JP2021081328A - Communication source estimation system and communication source estimation method - Google Patents

Communication source estimation system and communication source estimation method Download PDF

Info

Publication number
JP2021081328A
JP2021081328A JP2019209677A JP2019209677A JP2021081328A JP 2021081328 A JP2021081328 A JP 2021081328A JP 2019209677 A JP2019209677 A JP 2019209677A JP 2019209677 A JP2019209677 A JP 2019209677A JP 2021081328 A JP2021081328 A JP 2021081328A
Authority
JP
Japan
Prior art keywords
communication source
position information
signal
scatterers
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019209677A
Other languages
Japanese (ja)
Inventor
孟 大矢
Takeshi Oya
孟 大矢
慶一 東海林
Keiichi Shoji
慶一 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019209677A priority Critical patent/JP2021081328A/en
Publication of JP2021081328A publication Critical patent/JP2021081328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

To correctly estimate a position of a communication source without using two satellites even when position information of a satellite to be up-linked is not open or the position information is not correct.SOLUTION: A communication source estimation system of an embodiment collects, by a receiving antenna, radio waves of an uplink signal transmitted from the communication source toward a satellite and scattered by each of a plurality of scattering bodies, acquires, by a signal processing device, the position information of each of the plurality of scattering bodies, confirms, by correlation processing, that the scattered radio wave of each of the plurality of scattering bodies is from the same communication source, detects time of arrival of the received signal of the collected scattered radio wave of each of the plurality of scattering bodies, and estimates the position of the communication source.SELECTED DRAWING: Figure 1

Description

この発明の実施形態は、通信源位置推定システム及び通信源位置推定方法に関する。 Embodiments of the present invention relate to a communication source position estimation system and a communication source position estimation method.

従来より、衛星に信号をアップリンクする通信源の位置を推定する通信源位置推定システムが提案されている。このシステムは、2機の受信アンテナ、2機の衛星を用いて構成される。2機の衛星は互いに隣接し、ターゲットとする通信源からアップリンクされる信号をそれぞれ受信し、その信号をダウンリンクとして地上局に向け送出する。地上局では、各衛星に指向させた2機の受信アンテナでそれぞれのダウンリンク信号を受信する。このとき、2機の衛星、2機の受信アンテナは既知の位置に存在することから、それぞれの受信アンテナで受信した信号間には到達時間差TDOA(Time Difference Of Arrival)が発生する。一方、衛星は赤道上を旋回しているものの、南北方向に上下運動が発生しているため、ドップラシフトに伴う周波数差FDOA(Frequency Difference Of Arrival)が発生する。そこで、従来のシステムでは、TDOA及びFDOAによって引かれる線が交差する点によってアップリンクの発生位置(通信源)を推定している。 Conventionally, a communication source position estimation system that estimates the position of a communication source that uplinks a signal to a satellite has been proposed. This system consists of two receiving antennas and two satellites. The two satellites are adjacent to each other, receive signals that are uplinked from the target communication source, and send the signals as downlinks to the ground station. At the ground station, each downlink signal is received by two receiving antennas directed to each satellite. At this time, since the two satellites and the two receiving antennas are located at known positions, a time difference of arrival (TDOA) occurs between the signals received by the respective receiving antennas. On the other hand, although the satellite is orbiting on the equator, it moves up and down in the north-south direction, so a frequency difference FDOA (Frequency Difference Of Arrival) occurs due to the Doppler shift. Therefore, in the conventional system, the uplink generation position (communication source) is estimated by the intersection of the lines drawn by TDOA and FDOA.

ところが、従来の通信源位置推定システムでは、2機の衛星が一つのアップリンク信号を受信可能な位置関係に隣接する必要があり、また、それらの位置が既知であることが必須条件となっている。このため、位置情報が公開されてない、又は、位置情報が正確でない場合には、通信源の位置を正しく推定することができない。 However, in the conventional communication source position estimation system, it is necessary for two satellites to be adjacent to each other in a positional relationship in which one uplink signal can be received, and it is an essential condition that their positions are known. There is. Therefore, if the location information is not disclosed or the location information is not accurate, the location of the communication source cannot be estimated correctly.

Takeshi Amishima, Nobuhiro Suzuki, “TDOA/FDOA geolocation in space radio monitoring using RLMS and gating,” IEICE Communications Express, Vol.1, P1-6Takeshi Amishima, Nobuhiro Suzuki, “TDOA / FDOA geolocation in space radio monitoring using RLMS and gating,” IEICE Communications Express, Vol.1, P1-6

以上のように、従来の通信源位置推定システムでは、2機の衛星が一つのアップリンク信号を受信可能な位置関係に隣接する必要があり、また、それらの位置が既知であることが必須条件となっているため、位置情報が公開されてない、又は、位置情報が正確でない場合には、通信源の位置を正しく推定することができないという問題があった。 As described above, in the conventional communication source position estimation system, it is necessary that two satellites are adjacent to each other in a positional relationship in which one uplink signal can be received, and it is an essential condition that their positions are known. Therefore, there is a problem that the position of the communication source cannot be estimated correctly when the position information is not disclosed or the position information is not accurate.

本発明の実施形態は、2機の衛星を利用せず、アップリンクされる衛星の位置情報が公開されてない、又は、位置情報が正確でない場合でも、通信源の位置を正しく推定することのできる通信源位置推定システム及び通信源位置推定方法を提供することを目的とする。 In the embodiment of the present invention, the position of the communication source is correctly estimated even when the position information of the satellites to be uplinked is not disclosed or the position information is not accurate without using two satellites. It is an object of the present invention to provide a communication source position estimation system and a communication source position estimation method which can be performed.

一実施形態に係る通信源位置推定システムは、受信アンテナにより、複数の散乱体でそれぞれ散乱された、通信源から衛星に向けて送出されるアップリンク信号の電波を収集し、信号処理装置で、前提複数の散乱体それぞれの位置情報を取得し、前記複数の散乱体それぞれの散乱電波が相関処理により同一の通信源からの電波であることを確認し、収集された前記複数の散乱体による散乱電波の受信信号について到達時刻を検出して前記通信源の位置を推定する。 The communication source position estimation system according to one embodiment collects radio waves of uplink signals transmitted from a communication source to a satellite, which are scattered by a plurality of scatterers by a receiving antenna, and is a signal processing device. Premise The position information of each of the plurality of scattering bodies is acquired, it is confirmed that the scattered radio waves of each of the plurality of scattering bodies are radio waves from the same communication source by correlation processing, and the collected scattering by the plurality of scattering bodies is performed. The arrival time of the received signal of the radio wave is detected to estimate the position of the communication source.

図1は、本実施形態に係る通信源位置推定システムの概要を示す概念図である。FIG. 1 is a conceptual diagram showing an outline of a communication source position estimation system according to the present embodiment. 図2は、図1に示すシステムの信号処理装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a signal processing device of the system shown in FIG. 図3は、図1に示すシステムの受信アンテナで受信される複数の反射波の受信タイミングを示す図である。FIG. 3 is a diagram showing reception timing of a plurality of reflected waves received by the receiving antenna of the system shown in FIG.

以下、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る通信源位置推定システムの概要を示す概念図である。図1において、Tはターゲットとする通信源、Sは通信源Tからアップリンクされる信号の電波(通信波)を受信して基地局に送信する衛星、A1〜Anは、アップリンク信号の電波を散乱する、位置が既知の高層建造物、山等の固定物または航空機(以下、散乱体)である。これに対して、本実施形態に係るシステムは、散乱体A1〜Anで散乱された電波を受信する受信アンテナ11と、受信アンテナ11の受信信号から通信源Tの位置を推定する信号処理装置12とを備える。 FIG. 1 is a conceptual diagram showing an outline of a communication source position estimation system according to the present embodiment. In FIG. 1, T is a target communication source, S is a satellite that receives a radio wave (communication wave) of a signal uplinked from the communication source T and transmits it to a base station, and A1 to An are radio waves of an uplink signal. A high-rise building, a fixed object such as a mountain, or an aircraft (hereinafter referred to as a scatterer) whose position is known to scatter. On the other hand, in the system according to the present embodiment, the receiving antenna 11 that receives the radio waves scattered by the scatterers A1 to An and the signal processing device 12 that estimates the position of the communication source T from the received signal of the receiving antenna 11 And.

図2は、上記信号処理装置12の具体的な構成を示すブロック図である。図2において、受信アンテナ11は、散乱体A1〜Anでそれぞれ散乱された通信源Tから衛星Sに向けて送出されるアップリンク信号の電波を収集する。受信アンテナ11で収集された電波の受信信号は、信号処理装置12に送られる。信号処理装置12は、検出処理部121、相関処理部122、通信源推定処理部123、散乱体位置情報取得処理部124を備える。検出処理素部121は、収集された散乱電波受信信号に対して、受信電力が大きくなる信号の出現時刻及び周波数を検出する。相関処理部122は、検出処理部121で検出された信号の出現時刻及び周波数における受信信号間での相互相関処理を行い、これによって得られる相関値のピーク値(以降、パルスと呼ぶ)を算出する。通信源推定処理部123は、相関処理部122で算出されたパルスに基づいて、同一の通信源Tから送出される信号であると想定される信号受信時刻を推定する。散乱体位置情報取得処理部124は、散乱体が固定物の場合は予め位置情報を計測にしておき、散乱体が航空機の場合は別途用意される通信系統を通じて対象となる航空機それぞれの位置情報を取得する。 FIG. 2 is a block diagram showing a specific configuration of the signal processing device 12. In FIG. 2, the receiving antenna 11 collects radio waves of uplink signals transmitted from the communication sources T scattered by the scatterers A1 to An toward the satellite S, respectively. The received signal of the radio wave collected by the receiving antenna 11 is sent to the signal processing device 12. The signal processing device 12 includes a detection processing unit 121, a correlation processing unit 122, a communication source estimation processing unit 123, and a scatterer position information acquisition processing unit 124. The detection processing element unit 121 detects the appearance time and frequency of the signal whose received power becomes large with respect to the collected scattered radio wave reception signal. The correlation processing unit 122 performs cross-correlation processing between the received signals at the appearance time and frequency of the signal detected by the detection processing unit 121, and calculates the peak value (hereinafter, referred to as a pulse) of the correlation value obtained by the cross-correlation processing. To do. The communication source estimation processing unit 123 estimates the signal reception time assumed to be a signal transmitted from the same communication source T based on the pulse calculated by the correlation processing unit 122. The scatterer position information acquisition processing unit 124 measures the position information in advance when the scatterer is a fixed object, and when the scatterer is an aircraft, the position information of each target aircraft is obtained through a communication system prepared separately. get.

上記構成において、以下に処理内容を説明する。 In the above configuration, the processing contents will be described below.

本実施形態に係る通信源位置推定システムは、通信源Tから衛星Sに向けて送出されたアップリンク信号の電波が、位置情報が既知の散乱体A1〜Anによって散乱することを想定し、各散乱体A1〜Anで散乱した電波を受信アンテナ11で収集し、信号処理装置12において、各散乱体A1〜Anから受信する信号の到達時刻を用いて通信源(アップリンクが発生した位置情報)Tを推定する。このときの前提条件として、各散乱体A1〜Anの位置情報は既知であり、散乱体A1〜Anから散乱した通信波は、相関処理により同一通信源の電波であることを確認できるものとする。 The communication source position estimation system according to the present embodiment assumes that the radio waves of the uplink signal transmitted from the communication source T toward the satellite S are scattered by the scatterers A1 to An whose position information is known, and each of them. Radio waves scattered by the scatterers A1 to An are collected by the receiving antenna 11, and the signal processing device 12 uses the arrival time of the signal received from each of the scatterers A1 to An as a communication source (position information where the uplink occurs). Estimate T. As a precondition at this time, the position information of each scatterer A1 to An is known, and it can be confirmed that the communication wave scattered from the scatterers A1 to An is a radio wave of the same communication source by correlation processing. ..

信号処理装置12では、検出処理部121にて、受信信号に対して、受信電力が大きくなる信号の出現時刻及び周波数を検出する。このとき、以降の処理の相関処理及びパルス間時間差推定処理の精度を向上させるため、複数の散乱体ごとに受信アンテナを増加して設置し、受信感度を向上させるようにしてもよい。この場合には、受信系統間は時刻同期がとれているものとする。 In the signal processing device 12, the detection processing unit 121 detects the appearance time and frequency of the signal whose received power increases with respect to the received signal. At this time, in order to improve the accuracy of the correlation processing and the pulse-to-pulse time difference estimation processing of the subsequent processing, the receiving antennas may be increased and installed for each of the plurality of scatterers to improve the receiving sensitivity. In this case, it is assumed that the receiving systems are synchronized in time.

相関処理部122では、検出処理部121で検出された信号の出現時刻及び周波数における受信信号間での相互相関処理による得られるパルスを算出することで、同一の通信源Tであると想定される信号受信時刻T(i=1,2,…,N)を推定する。Nは同一の通信源と想定される最大サンプル数である。図3に相関処理された受信信号のパルス検出例(N=4)を示している。相互相関処理においては、通信諸元が既知の場合には、その諸元を基準パターンとして、算出する処理でもよい。 The correlation processing unit 122 is assumed to be the same communication source T by calculating the pulse obtained by the cross-correlation processing between the received signals at the appearance time and frequency of the signal detected by the detection processing unit 121. Estimate the signal reception time Ti (i = 1, 2, ..., N). N is the maximum number of samples assumed to be the same communication source. FIG. 3 shows a pulse detection example (N = 4) of the received signal that has been correlated. In the cross-correlation process, if the communication specifications are known, the process may be performed by using the specifications as a reference pattern.

求めたい通信源Tの位置情報及び信号発信時刻を(x,y,z,t)、各散乱体A1〜Anの受信時の位置情報及び散乱時刻を(x,y,z,t)とすると、それらの関係は次式で与えられる。 The position information and signal transmission time of the communication source T to be determined (x, y, z, t ), the position information and the scattering time when reception of the scatterer A1~An (x i, y i, z i, t If i ), then those relationships are given by the following equation.

Figure 2021081328

cは光速である。なお、散乱時刻tと受信アンテナ11における信号受信時刻Tとの関係は、受信アンテナ11の位置情報を(X,Y,Z)とすると、次式で与えられる。
Figure 2021081328

c is the speed of light. The relationship between the signal reception time T i in the scattering time t i and the receiving antenna 11, the position information of the receiving antenna 11 (X, Y, Z) When given by the following equation.

Figure 2021081328

通信源推定処理部123では、同時に受信可能な散乱体A1〜Anからの電波の数Nに合わせて処理するものとする。なお、通信源推定処理では、変数x,y,z,tを算出する必要があるため、地球表面上での発生という条件を含めて、Nは少なくとも3以上である必要がある。また、これらを組み合わせて実施できるものとする。
Figure 2021081328

It is assumed that the communication source estimation processing unit 123 processes according to the number N of radio waves from the scatterers A1 to An that can be received at the same time. Since it is necessary to calculate the variables x, y, z, and t in the communication source estimation process, N must be at least 3 or more, including the condition that it occurs on the earth's surface. In addition, these can be combined and implemented.

(ア)N=3の場合
同時3波受信の場合、連立方程式が3式であるのに対して変数はx,y,z,tの4個であるため、地球表面上での発生という条件を加え、4式の連立方程式により、通信源Tの位置情報を求めることができる。地球表面上という条件の例として、
(A) When N = 3
In the case of simultaneous three-wave reception, the simultaneous equations are three equations, whereas the variables are x, y, z, and t, so the condition that they occur on the earth's surface is added, and the simultaneous equations of four equations are added. Therefore, the position information of the communication source T can be obtained. As an example of the condition on the surface of the earth

Figure 2021081328

このとき、Rは地球半径とする。
Figure 2021081328

At this time, RE is the radius of the earth.

(イ)N≧4の場合
同時4波以上受信の場合、連立方程式が4式以上であるのに対して、変数はx,y,z,tの4個のため、通信源Tの位置情報を求めることができる。なお、地球表面上での発生という条件を加えることも可能とする。また、通信源推定処理に必要となる散乱体A1〜Anの位置情報は、別途用意される通信経路を通じて、散乱体位置情報取得処理部124で得られるものとする。
(B) When N ≧ 4
In the case of simultaneous reception of four or more waves, the simultaneous equations are four or more equations, whereas the four variables are x, y, z, and t, so that the position information of the communication source T can be obtained. It is also possible to add the condition that it occurs on the surface of the earth. Further, the position information of the scatterers A1 to An required for the communication source estimation process is obtained by the scatterer position information acquisition processing unit 124 through a communication path prepared separately.

以上のように、本実施形態に係る通信源位置推定システムによれば、2機の衛星を利用せず、アップリンクされる衛星の位置情報が公開されてない、又は、位置情報が正確でない場合でも、通信源Tの位置を正しく推定することができる。 As described above, according to the communication source position estimation system according to the present embodiment, when two satellites are not used and the position information of the uplink satellite is not disclosed or the position information is not accurate. However, the position of the communication source T can be estimated correctly.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

T…通信源、S…衛星、A1〜An…散乱体、11…受信アンテナ、12…信号処理装置、121…検出処理部、122…相関処理部、123…通信源推定処理部、124…散乱体位置情報取得処理部。 T ... communication source, S ... satellite, A1 to An ... scatterer, 11 ... receiving antenna, 12 ... signal processing device, 121 ... detection processing unit, 122 ... correlation processing unit, 123 ... communication source estimation processing unit, 124 ... scattering Body position information acquisition processing unit.

Claims (4)

複数の散乱体でそれぞれ散乱された、通信源から衛星に向けて送出されるアップリンク信号の電波を収集する受信アンテナと、
前記受信アンテナで収集された複数の散乱体による散乱電波の受信信号について到達時刻を検出して前記通信源の位置を推定する信号処理装置と
を具備し、
前記信号処理装置は、前記複数の散乱体それぞれの位置情報を取得し、前記複数の散乱体それぞれの散乱電波が相関処理により同一の通信源からの電波であることを確認する通信源位置推定システム。
A receiving antenna that collects the radio waves of the uplink signal transmitted from the communication source to the satellite, which are scattered by multiple scatterers, respectively.
It is provided with a signal processing device that detects the arrival time of the received signal of the scattered radio wave by the plurality of scatterers collected by the receiving antenna and estimates the position of the communication source.
The signal processing device is a communication source position estimation system that acquires position information of each of the plurality of scatterers and confirms that the scattered radio waves of each of the plurality of scatterers are radio waves from the same communication source by correlation processing. ..
前記信号処理装置は、
前記受信アンテナで収集された散乱電波受信信号に対して、受信電力が大きくなる信号の出現時刻及び周波数を検出する検出処理部と、
前記検出処理部で検出された信号の出現時刻及び周波数における受信信号間での相互相関処理を行い、これによって得られる相関値のピーク値を算出する相関処理部と、
前記複数の散乱体それぞれの位置情報と前記相関処理部で算出された相関値のピーク値に基づいて、同一の通信源から送出される信号であると想定される信号受信時刻を推定し、推定された信号受信時刻から前記通信源の位置を推定する通信源推定処理部と、
前記通信源推定処理部の推定処理に用いる前記複数の散乱体それぞれの位置情報を取得する位置情報取得部と
を備える請求項1記載の通信源位置推定システム。
The signal processing device is
A detection processing unit that detects the appearance time and frequency of a signal whose received power increases with respect to the scattered radio wave reception signal collected by the receiving antenna.
A correlation processing unit that performs cross-correlation processing between received signals at the appearance time and frequency of the signal detected by the detection processing unit and calculates the peak value of the correlation value obtained by the cross-correlation processing.
Based on the position information of each of the plurality of scatterers and the peak value of the correlation value calculated by the correlation processing unit, the signal reception time assumed to be a signal transmitted from the same communication source is estimated and estimated. A communication source estimation processing unit that estimates the position of the communication source from the signal reception time,
The communication source position estimation system according to claim 1, further comprising a position information acquisition unit that acquires position information of each of the plurality of scatterers used in the estimation process of the communication source estimation processing unit.
前記位置情報取得部は、前記散乱体が固定物の場合は予め位置情報を計測にしておき、前記散乱体が飛翔体の場合は別途用意される通信系統を通じて対象となる飛翔体それぞれの位置情報を取得する請求項2記載の通信源位置推定システム。 When the scatterer is a fixed object, the position information acquisition unit measures the position information in advance, and when the scatterer is a flying object, the position information of each target flying object is obtained through a communication system prepared separately. 2. The communication source location estimation system according to claim 2. 複数の散乱体でそれぞれ散乱された、通信源から衛星に向けて送出されるアップリンク信号の電波を収集し、
前記複数の散乱体それぞれの位置情報を取得し、
前記複数の散乱体それぞれの散乱電波が相関処理により同一の通信源からの電波であることを確認し、
収集された前記複数の散乱体による散乱電波の受信信号について到達時刻を検出して前記通信源の位置を推定する
通信源位置推定方法。
Collects the radio waves of the uplink signal transmitted from the communication source to the satellite, which are scattered by multiple scatterers.
Obtaining the position information of each of the plurality of scatterers,
After confirming that the scattered radio waves of each of the plurality of scattering bodies are radio waves from the same communication source by correlation processing,
A communication source position estimation method for estimating the position of the communication source by detecting the arrival time of the received signals of the collected radio waves scattered by the plurality of scatterers.
JP2019209677A 2019-11-20 2019-11-20 Communication source estimation system and communication source estimation method Pending JP2021081328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209677A JP2021081328A (en) 2019-11-20 2019-11-20 Communication source estimation system and communication source estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209677A JP2021081328A (en) 2019-11-20 2019-11-20 Communication source estimation system and communication source estimation method

Publications (1)

Publication Number Publication Date
JP2021081328A true JP2021081328A (en) 2021-05-27

Family

ID=75964860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209677A Pending JP2021081328A (en) 2019-11-20 2019-11-20 Communication source estimation system and communication source estimation method

Country Status (1)

Country Link
JP (1) JP2021081328A (en)

Similar Documents

Publication Publication Date Title
US11516763B2 (en) Determining emitter locations
JP7394777B2 (en) Network architecture and method for location services
KR101240629B1 (en) Detecting and localization method of unknown signal using aircraft with ads-b system
Son et al. Novel multichain-based Loran positioning algorithm for resilient navigation
US10330791B2 (en) Method for locating a jamming source jamming signals of a satellite navigation system and associated system
US11480649B2 (en) Detecting radio signal emitter locations
Nijsure et al. Adaptive air-to-ground secure communication system based on ADS-B and wide-area multilateration
RU2590903C2 (en) Method and system for radio beacon geolocalisation in alarm and rescue system
Han et al. Future alternative positioning, navigation, and timing techniques: A survey
US20150116147A1 (en) Determination of Integrity of Incoming Signals of Satellite Navigation System
JP6559432B2 (en) Geolocation of interference using satellite constellations
US11092665B2 (en) High frequency geo-location methods and systems
US11474185B2 (en) Method and apparatus for determining the direction of arrival of radio or acoustic signals, and for transmitting directional radio or acoustic signals
WO2010010143A2 (en) Spacecraft position estimating system and method
JP2015184276A5 (en)
Chen et al. Evaluation & comparison of ranging using universal access transceiver (UAT) and 1090 MHz mode S extended squitter (Mode S ES)
Kim Improving DME performance for APNT using alternative pulse and multipath mitigation
RU2542330C1 (en) Method for passive detection of aerial objects
EP3879295A1 (en) Cellular positioning based verification of an estimated vehicle position
JP2021081328A (en) Communication source estimation system and communication source estimation method
Schneckenburger et al. From L-band measurements to a preliminary channel model for APNT
Navrátil et al. Exploiting terrestrial positioning signals to enable a low-cost passive radar
JP2021139669A (en) Communication source position estimation system and communication source position estimation method
US7965237B2 (en) Mobile system and method for position estimation
Steffes et al. Direct position determination for TDOA-based single sensor localization