/100μLになるように滅菌済みPBSで希釈し、以下、抗原として使用する。 B. isolated from healthy subjects stored at -80 ° C. From the glycerol stock of dorei (hereinafter, B. dorei isolated strain), 20 μL is added to 5 mL of GAM liquid medium, and the cells are cultured at 37 ° C. for 24 hours using Aneropack (registered trademark) Kenki (manufactured by Mitsubishi Gas Chemical Company, Inc.). .. Next, in an anaerobic chamber BACTRON 300 (manufactured by SHEL LAB), 2 mL of the culture solution is added to each of two 200 mL GAM liquid media, and the cells are further cultured for 24 hours. Centrifuge a total of 400 mL of culture medium at 7500 rpm for 15 minutes at 4 ° C. to remove the supernatant. Sterile phosphate buffered saline (hereinafter referred to as PBS) is added to the pellets for washing. Wash the cells 3 times in total. A part of the recovered cells is dried for 24 hours using a VD-800R freeze-dryer (manufactured by TAITEC), and the ratio of the dry weight to the cell weight is determined. Dilute with sterile PBS so that the cell / PBS becomes 100 μg / 100 μL, and use it as an antigen below.

次に、調整した前記抗原を用いて免疫を行う。前記抗原に、免疫増強剤であるImject Alum Adjuvant(Invitrogen社製)を等量加えた(以下、腹腔内投与用抗原と記す)のちに、マウスの腹腔内(i.p.)投与をする。尾微静脈投与(i.v.)の際には、前記抗原のみを、マウスに追加投与する。BALB/cAマウスに、当該腹腔内投与用抗原を、隔週2回のi.p.投与をする。免疫したBALB/cAマウスから脾臓を摘出し、免疫不全マウス(C.B-17/Icr-scid/scid Jcl)へと移植を行う。 Next, immunization is performed using the prepared antigen. An equal amount of the immunopotentiator ImmunoAdjuvant (manufactured by Invitrogen) is added to the antigen (hereinafter referred to as an antigen for intraperitoneal administration), and then the mouse is intraperitoneally (ip) administered. At the time of tail venule administration (iv), only the above-mentioned antigen is additionally administered to mice. BALB / cA mice were given the antigen for intraperitoneal administration twice a week i. p. Administer. The spleen is removed from the immunized BALB / cA mouse and transplanted into an immunodeficient mouse (CB-17 / Icr-sid / scid Jcl).

脾臓を移植した免疫不全マウスに追加免疫および最終免疫をi.v.経路にて実施した後、脾臓を摘出し、ミエローマ細胞と融合することにより、ハイブリドーマの作製を行う。得られたハイブリドーマの中から、抗原に対し特異的反応を示し、かつ他の細菌への交差性の低い抗体を産生する能力を持つものを、フローサイトメトリーにより選抜する。 Addition and final immunization to immunodeficient mice transplanted with spleen i. v. After carrying out by the route, the spleen is removed and fused with myeloma cells to prepare a hybridoma. From the obtained hybridomas, those that show a specific reaction to the antigen and have the ability to produce an antibody having low cross-reactivity to other bacteria are selected by flow cytometry.

以下に実施例を挙げて、本発明をより具体的に説明する。ただし、これらの実施例は説明のためのものであり、本発明の技術的範囲を制限するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustration purposes only and do not limit the technical scope of the present invention.

本実施形態の一例であるモノクローナル抗体の作製にあたり、まず抗原であるB.doreiの調整を行った。 In preparing the monoclonal antibody, which is an example of the present embodiment, first, the antigen B. The dorei was adjusted.

-80℃で保存していた、健常者から単離したB.dorei単離株のグリセロールストックから、20μLを5mLのGAM液体培地(日水製薬株式会社製)に添加し、アネロパック(登録商標)ケンキ(三菱ガス化学社製)を用いて37℃で24時間培養した。次に、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて200mLのGAM液体培地2本に対し、培養液をそれぞれ2mL添加し、更に24時間培養した。合計400mLの培養液を、7500rpm、15分間、4℃で遠心分離し、上清を除いた。残ったペレットに滅菌PBSを加え洗浄を行った。菌体の洗浄は合計3回行った。回収した菌体の一部を、VD-800R凍結乾燥機(TAITEC社製)を用いて24時間乾燥し、乾燥重量と菌体重量の比率を求めた。菌体/PBSが100μg/100μLになるように滅菌済みPBSで希釈し、以下、抗原として使用した。 B. isolated from healthy subjects stored at -80 ° C. From the glycerol stock of the dorei isolated strain, 20 μL was added to 5 mL of GAM liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.) and cultured at 37 ° C. for 24 hours using Aneropack (registered trademark) Kenki (manufactured by Mitsubishi Gas Chemical Company, Inc.). did. Next, 2 mL of the culture solution was added to each of two 200 mL GAM liquid media in the anaerobic chamber BACTRON 300 (manufactured by SHEL LAB), and the cells were further cultured for 24 hours. A total of 400 mL of culture broth was centrifuged at 7500 rpm for 15 minutes at 4 ° C. to remove the supernatant. Sterile PBS was added to the remaining pellets for washing. The cells were washed 3 times in total. A part of the recovered cells was dried for 24 hours using a VD-800R freeze-dryer (manufactured by TAITEC), and the ratio of the dry weight to the cell weight was determined. The cells / PBS were diluted with sterile PBS so as to be 100 μg / 100 μL, and used as an antigen below.

次に、調整した前記抗原を用いて免疫を行った。前記抗原に、免疫増強剤であるImject Alum Adjuvant(Invitrogen社製)を等量加えた(以下、調整済抗原と記す)のちに、マウスの腹腔内(i.p.)投与を行った。尾微静脈(i.v.)投与の際には、前記抗原のみを、マウスに追加投与した。BALBマウス5匹に、当該調整済抗原を、隔週2回のi.p.投与をした。抗原を免疫したBALB/cAマウス2匹より脾臓を摘出し、免疫不全マウス(C.B-17/Icr-scid/scid Jcl)4匹に移植を行った。 Next, immunization was performed using the prepared antigen. An equivalent amount of an immunopotentiator, ImmunoAdjuvant (manufactured by Invitrogen) was added to the antigen (hereinafter referred to as adjusted antigen), and then intraperitoneal (ip) administration of mice was performed. At the time of administration of the tail venule (iv), only the above-mentioned antigen was additionally administered to the mice. The adjusted antigen was applied to 5 BALB mice twice a week i. p. It was administered. The spleen was removed from two BALB / cA mice immunized with the antigen, and transplanted into four immunodeficient mice (CB-17 / Icr-scid / scid Jcl).

移植した免疫不全マウスに、6回の追加免疫・最終免疫をi.v.経路にて実施したあと、脾臓を摘出し、ミエローマ細胞と融合することにより、ハイブリドーマの作製を行った。 The transplanted immunodeficient mice were given 6 boosters and final immunizations. v. After performing the procedure, hybridomas were prepared by removing the spleen and fusing it with myeloma cells.

次に、作製したハイブリドーマの中から、抗原に対し特異的反応を示す抗体を産生する能力を持つものをフローサイトメトリーにより選抜した。 Next, from the produced hybridomas, those having the ability to produce an antibody showing a specific reaction to the antigen were selected by flow cytometry.

前記選抜した、いくつかのハイブリドーマが産生する抗体に関して、B.doreiへの特異性と、他の細菌への交差性を検討した。前記抗原として使用した、健常者から単離したB.dorei単離株に加え、他のBacteroides属細菌として、理化学研究所バイオリソースセンターの微生物材料開発室(JCM)より購入した細菌種(図1)を、第1試験細菌群として検討対象とした。 With respect to the antibodies produced by some of the selected hybridomas, B. The specificity for dorei and the cross-sectionality to other bacteria were examined. B. isolated from healthy subjects used as the antigen. In addition to the dorei isolated strain, a bacterial species (Fig. 1) purchased from the Japan Collection of Microorganisms (JCM) of the RIKEN BioResource Center as another Bacteroides genus was used as the first test bacterial group.

第1試験細菌群の培養条件(以下、試験用培養条件1と記す)は以下の通りである。GAM液体培地(日水製薬株式会社製)5mLに対して、各細菌のグリセロールストックより20μLを添加し、嫌気性チャンバーBACTRON 300(SHEL LAB社製)内にて24時間培養した。 The culture conditions of the first test bacterial group (hereinafter referred to as test culture condition 1) are as follows. To 5 mL of GAM liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.), 20 μL was added from the glycerol stock of each bacterium, and the cells were cultured in an anaerobic chamber BACTRON 300 (manufactured by SHEL LAB) for 24 hours.

第1試験細菌群は、以下に示すグラム染色法を用いて、培養後に単一細菌であることを確認した。5μLの前記菌培養液をスライドガラスに塗布し、火炎固定した。クリスタル紫を各スポットあたり100μLずつ作用させ、1分間染色したのち水洗した。次に、ヨウ素を100μL作用させ、30秒染色したのち水洗した。ヨウ素液染色をもう一度繰り返した。エタノール/アセトン混合脱色液を各スポットあたり100μLずつ作用させ、水洗し乾燥した。最後に、パイフェル溶液を100μL作用させ、1分間染色したのち水洗した。乾燥後、光学顕微鏡下で観察しToupView(ToupTek Photonics社製)を用いて画像を取得した。 The first test bacterial group was confirmed to be a single bacterium after culturing using the Gram stain method shown below. 5 μL of the bacterial culture solution was applied to a slide glass and fixed by flame. 100 μL of crystal violet was applied to each spot, stained for 1 minute, and then washed with water. Next, 100 μL of iodine was allowed to act, the cells were stained for 30 seconds, and then washed with water. Iodine staining was repeated once more. An ethanol / acetone mixed decolorizing solution was allowed to act in an amount of 100 μL per spot, washed with water and dried. Finally, 100 μL of the Paifel solution was allowed to act, the cells were stained for 1 minute, and then washed with water. After drying, it was observed under an optical microscope and an image was acquired using ToupView (manufactured by ToupTek Photonics).

特異性と交差性の検討のため、以下の方法により、抗体を含むハイブリドーマ細胞培養上清(以下、GS1培養上清)を調整した。50mLの細胞培養培地が含まれたフラスコに2×10Cellsの前記ハイブリドーマ細胞を添加し、37℃ 5% CO環境下で一週間培養した。フラスコ内の溶液を50mLチューブに移し、1000 rpm、5min、4℃で遠心分離して上清を取得した。更に夾雑物を除くために上清を、0.22μmフィルターに通し、50mLチューブに回収した。最終濃度0.05%になるようにNaNを加え、使用まで4℃で保管した。 In order to examine the specificity and cross-reactivity, the hybridoma cell culture supernatant containing the antibody (hereinafter referred to as GS1 culture supernatant) was prepared by the following method. The hybridoma cells of 2 × 10 6 Cells were added to a flask containing 50 mL of cell culture medium and cultured in a 37 ° C. 5% CO 2 environment for one week. The solution in the flask was transferred to a 50 mL tube and centrifuged at 1000 rpm, 5 min, and 4 ° C. to obtain a supernatant. Further, the supernatant was passed through a 0.22 μm filter to remove impurities and collected in a 50 mL tube. NaN 3 was added to a final concentration of 0.05% and stored at 4 ° C. until use.

GS1培養上清に含まれる抗体の特異性と交差性の測定にはフローサイトメーターAccuri C6 plus(BD社製)を用いた。前記試験用培養条件1に従い、対象の細菌種を培養し、当該培養液を8000×g、5min、4℃で遠心分離し、培養上清を除いた。その後、PBSにて二回洗浄した後、菌体ペレットをPBSで再懸濁した。分光光度計Nanodrop(登録商標) 2000 C(Thermo Fisher Scientific社製)でOD値(光学濃度)を測定し、大腸菌における菌体数変換式である1OD660=8×10cells/mLに基づき、2%BSAを含むPBSで1×10cells/tubeまたは1×10cells/tubeに希釈した。希釈後、17,800×g、5min、4℃で遠心分離して上清を除き、残ったペレットにGS1培養上清を100μL加えて懸濁し、30min、4℃で静置しGS1培養上清に含まれる抗体と反応させた。また、第1試験細菌群と反応性をもたないIgG1 Isotype Control(SIGMA社製)をネガティブコントロールとし、同様に第1試験細菌群と反応させた。その後、滅菌済みPBSを1mL加え洗浄し、17,800×g、5min、4℃で遠心分離し、GS1培養上清又はIgG1 Isotype Controlを除去した。この過程を二回繰り返した後、二次抗体を100μLずつ添加し、30min、4℃で静置し、検討に使用した。なお、二次抗体はGoat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody、 Alexa Fluor(登録商標) 488(Thermo Fisher Scientific社製)を、2%BSAを含むPBSで500倍希釈したものを用いた。更に、FACS測定の直前に、死細菌と区別するため、Propidium iodide(PI: Invitrogen社製)を1μLずつ添加した。FACS測定により取得されたFCSファイルは、FlowJo version 10.5.3(FlowJo LLC)にて解析した。なお、本段落に記載した方法を、以下FACS測定法という。 A flow cytometer Accuri C6 plus (manufactured by BD) was used to measure the specificity and cross-reactivity of the antibody contained in the GS1 culture supernatant. According to the above-mentioned test culture condition 1, the target bacterial species was cultured, the culture solution was centrifuged at 8000 × g, 5 min, and 4 ° C., and the culture supernatant was removed. Then, after washing twice with PBS, the cell pellet was resuspended with PBS. The OD value (optical concentration) was measured with a spectrophotometer Nanodrop (registered trademark) 2000 C (manufactured by Thermo Fisher Scientific), and based on 1OD 660 = 8 × 10 8 cells / mL, which is a cell number conversion formula in Escherichia coli. Diluted to 1 × 10 7 cells / tube or 1 × 10 8 cells / tube with PBS containing 2% BSA. After dilution, centrifuge at 17,800 xg, 5 min, 4 ° C to remove the supernatant, add 100 μL of GS1 culture supernatant to the remaining pellets, suspend, and allow to stand at 4 ° C for 30 min to leave the GS1 culture supernatant. Was reacted with the antibody contained in. In addition, IgG1 Isotype Control (manufactured by SIGMA), which has no reactivity with the first test bacterial group, was used as a negative control and was similarly reacted with the first test bacterial group. Then, 1 mL of sterilized PBS was added and washed, and the mixture was centrifuged at 17,800 × g, 5 min and 4 ° C. to remove the GS1 culture supernatant or the IgG1 Isotype Control. After repeating this process twice, 100 μL of the secondary antibody was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes and used for the study. The secondary antibody is Goat anti-mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor (registered trademark) 488 (Thermo Fisher Scientific) diluted 500 times with PBS containing 2% BSA. board. Further, immediately before the FACS measurement, 1 μL of Propidium iodide (PI: manufactured by Invitrogen) was added to distinguish from dead bacteria. The FCS file obtained by FACS measurement was analyzed by FlowJo version 10.5.3 (FlowJo LLC). The method described in this paragraph is hereinafter referred to as a FACS measurement method.

図2に、GS1培養上清を用いた、前記FACS測定の結果を示す。当該結果は、GS1培養上清に含まれる抗体(以下、GS1抗体と記す)は、B.doreiには結合するが、図1に示した他のBacteroides属には結合しないことを示した。 FIG. 2 shows the results of the FACS measurement using the GS1 culture supernatant. The result is that the antibody contained in the GS1 culture supernatant (hereinafter referred to as GS1 antibody) is described in B.I. It was shown to bind to dorei but not to the other Bacteroides genera shown in FIG.

次に、Bacteroides属以外のグラム陽性菌およびグラム陰性菌に対する交差反応性を検討するため、JCMより購入した細菌種(図3に示す。以下、第2試験細菌群と記す)とGS1培養上清の反応性を調べた。各細菌の培養条件は前記試験用培養条件1と同様であり、培養上清は前記GS1培養上清と同様であり、FACSの手法は前記FACS測定法を用いた。 Next, in order to examine the cross-reactivity with Gram-positive and Gram-negative bacteria other than the genus Bacteroides, the bacterial species purchased from JCM (shown in FIG. 3, hereinafter referred to as the second test bacterial group) and the GS1 culture supernatant. The reactivity of was investigated. The culture conditions of each bacterium were the same as those of the test culture condition 1, the culture supernatant was the same as that of the GS1 culture supernatant, and the FACS method used the FACS measurement method.

図4に、第2試験細菌群に対し、GS1培養上清を反応させたFACSの結果を示す。当該結果は、GS1培養上清は第2試験細菌群には反応しないことを示した。これにより、GS1抗体はB.doreiに対して特異性が高く、他の細菌に対して交差性が低い抗体であることが証明された。 FIG. 4 shows the results of FACS in which the GS1 culture supernatant was reacted with the second test bacterial group. The results showed that the GS1 culture supernatant did not react with the second test bacterial group. As a result, the GS1 antibody is B. It proved to be an antibody with high specificity for dorei and low crossing with other bacteria.

次に、GS1抗体の有用性を示すため、B.doreiおよび図5に記載した計5種類の腸内細菌基準株を混合した腸内細菌基準株混合溶液から、Magnetic-activated cell sorting(MACS、登録商標)を用いて、B.doreiを単離、濃縮できるかどうかの検討を行った。 Next, in order to show the usefulness of the GS1 antibody, B.I. From a mixed solution of gut microbiota, which is a mixture of dorei and a total of five gut microbiota reference strains shown in FIG. 5, using Magnetic-active cell sorting (MACS, registered trademark), B.I. We investigated whether dorei could be isolated and concentrated.

前記試験用培養条件1に従い培養した、B.doreiおよび図5に記載した計5種類の腸内細菌基準株を8000×g、5min、4℃で遠心分離し、培養上清を除いた。その後、PBSにて二回洗浄した後、菌体ペレットをPBSで再懸濁した。分光光度計Nanodrop(登録商標) 2000 C(Thermo Fisher Scientific社製)でOD値(光学濃度)を測定し、大腸菌における菌体数変換式である1OD660=8×10cells/mLに基づき、2%BSAを含むPBSで1×10cells/mlに希釈した。それぞれの培養溶液を100ulずつ混合した腸内細菌基準株混合溶液を作成した後、17,800×g、5min、4℃で遠心分離して上清を除き、残ったペレットにGS1培養上清を100μL加えて懸濁し、30min、4℃で静置しGS1培養上清に含まれる抗体と反応させた。また、比較対象としてIgG1 Isotype Control(SIGMA社製)をネガティブコントロールとし、同様に腸内細菌基準株混合溶液と反応させた。これらのサンプルを2本ずつ(GS1抗体反応サンプル2本、IgG1 isotype control抗体反応サンプル2本、合計4本)用意した。その後、滅菌済みPBSを1mL加え洗浄し、17,800×g、5min、4℃で遠心分離し、GS1培養上清又はIgG1 Isotype Controlを除去した。この過程を二回繰り返した後、二次抗体を100μLずつ添加し、30min、4℃で静置し、検討に使用した。なお、二次抗体はGoat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, FITC(Thermo Fisher Scientific社製)を2%BSAを含むPBSで500倍希釈したものを用いた。その後、滅菌済みPBSを1mL加え洗浄し、17,800×g、5min、4℃で遠心分離し、未反応の二次抗体を除去した。この過程を二回繰り返した後、GS抗体反応サンプル1本とIgG1 Isotype Control反応サンプルの1本は500ulの2%BSAを含むPBSに再懸濁し、分離前サンプルとして測定まで遮光しながら4℃で保管した。残り2本のサンプルに関しては1%BSAを含むPBSで20倍希釈したAnti-FITC標識 MACS(登録商標) beads(Miltenyi Biotec社製)を、200μLずつ添加し、15min、4℃で反応させた。反応後、滅菌済みPBSを1mL加え懸濁し、14000rpm、5min、4℃で遠心分離し上清を除去した。この洗浄工程を合計3回行った後、MACS バッファー(0.5%BSAを含むPBS(2mM EDTA含有))500μLで懸濁した。この懸濁液をMACS(登録商標) midi column(Miltenyi Biotec社製)を用いて分離した。MACS用マグネットにカラムをセットし、カラム内を500uLのMACSバッファーにて洗浄した。次にその他の分画(Flow Through)を回収するためのチューブをカラムの下にセットし、サンプル500ulを添加した。カラムから出てきた溶液を回収した。カラムに1mlのMACSバッファーを加え、出てきた溶液はFlow Throughチューブに回収(Flow ThroughサンプルAとする)した。この工程をさらに二回繰り返した。洗浄工程を終えたカラムはマグネットから外し、標的分画(Elution)回収用チューブ上に設置し、500ulのMACSバッファーを添加し、プランジャーにて押し出すことにより回収(ElutionサンプルBとする)した。これらの分離した溶液を8,000×g、15min、4℃で遠心分離し、2%BSAを含むPBS400μLに懸濁した。Accuri C6 plus(BD社製)を用いてMACS(登録商標)による分離前と分離後における各種細菌懸濁液、Flow ThroughとElutionと、GS1抗体およびIgG1 Isotype Controとの反応性を解析した。FACS測定により取得されたFCSファイルは、解析ソフトFlowJo version 10.5.3(FlowJo LLC)で解析した。またFlow ThroughとElutionの一部は14000rpm、10min、4℃で菌体ペレットを回収し、使用まで-80℃にて保管した。 B. cultivated according to the above-mentioned test culture condition 1. A total of 5 types of gut microbiota reference strains shown in dorei and FIG. 5 were centrifuged at 8000 × g, 5 min, and 4 ° C., and the culture supernatant was removed. Then, after washing twice with PBS, the cell pellet was resuspended with PBS. The OD value (optical concentration) was measured with a spectrophotometer Nanodrop (registered trademark) 2000 C (manufactured by Thermo Fisher Scientific), and based on 1OD 660 = 8 × 10 8 cells / mL, which is a cell number conversion formula in Escherichia coli. It was diluted to 1 × 10 8 cells / ml with PBS containing 2% BSA. After preparing a mixed solution of the gut microbiota reference strain in which 100 ul of each culture solution was mixed, centrifuge at 17,800 × g, 5 minutes at 4 ° C. to remove the supernatant, and add the GS1 culture supernatant to the remaining pellets. 100 μL was added and suspended, and the mixture was allowed to stand at 4 ° C. for 30 minutes to react with the antibody contained in the GS1 culture supernatant. For comparison, IgG1 Isotype Control (manufactured by SIGMA) was used as a negative control, and the mixture was similarly reacted with a mixed solution of an intestinal bacterial reference strain. Two of these samples were prepared (two GS1 antibody reaction samples and two IgG1 isotype control antibody reaction samples, for a total of four). Then, 1 mL of sterilized PBS was added and washed, and the mixture was centrifuged at 17,800 × g, 5 min and 4 ° C. to remove the GS1 culture supernatant or the IgG1 Isotype Control. After repeating this process twice, 100 μL of the secondary antibody was added, and the mixture was allowed to stand at 4 ° C. for 30 minutes and used for the study. As the secondary antibody, Goat anti-mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, FITC (manufactured by Thermo Fisher Scientific) diluted 500-fold with PBS containing 2% BSA was used. Then, 1 mL of sterilized PBS was added and washed, and the mixture was centrifuged at 17,800 × g, 5 min and 4 ° C. to remove unreacted secondary antibody. After repeating this process twice, one GS antibody reaction sample and one IgG1 Isotype Control reaction sample were resuspended in PBS containing 500 ul of 2% BSA and used as a pre-separation sample at 4 ° C. without shading until measurement. I kept it. For the remaining two samples, 200 μL of Anti-FITC-labeled MACS® beads (manufactured by Miltenyi Biotec) diluted 20-fold with PBS containing 1% BSA was added and reacted at 4 ° C. for 15 min. After the reaction, 1 mL of sterilized PBS was added, suspended, and centrifuged at 14000 rpm, 5 min, and 4 ° C. to remove the supernatant. After performing this washing step three times in total, the cells were suspended in 500 μL of MACS buffer (PBS containing 0.5% BSA (containing 2 mM EDTA)). This suspension was separated using MACS® midi volume (manufactured by Miltenyi Biotec). The column was set on the MACS magnet, and the inside of the column was washed with 500 uL MACS buffer. Next, a tube for collecting the other fraction (Flow Through) was set under the column, and 500 ul of a sample was added. The solution that came out of the column was recovered. 1 ml of MACS buffer was added to the column, and the resulting solution was collected in a Flow Through tube (referred to as Flow Through sample A). This process was repeated twice more. The column after the washing step was removed from the magnet, placed on a target fraction recovery tube, 500 ul of MACS buffer was added, and the column was recovered by extruding with a plunger (referred to as Elution sample B). These separated solutions were centrifuged at 8,000 xg for 15 min at 4 ° C and suspended in 400 μL of PBS containing 2% BSA. Using Accuri C6 plus (manufactured by BD), the reactivity of various bacterial suspensions, Flow Through and Elution, with GS1 antibody and IgG1 Isotype Control before and after separation by MACS® was analyzed. The FCS file obtained by FACS measurement was analyzed by the analysis software FlowJo version 10.5.3 (FlowJo LLC). In addition, some of Flow Through and Elution collected cell pellets at 14000 rpm, 10 min, and 4 ° C, and stored at −80 ° C until use.

図6に、MACS(登録商標)の検討結果を示す。GS1抗体に反応せず流れ出たFlow Throughと、GS1抗体に反応した後、抗体からはがしたElutionには、流れ出たものに差があることが判明した。 FIG. 6 shows the examination results of MACS (registered trademark). It was found that there was a difference between the Flow Through that flowed out without reacting with the GS1 antibody and the Elution that flowed out from the antibody after reacting with the GS1 antibody.

次に、Flow ThroughとElutionに含まれる菌体の種類について、RT(Real Time)-PCRを用いて確認をした。 Next, the types of bacterial cells contained in Flow Time and Elution were confirmed using RT (Real Time) -PCR.

-80℃で保存したFlow ThroughサンプルAとElutionサンプルBの菌体に対して、400μLのTE10バッファー(10 mM Tris, 10mM EDTA)を加え溶解し、Lysozyme(300 mg/mL)(WAKO社製)を20μL加え、ローテーションしながら37℃、8時間反応させた。その後、精製されたAchromopeptidase(登録商標)(20000units/mL)(WAKO社製)を12μL加えて混合し、更にローテーションしながら37℃、8時間反応させた。その後、50μLの10%SDS(pH7.2)を加えて混合し、更にProteinase K(25 mg/mL)(MERCK社製)を12μL加え、55℃で一晩インキュベートした。インキュベート後、500μLのPhenol/Chloroform/Isoamylalcohol(25:24:1)を加え、Micro Mixer(TAITEC社製)を用いて最大速度で3min撹拌したのち、17,800×g、10min、20℃で遠心分離し、上清を採取した。上清に、再度500μLのPhenol/Chloroform/Isoamylalcoholを加え、同様に撹拌し遠心分離した後に上清を採取した。回収した上清に40μLの3M Sodium Acetateを加え混合し、1mLの冷やした100%Ethanolを加え、ボルテックスで撹拌した後に-80℃で1時間静置した。その後、17,800×g、10min、4℃で遠心分離し上清を捨て、70%Ethanolを500μL加え、転倒混和した。17,800×g、10min、4℃で遠心分離し上清を捨て、遠心エバポレーターでチューブ内の水分を蒸発させた。残った沈殿は精製された核酸であり、当該沈殿に、TE10を100μL加え、Micro Mixerを用いて最大速度で1min撹拌後、80μLを別チューブに移し、RNaseA(10mg/mL)を1μL加え、37℃、一晩インキュベートした。 400 μL of TE10 buffer (10 mM Tris, 10 mM EDTA) was added to the cells of Flow Time Sample A and Elution Sample B stored at -80 ° C to dissolve them, and Lysozyme (300 mg / mL) (manufactured by WAKO). Was added in an amount of 20 μL, and the mixture was reacted at 37 ° C. for 8 hours while rotating. Then, 12 μL of purified Achromoptidase (registered trademark) (20000units / mL) (manufactured by WAKO) was added and mixed, and the mixture was further reacted at 37 ° C. for 8 hours while rotating. Then, 50 μL of 10% SDS (pH 7.2) was added and mixed, and then 12 μL of Proteinase K (25 mg / mL) (manufactured by MERCK) was added and incubated overnight at 55 ° C. After incubation, 500 μL of Phenol / Chloroform / Isoamyl alcohol (25: 24: 1) was added, and the mixture was stirred at a maximum speed of 3 min using a Micro Mixer (manufactured by TAITEC), and then centrifuged at 17,800 × g, 10 min, and 20 ° C. Separation was performed and the supernatant was collected. To the supernatant, 500 μL of Phenol / Chloroform / Isoamyl alcohol was added again, and the supernatant was collected after stirring and centrifuging in the same manner. 40 μL of 3M Sodium Acatete was added to the collected supernatant, mixed, 1 mL of chilled 100% Ethanol was added, and the mixture was stirred with vortex and allowed to stand at −80 ° C. for 1 hour. Then, the mixture was centrifuged at 17,800 × g, 10 min, and 4 ° C., the supernatant was discarded, 500 μL of 70% ethanol was added, and the mixture was inverted and mixed. Centrifugation at 17,800 × g, 10 min, 4 ° C. was performed, the supernatant was discarded, and the water content in the tube was evaporated by a centrifugal evaporator. The remaining precipitate is purified nucleic acid. To the precipitate, 100 μL of TE10 is added, and after stirring for 1 min at the maximum speed using a Micro Mixer, 80 μL is transferred to another tube, 1 μL of RNaseA (10 mg / mL) is added, and 37 Incubated overnight at ° C.

前記取得した核酸を用いて、Nanodrop(登録商標) 2000 C(Thermo Fisher Scientific社製)によりDNA濃度を測定し、Pure Water(Wako社製)を用いて10ng/ulになるように調整した。希釈したDNA1uLを鋳型とし、SYBR(登録商標) Premix Ex Taq2(TaKaRa社製)を用いて、RT-PCRを行った。PCR条件は初期変性95℃、30sec→(96℃、30sec、55℃、45sec、72℃、1min)×40サイクル、で実施した。使用したプライマーを図7に示す。解析方法は、Eubacteriumを標的とし16S rRNA配列特異的プライマーにより増幅された遺伝子発現量を基準に、Bacteroides属菌特異的プライマーもしくはAkkermansia muciniphila(A.muciniphila)特異的プライマーにより増幅された遺伝子発現量を比較Ct法により解析した。 Using the obtained nucleic acid, the DNA concentration was measured by Nanodrop® 2000 C (manufactured by Thermo Fisher Scientific), and adjusted to 10 ng / ul using Pure Water (manufactured by Wako). RT-PCR was performed using diluted DNA1uL as a template and SYBR® Premix Ex Taq2 (manufactured by TaKaRa). The PCR conditions were initial denaturation 95 ° C., 30 sec → (96 ° C., 30 sec, 55 ° C., 45 sec, 72 ° C., 1 min) × 40 cycles. The primers used are shown in FIG. The analysis method is based on the gene expression level amplified by the 16S rRNA sequence-specific primer targeting Eubacterium, and the gene expression level amplified by the Bacteroides genus-specific primer or the Akkermansia muciniphila (A. muciniphila) -specific primer. It was analyzed by the comparative Ct method.

図8にRT-PCRの結果を示す。Bacteroides属菌特異的プライマーを用いた結果は、MACS(登録商標)を行う前のサンプルに比べ、標的分画中にBacteroides属菌の割合が増加していることが判明した。なお、もともとのサンプルにBacteroides属菌としてはB.doreiのみが含まれていることから、Elution中にB.doreiが含まれていることとなる。一方でGS1抗体が結合しないと考えられるA.muciniphila量は、MACS(登録証商標)前に比べ、標的分画で減少していた。これにより、GS1抗体を用いて、B.doreiを特異的に単離、濃縮できることが判明した。 FIG. 8 shows the results of RT-PCR. As a result of using the Bacteroides spp. Specific primer, it was found that the proportion of Bacteroides spp. In the target fraction was increased as compared with the sample before MACS (registered trademark). In the original sample, Bacteroides spp. Since only dorei is included, B. Dorei will be included. On the other hand, it is considered that the GS1 antibody does not bind to A. The amount of mucinipila was decreased in the target fraction as compared with that before MACS (registered trademark). As a result, using the GS1 antibody, B. It was found that dorei can be specifically isolated and concentrated.

更に、単離、濃縮したB.doreiが、培養可能かどうかを検討した。 Further isolated and concentrated B. It was examined whether dorei could be cultivated.

段落0051に記載の手法でMACS分離前の培養液、MACS分離後の標的分画の各溶液を17,800×g、5min、4℃で遠心分離し、2%BSAを含むPBSで400μLに懸濁した。当該懸濁した溶液を50μL、滅菌済みコンラージ棒を用いて菌液をGAM寒天培地に撒き、Bactron300(SHEL LAB)内において37℃嫌気環境下( Nガスをベースに5.02%CO、 4.95% Hを添加した混合ガス)で培養した。24時間培養した後、プレート上に形成されたコロニーを撮影した。 Centrifugate each solution of the culture solution before MACS separation and the target fraction after MACS separation at 17,800 × g, 5 min at 4 ° C. by the method described in paragraph 0051, and suspend over 400 μL with PBS containing 2% BSA. It became cloudy. 50 μL of the suspended solution, the bacterial solution was sprinkled on a GAM agar medium using a sterilized spreader, and in a Bactron300 (SHEL LAB) under a 37 ° C. anaerobic environment (5.02% CO 2 based on N2 gas, 5.02% CO 2 ). It was cultured in a mixed gas containing 4.95 % H2). After culturing for 24 hours, the colonies formed on the plate were photographed.

図9に単離、濃縮したB.doreiの培養試験の結果を示す。MACS分離前の培養液ではコロニーが形成された。また、前記RT-PCRの結果からB.doreiが単離されている標的分画でもコロニーの形成が見られた。この結果はGS1抗体が結合した菌も増殖可能であることを示すものであった。 B. isolated and concentrated in FIG. The results of the culture test of dorei are shown. Colonies were formed in the culture medium before MACS separation. In addition, from the results of the RT-PCR, B. Colony formation was also seen in the target fraction from which dorei was isolated. This result showed that the bacterium to which the GS1 antibody was bound could also grow.

GS1抗体を産生するハイブリドーマの維持は以下のように行った。ハイブリドーマが保存された凍結バイアルチューブを37℃で急速解凍した。1mLのハイブリドーマ細胞溶液に10mLの細胞培養培地(RPMI/10%FCS/1%ピルビン酸ナトリウム溶液/1X penicillin- streptomycin-グルタミン溶液(GIBCO社製))を添加し、1000rpm、5min、4℃で遠心分離した。上清を除去し、1mLの培地で再懸濁したのちに、14mLの培地が入った培養フラスコに移し、37℃、5%CO環境下で培養した。飽和状態に達する直前に培養細胞液1mLを13mLの培地を含んだ培養フラスコに移し、培養することで維持した。 The maintenance of the hybridoma that produces the GS1 antibody was performed as follows. Frozen vial tubes containing hybridomas were rapidly thawed at 37 ° C. Add 10 mL of cell culture medium (RPMI / 10% FCS / 1% sodium pyruvate solution / 1X penicillin-streptomycin-glutamine solution (manufactured by GIBCO)) to 1 mL of hybridoma cell solution, and centrifuge at 1000 rpm, 5 min, 4 ° C. separated. After removing the supernatant and resuspending in 1 mL of medium, the cells were transferred to a culture flask containing 14 mL of medium and cultured at 37 ° C. in a 5% CO 2 environment. Immediately before reaching saturation, 1 mL of the cultured cell solution was transferred to a culture flask containing 13 mL of medium and maintained by culturing.

更に、シークエンス解析のために、以下のようにGS1抗体産生ハイブリドーマ細胞の調整を行った。培養したハイブリドーマを回収し、1000rpm、5min、4℃で遠心分離した。上清を除き、10mLの滅菌PBSに細胞を再懸濁した。1000rpm、5min、4℃で遠心分離し、滅菌PBSを加え、血球計算版を用いて細胞数を数えた。細胞を2×10Cells/mLになるように調整し、100μLの細胞溶液を新しいチューブ分取し、そこにRNA later(Invitrogen)を900μL加え懸濁し、4℃で一晩インキュベートし、当該サンプルをDNAシークエンス解析に用いた。 Furthermore, for sequence analysis, GS1 antibody-producing hybridoma cells were prepared as follows. The cultured hybridoma was collected and centrifuged at 1000 rpm, 5 min, and 4 ° C. The supernatant was removed and the cells were resuspended in 10 mL sterile PBS. Centrifugation was performed at 1000 rpm, 5 min, and 4 ° C., sterile PBS was added, and the number of cells was counted using a hemocytometer. The cells were adjusted to 2 × 10 7 Cells / mL, 100 μL of the cell solution was dispensed into a new tube, 900 μL of RNA later (Invitrogen) was added and suspended, and the sample was incubated overnight at 4 ° C. Was used for DNA sequence analysis.

以上示したように、得られた抗体は、B.doreiに対して高い特異性を有し、B.doreiを特異的に精製することができる。このため、本抗体は、B.dorei以外の細菌も含む糞便などの試料から、より精度よくB.doreiを単離し、更には濃縮することができるため、医薬、ヘルスケア等の分野において貢献することができる。また、本実施形態により、腸内細菌叢を構成する腸内細菌の中の一つであるB.doreiに対し高い特異性を持つ抗原結合分子と、当該抗原結合分子を用いてB.doreiを含む細菌集団から、標的とするB.doreiのみを効率よく単離、濃縮することができる。 As shown above, the obtained antibody was obtained from B.I. It has a high specificity for dorei, and B. Dorei can be specifically purified. Therefore, this antibody is based on B.I. From samples such as feces containing bacteria other than dorei, B. Since dorei can be isolated and further concentrated, it can contribute to the fields of medicine, healthcare and the like. In addition, according to the present embodiment, B. is one of the intestinal bacteria constituting the intestinal flora. Using an antigen-binding molecule having high specificity for dorei and the antigen-binding molecule, B.I. From a bacterial population containing dorei, target B. Only dorei can be efficiently isolated and concentrated.

特定の腸内細菌を標的とする特異的性の高い抗体は作製例も少なく、便検体など多種の腸内細菌が存在する中から標的細菌を分離・濃縮するためには選択培地を使用し、形成されたコロニーを単離、核酸を抽出したのちにシークエンスにより配列を確認する必要があった。本実施形態による抗体はB.doreiに対する特異性が高く、他の細菌種への交差反応がほとんどないため、抗体が結合した菌はほぼ標的細菌となる。そのため従来の手法よりも簡便に効率よく標的の菌を単離・濃縮することが可能となる。便試料などBacteroides属を多く含むような検体からも本抗体を用いることでB. doreiを効率よく単離できることが期待される。また本抗体を用いて、腸内細菌叢の中におけるB. doreiの割合を評価する方法を構築することで小児一型糖尿病などの非侵襲診断に応用できる可能性がある。 There are few examples of highly specific antibodies that target specific intestinal bacteria, and a selective medium is used to isolate and concentrate the target bacteria from the presence of various intestinal bacteria such as stool samples. It was necessary to isolate the formed colonies, extract the nucleic acid, and then confirm the sequence by sequencing. The antibody according to this embodiment is B.I. Since it has high specificity for dorei and there is almost no cross-reactivity with other bacterial species, the bacterium to which the antibody is bound is almost the target bacterium. Therefore, it becomes possible to isolate and concentrate the target bacteria more easily and efficiently than the conventional method. By using this antibody from a sample containing a large amount of Bacteroides, such as a stool sample, B. It is expected that dorei can be efficiently isolated. In addition, using this antibody, B. in the intestinal flora. By constructing a method for evaluating the proportion of dorei, it may be applicable to non-invasive diagnosis such as pediatric type 1 diabetes.

これまで腸内細菌のゲノム配列は個人ごとに異なることが知られており、同じ腸内細菌でも発現する因子や機能が異なることが知られている。そのため、他者の腸内細菌を摂取しても殆ど定着しないことがある。B. doreiは有用菌の一つであり、腸内細菌由来のリポ多糖を減少させることでアテローム性動脈硬化症の抑制に寄与することが報告されている(Circulation. 2018 Nov 27;138(22):2486-2498.)。そのため、適正数のB. doreiを保持し続けることは健康維持に重要である。本申請で作製したB. dorei特異的抗体を用いることで、個人固有のB. doreiを効率よく単離、再培養する手法を確立し、宿主に戻すことによりB. doreiの存在割合を意のままに調整し、かつ長期的な定着させることできる可能性がある。一方で、B. doreiは疾患とも関連しており、小児一型糖尿病の発症前に増加することが報告されている(Front Microbiol. 2014; 5: 678)。本抗体を利用し、便中B. doreiの割合を適切に評価することで、これらの疾患の診断薬として応用できる可能性もある。 It has been known that the genome sequence of intestinal bacteria differs from individual to individual, and it is known that the factors and functions expressed by the same intestinal bacteria differ. Therefore, even if the intestinal bacteria of another person are ingested, they may hardly be established. B. Dorei is one of the useful bacteria, and it has been reported that it contributes to the suppression of atherosclerosis by reducing lipopolysaccharide derived from intestinal bacteria (Circulation. 2018 Nov 27; 138 (22) :. 2486-2498.). Therefore, an appropriate number of B.I. Maintaining dorei is important for maintaining good health. B. made in this application. By using a dorei-specific antibody, an individual-specific B. By establishing a method for efficiently isolating and reculturing dorei and returning it to the host, B. There is a possibility that the abundance ratio of dorei can be adjusted at will and can be established for a long period of time. On the other hand, B. Dorei is also associated with disease and has been reported to increase before the onset of childhood type 1 diabetes (Front Microbiol. 2014; 5: 678). Using this antibody, in stool B. Appropriate evaluation of the proportion of dorei may be applicable as a diagnostic agent for these diseases.

上述した実施形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiments are merely examples for facilitating the understanding of the present invention, and are not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes its equivalents.

Claims (10)

Bacteroides doreiに結合することを特徴とする、抗原結合分子。 An antigen-binding molecule characterized by binding to Bacteroides dorei. 他のBacteroides属に属する細菌に結合しないこと、
を特徴とする、請求項1に記載の抗原結合分子。
Do not bind to other bacteria belonging to the genus Bacteroides,
The antigen-binding molecule according to claim 1.
前記他のBacteroides属は、Bacteroides ovatus、Bacteroides stercoris、Bacteroides thetaiotaomicron、Bacteroides uniformis、Bacteroides vulgatusであること、
を特徴とする、請求項2に記載の抗原結合分子。
The other Bacteroides genus is Bacteroides ovatus, Bacteroides stercoris, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides bulgats.
2. The antigen-binding molecule according to claim 2.
前記抗原結合分子は、抗体、抗体断片またはペプチドであり、
アミノ酸配列として、配列番号3から8のいずれかに記載のアミノ酸配列、または配列番号3から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列、
を含むことを特徴とする、請求項1から3のいずれか一項に記載の抗原結合分子。
The antigen-binding molecule is an antibody, antibody fragment or peptide.
As the amino acid sequence, the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8 or the amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 3 to 8.
The antigen-binding molecule according to any one of claims 1 to 3, wherein the antigen-binding molecule comprises.
前記抗原結合分子は、抗体または抗体断片であり、
重鎖のアミノ酸配列として配列番号3から5のいずれかに記載のアミノ酸、または配列番号3から5のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
軽鎖のアミノ酸配列として配列番号6から8のいずれかに記載のアミノ酸配列、または配列番号6から8のいずれかに記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列と、
を含むことを特徴とする、請求項4に記載の抗原結合分子。
The antigen-binding molecule is an antibody or antibody fragment.
An amino acid sequence having 90% or more homology with the amino acid set forth in any of SEQ ID NOs: 3 to 5 or the amino acid sequence set forth in any of SEQ ID NOs: 3 to 5 as the amino acid sequence of the heavy chain.
An amino acid sequence having 90% or more homology with the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 or the amino acid sequence set forth in any of SEQ ID NOs: 6 to 8 as the amino acid sequence of the light chain.
The antigen-binding molecule according to claim 4, wherein the antigen-binding molecule comprises.
配列番号3のアミノ酸配列、または配列番号3に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR1領域と、
配列番号4のアミノ酸配列、または配列番号4に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR2領域と、
配列番号5のアミノ酸配列、または配列番号5に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVHCDR3領域と、
配列番号6のアミノ酸配列、または配列番号6に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR1領域と、
配列番号7のアミノ酸配列、または配列番号7に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR2領域と、
配列番号8のアミノ酸配列、または配列番号8に記載のアミノ酸配列に対して90%以上の相同性を有するアミノ酸配列を含むVLCDR3領域と、
を含むことを特徴とする、請求項5に記載の抗原結合分子。
A VHCDR1 region containing an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 3.
A VHCDR2 region containing an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 4.
A VHCDR3 region containing an amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 5.
A VLCDR1 region containing an amino acid sequence of SEQ ID NO: 6 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 6.
A VLCDR2 region containing an amino acid sequence of SEQ ID NO: 7 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 7.
A VLCDR3 region containing an amino acid sequence of SEQ ID NO: 8 or an amino acid sequence having 90% or more homology to the amino acid sequence set forth in SEQ ID NO: 8.
5. The antigen-binding molecule according to claim 5.
請求項1から6のいずれか一項に記載の抗原結合分子をコードする核酸配列、または複数の核酸配列を含むことを特徴とする、核酸組成物。 A nucleic acid composition comprising the nucleic acid sequence encoding the antigen-binding molecule according to any one of claims 1 to 6, or a plurality of nucleic acid sequences. 請求項7に記載の核酸配列、または複数の核酸配列を含むベクター組成物、または複数のベクターを含むことを特徴とする、ベクター組成物。 A vector composition comprising the nucleic acid sequence according to claim 7, a vector composition containing a plurality of nucleic acid sequences, or a plurality of vectors. 請求項8に記載のベクター組成物を含むことを特徴とする、細胞。 A cell comprising the vector composition according to claim 8. 請求項1から6のいずれか一項に記載の抗原結合分子を用いて、Bacteroides doreiを含む試料からBacteroides doreiを単離する、Bacteroides doreiの精製方法。


A method for purifying Bacteroides dorei, which isolates Bacteroides doriei from a sample containing Bacteroides doriei using the antigen-binding molecule according to any one of claims 1 to 6.


JP2020218501A 2020-12-28 2020-12-28 Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei Pending JP2022103708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020218501A JP2022103708A (en) 2020-12-28 2020-12-28 Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218501A JP2022103708A (en) 2020-12-28 2020-12-28 Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei

Publications (1)

Publication Number Publication Date
JP2022103708A true JP2022103708A (en) 2022-07-08

Family

ID=82284903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218501A Pending JP2022103708A (en) 2020-12-28 2020-12-28 Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei

Country Status (1)

Country Link
JP (1) JP2022103708A (en)

Similar Documents

Publication Publication Date Title
JP6703567B2 (en) Identification of sample-related polynucleotides
Smith et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen
Chen et al. Microbial symbionts regulate the primary Ig repertoire
JP2013521759A (en) Antibodies against serotype B lipopolysaccharide of Pseudomonas aeruginosa
JP2022058341A (en) Antibodies targeting a galactan-based o-antigen of klebsiella pneumoniae
US20210002699A1 (en) Tim-3 nanobody, a preparation method thereof, and use thereof
JP2018535671A (en) K. Antibodies targeting P. pneumoniae mannan-based O antigen
CN115386006A (en) anti-GPRC 5D antibody, preparation method and application thereof
JP2022103708A (en) Methods for purifying antigen binding molecules, nucleic acid compositions, vector compositions, cells and bacteroides dorei
WO2021107072A1 (en) Antigen-binding molecule, nucleic acid composition, vector composition and method for purifying cells and bifidobacterium longum
Zola et al. Natural antibody to conserved targets of Haemophilus influenzae limits colonization of the murine nasopharynx
CN109553680B (en) Monoclonal antibody ZKns4B8 and application thereof
CN109503712B (en) Monoclonal antibody ZKns2E11 and application thereof
CN115975015A (en) Peste des petits ruminants virus (PPRV) F protein nano antibody and preparation, purification and neutralization test method thereof
Roscioli et al. Anti-capsule human monoclonal antibodies protect against hypervirulent and pandrug-resistant Klebsiella pneumoniae
WO2023219175A1 (en) Method and composition both for treating or diagnosing inflammatory bowel disease (ibd)
US20230265172A1 (en) Humanized antibody specific to bacillus anthracis protective antigen and preparation method thereof
Hao et al. The Role of Fc Receptors in the Innate Immune System of Flounders Purported to Be Homologs of FcγRII and FcγRIII
JP2019531060A (en) Anti-galactan-II monoclonal antibody targeting Klebsiella pneumoniae
JP2023106636A (en) Human anti-tetanus toxin antibodies
CN117106077A (en) Fully human monoclonal antibodies that specifically bind to staphylococcus aureus Hla toxin
CN114085289A (en) Construction method and application of semisynthetic single-domain antibody library
CN115975034A (en) TRBC2 antibody and application thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322