JP2021080870A - Centrifugal fluid machine - Google Patents

Centrifugal fluid machine Download PDF

Info

Publication number
JP2021080870A
JP2021080870A JP2019208403A JP2019208403A JP2021080870A JP 2021080870 A JP2021080870 A JP 2021080870A JP 2019208403 A JP2019208403 A JP 2019208403A JP 2019208403 A JP2019208403 A JP 2019208403A JP 2021080870 A JP2021080870 A JP 2021080870A
Authority
JP
Japan
Prior art keywords
diffuser
side wall
wing member
gap
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019208403A
Other languages
Japanese (ja)
Other versions
JP7258728B2 (en
Inventor
澄賢 平舘
Kiyotaka HIRADATE
澄賢 平舘
光裕 成田
Mitsuhiro Narita
光裕 成田
航平 西田
Kohei Nishida
航平 西田
竜一 橋本
Ryuichi Hashimoto
竜一 橋本
裕太 望月
Yuta Mochizuki
裕太 望月
和寛 塚本
Kazuhiro Tsukamoto
和寛 塚本
小林 博美
Hiromi Kobayashi
博美 小林
西岡 卓宏
Takahiro Nishioka
卓宏 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Products Ltd
Original Assignee
Hitachi Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Products Ltd filed Critical Hitachi Industrial Products Ltd
Priority to JP2019208403A priority Critical patent/JP7258728B2/en
Priority to PCT/JP2020/042579 priority patent/WO2021100648A1/en
Publication of JP2021080870A publication Critical patent/JP2021080870A/en
Application granted granted Critical
Publication of JP7258728B2 publication Critical patent/JP7258728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Abstract

To reduce, in a diffuser of a centrifugal fluid machine, a pressure loss caused by a leak flow, which is generated in a gap formed on an end face of a diffuser vane whose formation is difficult to avoid due to restrictions on manufacture.SOLUTION: A centrifugal fluid machine includes a diffuser part 103, and a flow passage of the diffuser part includes a side wall 105A on a shroud side, a side wall 105B on a hub side, and a plurality of vane members. The vane member has a first vane member 104A projecting from the side wall on the shroud side and a second vane member 104B projecting from the side wall on the hub side, and the first and second vane members are arranged opposite to each other. In the first vane member and the second vane member opposite to the first vane member, a gap c between the opposed surfaces of the first vane member and the second vane member is a combination of heights near the side wall on the hub side or near the side wall on the shroud side.SELECTED DRAWING: Figure 1

Description

本発明は、遠心式流体機械に関するもので、より詳細には、遠心流体機械のディフューザ部の構造に関するものである。 The present invention relates to a centrifugal fluid machine, and more particularly to the structure of a diffuser portion of a centrifugal fluid machine.

遠心式流体機械に備わる従来のディフューザを,図5に示す。遠心式流体機械に搭載されるディフューザ103は、回転軸101に締結され回転する遠心羽根車102から送出された流体の動圧を静圧へと変換するための減速流路であり、昇圧された流体を減速および整流するための複数の翼部材104が、回転軸101を中心として遠心羽根車102の外径側に、周方向に間隔を設けて複数枚、シュラウド側のディフューザ側壁105Aから突出する構造を有する。前記翼部材104は様々な形状をとるが、例えば非特許文献1に記載の、小流量側で翼が失速しにくく作動範囲が広い、小弦節比ディフューザを搭載する場合がある。図5に示す従来例では、前記翼部材104は、シュラウド側の側壁105Aから突出する構造となっている。ここで、ハブ側の側壁105Bと前記翼部材104は一体で成形することが困難なため別体で製作されるケースが多く、図5に示すように、ハブ側の側壁105Bと、前記翼部材104の端面106との間に、隙間cが形成される場合が多い。 A conventional diffuser provided in a centrifugal fluid machine is shown in FIG. The diffuser 103 mounted on the centrifugal fluid machine is a deceleration flow path for converting the dynamic pressure of the fluid delivered from the rotating centrifugal impeller 102 fastened to the rotating shaft 101 into static pressure, and is boosted. A plurality of blade members 104 for decelerating and rectifying the fluid project from the diffuser side wall 105A on the shroud side at intervals on the outer diameter side of the centrifugal impeller 102 with the rotation shaft 101 as the center. Has a structure. The blade member 104 has various shapes, and for example, there is a case where a small chord ratio diffuser described in Non-Patent Document 1 is mounted, in which the blade is less likely to stall on the small flow rate side and the operating range is wide. In the conventional example shown in FIG. 5, the wing member 104 has a structure that protrudes from the side wall 105A on the shroud side. Here, since it is difficult to integrally mold the side wall 105B on the hub side and the wing member 104, they are often manufactured separately. As shown in FIG. 5, the side wall 105B on the hub side and the wing member 104 are manufactured separately. In many cases, a gap c is formed between the 104 and the end face 106.

図5では、単に翼部材104はシュラウド側側壁105Aから突出した片持梁のような構造となっており、隙間cはハブ側の側壁105Bと、前記翼部材104の端面106との間に形成されているが、別の構成を取った従来技術が他にも存在する。例えば特許文献1では、シュラウド側側壁から突出させた第1の翼部材と、ハブ側側壁から突出させた第2の翼部材とをディフューザ流路中に形成し、これら2つの翼部材の端面をディフューザ流路中で対向させた構成としている。この時、隙間cが、昇圧された流体の速度が遅いディフューザ部の側壁付近ではなく、流体の速度の比較的速いディフューザ流路の中央近傍に形成されるようにすることで、流体中に混入している塵などが隙間cに堆積するのを抑制することを狙っている(特許文献1の段落番号0034を参照)。また特許文献2では、同様にシュラウド側側壁から突出させた第1の翼部材と、ハブ側側壁から突出させた第2の翼部材とをディフューザ流路中に形成し、これら2つの翼部材の端面をディフューザ流路中で対向させた構成としている(特許文献1の図1参照)。更にこれら2つの翼部材の端面にそれぞれ重なり合うオーバーラップ部を形成し、このオーバーラップ部を、テーパ面が互いに対向する楔形状とし、ディフューザ流路中で対向させた構成としている。こうすることで、突出させた翼部材の翼高さを小さくして固有振動数を大きくし、羽根車の羽根の通過による流体の加振周波数と該翼部材の共振を防止するとともに、対向する2つの翼部材の端面にオーバーラップ部を形成したことで、隙間部からの漏れ流れを低減することを狙っている(特許文献2の段落番号0023、0026参照)。なお、前記特許文献2においても、翼部材の固有振動数を大きくする効果を最大化するためには、隙間部形成位置をディフューザ流路の中央付近とすることが必要となる。 In FIG. 5, the wing member 104 has a structure like a cantilever protruding from the shroud side side wall 105A, and a gap c is formed between the hub side side wall 105B and the end surface 106 of the wing member 104. However, there are other prior art techniques with different configurations. For example, in Patent Document 1, a first wing member projecting from the shroud side side wall and a second wing member projecting from the hub side side wall are formed in the diffuser flow path, and the end faces of these two wing members are formed. It is configured to face each other in the diffuser flow path. At this time, the gap c is formed in the vicinity of the center of the diffuser flow path where the speed of the fluid is relatively high, not near the side wall of the diffuser portion where the speed of the pressurized fluid is slow, so that the gap c is mixed in the fluid. The aim is to suppress the accumulation of dust and the like in the gap c (see paragraph number 0034 of Patent Document 1). Further, in Patent Document 2, similarly, a first wing member protruding from the shroud side side wall and a second wing member protruding from the hub side side wall are formed in the diffuser flow path, and these two wing members are formed. The end faces are opposed to each other in the diffuser flow path (see FIG. 1 of Patent Document 1). Further, an overlapping portion is formed on each of the end faces of these two blade members, and the overlapping portion has a wedge shape in which the tapered surfaces face each other, and is configured to face each other in the diffuser flow path. By doing so, the blade height of the protruding blade member is reduced to increase the natural frequency, and the vibration frequency of the fluid due to the passage of the blades of the impeller and the resonance of the blade member are prevented and opposed to each other. By forming an overlapping portion on the end faces of the two blade members, it is aimed to reduce the leakage flow from the gap portion (see paragraphs 0023 and 0026 of Patent Document 2). Also in Patent Document 2, in order to maximize the effect of increasing the natural frequency of the wing member, it is necessary to set the gap forming position near the center of the diffuser flow path.

特許 第5488717号Patent No. 5488717 特開2009−19563号JP-A-2009-19563

日本機械学会論文集(B編)51巻472号 PP.3860〜3865 「円形翼列の失速限界に及ぼす側壁二次流れの効果」Proceedings of the Japan Society of Mechanical Engineers (Vol. B) Vol. 51, No. 472 PP. 3860-3856 "Effect of side wall secondary flow on stall limit of circular blade row"

ところで、特許文献1や特許文献2に記載のディフューザ構造とした場合には、シュラウド側側壁から突出させた第1の翼部材およびハブ側側壁から突出させた第2の翼部材の対向し合う両端面にて構成される隙間cが、前記のようにディフューザ流路の中央部付近に形成されることになる。ディフューザ流路の中央部付近は側壁付近に比べ、流路中を流れる流体の速度が速い。ここで、前記の翼部材まわりの流れ場について考えると、流体の速度が速ければ速いほど翼が仕事をする(翼負荷が増す)ようになるため、翼の圧力面と負圧面の間の静圧差が増大する。従って、ディフューザ流路の中央部付近に前記隙間が形成される場合には、本隙間を通って翼の圧力面から負圧面に向かう漏れ流れが強まり、圧力損失が増大してしまうという課題があった。 By the way, in the case of the diffuser structure described in Patent Document 1 and Patent Document 2, both ends of the first wing member protruding from the shroud side side wall and the second wing member protruding from the hub side side wall face each other. The gap c formed by the surface is formed near the central portion of the diffuser flow path as described above. The velocity of the fluid flowing in the diffuser flow path is faster in the vicinity of the central portion than in the vicinity of the side wall. Here, considering the flow field around the blade member, the faster the fluid velocity, the more the blade works (the blade load increases), so the static between the pressure surface and the negative pressure surface of the blade. The pressure difference increases. Therefore, when the gap is formed near the central portion of the diffuser flow path, there is a problem that the leakage flow from the pressure surface to the negative pressure surface of the blade through the gap is strengthened and the pressure loss is increased. It was.

本発明は上記を鑑み、ディフューザ翼の端面に形成される隙間において発生する漏れ流れ起因の圧力損失を低減することを可能とする、遠心式流体機械のディフューザ構造を提供するものである。 In view of the above, the present invention provides a diffuser structure for a centrifugal fluid machine, which makes it possible to reduce the pressure loss caused by the leakage flow generated in the gap formed on the end face of the diffuser blade.

上記目的を達成する本発明の特徴は、
ディフューザ部を備えた遠心式流体機械であって、前記ディフューザ部の流路はシュラウド側の側壁とハブ側の側壁ならびに複数の翼部材を備え、前記翼部材は、前記シュラウド側の側壁から突出させた第1の翼部材と、前記ハブ側の側壁から突出させた第2の翼部材を有し、前記第1及び第2翼部材は対向配置され、前記第1翼部材と当該第1翼部材と対向する前記第2翼部材は、前記第1翼部材と第2翼部材の対向面間の隙間が前記ハブ側の側壁近傍または前記シュラウド側の側壁近傍になる高さの組み合わせになっていることを特徴とする、遠心式流体機械。
A feature of the present invention that achieves the above object is
A centrifugal fluid machine having a diffuser portion, the flow path of the diffuser portion includes a side wall on the shroud side, a side wall on the hub side, and a plurality of blade members, and the blade member is projected from the side wall on the shroud side. It has a first wing member and a second wing member protruding from the side wall on the hub side, and the first and second wing members are arranged to face each other, and the first wing member and the first wing member are arranged to face each other. The second wing member facing the wing has a combination of heights such that the gap between the facing surfaces of the first wing member and the second wing member is near the side wall on the hub side or near the side wall on the shroud side. A centrifugal fluid machine characterized by that.

上記構成によれば、ディフューザの漏れ流れに起因する圧力損失が低減される。 According to the above configuration, the pressure loss due to the leakage flow of the diffuser is reduced.

本発明の第1実施例におけるディフューザを示す図である。It is a figure which shows the diffuser in 1st Example of this invention. 本発明の第1実施例におけるディフューザ部の翼部材を、羽根車回転軸方向上流側から見た図である。It is a figure which looked at the blade member of the diffuser part in 1st Example of this invention from the upstream side in the impeller rotation axis direction. ディフューザ翼端部隙間比と効率低下量との関係を示した図である。It is a figure which showed the relationship between the diffuser blade tip clearance ratio and the amount of efficiency reduction. 小弦節比ディフューザの隣接2翼間のディフューザ流路における内部流れの模式図である。It is a schematic diagram of the internal flow in the diffuser flow path between two adjacent blades of a chord ratio diffuser. 遠心式流体機械に備わる従来のディフューザを示す図である。It is a figure which shows the conventional diffuser provided in a centrifugal fluid machine.

以下、本発明に係る多段遠心流体機械の実施例を、図面を用いて説明する。 Hereinafter, examples of the multi-stage centrifugal fluid machine according to the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例におけるディフューザを示すものである。図中、図5と同一の符号を付した部分は同一部を表す。図1に示すように、本実施例における遠心式流体機械の基本的な構成は、図5に示す従来の遠心式流体機械とほぼ同一である。一方で本実施例では、ディフューザ103内に設置し、遠心羽根車102から送出された流体の動圧を静圧へと変換するための翼部材104を、シュラウド側の側壁105Aから突出させた第1の翼部材104Aと、ハブ側の側壁105Bから突出させた第2の翼部材104Bとから構成し、これら2つの翼部材104Aおよび104Bの端面106Aおよび106Bをディフューザ流路中で対向させて隙間cを形成するとともに、隙間cの形成位置をハブ側の側壁105Bの近傍にすることで、ディフューザを構成したことが特徴である。 FIG. 1 shows the diffuser in the first embodiment of the present invention. In the figure, the parts with the same reference numerals as those in FIG. 5 represent the same parts. As shown in FIG. 1, the basic configuration of the centrifugal fluid machine in this embodiment is almost the same as that of the conventional centrifugal fluid machine shown in FIG. On the other hand, in this embodiment, the blade member 104 installed in the diffuser 103 and for converting the dynamic pressure of the fluid sent from the centrifugal impeller 102 into static pressure is projected from the side wall 105A on the shroud side. It is composed of a wing member 104A of 1 and a second wing member 104B protruding from the side wall 105B on the hub side, and the end faces 106A and 106B of these two wing members 104A and 104B are opposed to each other in the diffuser flow path to form a gap. It is a feature that the diffuser is formed by forming c and setting the formation position of the gap c in the vicinity of the side wall 105B on the hub side.

本構成としたことによる効果を説明する。図1中には、前記ディフューザ翼部材104Aおよび104Bの上流における前記ディフューザ103内の流速分布の模式図107も、併せて示している。前記流速分布107に示されるように、前記シュラウド側の側壁105Aおよび前記ハブ側の側壁105Bの付近では速度境界層が形成されているため、流路中央付近を流れる主流速度と比較して流体の速度が低い。ここで本実施例では、前記隙間cの形成位置を、流体の速度が低い前記ハブ側の側壁105Bに近付けている。図2には、前記第1の翼部材104Aを、羽根車回転軸方向上流側から見た図を示す。なお、前記翼部材104Aは周方向に任意の間隔を空けて複数枚設置されるが、本図ではその内の3枚のみを示している。本実施例では、前記隙間cの形成位置を、流体の速度が低い前記ハブ側の側壁105Bに近付けているため、図2に示される前記ディフューザ翼部材104Aの翼面付近を流れる流体の速度が低下し、翼負荷が低下して前記圧力面PSと負圧面SSとの間の静圧差が低減される。従って、前記隙間部cを通って翼の圧力面PSから負圧面SSに向かう図中矢印で示される漏れ流れ108を弱めることが可能となり、漏れ流れに起因する圧力損失が低減される。 The effect of this configuration will be described. FIG. 1 also shows a schematic view 107 of the flow velocity distribution in the diffuser 103 upstream of the diffuser blade members 104A and 104B. As shown in the flow velocity distribution 107, since a velocity boundary layer is formed near the side wall 105A on the shroud side and the side wall 105B on the hub side, the fluid is compared with the mainstream velocity flowing near the center of the flow path. The speed is low. Here, in this embodiment, the formation position of the gap c is brought close to the side wall 105B on the hub side where the speed of the fluid is low. FIG. 2 shows a view of the first blade member 104A as viewed from the upstream side in the impeller rotation axis direction. Although a plurality of the blade members 104A are installed at arbitrary intervals in the circumferential direction, only three of them are shown in this figure. In this embodiment, since the formation position of the gap c is close to the side wall 105B on the hub side where the fluid velocity is low, the velocity of the fluid flowing near the blade surface of the diffuser blade member 104A shown in FIG. 2 is high. The wing loading is reduced, and the static pressure difference between the pressure surface PS and the negative pressure surface SS is reduced. Therefore, it is possible to weaken the leakage flow 108 indicated by the arrow in the figure from the pressure surface PS of the blade to the negative pressure surface SS through the gap c, and the pressure loss due to the leakage flow is reduced.

なお図1では、前記隙間cの形成位置をハブ側の側壁105Bの側に近付けた構成としているが、前記隙間cの形成位置はシュラウド側の側壁105Aの側に近付けた構成としても良い。ただし、ハブ側の側壁105Bの側に近付けた構成の方が、漏れ流れに起因する圧力損失を低減する効果が大きい。この理由を説明する。図1に示す点線の矢印110Aおよび110Bは、前記遠心羽根車102の出口側からシュラウド側背面キャビティ109Aに漏れ込む漏れ流れ、および、ハブ側背面キャビティ109Bから前記遠心羽根車102の出口側へと漏れ込む漏れ流れを、それぞれ示している。ここで、前記シュラウド側の側壁105Aの側では、漏れ流れ110Aにより壁面付近の低速度の流体が前記シュラウド側背面キャビティ109Aに吸い込まれるため、比較的流体の速度は速い。一方、前記ハブ側の側壁105Bの側では、漏れ流れ110Bにより前記ハブ側背面キャビティ109B内の低速度の流体が前記ディフューザ103に向かって漏れ込んでくるため、流体の速度が最も低くなる。従って、前記シュラウド側の側壁105Aの側よりも前記ハブ側の側壁105Bの側の方が流体の速度が低くなるため、前記ハブ側の側壁105B付近の方が前記シュラウド側の側壁105A付近よりも前記翼部材104の翼負荷が低下し、前記圧力面PSと負圧面SSとの間の静圧差が低減される。従って、前記隙間cの形成位置を前記ハブ側の側壁105Bの側に近付けた方が、前記隙間部cにおける漏れ流れに起因する圧力損失が低減される。 Although the gap c is formed in FIG. 1 close to the side wall 105B on the hub side, the gap c may be formed close to the side wall 105A on the shroud side. However, the configuration closer to the side wall 105B on the hub side has a greater effect of reducing the pressure loss due to the leakage flow. The reason for this will be explained. Dotted arrows 110A and 110B shown in FIG. 1 indicate a leak flow leaking from the outlet side of the centrifugal impeller 102 into the back cavity 109A on the shroud side, and from the rear cavity 109B on the hub side to the outlet side of the centrifugal impeller 102. The leak flow that leaks is shown respectively. Here, on the side of the side wall 105A on the shroud side, the low velocity fluid near the wall surface is sucked into the back cavity 109A on the shroud side by the leak flow 110A, so that the velocity of the fluid is relatively high. On the other hand, on the side of the side wall 105B on the hub side, the low velocity fluid in the back cavity 109B on the hub side leaks toward the diffuser 103 due to the leak flow 110B, so that the velocity of the fluid is the lowest. Therefore, the velocity of the fluid is lower on the side of the side wall 105B on the hub side than on the side of the side wall 105A on the shroud side, so that the vicinity of the side wall 105B on the hub side is closer to the vicinity of the side wall 105A on the shroud side. The wing loading of the wing member 104 is reduced, and the static pressure difference between the pressure surface PS and the negative pressure surface SS is reduced. Therefore, when the formation position of the gap c is brought closer to the side wall 105B on the hub side, the pressure loss due to the leakage flow in the gap c is reduced.

なお、前記隙間部cの大きさは小さければ小さいほど前記漏れ流れに起因する圧力損失を低減することが可能であるが、流体機械の組み立て時の組み立て誤差等も考慮すると、むやみに前記隙間cを小さくすることはできない。図3は、3次元数値流体解析を用いて検討した、前記隙間cと、図1に記載のディフューザ流路幅bとの比である、隙間比c/bを横軸に、前記隙間c=0の場合に対する前記隙間比c/bを変化させた際の効率低下量を縦軸にとった、隙間比と効率低下量との関係を示した図である。図に示すように、前記隙間比c/bが大きくなるほど効率低下量は大きくなるが、c/b<3%であればおおよそ効率低下量は1.5%以内に収まり、図中右端のc/bがそれ以上大きくなっても効率低下量が顕著に増大しなくなる付近における効率低下量(おおよそ3%)の半分程度にすることが可能となる。従って、前記隙間比c/b<3%ほどとするのが望ましい。 The smaller the size of the gap c, the more the pressure loss due to the leak flow can be reduced. However, considering the assembly error at the time of assembling the fluid machine, the gap c is unnecessarily. Cannot be made smaller. FIG. 3 shows the gap c =, which is the ratio of the gap c to the diffuser flow path width b shown in FIG. 1, which was examined using three-dimensional computational fluid dynamics, with the gap ratio c / b as the horizontal axis. It is a figure which showed the relationship between the gap ratio and the efficiency reduction amount, which took the amount of efficiency reduction at the time of changing the gap ratio c / b with respect to the case of 0 on the vertical axis. As shown in the figure, the larger the gap ratio c / b is, the larger the efficiency reduction amount becomes. However, when c / b <3%, the efficiency reduction amount is approximately within 1.5%, and the c at the right end in the figure. Even if / b becomes larger than that, the efficiency reduction amount can be reduced to about half of the efficiency reduction amount (approximately 3%) in the vicinity where the efficiency reduction amount does not increase remarkably. Therefore, it is desirable that the gap ratio c / b <3%.

尚、本発明の遠心式流体機械のディフューザ構造は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The diffuser structure of the centrifugal fluid machine of the present invention is not limited to the above illustrated example, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

以下、本発明を実施するための別の形態について説明する。本実施例では、実施例1と基本的構成はほぼ同じであるが、前記シュラウド側の側壁105Aから突出させた第1の翼部材104Aと、ハブ側の側壁105Bから突出させた第2の翼部材104Bとが、それぞれ小弦節比ディフューザで構成されていることが特徴である。 本構成としたことによる効果を説明する。図4は、前記の非特許文献1を参考に作成した、小弦節比ディフューザの隣接2翼間のディフューザ流路における内部流れの模式図である。小弦節比ディフューザでは、図4に示すように隣接する翼部材104の間の等静圧線111の形状が変化し、主流中の流線112と等静圧線111とがなす角βが鈍角をなすようになる。従って,前記等静圧線111に垂直な静圧勾配による力113は、前記主流中の流線112の方向に対し半径方向内側を向くように作用する。従って、小弦節比ディフューザにおける前記側壁105A、105B付近の速度境界層中の速度の小さい流れは、前記静圧勾配による力113により、半径方向内向きに押し戻される方向に流れる。従って、小弦節比ディフューザにおける前記側壁105A、105B付近では、図4の114に示されるような、翼の負圧面SSから隣接翼の圧力面PSの上流側に向かう二次流れが生じる。この二次流れが、翼の負圧面SSの境界層を吸出すように作用するため、小弦節比ディフューザではディフューザ翼負圧面SSの剥離が小流量側まで起こりにくく、小流量側の作動範囲が広がる。 Hereinafter, another embodiment for carrying out the present invention will be described. In this embodiment, the basic configuration is almost the same as that of the first embodiment, but the first wing member 104A projecting from the side wall 105A on the shroud side and the second wing projecting from the side wall 105B on the hub side. It is a feature that the member 104B and the member 104B are each composed of a small chord ratio diffuser. The effect of this configuration will be described. FIG. 4 is a schematic view of the internal flow in the diffuser flow path between two adjacent blades of the small chord ratio diffuser, which was created with reference to the above-mentioned Non-Patent Document 1. In the small chord ratio diffuser, as shown in FIG. 4, the shape of the isostatic pressure line 111 between the adjacent blade members 104 changes, and the angle β formed by the streamline 112 and the isostatic pressure line 111 in the mainstream changes. It becomes an obtuse angle. Therefore, the force 113 due to the static pressure gradient perpendicular to the isostatic pressure line 111 acts so as to face inward in the radial direction with respect to the direction of the streamline 112 in the mainstream. Therefore, the low velocity flow in the velocity boundary layer near the side walls 105A and 105B in the small chord ratio diffuser flows in the direction of being pushed back inward in the radial direction by the force 113 due to the static pressure gradient. Therefore, in the vicinity of the side walls 105A and 105B of the chord ratio diffuser, a secondary flow is generated from the negative pressure surface SS of the blade to the upstream side of the pressure surface PS of the adjacent blade as shown in 114 of FIG. Since this secondary flow acts to suck out the boundary layer of the negative pressure surface SS of the blade, the diffuser blade negative pressure surface SS is unlikely to peel off to the small flow rate side in the small chord ratio diffuser, and the operating range on the small flow rate side. Spreads.

前記ディフューザ翼部材104として、小流量側で広い作動範囲を確保するために前記小弦節比ディフューザを適用する場合を考える。図5に示す従来ディフューザのように、ディフューザ翼をただ一つの翼部材104から構成し、この翼部材104の翼端面106とハブ側の側壁105Bとの間に隙間を設ける場合には、翼端面106と対向するハブ側の側壁105B上には翼が存在しないことになり、図4で説明したような小弦節比ディフューザにおける側壁上の前記好適な二次流れが形成されなくなってしまう。従って小弦節比ディフューザを適用しても、小流量側における安定作動範囲が十分確保できなくなってしまう。 Consider a case where the diffuser blade member 104 is applied with the small chord ratio diffuser in order to secure a wide operating range on the small flow rate side. When the diffuser blade is composed of only one blade member 104 and a gap is provided between the blade end surface 106 of the blade member 104 and the side wall 105B on the hub side as in the conventional diffuser shown in FIG. 5, the blade end surface is provided. The wings will not be present on the hub-side side wall 105B facing the 106, and the preferred secondary flow on the side wall of the small chord ratio diffuser as described in FIG. 4 will not be formed. Therefore, even if the small chord ratio diffuser is applied, the stable operating range on the small flow rate side cannot be sufficiently secured.

一方で本実施例のように、前記シュラウド側の側壁105Aから突出させた第1の翼部材104Aと、ハブ側の側壁105Bから突出させた第2の翼部材104Bとが、それぞれ小弦節比ディフューザで構成されるようにした場合には、前記シュラウド側の側壁105A、およびハブ側の側壁105Bの何れからも小弦節比ディフューザ翼が突出する構造となるため、側壁上の前記好適な二次流れが維持され、小流量側における広い安定作動範囲の確保が実現できる。従って、前記隙間部cを通って翼の圧力面PSから負圧面SSに向かう漏れ流れを弱めることによる圧力損失の低減と、小流量側における広い作動範囲の維持との両立が可能となる。 On the other hand, as in this embodiment, the first wing member 104A protruding from the side wall 105A on the shroud side and the second wing member 104B protruding from the side wall 105B on the hub side have a small chord ratio, respectively. When the diffuser is used, the small chord ratio diffuser blades protrude from both the side wall 105A on the shroud side and the side wall 105B on the hub side. The next flow is maintained, and a wide stable operating range can be secured on the small flow rate side. Therefore, it is possible to reduce the pressure loss by weakening the leakage flow from the pressure surface PS of the blade to the negative pressure surface SS through the gap c, and to maintain a wide operating range on the small flow rate side.

尚、本発明の遠心式流体機械のディフューザ構造は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The diffuser structure of the centrifugal fluid machine of the present invention is not limited to the above illustrated example, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

101…回転軸、102…遠心羽根車、103…ディフューザ、104…ディフューザ部の翼部材、104A…シュラウド側の側壁から突出させた第1の翼部材、104B…ハブ側の側壁から突出させた第2の翼部材、105A…シュラウド側の側壁、105B…ハブ側の側壁、106A…シュラウド側の側壁から突出させた第1の翼部材の端面、106B…ハブ側の側壁から突出させた第2の翼部材の端面、107…ディフューザ内の流速分布、108…ディフューザ翼部材の端面の隙間を通って翼の圧力面から負圧面に向かう漏れ流れ、109A…シュラウド側背面キャビティ、109B…ハブ側背面キャビティ、110A…遠心羽根車の出口側からシュラウド側背面キャビティに漏れ込む漏れ流れ、110B…ハブ側背面キャビティから遠心羽根車の出口側へと漏れ込む漏れ流れ、111…小弦節比ディフューザの隣接2翼間のディフューザ流路における等静圧線、112…小弦節比ディフューザの隣接2翼間のディフューザ流路における主流中の流線、113…小弦節比ディフューザの隣接2翼間のディフューザ流路における等静圧線に垂直な静圧勾配による力、114…小弦節比ディフューザの側壁上の二次流れ、
b…ディフューザ流路幅、c…ディフューザ翼部材の端面付近に形成される隙間、PS…ディフューザ翼部材の圧力面、SS…ディフューザ翼部材の負圧面、β…小弦節比ディフューザの隣接2翼間のディフューザ流路における主流中の流線と等静圧線とがなす角、
101 ... Rotating shaft, 102 ... Centrifugal impeller, 103 ... Diffuser, 104 ... Diffuser wing member, 104A ... First wing member protruding from the side wall on the shroud side, 104B ... First wing member protruding from the side wall on the hub side 2 wing members, 105A ... shroud side side wall, 105B ... hub side side wall, 106A ... end face of first wing member protruding from shroud side side wall, 106B ... second side wall protruding from hub side side wall End face of blade member, 107 ... Flow velocity distribution in diffuser, 108 ... Leakage flow from pressure surface to negative pressure surface of blade through gap of end surface of diffuser blade member, 109A ... Shroud side back cavity, 109B ... Hub side back cavity , 110A ... Leakage flow leaking from the outlet side of the centrifugal impeller to the rear cavity on the shroud side, 110B ... Leakage flow leaking from the rear cavity on the hub side to the outlet side of the centrifugal impeller, 111 ... Adjacent to the small chord ratio diffuser 2 Isostatic pressure line in the diffuser flow path between blades, 112 ... Streamline in the mainstream in the diffuser flow path between two adjacent blades of the small chord ratio diffuser, 113 ... Diffuser flow between two adjacent blades of the small chord ratio diffuser Force due to static pressure gradient perpendicular to isostatic pressure line in the road, 114 ... Secondary flow on the sidewall of the chord ratio diffuser,
b ... Diffuser flow path width, c ... Gap formed near the end face of the diffuser blade member, PS ... Pressure surface of the diffuser blade member, SS ... Negative pressure surface of the diffuser blade member, β ... Adjacent two blades of the diffuser with a small chord ratio The angle between the streamline in the mainstream and the isostatic pressure line in the diffuser flow path between them,

Claims (3)

ディフューザ部を備えた遠心式流体機械であって、
前記ディフューザ部の流路はシュラウド側の側壁とハブ側の側壁ならびに複数の翼部材を備え、
前記翼部材は、
前記シュラウド側の側壁から突出させた第1の翼部材と、
前記ハブ側の側壁から突出させた第2の翼部材を有し、 前記第1及び第2翼部材は対向配置され、
前記第1翼部材と当該第1翼部材と対向する前記第2翼部材は、前記第1翼部材と第2翼部材の対向面間の隙間が前記ハブ側の側壁近傍または前記シュラウド側の側壁近傍になる高さの組み合わせになっていることを特徴とする、遠心式流体機械。
It is a centrifugal fluid machine equipped with a diffuser part.
The flow path of the diffuser portion includes a side wall on the shroud side, a side wall on the hub side, and a plurality of blade members.
The wing member
The first wing member protruding from the side wall on the shroud side,
It has a second wing member protruding from the side wall on the hub side, and the first and second wing members are arranged to face each other.
In the second wing member facing the first wing member and the first wing member, the gap between the facing surfaces of the first wing member and the second wing member is near the side wall on the hub side or the side wall on the shroud side. A centrifugal fluid machine characterized by a combination of heights that are close to each other.
前記ディフューザ流路幅に対する前記隙間の比を3%未満としたことを特徴とする、請求項1に記載の遠心式流体機械。 The centrifugal fluid machine according to claim 1, wherein the ratio of the gap to the width of the diffuser flow path is less than 3%. 前記第1翼部材と前記第2翼部材とが、それぞれ小弦節比ディフューザで構成されたことを特徴とする、請求項1または請求項2に記載の遠心式流体機械。 The centrifugal hydraulic machine according to claim 1 or 2, wherein the first wing member and the second wing member are each composed of a chord ratio diffuser.
JP2019208403A 2019-11-19 2019-11-19 centrifugal fluid machine Active JP7258728B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019208403A JP7258728B2 (en) 2019-11-19 2019-11-19 centrifugal fluid machine
PCT/JP2020/042579 WO2021100648A1 (en) 2019-11-19 2020-11-16 Centrifugal fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208403A JP7258728B2 (en) 2019-11-19 2019-11-19 centrifugal fluid machine

Publications (2)

Publication Number Publication Date
JP2021080870A true JP2021080870A (en) 2021-05-27
JP7258728B2 JP7258728B2 (en) 2023-04-17

Family

ID=75964714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208403A Active JP7258728B2 (en) 2019-11-19 2019-11-19 centrifugal fluid machine

Country Status (2)

Country Link
JP (1) JP7258728B2 (en)
WO (1) WO2021100648A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111368A (en) * 2006-10-30 2008-05-15 Mitsubishi Heavy Ind Ltd Variable diffuser and compressor
JP2009019563A (en) * 2007-07-11 2009-01-29 Ihi Corp Diffuser structure of centrifugal compressor
JP2012202324A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Centrifugal compressor
CN106762840A (en) * 2016-11-25 2017-05-31 沈阳鼓风机集团股份有限公司 Half vane diffuser high and its method for designing of a kind of both sides arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111368A (en) * 2006-10-30 2008-05-15 Mitsubishi Heavy Ind Ltd Variable diffuser and compressor
JP2009019563A (en) * 2007-07-11 2009-01-29 Ihi Corp Diffuser structure of centrifugal compressor
JP2012202324A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Centrifugal compressor
CN106762840A (en) * 2016-11-25 2017-05-31 沈阳鼓风机集团股份有限公司 Half vane diffuser high and its method for designing of a kind of both sides arrangement

Also Published As

Publication number Publication date
JP7258728B2 (en) 2023-04-17
WO2021100648A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6704843B2 (en) Centrifugal compressor and turbocharger
US10260366B2 (en) Sealing device and turbo machine
US9394794B2 (en) Fluid-flow machine—blade with hybrid profile configuration
JP5753199B2 (en) Aperiodic centrifugal compressor diffuser
US20200263704A1 (en) Fluid apparatus
KR20030085008A (en) Vane wheel for radial turbine
JP5449087B2 (en) Wing
US9822795B2 (en) Stator of an axial compressor stage of a turbomachine
JP6034162B2 (en) Centrifugal fluid machine
CN107050542B (en) Miniature centrifugal blood pump capable of preventing blood cells from being damaged and circulating blood supply method thereof
WO2015064227A1 (en) Centrifugal compressor for gas pipeline, and gas pipeline
JP2014047775A (en) Diffuser, and centrifugal compressor and blower including the diffuser
JP2008151022A (en) Cascade of axial flow compressor
KR100587571B1 (en) Turbine blade
US10301970B2 (en) Axial turbine
WO2021100648A1 (en) Centrifugal fluid machine
US11572890B2 (en) Blade and axial flow impeller using same
JP2017227159A (en) Variable nozzle vane and variable capacity type turbocharger
WO2021010338A1 (en) Impeller and centrifugal compressor using same
CN109312658B (en) Variable capacity turbocharger
CN216478021U (en) Impeller, axial fan, and information processing device
US11441428B2 (en) Turbine blade and steam turbine including the same
JP2021032106A (en) Vaned diffuser and centrifugal compressor
US11835058B2 (en) Impeller and centrifugal compressor
JPWO2018146752A1 (en) Compressor and turbocharger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150