JP2021081357A - Hydrogen processing device and operation method thereof - Google Patents

Hydrogen processing device and operation method thereof Download PDF

Info

Publication number
JP2021081357A
JP2021081357A JP2019210437A JP2019210437A JP2021081357A JP 2021081357 A JP2021081357 A JP 2021081357A JP 2019210437 A JP2019210437 A JP 2019210437A JP 2019210437 A JP2019210437 A JP 2019210437A JP 2021081357 A JP2021081357 A JP 2021081357A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
gas
reaction vessel
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019210437A
Other languages
Japanese (ja)
Inventor
佐藤 正幸
Masayuki Sato
正幸 佐藤
智香子 岩城
Chikako Iwaki
智香子 岩城
大基 竹山
Daiki Takeyama
大基 竹山
峻史 馬渡
Takashi Mawatari
峻史 馬渡
雅士 田邊
Masashi Tanabe
雅士 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019210437A priority Critical patent/JP2021081357A/en
Publication of JP2021081357A publication Critical patent/JP2021081357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

To secure the soundness of a reaction tube in which is accommodated a processing material that processes hydrogen by an oxidation reaction.SOLUTION: Provided is a hydrogen processing device 10 including a reaction vessel 11 in which are arranged multiple reaction tubes 16 that accommodate a processing material 17 composed of a metal oxide that can take a plurality of oxidation numbers and processing the hydrogen included in the gas G1 to be processed that is introduced into the reaction vessel from a hydrogen processing target facility by an oxidation reaction using the processing material in the reaction tube. A space M in the reaction vessel 11 on the outside of a reaction area 16A of the reaction tube 16 in which the processing material 17 is accommodated and hydrogen is oxidated, is filled with an oil or a gas N for cooling the reaction tube. A cooler 12 is connected to the reaction vessel using a supply piping 21 and a return piping 22 communicating with the space M, with the oil or gas N cooled by the cooler and circulated between the reaction vessel and the cooler.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、被処理ガスに含まれる水素を処理する水素処理装置、及びこの水素処理装置の運転方法に関する。 An embodiment of the present invention relates to a hydrogen treatment apparatus that treats hydrogen contained in a gas to be treated, and an operation method of the hydrogen treatment apparatus.

原子炉事故が発生すると、原子炉格納容器内に大量の水素が発生する場合がある。このような場合に何等有効な対策を行なうことができず、水素濃度が4vol%且つ酸素濃度が5vol%以上に上昇、即ち水素濃度が可燃限界を超えると、水素(気体)は可燃状態になり、更に水素濃度が上昇すると急激な反応が起きる可能性がある。 When a nuclear accident occurs, a large amount of hydrogen may be generated in the reactor containment vessel. In such a case, no effective measures can be taken, and when the hydrogen concentration rises to 4 vol% and the oxygen concentration rises to 5 vol% or more, that is, when the hydrogen concentration exceeds the flammable limit, hydrogen (gas) becomes flammable. If the hydrogen concentration rises further, a rapid reaction may occur.

こうした事態に対する有効な対策として、国内では、発生した水素をフィルタを通して原子炉格納容器外へ排出するようにしているが、微量であるものの放射性を帯びた粒子が、同時に原子炉格納容器外へ排出されてしまう恐れがある。 As an effective countermeasure against such a situation, in Japan, the generated hydrogen is discharged to the outside of the reactor containment vessel through a filter, but a small amount of radioactive particles are discharged to the outside of the reactor containment vessel at the same time. There is a risk of being killed.

これに対し、原子炉圧力容器から原子炉格納容器内に漏れ出た水素を大気中に放出することなく、金属酸化物を用いて水素を酸化させ、水に変化させる水素処理装置が提案されている。 On the other hand, a hydrogen treatment device has been proposed in which hydrogen is oxidized using a metal oxide and converted into water without releasing the hydrogen leaked from the reactor pressure vessel into the reactor containment vessel into the atmosphere. There is.

特開2015−187553号公報Japanese Unexamined Patent Publication No. 2015-187553

ところで、上述の水素処理装置では、水素処理装置を構成する処理材(金属酸化物)を封入した反応管に、水素を含む被処理ガスが流入すると、被処理ガス中の水素と処理材の酸素とが反応して反応熱が生じる。このとき、水素濃度が高い場合には、処理材の温度が反応管の最高使用温度以上に上昇することが想定され、反応管の健全性が低下する恐れがある。 By the way, in the above-mentioned hydrogen treatment apparatus, when the treatment gas containing hydrogen flows into the reaction tube in which the treatment material (metal oxide) constituting the hydrogen treatment apparatus is sealed, the hydrogen in the treatment gas and the oxygen of the treatment material Reacts with and generates heat of reaction. At this time, if the hydrogen concentration is high, it is assumed that the temperature of the treatment material rises above the maximum operating temperature of the reaction tube, and the soundness of the reaction tube may deteriorate.

また、この水素処理装置を構成する反応管において、被処理ガス中の水素と処理材の酸素とを反応させるためには、被処理ガスと処理材の温度を反応開始温度に予熱しておく必要もある。 Further, in the reaction tube constituting this hydrogen treatment apparatus, in order to react the hydrogen in the gas to be treated with the oxygen of the treatment material, it is necessary to preheat the temperature of the gas to be treated and the treatment material to the reaction start temperature. There is also.

本発明の実施形態は、上述の事情を考慮してなされたものであり、水素を酸化反応により処理する処理材が収容された反応管の健全性を確保できる水素処理装置及びその運転方法を提供することを目的とする。 An embodiment of the present invention has been made in consideration of the above circumstances, and provides a hydrogen treatment apparatus capable of ensuring the soundness of a reaction tube containing a treatment material for treating hydrogen by an oxidation reaction, and an operation method thereof. The purpose is to do.

本発明の実施形態における水素処理装置は、複数の酸化数を取り得る金属酸化物から構成された処理材を収容する反応管が内部に複数本配置された反応容器を有し、水素処理対象設備から前記反応容器に導入された被処理ガスに含まれる水素を、前記反応管内の前記処理材を用いて酸化反応により処理する水素処理装置において、前記反応管のうちで前記処理材が収容されて水素を酸化反応させる反応エリアの外側における前記反応容器内の空間に、前記反応管を冷却するための油またはガスが封入され、前記反応容器には、前記空間に連通する少なくとも2本の配管を用いて冷却器が接続され、前記油またはガスが、前記冷却器により冷却されると共に、前記反応容器と前記冷却器との間で循環されるよう構成されたことを特徴とするものである。 The hydrogen treatment apparatus according to the embodiment of the present invention has a reaction vessel in which a plurality of reaction tubes accommodating a treatment material composed of a metal oxide capable of having a plurality of oxidation numbers are arranged inside, and is a facility to be treated with hydrogen. In a hydrogen treatment apparatus that treats hydrogen contained in a gas to be treated introduced into the reaction vessel by an oxidation reaction using the treatment material in the reaction tube, the treatment material is housed in the reaction tube. An oil or gas for cooling the reaction tube is sealed in a space inside the reaction vessel outside the reaction area for oxidizing hydrogen, and the reaction vessel is provided with at least two pipes communicating with the space. It is characterized in that a cooler is connected using the oil or gas so that the oil or gas is cooled by the cooler and circulated between the reaction vessel and the cooler.

本発明の実施形態における水素処理装置の運転方法は、複数の酸化数を取り得る金属酸化物から構成された処理材を収容する反応管が内部に複数本配置された反応容器を有し、水素処理対象設備から前記反応容器に導入された被処理ガスに含まれる水素を、前記反応管内の前記処理材を用いて酸化反応により処理する水素処理装置の運転方法において、前記反応管のうちで前記処理材が収容されて水素を酸化反応させる反応エリアの外側における前記反応容器内の空間に、前記反応管を冷却するためのガスが封入され、前記反応容器には、前記空間に連通する少なくとも2本の配管が接続され、このうちの少なくとも1本の前記配管に、前記ガスを前記空間へ供給するガス供給源がバルブを介して接続され、他の少なくとも1本の前記配管から前記ガスが排出され、前記反応容器の任意の1または複数の位置に設置された温度センサの検出値のいずれか1つが、前記反応管の最高使用温度の近傍まで上昇したときに前記バルブを開操作し、前記処理材の反応開始温度の近傍まで下降したときに前記バルブを閉操作することを特徴とするものである。 The operation method of the hydrogen treatment apparatus according to the embodiment of the present invention has a reaction vessel in which a plurality of reaction tubes accommodating a treatment material composed of a metal oxide having a plurality of oxidation numbers are arranged inside, and hydrogen. In the operation method of the hydrogen treatment apparatus that treats hydrogen contained in the gas to be treated introduced into the reaction vessel from the equipment to be treated by an oxidation reaction using the treatment material in the reaction tube, the said in the reaction tube. A gas for cooling the reaction tube is sealed in the space inside the reaction vessel outside the reaction area in which the treatment material is housed and the hydrogen is oxidized, and the reaction vessel is filled with at least 2 communicating with the space. A book pipe is connected, a gas supply source for supplying the gas to the space is connected to at least one of the pipes via a valve, and the gas is discharged from the other at least one pipe. Then, when any one of the detection values of the temperature sensors installed at any one or a plurality of positions of the reaction vessel rises to the vicinity of the maximum operating temperature of the reaction tube, the valve is opened to operate the valve. It is characterized in that the valve is closed when the temperature drops to the vicinity of the reaction start temperature of the treatment material.

本発明の実施形態によれば、水素を酸化反応により処理する処理材が収容された反応管の健全性を確保できる。 According to the embodiment of the present invention, the soundness of the reaction tube containing the treatment material for treating hydrogen by the oxidation reaction can be ensured.

第1実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図。The side view which shows the structure of the hydrogen processing apparatus which concerns on 1st Embodiment by cutting out a part. 第2実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図。The side view which shows the structure of the hydrogen processing apparatus which concerns on 2nd Embodiment by cutting out a part. 第3実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図。The side view which shows the structure of the hydrogen processing apparatus which concerns on 3rd Embodiment by cutting out a part. 第4実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図。The side view which shows the structure of the hydrogen processing apparatus which concerns on 4th Embodiment by cutting out a part.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1)
図1は、第1実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図である。例えば、原子力発電プラントにおいて原子炉事故が発生し、原子炉格納容器内に水素が大量に発生した際に、この水素処理対象設備としての原子炉格納容器内の水素は、図1に示す水素処理装置10によって除去される。この水素処理装置10は、水素を除去する反応容器11と、後述の油またはガスNを冷却する冷却器12と、を有して構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (Fig. 1)
FIG. 1 is a side view showing the configuration of the hydrogen processing apparatus according to the first embodiment by cutting out a part. For example, when a nuclear power plant accident occurs and a large amount of hydrogen is generated in the reactor containment vessel, the hydrogen in the reactor containment vessel as the equipment to be treated with hydrogen is treated with hydrogen as shown in FIG. Removed by device 10. The hydrogen treatment apparatus 10 includes a reaction vessel 11 for removing hydrogen and a cooler 12 for cooling oil or gas N, which will be described later.

反応容器11は、筐体13内に上部支持板14及び下部支持板15を用いて、反応管16が複数本起立状態で並列に配置されて構成される。反応管16内に、水素を酸化反応により処理(除去)する処理材17が封入されて収容される。また、筐体13の底部に設けられたガス導入配管18と、筐体13の天部に設けられたガス戻し配管19とによって、筐体13内が水素処理対象設備(例えば原子炉格納容器)内に連通される。ガス導入配管18は、水素処理対象設備内の水素を含む被処理ガスG1を、反応容器11の筐体13内に導入する。ガス戻し配管19は、反応容器11にて水素が除去または低減された処理済ガスG2を水素処理対象設備に戻す。 The reaction vessel 11 is configured by using the upper support plate 14 and the lower support plate 15 in the housing 13 and arranging a plurality of reaction tubes 16 in parallel in an upright state. A treatment material 17 for treating (removing) hydrogen by an oxidation reaction is enclosed and housed in the reaction tube 16. Further, the gas introduction pipe 18 provided at the bottom of the housing 13 and the gas return pipe 19 provided at the top of the housing 13 allow the inside of the housing 13 to be treated with hydrogen (for example, a reactor containment vessel). It is communicated within. The gas introduction pipe 18 introduces the gas to be treated G1 containing hydrogen in the equipment subject to hydrogen treatment into the housing 13 of the reaction vessel 11. The gas return pipe 19 returns the treated gas G2 from which hydrogen has been removed or reduced in the reaction vessel 11 to the equipment to be treated with hydrogen.

上部支持板14及び下部支持板15は、筐体13の側壁の内周面に接して固着されると共に、複数の貫通孔を備える。各貫通孔に反応管16が挿通されることで、反応管16は起立姿勢に支持される。また、下部支持板15の貫通孔と反応管16との間にシール材(不図示)が設けられて、ガス導入配管18により筐体13内に導入された被処理ガスG1は、漏れることなく反応管16内に導かれる。また、上部支持板14の貫通孔は、反応管16が加熱された際にその熱膨張を逃がせるように、反応管16よりも大径に形成されている。この上部支持板14の貫通孔と反応管16との間にシール材が設けられてもよい。 The upper support plate 14 and the lower support plate 15 are in contact with and fixed to the inner peripheral surface of the side wall of the housing 13, and are provided with a plurality of through holes. By inserting the reaction tube 16 through each through hole, the reaction tube 16 is supported in an upright posture. Further, a sealing material (not shown) is provided between the through hole of the lower support plate 15 and the reaction tube 16, and the gas G1 to be treated introduced into the housing 13 by the gas introduction pipe 18 does not leak. It is guided into the reaction tube 16. Further, the through hole of the upper support plate 14 is formed to have a diameter larger than that of the reaction tube 16 so that the thermal expansion of the reaction tube 16 can be released when the reaction tube 16 is heated. A sealing material may be provided between the through hole of the upper support plate 14 and the reaction tube 16.

処理材17は、複数の酸化数を取り得る金属酸化物、例えば酸化銅(CuO)、過酸化マンガン(Mn)、酸化コバルト(Co)等にて構成される。この処理材17は、金属酸化物に含まれる酸素(O)と、被処理ガスG1中の水素(H)とが酸化反応して水(HO)を生成することで、外部からの酸素を必要とすることなく、被処理ガスG1に含まれる水素を処理(除去)することが可能である。例えば、処理材17が酸化銅(CuO)にて構成される場合の酸化反応式は、次の通りである。
CuO+H→Cu+H
Treatment material 17 is a metal oxide capable of forming a plurality of oxidation numbers, for example, copper oxide (CuO), peroxide manganese (Mn n O m), constituted by cobalt oxide (Co n O m), or the like. In this treated material 17, oxygen (O) contained in the metal oxide and hydrogen (H 2 ) in the gas to be treated G1 oxidize to generate water (H 2 O), thereby producing water (H 2 O) from the outside. It is possible to treat (remove) hydrogen contained in the gas to be treated G1 without requiring oxygen. For example, the oxidation reaction formula when the treated material 17 is composed of copper oxide (CuO) is as follows.
CuO + H 2 → Cu + H 2 O

また、筐体13内には、反応管16のうちで処理材17が封入されて水素を酸化反応させる反応エリア16A(即ち、反応管16のうちで上部支持板14と下部支持板15との間の領域)の外側の空間Mに、油またはガスNが冷媒として封入される。処理材17は、水素を酸化反応させる際に温度が上昇し、処理する水素が多量で特段の冷却構造を有しない場合には反応管16の最高使用温度を超えることがある。筐体13内の上記空間Mに封入された油またはガスNは、この処理材17の温度上昇に伴う反応管16の温度上昇を冷却により抑制する。 Further, in the housing 13, the treatment material 17 is sealed in the reaction tube 16 and the reaction area 16A for oxidizing hydrogen (that is, the upper support plate 14 and the lower support plate 15 in the reaction tube 16). Oil or gas N is sealed as a refrigerant in the space M outside the space (between the regions). The temperature of the treated material 17 rises when hydrogen is oxidized, and may exceed the maximum operating temperature of the reaction tube 16 when the amount of hydrogen to be treated is large and does not have a special cooling structure. The oil or gas N sealed in the space M in the housing 13 suppresses the temperature rise of the reaction tube 16 due to the temperature rise of the treatment material 17 by cooling.

冷却器12は、反応容器11の外側に設置されて、この反応容器11の筐体13内の油またはガスNを冷却する。この冷却器12は、反応容器11の筐体13における上部支持板14と下部支持板15との間の空間Mに連通する少なくとも2本の配管(本実施形態ではそれぞれ1本の供給配管21、戻し配管22)を用いて、反応容器11に接続される。これらの供給配管21及び戻し配管22は、水平方向に延びると共に上下方向に並列して配置され、供給配管21が下方に、戻し配管22が上方にそれぞれ配置される。 The cooler 12 is installed outside the reaction vessel 11 to cool the oil or gas N in the housing 13 of the reaction vessel 11. The cooler 12 has at least two pipes communicating with the space M between the upper support plate 14 and the lower support plate 15 in the housing 13 of the reaction vessel 11 (in this embodiment, one supply pipe 21 and each). It is connected to the reaction vessel 11 using the return pipe 22). The supply pipe 21 and the return pipe 22 extend in the horizontal direction and are arranged in parallel in the vertical direction, and the supply pipe 21 is arranged below and the return pipe 22 is arranged above.

冷却器12により冷却されて低温になった油またはガスNが、供給配管21を経て筐体13内に供給されると共に、筐体13内で高温になった油またはガスNが、戻し配管22を経て冷却器12に戻されることで、反応容器11の筐体13と冷却器12との間で油またはガスNの自然循環が実現される。 The oil or gas N cooled by the cooler 12 and cooled to a low temperature is supplied into the housing 13 via the supply pipe 21, and the oil or gas N cooled in the housing 13 is supplied to the return pipe 22. By returning to the cooler 12 through the above, natural circulation of oil or gas N is realized between the housing 13 of the reaction vessel 11 and the cooler 12.

上述の水素処理装置10では、水素処理対象設備としての原子炉格納容器内の水素を含む被処理ガスG1は、ガス導入配管18を経て反応容器11の筐体13内に導入され、反応容器11の反応管16内を、流入口(不図示)から流出口24へ向かって一方向に流れる間に、反応管16内の処理材17と接触する。これにより、被処理ガスG1中の水素が、処理材17(金属酸化物)の酸素と酸化反応して水蒸気に変化し、除去される。この水槽処理装置10により水素が除去または低減された処理済ガスG2は、ガス戻し配管19を経て水素処理対象設備(原子炉格納容器)に戻される。 In the above-mentioned hydrogen treatment apparatus 10, the gas to be treated G1 containing hydrogen in the reactor storage vessel as the equipment to be hydrogenated is introduced into the housing 13 of the reaction vessel 11 via the gas introduction pipe 18, and the reaction vessel 11 is introduced. While flowing in one direction from the inflow port (not shown) toward the outflow port 24, the inside of the reaction tube 16 comes into contact with the processing material 17 in the reaction tube 16. As a result, hydrogen in the gas to be treated G1 undergoes an oxidation reaction with oxygen in the treatment material 17 (metal oxide) to change into water vapor and is removed. The treated gas G2 from which hydrogen has been removed or reduced by the water tank treatment device 10 is returned to the hydrogen treatment target equipment (reactor containment vessel) via the gas return pipe 19.

上述の水素と酸素の酸化反応では、反応管16の温度は、処理材17が処理する水素量が多量で特段の冷却構造を有しない場合には、反応管16の最高使用温度を超えることがある。ところが、筐体13内の空間Mに封入され且つ反応容器11と冷却器12との間で循環する油またはガスNが冷却媒体として機能することで、反応管16は、その温度が低く抑制されて、座屈等の不具合の発生が回避される。 In the above-mentioned oxidation reaction of hydrogen and oxygen, the temperature of the reaction tube 16 may exceed the maximum operating temperature of the reaction tube 16 when the amount of hydrogen processed by the treatment material 17 is large and the treatment material 17 does not have a special cooling structure. is there. However, the temperature of the reaction tube 16 is suppressed to a low level by the oil or gas N sealed in the space M in the housing 13 and circulating between the reaction vessel 11 and the cooler 12 functioning as a cooling medium. Therefore, the occurrence of problems such as buckling is avoided.

上述のように構成された水素処理装置10の反応容器11及び冷却器12は、任意の場所へ移動自在な移動手段、例えば大型トラック20に搭載可能に構成される。また、反応容器11は、その容量が分割されて、容量の小さな複数の反応容器とされてもよい。これに対応して、冷却器12も、その容量が分割されて、容量の小さな複数の冷却器とされてもよい。これら容量の小さな反応容器及び冷却器は、供給配管21及び戻し配管22により接続されて、水素処理装置10よりも容量の小さな水素処理装置を構成する。この容量の小さな水素処理装置は、水素処理装置10の場合よりも小型の小型トラックまたは中型トラックに搭載可能に構成される。 The reaction vessel 11 and the cooler 12 of the hydrogen processing apparatus 10 configured as described above are configured to be mountable on a moving means that can be moved to an arbitrary location, for example, a large truck 20. Further, the reaction vessel 11 may be divided into a plurality of reaction vessels having a small capacity. Correspondingly, the cooler 12 may be divided into a plurality of coolers having a small capacity. These reaction vessels and coolers having a small capacity are connected by a supply pipe 21 and a return pipe 22 to form a hydrogen processing device having a capacity smaller than that of the hydrogen processing device 10. This hydrogen processing apparatus having a small capacity is configured to be mountable on a small truck or a medium truck smaller than the case of the hydrogen processing apparatus 10.

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)〜(3)を奏する。
(1)反応容器11内の各反応管16に収容された処理材17と水素との酸化反応による反応熱を、反応容器11内に封入された油またはガスNが吸収する。しかも、反応容器11内の油またはガスNは、冷却器12により冷却され且つ反応容器11と冷却器12との間を循環することで、反応管16を効率良く冷却する。例えば、水素処理対象設備(例えば原子炉格納容器)の規模が大きく、水素を含む被処理ガスG1が大量になって、処理材17と水素との酸化反応による反応熱が過大になった場合でも、反応容器11と冷却器12間を循環する油またはガスNによって反応管16を、この反応管16の最高使用温度以下の健全な温度で運用できる。この結果、処理材17を収容する反応管16の健全性を確保できる。
Since it is configured as described above, according to the first embodiment, the following effects (1) to (3) are obtained.
(1) The oil or gas N sealed in the reaction vessel 11 absorbs the heat of reaction due to the oxidation reaction between the treatment material 17 and hydrogen contained in each reaction tube 16 in the reaction vessel 11. Moreover, the oil or gas N in the reaction vessel 11 is cooled by the cooler 12 and circulates between the reaction vessel 11 and the cooler 12, thereby efficiently cooling the reaction tube 16. For example, even if the scale of the equipment to be treated with hydrogen (for example, the reactor containment vessel) is large and the amount of gas G1 to be treated containing hydrogen becomes large and the heat of reaction due to the oxidation reaction between the treatment material 17 and hydrogen becomes excessive. The reaction tube 16 can be operated at a sound temperature equal to or lower than the maximum operating temperature of the reaction tube 16 by the oil or gas N circulating between the reaction vessel 11 and the cooler 12. As a result, the soundness of the reaction tube 16 accommodating the treatment material 17 can be ensured.

(2)反応容器11及び冷却器12を備えて構成された水素処理装置10が、任意の場所へ移動自在な移動手段、例えば大型トラック20に搭載可能に構成されている。このため、長期間の運用によって水素処理装置10にメンテナンスの必要性が生じた場合、この水素処理装置10を例えば大型トラック20によって、水素処理装置10の製造工場またはメンテナンス工場へ容易に移動させることができる。 (2) The hydrogen processing apparatus 10 provided with the reaction vessel 11 and the cooler 12 is configured to be mountable on a moving means that can be moved to an arbitrary location, for example, a large truck 20. Therefore, when the hydrogen processing apparatus 10 needs maintenance due to long-term operation, the hydrogen processing apparatus 10 can be easily moved to the manufacturing plant or the maintenance plant of the hydrogen processing apparatus 10 by, for example, a large truck 20. Can be done.

(3)水素処理装置10を構成する反応容器11及び冷却器12のそれぞれの容量を分割して、容量の小さな複数の反応容器及び冷却器とした場合には、これら容量の小さな反応容器及び冷却器から構成される水素処理装置は、大型トラック20ではなく、小型トラックまたは中型トラックに搭載されて運搬可能になる。この場合には、水素処理装置の輸送費を削減できるほか、その輸送経路の整備も軽減できる。 (3) When the respective capacities of the reaction vessel 11 and the cooler 12 constituting the hydrogen treatment apparatus 10 are divided into a plurality of reaction vessels and coolers having a small capacity, the reaction vessel and the cooling having a small capacity are obtained. The hydrogen processing apparatus composed of the containers is mounted on a light truck or a medium truck instead of the heavy truck 20 and can be transported. In this case, not only the transportation cost of the hydrogen processing apparatus can be reduced, but also the maintenance of the transportation route can be reduced.

[B]第2実施形態(図2)
図2は、第2実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
FIG. 2 is a side view showing the configuration of the hydrogen processing apparatus according to the second embodiment by cutting out a part. In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の水素処理装置25が第1実施形態と異なる点は、反応容器11と冷却器12とを接続する少なくとも2本の配管(例えば供給配管21、戻し配管22)のうちで、少なくとも1本の配管(例えば供給配管21)に、油またはガスNを強制循環させるポンプまたはコンプレッサ等の駆動手段26が配設された点である。 The difference between the hydrogen processing apparatus 25 of the second embodiment and the first embodiment is that among at least two pipes (for example, the supply pipe 21 and the return pipe 22) connecting the reaction vessel 11 and the cooler 12. At least one pipe (for example, the supply pipe 21) is provided with a driving means 26 such as a pump or a compressor for forcibly circulating oil or gas N.

以上のように構成されたことから、本第2実施形態によれば、第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。 Since it is configured as described above, according to the second embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effects (4) are obtained.

(4)駆動手段26が例えば供給配管21に配設されたことで、冷却器12により低温に冷却された油またはガスNを強制的に反応容器11へ供給することができる。このため、反応容器11と冷却器12との間で油またはガスNを、第1実施形態の自然循環の場合よりも大きな流量で循環させることができる。この結果、水素処理対象設備(例えば原子炉格納容器)の規模が大きく、水素処理装置25が処理すべき被処理ガスG1が大量であっても、反応管16の温度を、その最高使用温度以下の健全な温度で確実に運用することができる。 (4) Since the drive means 26 is arranged in the supply pipe 21, for example, the oil or gas N cooled to a low temperature by the cooler 12 can be forcibly supplied to the reaction vessel 11. Therefore, the oil or gas N can be circulated between the reaction vessel 11 and the cooler 12 at a larger flow rate than in the case of the natural circulation of the first embodiment. As a result, even if the scale of the equipment subject to hydrogen treatment (for example, the reactor containment vessel) is large and the amount of gas G1 to be treated by the hydrogen treatment apparatus 25 is large, the temperature of the reaction tube 16 is kept below the maximum operating temperature. It can be operated reliably at a healthy temperature.

[C]第3実施形態(図3)
図3は、第3実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図である。この第3実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (Fig. 3)
FIG. 3 is a side view showing the configuration of the hydrogen processing apparatus according to the third embodiment by cutting out a part. In this third embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第3実施形態の水素処理装置30が第1実施形態と異なる点は、反応容器11の周囲に加熱手段31が設置され、この加熱手段31が、反応容器11内に配置された反応管16の少なくとも反応エリア16Aを覆うように構成された点である。 The difference between the hydrogen treatment apparatus 30 of the third embodiment and the first embodiment is that the heating means 31 is installed around the reaction vessel 11, and the heating means 31 is arranged in the reaction vessel 11. It is a point configured to cover at least the reaction area 16A of the above.

この加熱手段31はヒータ、または例えば原子炉格納容器内の高温蒸気を流動させる管路などである。また、加熱手段31は、第2実施形態の水素処理装置25における反応容器11の周囲に設置されても良い。 The heating means 31 is a heater, or, for example, a conduit for flowing high-temperature steam in the reactor containment vessel. Further, the heating means 31 may be installed around the reaction vessel 11 in the hydrogen treatment apparatus 25 of the second embodiment.

以上のように構成されたことから、本第3実施形態によれば、第1及び第2実施形態の効果(1)〜(4)と同様な効果を奏するほか、次の効果(5)を奏する。 Since it is configured as described above, according to the third embodiment, in addition to producing the same effects as the effects (1) to (4) of the first and second embodiments, the following effect (5) is obtained. Play.

(5)反応容器11内の反応管16の少なくとも反応エリア16Aを覆うように、加熱手段31が反応容器11の周囲に配置されたので、水素処理装置30の起動前に、加熱手段31によって反応管16内の処理材17を反応開始温度まで予熱することができる。例えば、地震や台風などの自然災害によって水素処理対象設備(例えば原子炉格納容器)で水素処理が必要であろうと判断した場合に、直ちに、加熱手段31によって、反応容器11内の反応管16における処理材17を反応開始温度まで予熱することができる。従って、原子炉事故後の任意のタイミング(例えば直ちに)で水素処理装置30を起動させて、水素処理を迅速に実施することができる。 (5) Since the heating means 31 is arranged around the reaction vessel 11 so as to cover at least the reaction area 16A of the reaction tube 16 in the reaction vessel 11, the heating means 31 reacts before the hydrogen treatment apparatus 30 is started. The treated material 17 in the tube 16 can be preheated to the reaction start temperature. For example, when it is determined that hydrogen treatment is necessary in a facility subject to hydrogen treatment (for example, a reactor containment vessel) due to a natural disaster such as an earthquake or a typhoon, the heating means 31 immediately causes the reaction tube 16 in the reaction vessel 11 to undergo hydrogen treatment. The treated material 17 can be preheated to the reaction start temperature. Therefore, the hydrogen treatment apparatus 30 can be started at an arbitrary timing (for example, immediately) after the nuclear accident, and the hydrogen treatment can be carried out quickly.

[D]第4実施形態(図4)
図4は、第4実施形態に係る水素処理装置の構成を、一部を切り欠いて示す側面図である。この第4実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth Embodiment (Fig. 4)
FIG. 4 is a side view showing the configuration of the hydrogen processing apparatus according to the fourth embodiment by cutting out a part. In this fourth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第4実施形態の水素処理装置40が第1実施形態と異なる点は、反応容器11内の空間Mに封入される冷媒がガスJであり、反応容器11に接続されて空間Mに連通する少なくとも2本の配管(例えば供給配管41、排出配管42)のうちの少なくとも1本の配管(例えば供給配管41)にバルブ44が配設されると共に、その配管端部にガス供給源43が接続され、他の少なくとも1本の配管(例えば排出配管42)からガスJが排出可能に構成された点である。更に、反応容器11には、任意の1または複数の位置に、反応容器11内の温度、特に反応管16の表面温度を検出可能な温度センサ45が設置されると共に、バルブ44の開閉が制御器46により制御される。 The difference between the hydrogen treatment apparatus 40 of the fourth embodiment and the first embodiment is that the refrigerant sealed in the space M in the reaction vessel 11 is gas J, which is connected to the reaction vessel 11 and communicates with the space M. A valve 44 is arranged in at least one pipe (for example, supply pipe 41) of at least two pipes (for example, supply pipe 41 and discharge pipe 42), and a gas supply source 43 is connected to the end of the pipe. The point is that the gas J can be discharged from at least one other pipe (for example, the discharge pipe 42). Further, the reaction vessel 11 is provided with a temperature sensor 45 capable of detecting the temperature inside the reaction vessel 11, particularly the surface temperature of the reaction tube 16, at an arbitrary one or a plurality of positions, and the opening and closing of the valve 44 is controlled. It is controlled by the vessel 46.

ガス供給源43から供給配管41を経て反応容器11の筐体13内の空間Mに供給されて封入されたガスJは、反応管16内の処理材17と水素との酸化反応による反応熱によって昇温する反応管16を冷却する。この冷却後のガスJは、排出配管42を経て大気中へ排出されることから、低環境負荷ガスが好ましい。例えば、このガスJは、空気ガス、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素ガスのいずれか1つが使用される。また、ガス供給源43は、これらの低環境負荷ガスが充填された高圧ガスボンベが好ましい。 The gas J supplied and sealed from the gas supply source 43 to the space M in the housing 13 of the reaction vessel 11 via the supply pipe 41 is generated by the heat of reaction due to the oxidation reaction between the processing material 17 in the reaction tube 16 and hydrogen. The reaction tube 16 that raises the temperature is cooled. Since the cooled gas J is discharged into the atmosphere through the discharge pipe 42, a low environmental load gas is preferable. For example, as the gas J, any one of air gas, nitrogen gas, helium gas, argon gas, and carbon dioxide gas is used. Further, the gas supply source 43 is preferably a high-pressure gas cylinder filled with these low environmental load gases.

制御器46は、温度センサ45の検出値に基づいてバルブ44の開閉を制御する。つまり、制御器46は、温度センサ45の検出値のいずれか1つが反応管16の最高使用温度の近傍まで上昇したときにバルブ44を開操作して、ガス供給源43からのガスJを反応容器11の筐体13内の空間Mに導き、このガスJにより反応管16を冷却する。また、制御器46は、温度センサ45の検出値のいずれか1つが反応管16内の処理材17の反応開始温度の近傍まで下降したときにバルブ44を閉操作して、ガス供給源43から反応容器11の筐体13内の空間Mに導入されるガスJを遮断し、このガスJによる反応管16の冷却を阻止して、処理材17を反応開始温度以上に保つ。 The controller 46 controls the opening and closing of the valve 44 based on the detected value of the temperature sensor 45. That is, the controller 46 opens the valve 44 when any one of the detected values of the temperature sensor 45 rises to the vicinity of the maximum operating temperature of the reaction tube 16 to react the gas J from the gas supply source 43. It is guided to the space M in the housing 13 of the container 11, and the reaction tube 16 is cooled by this gas J. Further, the controller 46 closes the valve 44 when any one of the detected values of the temperature sensor 45 drops to the vicinity of the reaction start temperature of the processing material 17 in the reaction tube 16 from the gas supply source 43. The gas J introduced into the space M in the housing 13 of the reaction vessel 11 is blocked, the cooling of the reaction tube 16 by the gas J is prevented, and the treatment material 17 is kept above the reaction start temperature.

以上のように構成されたことから、本第4実施形態によれば、次の効果(6)〜(8)を奏する。
(6)反応容器11内の各反応管16に収容された処理材17と水素との酸化反応による反応熱を、反応容器11の筐体13内の空間Mに封入されたガスJが吸収する。しかも、この筐体13内の空間MのガスJは、高圧ガスボンベなどのガス供給源43から供給されることで、第1実施形態の自然循環流量よりも多くの流量を確保でき、反応管16に対する冷却能力を第1実施形態の場合よりも向上させることができる。このため、水素処理対象設備(例えば原子炉格納容器)の規模が大きく、水素を含む被処理ガスG1が大量になって、処理材17と水素との酸化反応による反応熱が過大になる場合でも、ガス供給源43から反応容器11の筐体13内の空間Mに供給されるガスJによって反応管16を、この反応管16の最高使用温度以下の健全な温度で運用することができる。この結果、処理材17を収容する反応管16の健全性を確保できる。
Since it is configured as described above, according to the fourth embodiment, the following effects (6) to (8) are obtained.
(6) The gas J sealed in the space M in the housing 13 of the reaction vessel 11 absorbs the heat of reaction due to the oxidation reaction between the treatment material 17 and hydrogen contained in each reaction tube 16 in the reaction vessel 11. .. Moreover, the gas J in the space M in the housing 13 is supplied from the gas supply source 43 such as a high-pressure gas cylinder, so that a flow rate larger than the natural circulation flow rate of the first embodiment can be secured, and the reaction tube 16 can be secured. The cooling capacity for the above can be improved as compared with the case of the first embodiment. Therefore, even when the scale of the equipment to be treated with hydrogen (for example, the reactor storage container) is large and the amount of gas G1 to be treated containing hydrogen becomes large and the heat of reaction due to the oxidation reaction between the treatment material 17 and hydrogen becomes excessive. The reaction tube 16 can be operated at a sound temperature equal to or lower than the maximum operating temperature of the reaction tube 16 by the gas J supplied from the gas supply source 43 to the space M in the housing 13 of the reaction vessel 11. As a result, the soundness of the reaction tube 16 accommodating the treatment material 17 can be ensured.

(7)ガス供給源43から反応容器11の筐体13内の空間Mに供給されるガスJが低環境負荷ガスであることから、反応容器11内で反応管16を冷却した後のガスJを、排出配管42を経て大気中へ排出することができる。 (7) Since the gas J supplied from the gas supply source 43 to the space M in the housing 13 of the reaction vessel 11 is a low environmental load gas, the gas J after cooling the reaction tube 16 in the reaction vessel 11 Can be discharged into the atmosphere via the discharge pipe 42.

(8)ガス供給源43からのガスJを反応容器11内へ供給するためのバルブ44の開閉を、反応容器11内の温度を検出する温度センサ45からの検出値に基づき制御器46が制御している。このため、バルブ44を開閉操作するために、バルブ44が存在する例えば放射能の高い危険領域の近傍に作業員が近づく必要がなく、また、作業員のバルブ44の誤操作による圧力上昇等の事故も未然に防止することができる。 (8) The controller 46 controls the opening and closing of the valve 44 for supplying the gas J from the gas supply source 43 into the reaction vessel 11 based on the detection value from the temperature sensor 45 that detects the temperature in the reaction vessel 11. doing. Therefore, in order to open and close the valve 44, it is not necessary for the worker to approach the vicinity of the dangerous area where the valve 44 exists, for example, and the operator has an accident such as a pressure increase due to an erroneous operation of the valve 44. Can be prevented in advance.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and the equivalent scope thereof.

10…水素処理装置、11…反応容器、12…冷却器、16…反応管、16A…反応エリア、17…処理材、20…大型トラック(移動手段)、21…供給配管、22…戻し配管、25…水素処理装置、26…駆動手段、30…水素処理装置、31…加熱手段、40…水素処理装置、41…供給配管、42…排出配管、43…ガス供給源、44…バルブ、45…温度センサ、46…制御器、G1…被処理ガス、G2…処理済ガス、M…空間、N…油またはガス、J…ガス 10 ... Hydrogen processing device, 11 ... Reaction vessel, 12 ... Cooler, 16 ... Reaction tube, 16A ... Reaction area, 17 ... Processing material, 20 ... Large truck (transportation means), 21 ... Supply piping, 22 ... Return piping, 25 ... Hydrogen processing device, 26 ... Driving means, 30 ... Hydrogen processing device, 31 ... Heating means, 40 ... Hydrogen processing device, 41 ... Supply pipe, 42 ... Discharge pipe, 43 ... Gas supply source, 44 ... Valve, 45 ... Temperature sensor, 46 ... Controller, G1 ... Processed gas, G2 ... Treated gas, M ... Space, N ... Oil or gas, J ... Gas

Claims (7)

複数の酸化数を取り得る金属酸化物から構成された処理材を収容する反応管が内部に複数本配置された反応容器を有し、水素処理対象設備から前記反応容器に導入された被処理ガスに含まれる水素を、前記反応管内の前記処理材を用いて酸化反応により処理する水素処理装置において、
前記反応管のうちで前記処理材が収容されて水素を酸化反応させる反応エリアの外側における前記反応容器内の空間に、前記反応管を冷却するための油またはガスが封入され、
前記反応容器には、前記空間に連通する少なくとも2本の配管を用いて冷却器が接続され、前記油またはガスが、前記冷却器により冷却されると共に、前記反応容器と前記冷却器との間で循環されるよう構成されたことを特徴とする水素処理装置。
It has a reaction vessel in which a plurality of reaction tubes accommodating a treatment material composed of a metal oxide capable of having a plurality of oxidation numbers are arranged inside, and the gas to be treated introduced into the reaction vessel from the equipment to be hydrogenated. In a hydrogen treatment apparatus that treats hydrogen contained in the above by an oxidation reaction using the treatment material in the reaction tube.
An oil or gas for cooling the reaction tube is sealed in the space inside the reaction vessel outside the reaction area in which the treatment material is housed and the hydrogen is oxidized.
A cooler is connected to the reaction vessel using at least two pipes communicating with the space, and the oil or gas is cooled by the cooler and between the reaction vessel and the cooler. A hydrogen processing apparatus characterized in that it is configured to circulate in.
前記反応容器と前記冷却器とを接続する少なくとも2本の配管のうちで、少なくとも1本の前記配管に、油またはガスを強制循環させる駆動手段が配設されたことを特徴とする請求項1に記載の水素処理装置。 Claim 1 is characterized in that, of at least two pipes connecting the reaction vessel and the cooler, at least one of the pipes is provided with a driving means for forcibly circulating oil or gas. The hydrogen treatment apparatus according to. 前記反応容器及び前記冷却器は、任意の場所へ移動自在な移動手段に搭載可能に構成されたことを特徴とする請求項1または2に記載の水素処理装置。 The hydrogen treatment apparatus according to claim 1 or 2, wherein the reaction vessel and the cooler are configured to be mounted on a moving means that can be moved to an arbitrary place. 前記反応容器には加熱手段が設置され、この加熱手段が、前記反応容器内に配置された反応管の少なくとも反応エリアを覆うように構成されたことを特徴とする請求項1乃至3のいずれか1項に記載の水素処理装置。 Any one of claims 1 to 3, wherein a heating means is installed in the reaction vessel, and the heating means is configured to cover at least the reaction area of the reaction tube arranged in the reaction vessel. The hydrogen treatment apparatus according to item 1. 複数の酸化数を取り得る金属酸化物から構成された処理材を収容する反応管が内部に複数本配置された反応容器を有し、水素処理対象設備から前記反応容器に導入された被処理ガスに含まれる水素を、前記反応管内の前記処理材を用いて酸化反応により処理する水素処理装置において、
前記反応管のうちで前記処理材が収容されて水素を酸化反応させる反応エリアの外側における前記反応容器内の空間に、前記反応管を冷却するためのガスが封入され、
前記反応容器には、前記空間に連通する少なくとも2本の配管が接続され、このうちの少なくとも1本の前記配管に、前記ガスを前記空間へ供給するガス供給源が接続され、他の少なくとも1本の前記配管から前記ガスが排出可能に構成されたことを特徴とする水素処理装置。
It has a reaction vessel in which a plurality of reaction tubes accommodating a treatment material composed of a metal oxide capable of having a plurality of oxidation numbers are arranged inside, and the gas to be treated introduced into the reaction vessel from the equipment to be hydrogenated. In a hydrogen treatment apparatus that treats hydrogen contained in the above by an oxidation reaction using the treatment material in the reaction tube.
A gas for cooling the reaction tube is sealed in the space inside the reaction vessel outside the reaction area in which the treatment material is housed and the hydrogen is oxidized.
At least two pipes communicating with the space are connected to the reaction vessel, and at least one of the pipes is connected to a gas supply source for supplying the gas to the space, and at least one of the other pipes is connected. A hydrogen processing apparatus characterized in that the gas can be discharged from the pipe of a book.
前記ガス供給源に接続された配管にはバルブが配設され、前記反応容器には任意の1または複数の位置に温度センサが設置され、
前記温度センサの検出値に基づき前記バルブの開閉を制御する制御器は、前記温度センサの検出値のいずれか1つが、前記反応容器内に配置された反応管の最高使用温度の近傍まで上昇したときに前記バルブを開操作し、前記反応管内に収容された処理材の反応開始温度の近傍まで下降したときに前記バルブを閉操作するよう構成されたことを特徴とする請求項5に記載の水素処理装置。
A valve is provided in the pipe connected to the gas supply source, and a temperature sensor is installed in any one or more positions in the reaction vessel.
In the controller that controls the opening and closing of the valve based on the detection value of the temperature sensor, any one of the detection values of the temperature sensor rises to near the maximum operating temperature of the reaction tube arranged in the reaction vessel. The fifth aspect of claim 5, wherein the valve is sometimes opened and closed when the temperature of the treatment material contained in the reaction tube drops to the vicinity of the reaction start temperature. Hydrogen processing equipment.
複数の酸化数を取り得る金属酸化物から構成された処理材を収容する反応管が内部に複数本配置された反応容器を有し、水素処理対象設備から前記反応容器に導入された被処理ガスに含まれる水素を、前記反応管内の前記処理材を用いて酸化反応により処理する水素処理装置の運転方法において、
前記反応管のうちで前記処理材が収容されて水素を酸化反応させる反応エリアの外側における前記反応容器内の空間に、前記反応管を冷却するためのガスが封入され、
前記反応容器には、前記空間に連通する少なくとも2本の配管が接続され、このうちの少なくとも1本の前記配管に、前記ガスを前記空間へ供給するガス供給源がバルブを介して接続され、他の少なくとも1本の前記配管から前記ガスが排出され、
前記反応容器の任意の1または複数の位置に設置された温度センサの検出値のいずれか1つが、前記反応管の最高使用温度の近傍まで上昇したときに前記バルブを開操作し、前記処理材の反応開始温度の近傍まで下降したときに前記バルブを閉操作することを特徴とする水素処理装置の運転方法。
It has a reaction vessel in which a plurality of reaction tubes accommodating a treatment material composed of a metal oxide capable of having a plurality of oxidation numbers are arranged inside, and the gas to be treated introduced into the reaction vessel from the equipment to be hydrogenated. In the method of operating a hydrogen treatment apparatus that treats hydrogen contained in the hydrogen by an oxidation reaction using the treatment material in the reaction tube.
A gas for cooling the reaction tube is sealed in the space inside the reaction vessel outside the reaction area in which the treatment material is housed and the hydrogen is oxidized.
At least two pipes communicating with the space are connected to the reaction vessel, and a gas supply source for supplying the gas to the space is connected to at least one of the pipes via a valve. The gas is discharged from at least one other pipe,
When any one of the detection values of the temperature sensors installed at any one or a plurality of positions of the reaction vessel rises to the vicinity of the maximum operating temperature of the reaction tube, the valve is opened to open the processing material. A method of operating a hydrogen processing apparatus, which comprises closing the valve when the temperature drops to the vicinity of the reaction start temperature of the above.
JP2019210437A 2019-11-21 2019-11-21 Hydrogen processing device and operation method thereof Pending JP2021081357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210437A JP2021081357A (en) 2019-11-21 2019-11-21 Hydrogen processing device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210437A JP2021081357A (en) 2019-11-21 2019-11-21 Hydrogen processing device and operation method thereof

Publications (1)

Publication Number Publication Date
JP2021081357A true JP2021081357A (en) 2021-05-27

Family

ID=75964912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210437A Pending JP2021081357A (en) 2019-11-21 2019-11-21 Hydrogen processing device and operation method thereof

Country Status (1)

Country Link
JP (1) JP2021081357A (en)

Similar Documents

Publication Publication Date Title
JP5827423B2 (en) Method and apparatus for improving the lubrication system of a marine vessel propulsion device
US9396823B2 (en) Floating nuclear power reactor with a self-cooling containment structure and an emergency heat exchange system
JP6071493B2 (en) Hydrogen removal device
JPH04256894A (en) Passive cooling system of water-cooled atomic reactor plant
JP6034165B2 (en) Hydrogen removal device
JPH0769454B2 (en) Natural circulation passive cooling system for reactor plant containment
RU2682901C2 (en) Floating nuclear power reactor with self-cooling containment structure and emergency heat exchange system
KR20160089338A (en) System for purifying a gaseous medium of hydrogen and method for the use thereof
JP2020041834A (en) Hydrogen treatment system, nuclear reactor facility and hydrogen treatment method
KR102364341B1 (en) Heat exchanger, reactor arrangement comprising said heat exchanger, and method for temperature control of a reactor
JP2021081357A (en) Hydrogen processing device and operation method thereof
CN215730885U (en) Waste heat discharging device and underwater power device
US3059913A (en) Cooling systems for devices used in metal refining processes
JP2003194982A (en) Cooling device and method for reactor pressure vessel of boiling water reactor facility
KR102360983B1 (en) Passive residual heat removal system of integral reactor for floating structure
JP2002506214A (en) Operating method of containment vessel and condenser in nuclear facilities
KR102414755B1 (en) Passive residual heat removal system of integral reactor for ship
US5326540A (en) Containment system for supercritical water oxidation reactor
JP2019005751A (en) Reactor system and use thereof
JP2009069121A (en) Nuclear power plant
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
JP6341626B2 (en) Heat treatment equipment
JP2014020997A (en) Hydrogen remover and hydrogen removing method for reactor containment vessel
JP4870634B2 (en) Air bleeder for heat exchange system, air bleed method for heat exchange system, heat exchange system, and heat transport system
JP2021032804A (en) Gas processing system