JP2021081383A - Magnetic characteristic measuring device and magnetic characteristic measuring method - Google Patents

Magnetic characteristic measuring device and magnetic characteristic measuring method Download PDF

Info

Publication number
JP2021081383A
JP2021081383A JP2019211399A JP2019211399A JP2021081383A JP 2021081383 A JP2021081383 A JP 2021081383A JP 2019211399 A JP2019211399 A JP 2019211399A JP 2019211399 A JP2019211399 A JP 2019211399A JP 2021081383 A JP2021081383 A JP 2021081383A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
pair
electromagnets
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211399A
Other languages
Japanese (ja)
Other versions
JP7032369B2 (en
Inventor
成弘 岩田
Shigehiro Iwata
成弘 岩田
一彦 野口
Kazuhiko Noguchi
一彦 野口
智裕 尾崎
Tomohiro Ozaki
智裕 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denshijiki Industry Co Ltd
Original Assignee
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denshijiki Industry Co Ltd filed Critical Denshijiki Industry Co Ltd
Priority to JP2019211399A priority Critical patent/JP7032369B2/en
Publication of JP2021081383A publication Critical patent/JP2021081383A/en
Application granted granted Critical
Publication of JP7032369B2 publication Critical patent/JP7032369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

To appropriately evaluate magnetic characteristics even when core intervals of electric magnets are different.SOLUTION: A magnetic characteristic measuring device 1 comprises: a pair of electric magnets 11, with a search coil 21 wound around, which are arranged so as to sandwich a magnetic material 2; a hall sensor 22 for measuring a magnetic field strength H; and a control device 30 for measuring the magnetic characteristic of the magnetic material 2 by the magnetic field strength H and a magnetic flux density B while supplying an excitation current to the pair of electric magnets 11. The control device 30 includes a storage unit 34 for storing a relationship, as electric magnet characteristic information, between the excitation current acquired in advance for each clearance G of the pair of electric magnets 11 and the magnetic field strength H, an input unit 31 to which is inputted the amplitude and cycle of an excitation magnetic field, and a measurement control unit 33 for executing measurement control. The measurement control unit 33 acquires a target current value on the basis of the electric magnet characteristic information and sets the current waveform of the excitation current on the basis of the cycle of the excitation magnetic field and the target current value.SELECTED DRAWING: Figure 1

Description

本発明は、磁気特性測定装置、及び磁気特性測定方法に関する。 The present invention relates to a magnetic characteristic measuring device and a magnetic characteristic measuring method.

磁性材料は、印加される磁界の強さに対する磁束密度を測定することによりB−H特性を評価することができ、いわゆる磁気ヒステリシスループから保磁力、残留磁束密度、透磁率、ヒステリシス損等の磁気特性を求めることができる。ここで、一般的に、B−H特性の測定においては、ソフト材(軟磁性体)に対しては励磁コイルが巻回されたリング状の試験片が用いられ、ハード材(硬磁性体)のようにより広いレンジの励磁磁界が必要な場合には、測定対象の磁性材料を挟むように設けられる電磁石が使用される。例えば、特許文献1には、磁性材料を挟むように配置された互いに対向する2つのコアを有し、当該コアに巻回されたソレノイドに通電することにより、磁性材料を磁化させる磁気ヒステリシス特性装置が開示されている。 The BH characteristics of a magnetic material can be evaluated by measuring the magnetic flux density with respect to the strength of the applied magnetic field, and the magnetism such as coercive force, residual magnetic flux density, magnetic permeability, and hysteresis loss can be evaluated from the so-called magnetic hysteresis loop. The characteristics can be obtained. Here, in general, in the measurement of BH characteristics, a ring-shaped test piece in which an exciting coil is wound is used for a soft material (soft magnetic material), and a hard material (hard magnetic material). When a wider range of exciting magnetic fields is required, an electromagnet provided so as to sandwich the magnetic material to be measured is used. For example, Patent Document 1 has a magnetic hysteresis characteristic device that has two cores that face each other and are arranged so as to sandwich a magnetic material, and magnetizes the magnetic material by energizing a solenoid wound around the core. Is disclosed.

B−H特性の測定に用いられる上記のような電磁石は、磁性材料の大きさに合わせて一対のコアの間隔を調整できるよう構成されており、これにより磁性材料を効率的に磁化させることができる。また、上記の特許文献1に係る従来技術においては、電磁石が磁性材料に対して発生させる磁界の強さをホール素子によって検出している。 The above-mentioned electromagnet used for measuring the BH characteristics is configured so that the distance between the pair of cores can be adjusted according to the size of the magnetic material, whereby the magnetic material can be magnetized efficiently. it can. Further, in the above-mentioned prior art according to Patent Document 1, the strength of the magnetic field generated by the electromagnet with respect to the magnetic material is detected by the Hall element.

実開昭63−67886号公報Jikkai Sho 63-67886

しかしながら、上記のような従来技術では、電磁石が発生させる磁界の強さが2つのコアの間隔により異なるため、例えば寸法の異なる複数の磁性材料のB−H特性を測定する場合に、所望の強度の磁界を印加するためにソレノイドに通電させるべき目標電流値も異なってしまう。このため、ソレノイドに流す電流値を0[A]から目標電流値まで上昇させる所要時間、すなわち所望の磁界強度に達するまでの所要時間も、電磁石のコア間隔により変化することになる。このとき、磁気ヒステリシスループの横幅は、印加磁界の周期が長いほど細く、印加磁界の周期が短いほど太くなる。つまり、互いに寸法の異なる複数の磁性材料は、電磁石のコア間隔に伴い印加される磁界の周期も異なるため、たとえ同一の素材からなる場合であっても、測定されるB−H特性が互いに異なってしまい、磁気特性の適切な評価を行うことができない虞が生じる。 However, in the above-mentioned conventional technique, the strength of the magnetic field generated by the electromagnet differs depending on the distance between the two cores. Therefore, for example, when measuring the BH characteristics of a plurality of magnetic materials having different dimensions, the desired strength is obtained. The target current value to be energized in the solenoid to apply the magnetic field of is also different. Therefore, the time required to raise the current value flowing through the solenoid from 0 [A] to the target current value, that is, the time required to reach the desired magnetic field strength also changes depending on the core spacing of the electromagnet. At this time, the width of the magnetic hysteresis loop becomes narrower as the period of the applied magnetic field becomes longer, and becomes thicker as the period of the applied magnetic field becomes shorter. That is, since a plurality of magnetic materials having different dimensions have different periods of magnetic fields applied according to the core spacing of the electromagnet, the measured BH characteristics are different from each other even if they are made of the same material. Therefore, there is a risk that the magnetic characteristics cannot be properly evaluated.

本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、電磁石のコア間隔が異なる場合であっても、磁気特性の適切な評価を行うことができる磁気特性測定装置、及び磁気特性測定方法を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to measure magnetic characteristics so that appropriate evaluation of magnetic characteristics can be performed even when the core spacing of electromagnets is different. It is an object of the present invention to provide an apparatus and a method for measuring magnetic characteristics.

<本発明の第1の態様>
本発明の第1の態様は、サーチコイルが巻回され、磁性材料を挟むように配置される一対の電磁石と、前記一対の電磁石の間における磁界強度を測定する磁界センサと、前記一対の電磁石に励磁電流を供給しつつ、前記磁界センサで測定される前記磁界強度と前記サーチコイルで測定される磁束密度とにより前記磁性材料の磁気特性を測定する制御装置と、を備え、前記制御装置は、前記一対の電磁石の離間間隔ごとに予め取得した前記励磁電流と前記磁界強度との関係を電磁石特性情報として記憶する記憶部と、前記磁性材料を励磁する励磁磁界の振幅及び周期が入力される入力部と、前記磁気特性の測定制御を実行する計測制御部と、を含み、前記計測制御部は、前記電磁石特性情報に基づいて前記離間間隔と前記励磁磁界の前記振幅とに対応する目標電流値を取得し、前記入力部から入力された前記励磁磁界の前記周期と前記目標電流値とに基づいて前記励磁電流の電流波形を設定する、磁気特性測定装置である。
<First aspect of the present invention>
The first aspect of the present invention is a pair of electromagnets in which a search coil is wound and arranged so as to sandwich a magnetic material, a magnetic field sensor for measuring the magnetic field strength between the pair of electromagnets, and the pair of electromagnets. The control device comprises a control device that measures the magnetic characteristics of the magnetic material by the magnetic field strength measured by the magnetic field sensor and the magnetic flux density measured by the search coil while supplying an exciting current to the magnetic material. , A storage unit that stores the relationship between the exciting current and the magnetic field strength acquired in advance for each separation interval of the pair of electromagnets as electromagnet characteristic information, and the amplitude and period of the exciting magnetic field that excites the magnetic material are input. The measurement control unit includes an input unit and a measurement control unit that executes measurement control of the magnetic characteristics, and the measurement control unit includes a target current corresponding to the separation interval and the amplitude of the exciting magnetic field based on the electromagnet characteristic information. This is a magnetic characteristic measuring device that acquires a value and sets a current waveform of the exciting current based on the period of the exciting magnetic field input from the input unit and the target current value.

本発明の第1の態様に係る磁気特性測定装置においては、一対の電磁石についての離間間隔ごとの励磁電流と磁界強度との関係を予め記憶し、測定対象の磁性材料を励磁するための励磁磁界の振幅及び周期が入力されることにより、一対の電磁石に印加される励磁電流の電流波形が設定される。このとき、励磁電流の電流波形は、離間間隔の大きさに拘らず、所定の目標磁界を磁性材料に印加するのに必要な振幅を有すると共に、当該周期を任意に設定することができる。このため、例えば同一の素材からなり寸法の異なる2つの磁性材料を測定する場合であっても、励磁電流の周期を統一することにより、それぞれ同一条件で磁気特性を評価することができる。従って、本発明に係る磁気特性測定装置によれば、電磁石のコア間隔が異なる場合であっても、磁気特性の適切な評価を行うことができる。 In the magnetic characteristic measuring apparatus according to the first aspect of the present invention, the relationship between the exciting current and the magnetic field strength for each separation interval of a pair of electromagnets is stored in advance, and the exciting magnetic field for exciting the magnetic material to be measured is excited. By inputting the amplitude and period of, the current waveform of the exciting current applied to the pair of electromagnets is set. At this time, the current waveform of the exciting current has an amplitude necessary for applying a predetermined target magnetic field to the magnetic material regardless of the size of the separation interval, and the period can be arbitrarily set. Therefore, for example, even when two magnetic materials made of the same material and having different dimensions are measured, the magnetic characteristics can be evaluated under the same conditions by unifying the period of the exciting current. Therefore, according to the magnetic characteristic measuring apparatus according to the present invention, it is possible to appropriately evaluate the magnetic characteristic even when the core spacing of the electromagnet is different.

<本発明の第2の態様>
本発明の第2の態様は、上記した本発明の第1の態様において、前記計測制御部は、前記磁気特性を測定する前に、前記一対の電磁石に減衰交流電流を供給して前記一対の電磁石を脱磁する磁気特性測定装置である。
<Second aspect of the present invention>
In the second aspect of the present invention, in the first aspect of the present invention described above, the measurement control unit supplies a attenuated alternating current to the pair of electromagnets before measuring the magnetic characteristics, and the pair of electromagnets. It is a magnetic property measuring device that demagnetizes an electromagnet.

本発明の第2の態様に係る磁気特性測定装置によれば、測定工程の前に、一対の電磁石に減衰交流電流を供給して脱磁することにで、一対の電磁石におけるコアの残留磁束密度の影響を低減することができ、特にソフト材(軟磁性体)やセミハード材(半硬磁性体)に対する測定結果の信頼性を向上させることができる。 According to the magnetic characteristic measuring apparatus according to the second aspect of the present invention, the residual magnetic flux density of the core in the pair of electromagnets is demagnetized by supplying a attenuated alternating current to the pair of electromagnets before the measuring step. It is possible to reduce the influence of the above, and in particular, it is possible to improve the reliability of the measurement result for the soft material (soft magnetic material) and the semi-hard material (semi-hard magnetic material).

<本発明の第3の態様>
本発明の第3の態様は、サーチコイルが巻回された磁性材料を一対の電磁石で挟むように配置する配置工程と、前記磁性材料を励磁する励磁磁界の振幅及び周期の設定値と、前記一対の電磁石の離間間隔とを取得する設定値取得工程と、前記一対の電磁石に供給する励磁電流の電流波形を設定する電流波形設定工程と、前記電流波形で励磁したときの前記一対の電磁石の間における磁界強度と前記サーチコイルで測定される磁束密度とを取得して前記磁性材料の磁気特性を測定する測定工程と、含み、前記電流波形設定工程においては、前記一対の電磁石の離間間隔ごとに予め取得した前記励磁電流と前記磁界強度との関係としての電磁石特性情報に基づいて、前記離間間隔と前記励磁磁界の前記振幅とに対応する目標電流値を取得し、前記励磁磁界の前記周期と前記目標電流値から前記電流波形を設定する、磁気特性測定方法である。
<Third aspect of the present invention>
A third aspect of the present invention includes an arrangement step of arranging a magnetic material around which a search coil is wound so as to be sandwiched between a pair of electromagnets, a set value of an amplitude and a period of an exciting magnetic field for exciting the magnetic material, and the above. A set value acquisition step for acquiring the separation interval of the pair of electromagnets, a current waveform setting step for setting the current waveform of the exciting current supplied to the pair of electromagnets, and a step of setting the current waveform when the pair of electromagnets are excited by the current waveform. In the measurement step of acquiring the magnetic field strength between the two and the magnetic flux density measured by the search coil to measure the magnetic characteristics of the magnetic material, and in the current waveform setting step, every distance between the pair of electromagnets is included. Based on the electromagnet characteristic information as the relationship between the exciting current and the magnetic field strength acquired in advance, a target current value corresponding to the separation interval and the amplitude of the exciting magnetic field is acquired, and the period of the exciting magnetic field is obtained. This is a method for measuring magnetic characteristics, in which the current waveform is set from the target current value.

本発明の第3の態様に係る磁気特性測定方法においては、一対の電磁石についての離間間隔ごとの励磁電流と磁界強度との関係が予め記憶され、測定対象の磁性材料を励磁するための励磁磁界の振幅及び周期が入力されることにより、一対の電磁石に印加される励磁電流の電流波形が設定される。このとき、励磁電流の電流波形は、離間間隔の大きさに拘らず、所定の目標磁界を磁性材料に印加するのに必要な振幅を有すると共に、当該周期を任意に設定することができる。このため、例えば同一の素材からなり寸法の異なる2つの磁性材料を測定する場合であっても、励磁電流の周期を統一することにより、それぞれ同一条件で磁気特性を評価することができる。従って、本発明に係る磁気特性測定方法によれば、電磁石のコア間隔が異なる場合であっても、磁気特性の適切な評価を行うことができる。 In the magnetic characteristic measuring method according to the third aspect of the present invention, the relationship between the exciting current and the magnetic field strength for each separation interval of a pair of electromagnets is stored in advance, and the exciting magnetic field for exciting the magnetic material to be measured is used. By inputting the amplitude and period of, the current waveform of the exciting current applied to the pair of electromagnets is set. At this time, the current waveform of the exciting current has an amplitude necessary for applying a predetermined target magnetic field to the magnetic material regardless of the size of the separation interval, and the period can be arbitrarily set. Therefore, for example, even when two magnetic materials made of the same material and having different dimensions are measured, the magnetic characteristics can be evaluated under the same conditions by unifying the period of the exciting current. Therefore, according to the magnetic characteristics measuring method according to the present invention, it is possible to appropriately evaluate the magnetic characteristics even when the core spacing of the electromagnets is different.

<本発明の第4の態様>
本発明の第4の態様は、上記した本発明の第3の態様において、前記測定工程の前に、前記一対の電磁石に減衰交流電流を供給して前記一対の電磁石を脱磁する、磁気特性測定方法である。
<Fourth aspect of the present invention>
A fourth aspect of the present invention is, in the third aspect of the present invention described above, a magnetic property in which a decaying alternating current is supplied to the pair of electromagnets to demagnetize the pair of electromagnets before the measurement step. This is a measurement method.

本発明の第4の態様に係る磁気特性測定方法によれば、測定工程の前に、一対の電磁石に減衰交流電流を供給して脱磁することで、一対の電磁石におけるコアの残留磁束密度の影響を低減することができ、特にソフト材(軟磁性体)やセミハード材(半硬磁性体)に対する測定結果の信頼性を向上させることができる。 According to the magnetic characteristic measuring method according to the fourth aspect of the present invention, the residual magnetic flux density of the core in the pair of electromagnets is determined by supplying a attenuated alternating current to the pair of electromagnets and demagnetizing them before the measuring step. The influence can be reduced, and the reliability of the measurement result for a soft material (soft magnetic material) or a semi-hard material (semi-hard magnetic material) can be improved.

本発明によれば、電磁石のコア間隔が異なる場合であっても、磁気特性の適切な評価を行うことができる磁気特性測定装置、及び磁気特性測定方法を提供することができる。 According to the present invention, it is possible to provide a magnetic characteristic measuring device and a magnetic characteristic measuring method capable of appropriately evaluating magnetic characteristics even when the core spacing of electromagnets is different.

本発明に係る磁気特性測定装置の全体構成図である。It is an overall block diagram of the magnetic characteristic measuring apparatus which concerns on this invention. 本発明に係る電磁石特性情報の一例を部分的に示すグラフである。It is a graph which shows an example of the electromagnet characteristic information which concerns on this invention partially. 磁気特性測定において計測制御部が実行する制御手順を示すフローチャートである。It is a flowchart which shows the control procedure which a measurement control part executes in magnetic characteristic measurement. 本発明に係る磁気特性測定装置の励磁磁界、励磁電流、及び磁気ヒステリシスループの波形を模式的に示す図である。It is a figure which shows typically the waveform of the exciting magnetic field, the exciting current, and the magnetic hysteresis loop of the magnetic characteristic measuring apparatus which concerns on this invention. 従来技術の磁気特性測定方法に係る励磁磁界、及び磁気ヒステリシスループの波形を模式的に示す図である。It is a figure which shows typically the waveform of the exciting magnetic field and the magnetic hysteresis loop which concerns on the magnetic characteristic measurement method of the prior art. コアに印加される減衰交流電流の波形の一例である。This is an example of the waveform of the attenuated alternating current applied to the core. 一対の電磁石が発生させる磁束密度について残留磁界の影響を模式的に示すグラフである。It is a graph which shows typically the influence of the residual magnetic field about the magnetic flux density generated by a pair of electromagnets.

以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略などを行なっており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described below, and can be arbitrarily modified and implemented without changing the gist thereof. In addition, the drawings used for explaining the embodiments are all schematically showing the constituent members, and are partially emphasized, enlarged, reduced, or omitted in order to deepen the understanding of the constituent members. It may not accurately represent the scale or shape.

図1は、本発明に係る磁気特性測定装置1の全体構成図である。磁気特性測定装置1は、磁界を印加したときの磁性材料2の磁束密度を測定することにより、磁性材料2の磁気ヒステリシスループを測定するためのシステムであり、本実施形態においては、磁化装置10、BHアナライザ20、及び制御装置30を備える。 FIG. 1 is an overall configuration diagram of the magnetic characteristic measuring device 1 according to the present invention. The magnetic property measuring device 1 is a system for measuring the magnetic hysteresis loop of the magnetic material 2 by measuring the magnetic flux density of the magnetic material 2 when a magnetic field is applied. In the present embodiment, the magnetizing device 10 is used. , BH analyzer 20, and control device 30.

ここで、磁性材料2は、磁気特性が未知の測定対象であり、例えばハード材(硬磁性体)からなることとして説明するが、ソフト材(軟磁性体)やセミハード材(半硬磁性体)であってもよい。尚、磁性材料2は、断面積が既知の柱状に形成されている。 Here, the magnetic material 2 is a measurement target whose magnetic characteristics are unknown, and will be described as being composed of, for example, a hard material (hard magnetic material), but a soft material (soft magnetic material) or a semi-hard material (semi-hard magnetic material). It may be. The magnetic material 2 is formed in a columnar shape having a known cross-sectional area.

磁化装置10は、磁性材料2を挟むように配置される一対の電磁石11、一対の電磁石11に閉磁路を形成するヨーク12、及び一対の電磁石11の離間間隔Gを手動で調整するためのハンドル13を備える。一対の電磁石11は、それぞれコア11a及びソレノイドコイル11bを含み、コア11aに巻回されたソレノイドコイル11bに励磁電流が供給されることにより、磁性材料2に対して励磁磁界を発生させて磁化させることができる。励磁電流及び励磁磁界の波形形状は、直流と見做せる程度に比較的低周波の三角波や正弦波である。 The magnetization device 10 has a handle for manually adjusting the separation interval G between the pair of electromagnets 11 arranged so as to sandwich the magnetic material 2, the yoke 12 forming a closed magnetic path in the pair of electromagnets 11, and the pair of electromagnets 11. 13 is provided. The pair of electromagnets 11 include a core 11a and a solenoid coil 11b, respectively, and an exciting magnetic field is generated and magnetized with respect to the magnetic material 2 by supplying an exciting current to the solenoid coil 11b wound around the core 11a. be able to. The waveform shapes of the exciting current and the exciting magnetic field are triangular waves and sine waves with relatively low frequencies that can be regarded as direct current.

本実施形態における一対の電磁石11は、磁性材料2の寸法に合わせて離間間隔Gが手動で設定されると共に、測定者が離間間隔Gを読み取るものとして説明するが、離間間隔Gの設定及び読み取りについては自動的に行われるよう構成されてもよい。 In the pair of electromagnets 11 in the present embodiment, the separation interval G is manually set according to the dimensions of the magnetic material 2, and the measurer reads the separation interval G. However, the separation interval G is set and read. May be configured to be done automatically.

BHアナライザ20は、磁化装置10を制御しつつ、磁化された磁性材料2の磁束密度Bを測定することにより磁性材料2の磁気特性測定を行う装置であり、サーチコイル21、ホールセンサ22、H計測部23、B計測部24、及び電源部25を含む。 The BH analyzer 20 is a device that measures the magnetic characteristics of the magnetic material 2 by measuring the magnetic flux density B of the magnetized magnetic material 2 while controlling the magnetization device 10, and is a device that measures the magnetic characteristics of the magnetic material 2, the search coil 21, the hall sensor 22, and H. The measurement unit 23, the B measurement unit 24, and the power supply unit 25 are included.

サーチコイル21は、磁性材料2に巻回されたコイルであり、磁性材料2が磁化することに伴って誘起される電圧を測定する。また、「磁界センサ」としてのホールセンサ22は、一対の電磁石11の間に生じる磁界強度に伴う電圧を測定する。 The search coil 21 is a coil wound around the magnetic material 2 and measures the voltage induced as the magnetic material 2 is magnetized. Further, the Hall sensor 22 as the "magnetic field sensor" measures the voltage associated with the magnetic field strength generated between the pair of electromagnets 11.

H計測部23は、ホールセンサ22から取得した電圧に基づいて、一対の電磁石11の間に生じる磁界強度Hを算出する。また、B計測部24は、サーチコイル21から取得した電圧に基づいて、磁性材料2の磁化に伴う磁束密度Bを算出する。そして、電源部25は、一対の電磁石11のソレノイドコイル11bに、後述する電流波形の励磁電流を供給する。 The H measuring unit 23 calculates the magnetic field strength H generated between the pair of electromagnets 11 based on the voltage acquired from the Hall sensor 22. Further, the B measurement unit 24 calculates the magnetic flux density B associated with the magnetization of the magnetic material 2 based on the voltage acquired from the search coil 21. Then, the power supply unit 25 supplies an exciting current having a current waveform, which will be described later, to the solenoid coil 11b of the pair of electromagnets 11.

制御装置30は、例えば公知のパーソナルコンピュータなどの電子計算機からなり、入力部31、出力部32、計測制御部33、及び記憶部34を含む。制御装置30は、通信ケーブルCを介してBHアナライザ20との間で制御信号や測定データの授受を行うことにより、磁性材料2の磁気特性測定を総合的に管理する。尚、BHアナライザ20及び制御装置30は、一体的に構成されていてもよい。 The control device 30 includes, for example, a computer such as a known personal computer, and includes an input unit 31, an output unit 32, a measurement control unit 33, and a storage unit 34. The control device 30 comprehensively manages the measurement of the magnetic characteristics of the magnetic material 2 by exchanging control signals and measurement data with and from the BH analyzer 20 via the communication cable C. The BH analyzer 20 and the control device 30 may be integrally configured.

入力部31は、例えばキーボードやマウス、テンキー等からなる入力インターフェースであり、詳細を後述するように、磁性材料を励磁する励磁磁界の振幅及び周期や、一対の電磁石11の離間間隔Gを入力するために使用される。また、出力部32は、例えば測定条件や測定結果を表示するディスプレイ等からなる出力インターフェースであり、磁気特性測定に係る操作をアプリケーション上で実行する場合には測定操作に係る操作ボタン等が表示される。尚、出力部32は、測定条件や測定結果の測定情報を纏めて後述する記憶部34に出力することで記憶部34に保存させてもよく、又は当該測定情報を外部の機器に送信してもよい。 The input unit 31 is an input interface including, for example, a keyboard, a mouse, a numeric keypad, and the like, and as will be described in detail later, inputs the amplitude and period of the exciting magnetic field for exciting the magnetic material and the separation interval G between the pair of electromagnets 11. Used for. Further, the output unit 32 is an output interface including, for example, a display for displaying measurement conditions and measurement results, and when an operation related to magnetic characteristic measurement is executed on an application, an operation button or the like related to the measurement operation is displayed. To. The output unit 32 may store the measurement conditions and the measurement information of the measurement results in the storage unit 34 by outputting the measurement information to the storage unit 34 described later, or transmit the measurement information to an external device. May be good.

計測制御部33は、詳細を後述するように、磁気特性測定方法に係る制御手順に従って磁性材料2に対する磁気特性の測定制御を実行する。 The measurement control unit 33 executes the measurement control of the magnetic characteristics of the magnetic material 2 according to the control procedure related to the magnetic characteristics measurement method, as will be described in detail later.

記憶部34は、一対の電磁石11についての励磁電流の大きさに対する磁界強度の大きさを、一対の電磁石11の離間間隔Gごとに予め取得した電磁石特性情報を記憶している。そして、計測制御部33は、磁気特性測定を行う場合に、記憶部34に記憶された電磁石特性情報から必要な情報を読み出すことにより、磁気特性の測定条件を設定する。 The storage unit 34 stores the electromagnet characteristic information obtained in advance for each distance G of the pair of electromagnets 11 with respect to the magnitude of the magnetic field strength with respect to the magnitude of the exciting current of the pair of electromagnets 11. Then, when performing the magnetic characteristic measurement, the measurement control unit 33 sets the measurement condition of the magnetic characteristic by reading out the necessary information from the electromagnet characteristic information stored in the storage unit 34.

図2は、本発明に係る電磁石特性情報の一例を部分的に示すグラフである。より具体的には、図2は、上記した一対の電磁石11について、離間間隔Gが10mm、20mm、30mmのそれぞれの場合において、ソレノイドコイル11bに供給する電流Iの大きさとホールセンサ22で測定される磁束密度Bの大きさとの関係を表すI−B特性の測定データである。尚、コア11aの透磁率をμとした場合、公知のB=μHの関係を通して磁束密度Bを磁界強度Hに換算することができる。 FIG. 2 is a graph partially showing an example of electromagnet characteristic information according to the present invention. More specifically, FIG. 2 shows the magnitude of the current I supplied to the solenoid coil 11b and the Hall sensor 22 for the pair of electromagnets 11 described above when the separation intervals G are 10 mm, 20 mm, and 30 mm, respectively. It is the measurement data of the IB characteristic which shows the relationship with the magnitude of the magnetic flux density B. When the magnetic permeability of the core 11a is μ, the magnetic flux density B can be converted into the magnetic field strength H through the known relationship of B = μH.

図2に示すI−B特性は、上記した磁化装置10に磁性材料2を配置しない状態で、複数の離間間隔Gに対して事前に測定される。また、複数の当該測定データに基づいて、相関関係による推定や補間処理により、測定していない離間間隔Gに対してもI−B特性を算出することができ、想定される範囲内の離間間隔Gに対して電流Iと磁束密度Bとの対応関係表(データテーブル)を電磁石特性情報として用意し、予め記憶部34に保存される。 The IB characteristics shown in FIG. 2 are measured in advance for a plurality of separation intervals G in a state where the magnetic material 2 is not arranged in the magnetization device 10 described above. Further, based on the plurality of the measurement data, the IB characteristic can be calculated even for the unmeasured separation interval G by estimation by correlation or interpolation processing, and the separation interval within the expected range can be calculated. A correspondence table (data table) between the current I and the magnetic flux density B with respect to G is prepared as electromagnet characteristic information, and is stored in the storage unit 34 in advance.

次に、磁気特性測定方法に係る制御手順について説明する。図3は、磁気特性測定において計測制御部33が実行する制御手順を示すフローチャートである。計測制御部33は、サーチコイル21が巻回された磁性材料2を一対の電磁石11で挟むように配置された状態において(配置工程)、図3に示す制御手順を実行することにより、磁性材料2の磁気特性を測定する。 Next, the control procedure related to the magnetic characteristic measurement method will be described. FIG. 3 is a flowchart showing a control procedure executed by the measurement control unit 33 in the magnetic characteristic measurement. The measurement control unit 33 executes the control procedure shown in FIG. 3 in a state where the magnetic material 2 around which the search coil 21 is wound is arranged so as to be sandwiched between the pair of electromagnets 11 (arrangement step), thereby performing the magnetic material. Measure the magnetic characteristics of 2.

配置工程による準備が整った後、制御装置30における計測制御部33は、図3に示す制御手順を開始し、入力部31により必要な設定情報が入力されているか否かを判定する。より具体的には、計測制御部33は、磁性材料2を励磁する励磁磁界の振幅及び周期の設定値と、一対の電磁石11の離間間隔Gとが入力されているか否かを判定する(ステップS1、設定値取得工程)。 After the preparation by the arrangement step is completed, the measurement control unit 33 in the control device 30 starts the control procedure shown in FIG. 3 and determines whether or not the necessary setting information is input by the input unit 31. More specifically, the measurement control unit 33 determines whether or not the set values of the amplitude and period of the exciting magnetic field for exciting the magnetic material 2 and the separation interval G of the pair of electromagnets 11 are input (step). S1, set value acquisition process).

計測制御部33は、必要な設定情報が入力されていないと判定された場合には(ステップS1でNo)、例えば出力部32にエラーメッセージを表示するなどの方法により測定者に設定情報の入力を要求し、測定の開始を保留する。 When it is determined that the necessary setting information has not been input (No in step S1), the measurement control unit 33 inputs the setting information to the measurer by, for example, displaying an error message on the output unit 32. And withhold the start of the measurement.

計測制御部33は、必要な設定情報が入力されていると判定された場合には(ステップS1でYes)、ソレノイドコイル11bに供給する電流Iの最大値、すなわち励磁電流の目標電流値を算出する(ステップS2)。より具体的には、計測制御部33は、記憶部34に記憶されている電磁石特性情報に基づいて、入力部31から入力された離間間隔Gと励磁磁界の振幅とに対応する電流値を目標電流値として取得する。 When it is determined that the necessary setting information has been input (Yes in step S1), the measurement control unit 33 calculates the maximum value of the current I supplied to the solenoid coil 11b, that is, the target current value of the exciting current. (Step S2). More specifically, the measurement control unit 33 targets a current value corresponding to the separation interval G input from the input unit 31 and the amplitude of the exciting magnetic field based on the electromagnet characteristic information stored in the storage unit 34. Obtained as a current value.

目標電流値が算出されると、計測制御部33は、入力部31から入力された励磁磁界の周期と目標電流値とに基づいて、一対の電磁石11に供給する励磁電流の電流波形を設定する(ステップS3)。すなわち、計測制御部33は、算出された目標電流値と入力部31から入力された励磁磁界の周期とを、それぞれ励磁電流の振幅及び周期とする三角波の電流波形として設定する。これにより、計測制御部33は、ステップS2及び3の手順を通して、一対の電磁石11に供給する励磁電流の電流波形を設定することができる。 When the target current value is calculated, the measurement control unit 33 sets the current waveform of the exciting current supplied to the pair of electromagnets 11 based on the period of the exciting magnetic field input from the input unit 31 and the target current value. (Step S3). That is, the measurement control unit 33 sets the calculated target current value and the period of the exciting magnetic field input from the input unit 31 as the amplitude and period of the exciting current, respectively, as the current waveform of the triangular wave. As a result, the measurement control unit 33 can set the current waveform of the exciting current supplied to the pair of electromagnets 11 through the procedures of steps S2 and 3.

図4は、本発明に係る磁気特性測定装置1の励磁磁界、励磁電流、及び磁気ヒステリシスループの波形を模式的に示す図である。より具体的には、図4(a)は、磁化装置10において磁性材料2に印加される励磁磁界の波形であり、入力部31から入力される任意の振幅(目標磁界H)及び周期Pにより規定される三角波である。また、図4(b)は、磁性材料2に当該励磁磁界を印加するためにソレノイドコイル11bに供給される励磁電流の波形である。 FIG. 4 is a diagram schematically showing waveforms of an exciting magnetic field, an exciting current, and a magnetic hysteresis loop of the magnetic characteristic measuring apparatus 1 according to the present invention. More specifically, FIG. 4 (a) is a waveform of the excitation magnetic field applied in the magnetizing device 10 in the magnetic material 2, any input from the input unit 31 amplitude (target field H T) and period P It is a triangular wave defined by. Further, FIG. 4B is a waveform of an exciting current supplied to the solenoid coil 11b in order to apply the exciting magnetic field to the magnetic material 2.

ここで、図4(b)においては、同一の素材からなり寸法の異なる2つの磁性材料2を測定する場合についてのそれぞれの励磁電流の電流波形を示している。より具体的には、電流波形W1は、磁性材料2の寸法が相対的に小さく一対の電磁石11の離間間隔Gが小さい場合において、目標磁界Hの印加に必要な励磁電流の振幅が比較的小さい電流値I1に抑えられるときの励磁電流である。これに対し、電流波形W2は、磁性材料2の寸法が相対的に大きく一対の電磁石11の離間間隔Gが大きい場合において、目標磁界Hの印加に必要な励磁電流の振幅として比較的大きい電流値I2が必要となるときの励磁電流である。 Here, FIG. 4B shows the current waveforms of the respective exciting currents in the case of measuring two magnetic materials 2 made of the same material and having different dimensions. More specifically, the current waveform W1 is in the case the dimensions of the magnetic material 2 is small separation distance G of relatively small pair of electromagnets 11, the amplitude of the excitation current necessary for the application of the target magnetic field H T is relatively This is the exciting current when the current value I1 is small. In contrast, the current waveform W2, in the case the dimensions of the magnetic material 2 is large separation distance G of relatively large pair of electromagnets 11, a relatively large current as the amplitude of the excitation current necessary for the application of the target magnetic field H T The exciting current when the value I2 is required.

すなわち、図3のステップS3及びステップS4においては、一対の電磁石11の離間間隔Gに応じて、ソレノイドコイル11bに供給するための励磁電流の電流波形が設定される(電流波形設定工程)。 That is, in steps S3 and S4 of FIG. 3, the current waveform of the exciting current to be supplied to the solenoid coil 11b is set according to the separation interval G of the pair of electromagnets 11 (current waveform setting step).

そして、電流波形が設定されると、計測制御部33は、当該電流波形に従って一対の電磁石11の励磁を開始し、磁性材料2の初磁化曲線を測定する(ステップS4)。ここで、磁性材料2の初磁化曲線は、図4(c)の磁気ヒステリシスループにおいて原点Oから磁気飽和点PMSまでの曲線として表される。 Then, when the current waveform is set, the measurement control unit 33 starts exciting the pair of electromagnets 11 according to the current waveform, and measures the initial magnetization curve of the magnetic material 2 (step S4). Here, initial magnetization curve of the magnetic material 2 is represented as a curve from the origin O to the magnetic saturation point P MS in the magnetic hysteresis loop of FIG. 4 (c).

初磁化曲線は、磁性材料2に印加される磁界強度が目標磁界Hに達するまでの時間、すなわち上記した励磁磁界及び励磁電流の周期Pの1/4に相当する時間tMSまでの期間においてサーチコイル21で検出される磁束密度Bに基づいて測定される。そのため、計測制御部33は、磁性材料2が磁気飽和に達する時間tMSが経過したか否かを判定し(ステップS5)、時間tMSが経過するまで初磁化曲線の測定を継続する(ステップS5でNo)。 Initial magnetization curve, time to the magnetic field intensity applied to the magnetic material 2 reaches the target magnetic field H T, i.e. in the period up to the time t MS corresponding to a quarter of the period P of the excitation magnetic field and the excitation current as described above It is measured based on the magnetic flux density B detected by the search coil 21. Therefore, the measurement control unit 33 determines whether or not the time t MS for the magnetic material 2 to reach magnetic saturation has elapsed (step S5), and continues the measurement of the initial magnetization curve until the time t MS elapses (step S5). No in S5).

測定を開始してから時間tMSが経過すると(ステップS5でYes)、計測制御部33は、ホールセンサ22で測定される磁界強度Hの大きさが所定の磁界閾値HTH以上に達しているか否かを判定する(ステップS6)。ここで、磁界閾値HTHとは、磁性材料2に十分な磁界強度が印加されているか否かを判定するために事前に任意に設定される閾値であり、例えば目標磁界Hよりも僅かに低い値として設定される。 When the time t MS from the start of measurement has elapsed (Yes in step S5), and the measurement control unit 33, or the magnitude of the magnetic field intensity H to be measured by the Hall sensor 22 has reached the above predetermined magnetic field threshold H TH It is determined whether or not (step S6). Here, the magnetic field threshold value H TH is a threshold value arbitrarily set in advance for determining whether or not a sufficient magnetic field strength is applied to the magnetic material 2, and is slightly larger than , for example, the target magnetic field H T. Set as a low value.

そして、計測制御部33は、磁界強度Hが磁界閾値HTH未満である場合には(ステップS6でNo)、例えば出力部32を介してエラー表示を行うことにより(ステップS7)、所望の磁界強度Hが得られないことを測定者に通知し、磁気特性測定を終了する。ここで、磁界強度Hが磁界閾値HTHに満たない状態とは、一対の電磁石11に印加される励磁電流が不足している場合や、測定者がホールセンサ22の設置を失念した場合等が想定される。 Then, when the magnetic field strength H is less than the magnetic field threshold value H TH (No in step S6), the measurement control unit 33 displays an error via, for example, the output unit 32 (step S7), so that the desired magnetic field Notify the measurer that the intensity H cannot be obtained, and end the magnetic characteristic measurement. Here, the state in which the magnetic field strength H is less than the magnetic field threshold value HTH is when the exciting current applied to the pair of electromagnets 11 is insufficient, or when the measurer forgets to install the Hall sensor 22. is assumed.

一方、磁界強度Hが磁界閾値HTH以上である場合には(ステップS6でYes)、計測制御部33は、初磁化曲線の測定が正常に完了したものとして、設定された電流波形に従って磁気測定を継続することにより磁性材料2のヒステリシスループを測定する(ステップS8)。これにより、図4(c)に示すように、磁性材料2のメジャーループが測定される。 On the other hand, when the magnetic field strength H is equal to or higher than the magnetic field threshold value H TH (Yes in step S6), the measurement control unit 33 assumes that the measurement of the initial magnetization curve has been completed normally, and magnetically measures according to the set current waveform. The hysteresis loop of the magnetic material 2 is measured by continuing the above (step S8). As a result, as shown in FIG. 4C, the major loop of the magnetic material 2 is measured.

ここで、本発明に係る磁気特性測定装置1においては、予め取得される電磁石特性情報に基づいて励磁電流の波形形状を設定しているため、磁性材料2の寸法に拘らず磁性材料2に印加される励磁磁界の周期と振幅が共通化される。このため、本発明に係る磁気特性測定装置1によれば、寸法の異なる複数の磁性材料2であっても、それぞれの磁性材料2が互いに同一の素材からなる限り、図4(c)に示すように同一のヒステリシスループとして磁気特性を公平に評価することができる。 Here, in the magnetic characteristic measuring device 1 according to the present invention, since the waveform shape of the exciting current is set based on the electromagnet characteristic information acquired in advance, it is applied to the magnetic material 2 regardless of the dimensions of the magnetic material 2. The period and amplitude of the exciting magnetic field to be generated are standardized. Therefore, according to the magnetic property measuring apparatus 1 according to the present invention, even if there are a plurality of magnetic materials 2 having different dimensions, as long as the magnetic materials 2 are made of the same material, they are shown in FIG. 4 (c). As described above, the magnetic characteristics can be fairly evaluated as the same hysteresis loop.

続いて、上記した本発明に対する比較対象として、従来技術に係る磁気特性測定について説明する。図5は、従来技術の磁気特性測定方法に係る励磁磁界、及び磁気ヒステリシスループの波形を模式的に示す図である。当該従来技術においては、一対の電磁石11に印加する励磁電流を所定のペースで上昇させ、ホールセンサ22で測定される磁界強度Hが目標磁界Hに達した時間に基づいて励磁磁界の周期を設定している。 Subsequently, as a comparison target with respect to the present invention described above, the magnetic property measurement according to the prior art will be described. FIG. 5 is a diagram schematically showing waveforms of an exciting magnetic field and a magnetic hysteresis loop according to a conventional method for measuring magnetic characteristics. The In the prior art, to increase the exciting current applied to the pair of electromagnets 11 at a predetermined pace, the period of the excitation magnetic field based on the time the magnetic field strength H which is measured by the Hall sensor 22 has reached the target magnetic field H T It is set.

ここで、同一の素材からなり寸法の異なる2つの磁性材料2の磁気特性を従来技術で測定する場合について、それぞれの励磁磁界の磁界波形を磁界波形W3及び磁界波形W4として図5(a)に示している。より具体的には、磁界波形W3は、磁性材料2の寸法が相対的に小さく一対の電磁石11の離間間隔Gが小さい場合において、目標磁界Hに達するまでの時間t1が比較的短い励磁磁界である。これに対し、磁界波形W4は、磁性材料2の寸法が相対的に大きく一対の電磁石11の離間間隔Gが大きい場合において、目標磁界Hに達するまでに比較的長い時間t2を要する励磁磁界である。 Here, in the case where the magnetic characteristics of two magnetic materials 2 made of the same material but having different dimensions are measured by the prior art, the magnetic field waveforms of the respective exciting magnetic fields are set as the magnetic field waveform W3 and the magnetic field waveform W4 in FIG. 5A. Shown. More specifically, the magnetic field waveform W3, in case the size of the magnetic material 2 is smaller separation distance G of relatively small pair of electromagnets 11, a relatively short excitation field time t1 to reach the target magnetic field H T is Is. In contrast, the magnetic field waveform W4, in the case the dimensions of the magnetic material 2 is relatively large separation distance G of the pair of electromagnets 11 is large, by the excitation magnetic field takes a relatively long time t2 to reach the target magnetic field H T is there.

すなわち、従来技術に係る磁気特性測定方法では、ホールセンサ22で測定される磁界強度Hを基準に励磁磁界の周期が設定されるため、磁性材料2を確実に目標磁界Hで励磁できる反面、励磁磁界の周期が一対の電磁石11の離間間隔Gに依存して変化する。この場合、測定される磁気ヒステリシスループは、図5(b)の実線で示されるように励磁磁界の周期が短いほど横幅(磁界強度のレンジ)が過大評価され、図5(b)の破線で示されるように励磁磁界の周期が長いほど横幅が過少評価されることになる。つまり、同一の素材からなる2つの磁性材料2を測定しても、互いの寸法の違いにより磁気特性の適切な評価を行うことができなくなってしまう。尚、図5(b)においては、初磁化曲線の描画を省略している。 That is, in the magnetic characteristic measuring method according to the prior art, since the period of the excitation magnetic field relative to the magnetic field intensity H to be measured by the Hall sensor 22 is set, although capable of exciting the magnetic material 2 in reliably target magnetic field H T, The period of the exciting magnetic field changes depending on the separation interval G of the pair of electromagnets 11. In this case, the width (range of magnetic field strength) of the measured magnetic hysteresis loop is overestimated as the period of the exciting magnetic field is shorter as shown by the solid line in FIG. 5 (b). As shown, the longer the period of the exciting magnetic field, the underestimated the width. That is, even if two magnetic materials 2 made of the same material are measured, it becomes impossible to appropriately evaluate the magnetic characteristics due to the difference in dimensions. In FIG. 5B, the drawing of the initial magnetization curve is omitted.

以上のように、本発明に係る磁気特性測定装置1においては、一対の電磁石11についての離間間隔Gごとの励磁電流と磁界強度との関係を予め記憶し、測定対象の磁性材料を励磁するための励磁磁界の振幅及び周期が入力されることにより、一対の電磁石11に印加される励磁電流の電流波形が設定される。このとき、励磁電流の電流波形は、離間間隔Gの大きさに拘らず、磁性材料2に目標磁界Hを印加するのに必要な振幅を有すると共に、周期を任意に設定することができる。このため、例えば同一の素材からなり寸法の異なる2つの磁性材料2を測定する場合であっても、励磁電流の周期を統一することにより、それぞれ同一条件で公平に磁気特性を評価することができる。従って、本発明に係る磁気特性測定装置1によれば、電磁石のコア間隔が異なる場合であっても、磁気特性の適切な評価を行うことができる。 As described above, in the magnetic characteristic measuring device 1 according to the present invention, the relationship between the exciting current and the magnetic field strength for each separation interval G of the pair of electromagnets 11 is stored in advance, and the magnetic material to be measured is excited. By inputting the amplitude and period of the exciting magnetic field of, the current waveform of the exciting current applied to the pair of electromagnets 11 is set. At this time, the current waveform of the exciting current can be regardless of the magnitude of the separation distance G, which has an amplitude required to apply the target magnetic field H T in the magnetic material 2, to set the period arbitrarily. Therefore, for example, even when two magnetic materials 2 made of the same material and having different dimensions are measured, the magnetic characteristics can be fairly evaluated under the same conditions by unifying the period of the exciting current. .. Therefore, according to the magnetic characteristic measuring device 1 according to the present invention, it is possible to appropriately evaluate the magnetic characteristics even when the core spacing of the electromagnets is different.

<変形例>
上記した本発明に係る磁気特性測定装置1において、比較的大きな励磁磁界によりハード材(硬磁性体)の磁気特性測定を行なった場合には、一対の電磁石11においてコア11aの保磁力に伴う磁界が残留しやすくなる。この状態で、例えばソフト材(軟磁性体)やセミハード材(半硬磁性体)の磁気特性測定を続けて行なった場合には、印加する励磁磁界が比較的狭いレンジであるにも拘らず励磁磁界の初期値が0ではないため、測定結果の信頼性が低下することになる。
<Modification example>
When the magnetic characteristics of a hard material (hard magnetic material) are measured by a relatively large exciting magnetic field in the magnetic characteristics measuring device 1 according to the present invention described above, the magnetic field associated with the coercive force of the core 11a in the pair of electromagnets 11 Is likely to remain. In this state, for example, when the magnetic characteristics of a soft material (soft magnetic material) or a semi-hard material (semi-hard magnetic material) are continuously measured, the exciting magnetic field to be applied is excited even though the range is relatively narrow. Since the initial value of the magnetic field is not 0, the reliability of the measurement result is lowered.

そこで、上記した磁気特性測定装置1は、磁性材料2の磁気特性を測定する測定工程の前に、制御装置30からの制御に基づいて電源部25が一対の電磁石11に減衰交流電流を供給することにより、一対の電磁石11のコア11aが脱磁されるよう構成されている。図6は、コア11aに印加される減衰交流電流の波形の一例である。このとき、インダクタンスが比較的大きい一対の電磁石11は、当該インダクタンスの大きさに合わせた比較的低周波の減衰交流電流により効率的に脱磁される。 Therefore, in the above-mentioned magnetic property measuring device 1, the power supply unit 25 supplies a damped alternating current to the pair of electromagnets 11 based on the control from the control device 30 before the measuring step of measuring the magnetic property of the magnetic material 2. As a result, the cores 11a of the pair of electromagnets 11 are configured to be demagnetized. FIG. 6 is an example of the waveform of the attenuated alternating current applied to the core 11a. At this time, the pair of electromagnets 11 having a relatively large inductance are efficiently demagnetized by a relatively low frequency attenuated alternating current corresponding to the magnitude of the inductance.

図7は、一対の電磁石11が発生させる磁束密度について残留磁界の影響を模式的に示すグラフである。より具体的には、図7は、ソレノイドコイル11bに供給される電流Iの大きさと一対の電磁石11が発生させる磁束密度Bの大きさとの関係を表すI−B特性のグラフである。 FIG. 7 is a graph schematically showing the influence of the residual magnetic field on the magnetic flux density generated by the pair of electromagnets 11. More specifically, FIG. 7 is a graph of IB characteristics showing the relationship between the magnitude of the current I supplied to the solenoid coil 11b and the magnitude of the magnetic flux density B generated by the pair of electromagnets 11.

本発明に係る脱磁機能により一対の電磁石11のコア11aが脱磁される場合には、図7の特性αとして示されるように、ソレノイドコイル11bに供給される電流Iが0[A]の場合に磁束密度Bが0[T]となる。このため、励磁磁界のレンジが比較的小さいソフト材(軟磁性体)やセミハード材(半硬磁性体)の磁気特性測定において、ソレノイドコイル11bに供給する電流Iが比較的小さい場合であっても、当該電流Iに対応する磁束密度Bで磁性材料2を励磁することができ、測定結果の信頼性を向上させることができる。 When the core 11a of the pair of electromagnets 11 is demagnetized by the demagnetization function according to the present invention, the current I supplied to the solenoid coil 11b is 0 [A] as shown by the characteristic α in FIG. In this case, the magnetic flux density B becomes 0 [T]. Therefore, even when the current I supplied to the solenoid coil 11b is relatively small in the measurement of the magnetic characteristics of a soft material (soft magnetic material) or a semi-hard material (semi-hard magnetic material) having a relatively small range of exciting magnetic fields. The magnetic material 2 can be excited with the magnetic flux density B corresponding to the current I, and the reliability of the measurement result can be improved.

これに対し、一対の電磁石11のコア11aを脱磁しない場合には、図7の特性βとして示されるように、ソレノイドコイル11bに供給される電流Iが0[A]であっても磁性材料2に残留磁束密度B[T]が印加される。これに伴い、ソレノイドコイル11bに供給される電流Iが比較的小さい範囲における磁束密度Bの値が不正確となり、測定結果の信頼性を低下させることになる。 On the other hand, when the cores 11a of the pair of electromagnets 11 are not demagnetized, as shown by the characteristic β in FIG. 7, the magnetic material is made even if the current I supplied to the solenoid coil 11b is 0 [A]. The residual magnetic flux density BR [T] is applied to 2. Along with this, the value of the magnetic flux density B in the range where the current I supplied to the solenoid coil 11b is relatively small becomes inaccurate, and the reliability of the measurement result is lowered.

以上のように、本発明の変形例に係る磁気特性測定装置1によれば、測定工程の前に、一対の電磁石11に減衰交流電流を供給して一対の電磁石11を脱磁することにより、磁気特性測定においてコア11aの残留磁束密度Bの影響を低減することができるため、特にソフト材(軟磁性体)やセミハード材(半硬磁性体)に対する測定結果の信頼性を向上させることができる。 As described above, according to the magnetic characteristic measuring device 1 according to the modified example of the present invention, before the measuring step, a decaying alternating current is supplied to the pair of electromagnets 11 to demagnetize the pair of electromagnets 11. it is possible to reduce the effect of residual magnetic flux density B R of the core 11a in the magnetic property measurement, is possible to especially improve the reliability of the measurement results for the soft material (soft magnetic material) and semi-hard material (semi-hard magnetic material) it can.

1 磁気特性測定装置
2 磁性材料
10 磁化装置
11 一対の電磁石
11a コア
11b ソレノイドコイル
20 BHアナライザ
21 サーチコイル
22 ホールセンサ
30 制御装置
31 入力部
33 計測制御部
34 記憶部
1 Magnetic property measuring device 2 Magnetic material 10 Magnetizing device 11 Pair of electromagnets 11a Core 11b Solenoid coil 20 BH analyzer 21 Search coil 22 Hall sensor 30 Control device 31 Input unit 33 Measurement control unit 34 Storage unit

Claims (4)

サーチコイルが巻回され、磁性材料を挟むように配置される一対の電磁石と、
前記一対の電磁石の間における磁界強度を測定する磁界センサと、
前記一対の電磁石に励磁電流を供給しつつ、前記磁界センサで測定される前記磁界強度と前記サーチコイルで測定される磁束密度とにより前記磁性材料の磁気特性を測定する制御装置と、を備え、
前記制御装置は、前記一対の電磁石の離間間隔ごとに予め取得した前記励磁電流と前記磁界強度との関係を電磁石特性情報として記憶する記憶部と、前記磁性材料を励磁する励磁磁界の振幅及び周期が入力される入力部と、前記磁気特性の測定制御を実行する計測制御部と、を含み、
前記計測制御部は、前記電磁石特性情報に基づいて前記離間間隔と前記励磁磁界の前記振幅とに対応する目標電流値を取得し、前記入力部から入力された前記励磁磁界の前記周期と前記目標電流値とに基づいて前記励磁電流の電流波形を設定する、磁気特性測定装置。
A pair of electromagnets around which the search coil is wound and arranged so as to sandwich the magnetic material,
A magnetic field sensor that measures the magnetic field strength between the pair of electromagnets,
A control device for measuring the magnetic characteristics of the magnetic material by the magnetic field strength measured by the magnetic field sensor and the magnetic flux density measured by the search coil while supplying an exciting current to the pair of electromagnets is provided.
The control device includes a storage unit that stores the relationship between the exciting current and the magnetic field strength acquired in advance for each distance between the pair of electromagnets as electromagnet characteristic information, and the amplitude and period of the exciting magnetic field that excites the magnetic material. Includes an input unit into which is input and a measurement control unit that executes measurement control of the magnetic characteristics.
The measurement control unit acquires a target current value corresponding to the separation interval and the amplitude of the exciting magnetic field based on the electromagnet characteristic information, and the period of the exciting magnetic field input from the input unit and the target. A magnetic characteristic measuring device that sets a current waveform of the exciting current based on a current value.
前記計測制御部は、前記磁気特性を測定する前に、前記一対の電磁石に減衰交流電流を供給して前記一対の電磁石を脱磁する、請求項1に記載の磁気特性測定装置。 The magnetic characteristic measuring device according to claim 1, wherein the measurement control unit supplies a attenuated alternating current to the pair of electromagnets to demagnetize the pair of electromagnets before measuring the magnetic characteristics. サーチコイルが巻回された磁性材料を一対の電磁石で挟むように配置する配置工程と、
前記磁性材料を励磁する励磁磁界の振幅及び周期の設定値と、前記一対の電磁石の離間間隔とを取得する設定値取得工程と、
前記一対の電磁石に供給する励磁電流の電流波形を設定する電流波形設定工程と、
前記電流波形で励磁したときの前記一対の電磁石の間における磁界強度と前記サーチコイルで測定される磁束密度とを取得して前記磁性材料の磁気特性を測定する測定工程と、含み、
前記電流波形設定工程においては、前記一対の電磁石の離間間隔ごとに予め取得した前記励磁電流と前記磁界強度との関係としての電磁石特性情報に基づいて、前記離間間隔と前記励磁磁界の前記振幅とに対応する目標電流値を取得し、前記励磁磁界の前記周期と前記目標電流値から前記電流波形を設定する、磁気特性測定方法。
An arrangement process in which the magnetic material around which the search coil is wound is arranged so as to be sandwiched between a pair of electromagnets, and
A set value acquisition step for acquiring the set values of the amplitude and period of the exciting magnetic field for exciting the magnetic material and the separation interval of the pair of electromagnets.
A current waveform setting step for setting the current waveform of the exciting current supplied to the pair of electromagnets, and
A measurement step of acquiring the magnetic field strength between the pair of electromagnets when excited by the current waveform and the magnetic flux density measured by the search coil to measure the magnetic properties of the magnetic material is included.
In the current waveform setting step, the separation interval and the amplitude of the exciting magnetic field are obtained based on the electromagnet characteristic information as the relationship between the exciting current and the magnetic field strength acquired in advance for each separation interval of the pair of electromagnets. A method for measuring magnetic characteristics, in which a target current value corresponding to is acquired, and the current waveform is set from the period of the exciting magnetic field and the target current value.
前記測定工程の前に、前記一対の電磁石に減衰交流電流を供給して前記一対の電磁石を脱磁する、請求項3に記載の磁気特性測定方法。 The magnetic characteristic measuring method according to claim 3, wherein a attenuated alternating current is supplied to the pair of electromagnets to demagnetize the pair of electromagnets before the measuring step.
JP2019211399A 2019-11-22 2019-11-22 Magnetic property measuring device and magnetic property measuring method Active JP7032369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211399A JP7032369B2 (en) 2019-11-22 2019-11-22 Magnetic property measuring device and magnetic property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211399A JP7032369B2 (en) 2019-11-22 2019-11-22 Magnetic property measuring device and magnetic property measuring method

Publications (2)

Publication Number Publication Date
JP2021081383A true JP2021081383A (en) 2021-05-27
JP7032369B2 JP7032369B2 (en) 2022-03-08

Family

ID=75966298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211399A Active JP7032369B2 (en) 2019-11-22 2019-11-22 Magnetic property measuring device and magnetic property measuring method

Country Status (1)

Country Link
JP (1) JP7032369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167328A (en) * 2022-02-10 2022-03-11 北京高能锐新科技有限责任公司 Dipolar deflection magnet borrowing magnetic measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147072U (en) * 1975-05-20 1976-11-25
JPS6367886U (en) * 1986-10-20 1988-05-07
JPH02103485A (en) * 1988-10-12 1990-04-16 Nippon Steel Corp Magnetic characteristic measuring method of soft magnetic material
JPH02189485A (en) * 1989-01-19 1990-07-25 Tokyo Electric Co Ltd Evaluating method for characteristic of permanent magnet and apparatus therefor
US20070216404A1 (en) * 2003-10-07 2007-09-20 Institute Jozef Stefan Tool For Measuring Magnetic Properties At High Temperatures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6367886B2 (en) 2016-10-14 2018-08-01 ファナック株式会社 Laser processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147072U (en) * 1975-05-20 1976-11-25
JPS6367886U (en) * 1986-10-20 1988-05-07
JPH02103485A (en) * 1988-10-12 1990-04-16 Nippon Steel Corp Magnetic characteristic measuring method of soft magnetic material
JPH02189485A (en) * 1989-01-19 1990-07-25 Tokyo Electric Co Ltd Evaluating method for characteristic of permanent magnet and apparatus therefor
US20070216404A1 (en) * 2003-10-07 2007-09-20 Institute Jozef Stefan Tool For Measuring Magnetic Properties At High Temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167328A (en) * 2022-02-10 2022-03-11 北京高能锐新科技有限责任公司 Dipolar deflection magnet borrowing magnetic measurement method

Also Published As

Publication number Publication date
JP7032369B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
EP1542025A1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
CN112782624A (en) Device and method for measuring coercivity of soft magnetic material
JP2008122138A (en) Method and instrument for measuring magnetic characteristics and mechanical strength of steel sheet
JP7032369B2 (en) Magnetic property measuring device and magnetic property measuring method
JP2001141701A (en) Method for measuring coercive force
JP2020024131A (en) Method and device for measuring magnetic characteristic of magnet
JP6446304B2 (en) Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus
Angelopoulos et al. Steel health monitoring device based on Hall sensors
JP2014112605A (en) Veneer magnetic characteristic measurement method and measurement apparatus
Tumański Modern methods of electrical steel testing—A review
Chen Demagnetizing effects and correction in permeameter measurements of soft magnetic cylinders
KR101902934B1 (en) System for measuring character of a magnet and eddy currentcompensation method using the same
WO2015182564A1 (en) Evaluation device and evaluation method for magnetic force microscope probe, magnetic force microscope, and method of adjusting magnetic field for control of magnetic force microscope
CN209961733U (en) Magnetic-acoustic composite nondestructive testing device and system
Zurek Systematic measurement errors of local B-coils due to holes
JP6659444B2 (en) Magnetic property measuring probe, magnetic property measuring system, magnetic property measuring method and deterioration evaluation method
Ionita et al. Correction of measured magnetization curves using finite element method
Nichipuruk et al. Decrease in the effect of a gap on coercimetry results when taking the properties of an attachable transducer into account
Naumoski et al. Measuring the hysteresis curve of not-saturated, high-coercive permanent magnets by pulsed-field-magnetometer
Gao et al. Investigation on Magnetic Property Measurement Method of Solid Specimens Using an Electromagnet
CN109358298B (en) Degaussing instrument calibration device
Ludwig et al. Magnetic and eddy current effects in an open-loop pulsed hysteresis graph system for magnetization of rare-earth magnets
Rovolis et al. Numerical and experimental analysis of iron core losses under various frequencies
JP4763267B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7032369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150