JP2021080755A - Ground improvement body and buried object measuring device, ground improvement body construction device and ground improvement body construction method - Google Patents

Ground improvement body and buried object measuring device, ground improvement body construction device and ground improvement body construction method Download PDF

Info

Publication number
JP2021080755A
JP2021080755A JP2019209643A JP2019209643A JP2021080755A JP 2021080755 A JP2021080755 A JP 2021080755A JP 2019209643 A JP2019209643 A JP 2019209643A JP 2019209643 A JP2019209643 A JP 2019209643A JP 2021080755 A JP2021080755 A JP 2021080755A
Authority
JP
Japan
Prior art keywords
ground improvement
improvement body
ground
buried
buried object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019209643A
Other languages
Japanese (ja)
Other versions
JP7293552B2 (en
Inventor
正泰 濱名
Masayasu Hamana
正泰 濱名
佑太 植松
Yuta UEMATSU
佑太 植松
一生 小西
Kazuo Konishi
一生 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Doboku Co Ltd filed Critical Takenaka Doboku Co Ltd
Priority to JP2019209643A priority Critical patent/JP7293552B2/en
Publication of JP2021080755A publication Critical patent/JP2021080755A/en
Application granted granted Critical
Publication of JP7293552B2 publication Critical patent/JP7293552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

To improve the measurement accuracy of the shape of a ground improvement body and detect buried objects.SOLUTION: A measuring device 100 comprises: a rotating rod 30 that is inserted into a ground improvement body 50 before hardening; a transmitter 112 that is provided on the rotating rod 30 and simultaneously emits ultrasonic waves of different frequencies from the same sound source in the same direction; a receiver 114 that receives reflected waves H1 and H2 reflected from the boundary of the ground improvement 50 with a ground G and a buried object 55 buried in the ground G by difference frequency sound waves S generated by the interaction of ultrasonic waves of different frequencies transmitted from the transmitter 112 and installed in the rotating rod 30; and a detection device 120 that detects a boundary position K1 of the ground improvement body 50 with the ground G and a buried position K2 of the buried object 55 by the time difference between the transmission of the ultrasonic wave of the transmitter 112 and the reception of the reflected waves H1 and H2 of the receiver 114.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良体及び埋設物の測定装置、地盤改良体の造成装置及び地盤改良体の造成方法に関する。 The present invention relates to a device for measuring a ground improvement body and a buried object, a device for creating a ground improvement body, and a method for creating a ground improvement body.

特許文献1には、未固結深層混合処理地盤改良体の形状測定方法、セメント系深層混合処理工法用の噴射ロッド、及び攪拌ロッドに関する技術が開示されている。この先行技術では、ロッドに音波発振機及び受振機を設け、音波発振機から発振された音波が地盤と地盤改良体との境界面で反射した反射波を受振機が連続的に受振することによって、地盤改良体の造成形状を測定している。 Patent Document 1 discloses a method for measuring the shape of an unconsolidated deep layer mixing treatment ground improvement body, an injection rod for a cement-based deep layer mixing treatment method, and a technique relating to a stirring rod. In this prior art, a sound wave oscillator and a vibration receiver are provided on the rod, and the sound wave oscillated from the sound wave oscillator continuously receives the reflected wave reflected at the interface between the ground and the ground improvement body. , The molding shape of the ground improvement body is measured.

特開2012−172329号公報Japanese Unexamined Patent Publication No. 2012-172329

特許文献1のように音波を用いて地盤改良体の造成形状を測定する場合、高い周波数の超音波を用いると指向性が高く分解能が高い測定を行うことができるが、音波の減衰が大きく、反射波の測定は困難である。よって、減衰の少ない10kHz付近の低い周波数の音波を用いることが多い。 When measuring the shape of a ground improvement body using sound waves as in Patent Document 1, high-frequency ultrasonic waves can be used to perform measurements with high directivity and high resolution, but the sound waves are greatly attenuated. It is difficult to measure the reflected wave. Therefore, a low frequency sound wave near 10 kHz with little attenuation is often used.

しかし、減衰の少ない10kHz付近の低い周波数の音波は、指向性が低く分解能が低いので、地盤改良体の造成形状の測定精度が低い。また、10kHz付近の低い周波数の音波は、指向性が低く分解能が低いので、地盤に埋設された埋設物を検出することは困難である。 However, a low frequency sound wave in the vicinity of 10 kHz with little attenuation has low directivity and low resolution, so that the measurement accuracy of the shape of the ground improvement body is low. Further, since a sound wave having a low frequency around 10 kHz has low directivity and low resolution, it is difficult to detect a buried object buried in the ground.

本発明は、上記事実を鑑み、地盤改良体の造成形状の測定精度の向上及び埋設物の検出を可能にすることが目的である。 In view of the above facts, it is an object of the present invention to improve the measurement accuracy of the shape of the ground improvement body and to detect the buried object.

第一態様は、硬化前の地盤改良体に挿入される軸部材と、前記軸部材に設けられ、異なる周波数の超音波を同一音源から同一方向に同時に発信する発信部と、前記軸部材に設けられ、前記発信部から発信された異なる周波数の前記超音波の相互作用によって発生する差周波数の音波が前記地盤改良体の地盤との境界及び地盤に埋設されている埋設物で反射した反射波を受信する受信部と、前記発信部の前記超音波の発信と前記受信部の前記反射波の受信との時間差によって前記地盤改良体の地盤との境界位置及び前記埋設物の埋設位置を検出する検出部と、を備えた地盤改良体及び埋設物の測定装置である。 The first aspect is a shaft member to be inserted into the ground improvement body before hardening, a transmission unit provided on the shaft member and simultaneously transmitting ultrasonic waves of different frequencies from the same sound source in the same direction, and the shaft member. Then, the sound waves of different frequencies generated by the interaction of the ultrasonic waves of different frequencies transmitted from the transmitting unit are reflected at the boundary with the ground of the ground improvement body and the reflected wave reflected by the buried object buried in the ground. Detection that detects the boundary position between the receiving unit and the ground of the ground improvement body and the buried position of the buried object by the time difference between the transmission of the ultrasonic wave of the transmitting unit and the reception of the reflected wave of the receiving unit. It is a ground improvement body and a measuring device for buried objects provided with a part.

第一態様の地盤改良体及び埋設物の測定装置では、発信部から発信された異なる周波数の超音波の相互作用によって発生する差周波数の音波の反射波を用いて地盤改良体の地盤との境界位置及び埋設物の埋設位置を検出する。よって、発信部から指向性が高く分解能が高い周波数の高い超音波を発信しても、発信した超音波よりも周波数が低い差周波数の音波の反射波を用いることで減衰が小さくなり、測定が可能となる。また、差周波数の音波は、発信部から発信された高い周波数の超音波と同じ指向性を有するので、分解能が高い。したがって、地盤改良体の造成形状の測定精度が向上すると共に埋設物の検出が可能となる。 In the ground improvement body and the buried object measuring device of the first aspect, the boundary between the ground improvement body and the ground is used by using the reflected wave of the sound wave of the difference frequency generated by the interaction of the ultrasonic waves of different frequencies transmitted from the transmitting part. Detect the position and the burial position of the buried object. Therefore, even if a high-frequency ultrasonic wave with high directivity and high resolution is transmitted from the transmitting unit, the attenuation becomes small by using the reflected wave of the sound wave with a difference frequency lower than the transmitted ultrasonic wave, and the measurement can be performed. It will be possible. Further, the sound wave having a difference frequency has the same directivity as the ultrasonic wave having a high frequency transmitted from the transmitting unit, and therefore has a high resolution. Therefore, the measurement accuracy of the shape of the ground improvement body is improved, and the buried object can be detected.

第二態様は、前記発信部が発信する超音波の周波数は、85kHz以上であり、前記差周波数は、10kHz以下である、第一態様に記載の地盤改良体及び埋設物の測定装置である。 The second aspect is the measuring device for the ground improvement body and the buried object according to the first aspect, wherein the frequency of the ultrasonic wave transmitted by the transmitting unit is 85 kHz or more, and the difference frequency is 10 kHz or less.

第二態様の地盤改良体及び埋設物の測定装置では、発信部が発信する超音波の周波数は85kHz以上であるので、指向性が高く分解能が高い。また、差周波数が10kHz以下であるので、減衰が少ない。したがって、発信部が発信する超音波の周波数が85kHz未満で差周波数が10kHzよりも大きい場合と比較し、地盤改良体の造成形状の測定精度が更に向上すると共に埋設物の検出精度が更に向上する。 In the ground improvement body and the buried object measuring device of the second aspect, since the frequency of the ultrasonic wave transmitted by the transmitting unit is 85 kHz or more, the directivity is high and the resolution is high. Further, since the difference frequency is 10 kHz or less, there is little attenuation. Therefore, as compared with the case where the frequency of the ultrasonic wave transmitted by the transmitting unit is less than 85 kHz and the difference frequency is larger than 10 kHz, the measurement accuracy of the molded shape of the ground improvement body is further improved and the detection accuracy of the buried object is further improved. ..

第三態様は、前記検出部では、前記反射波の音響信号に対して、ノイズ除去、増幅処理、時間変動利得調整及びエッジ検出を行い前記境界位置及び前記埋設位置を検出する、第一態様又は第二態様に記載の地盤改良体及び埋設物の測定装置である。 In the third aspect, the detection unit detects the boundary position and the buried position by performing noise removal, amplification processing, time fluctuation gain adjustment, and edge detection on the acoustic signal of the reflected wave. The device for measuring a ground improvement body and a buried object according to the second aspect.

第三態様の地盤改良体及び埋設物の測定装置では、検出部では反射波の音響信号に対して、ノイズ除去、増幅処理、時間変動利得調整及びエッジ検出を行い境界位置及び埋設位置を検出するので、反射波の音響信号をそのまま用いて検出する場合と比較し、境界位置及び埋設位置の検出精度が向上する。 In the ground improvement body and the buried object measuring device of the third aspect, the detection unit detects the boundary position and the buried object by performing noise removal, amplification processing, time fluctuation gain adjustment and edge detection on the acoustic signal of the reflected wave. Therefore, the detection accuracy of the boundary position and the buried position is improved as compared with the case where the acoustic signal of the reflected wave is used as it is for detection.

第四態様は、地盤に挿入した軸部材を引き上げながら先端部から硬化材を噴出して地盤改良体を造成する造成部と、造成中の前記地盤改良体に挿入された第一態様〜第三態様のいずれか一態様に記載の地盤改良体及び埋設物の測定装置と、前記地盤改良体及び埋設物の測定装置で検出した前記境界位置及び前記埋設位置に応じて、前記硬化材の噴出量を調整する調整部と、を備えた地盤改良体の造成装置である。 The fourth aspect is a construction section for creating a ground improvement body by ejecting a hardening material from the tip while pulling up a shaft member inserted into the ground, and the first to third aspects inserted into the ground improvement body being constructed. The amount of the hardened material ejected according to the boundary position and the buried position detected by the measuring device for the ground improvement body and the buried object according to any one aspect of the embodiment and the measuring device for the ground improved body and the buried object. It is a ground improvement body construction device equipped with an adjustment unit for adjusting.

第四態様の地盤改良体の造成装置では、高精度に検出した地盤改良体の地盤との境界位置及び埋設物の埋設位置に応じて、硬化材の噴出量を調整するので、地盤改良体を高精度に造成することができる。 In the device for creating the ground improvement body of the fourth aspect, the amount of the hardened material ejected is adjusted according to the boundary position of the ground improvement body with the ground and the burial position of the buried object detected with high accuracy. It can be created with high precision.

第五態様は、地盤に挿入した軸部材を引き上げながら先端部から硬化材を噴出して地盤改良体を造成する造成工程と、造成中の前記地盤改良体に挿入された第一態様〜第三態様のいずれか一態様に記載の地盤改良体及び埋設物の測定装置で、前記地盤改良体の地盤との境界位置及び地盤に埋設されている埋設物の埋設位置を検出する検出工程と、前記検出工程で検出した前記境界位置及び前記埋設位置に応じて、前記硬化材の噴出量を調整する調整工程と、を備えた地盤改良体の造成方法である。 The fifth aspect is a construction step of creating a ground improvement body by ejecting a hardening material from the tip while pulling up a shaft member inserted into the ground, and the first to third aspects inserted into the ground improvement body being constructed. The detection step of detecting the boundary position of the ground improvement body with the ground and the burial position of the buried object buried in the ground by the measuring device for the ground improvement body and the buried object according to any one aspect, and the above-mentioned This is a method for creating a ground improvement body including an adjustment step of adjusting the amount of ejected hardened material according to the boundary position and the buried position detected in the detection step.

第五態様の地盤改良体の造成方法では、高精度に検出した地盤改良体の地盤との境界位置及び埋設物の埋設位置に応じて、硬化材の噴出量を調整するので、地盤改良体を高精度に造成することができる。 In the method for creating the ground improvement body of the fifth aspect, the amount of the hardened material ejected is adjusted according to the boundary position of the ground improvement body with the ground and the burial position of the buried object detected with high accuracy. It can be created with high precision.

本発明によれば、地盤改良体の造成形状の測定精度を向上させることができると共に埋設物の検出を可能にすることができる。 According to the present invention, it is possible to improve the measurement accuracy of the shape of the ground improvement body and to detect the buried object.

本発明の一実施形態の測定装置及び造成装置の構成図である。It is a block diagram of the measuring apparatus and the construction apparatus of one Embodiment of this invention. 測定装置を機能的に示すブロック図である。It is a block diagram which shows the measuring apparatus functionally. 測定装置を構成する検出装置のモニターの画面の一例である。This is an example of the monitor screen of the detection device that constitutes the measuring device. (A)は差周波数の音波による埋設物の検出を説明する説明図であり、(B)は比較例の低周波の音波で埋設物の検出を説明する説明図である。(A) is an explanatory diagram for explaining the detection of the buried object by the sound wave of the difference frequency, and (B) is an explanatory diagram for explaining the detection of the buried object by the low frequency sound wave of the comparative example. (A)は実験装置の構成図であり、(B)は収録データ図であり、(C)振幅値グラフであり、(D)は処理データ図であり、(E)はエッジ処理結果グラフである。(A) is a block diagram of the experimental device, (B) is a recorded data diagram, (C) an amplitude value graph, (D) is a processed data diagram, and (E) is an edge processing result graph. is there. 本発明の一実施形態の変形例の測定装置及び造成装置の構成図である。It is a block diagram of the measuring apparatus and the construction apparatus of the modification of one Embodiment of this invention.

<実施形態>
本発明の一実施形態の地盤改良体及び埋設物の測定装置、地盤改良体の造成装置及び地盤改良体の造成方法について説明する。
<Embodiment>
A device for measuring a ground improvement body and a buried object, a device for creating a ground improvement body, and a method for creating a ground improvement body according to an embodiment of the present invention will be described.

[構成]
まず、測定装置及び本測定装置を備えた造成装置の構成について説明する。
[Constitution]
First, the configuration of the measuring device and the construction device provided with the measuring device will be described.

図1に示すように、造成装置10は、地盤Gを切削しながら、切削した地盤Gと高圧噴射された硬化材の一例としてのセメントミルクMとを攪拌混合して、地盤改良体50を造成する高圧噴射攪拌工法の地盤改良体の造成装置である。なお、図1及び後述する図6は、模試的に図示しているので、各装置、各機器及び各部材の大きさ等は、実際のものと異なる場合がある。 As shown in FIG. 1, while cutting the ground G, the preparation device 10 creates the ground improvement body 50 by stirring and mixing the cut ground G and cement milk M as an example of the hardened material injected under high pressure. This is a device for creating a ground improvement body of the high-pressure injection stirring method. Since FIG. 1 and FIG. 6 described later are shown as a model, the sizes of each device, each device, and each member may differ from the actual ones.

造成装置10は、軸部材の一例としての回転ロッド30と、装置本体20と、を有している。装置本体20は、地盤G上(地上)に設置され、回転ロッド30を軸心回りに回転(矢印Y1参照)させつつ先端部の噴出ノズル32からセメントミルクMを横方向に噴出させると共に、回転ロッド30を昇降(矢印Y2参照)させる機能を有している。また、装置本体20には、図示してない作業員が、回転ロッド30の回転数、回転ロッド30の上下動及びセメントミルクMの単位時間当たりの噴出量等を操作する操作部22を有している。 The construction device 10 includes a rotating rod 30 as an example of a shaft member, and a device main body 20. The apparatus main body 20 is installed on the ground G (ground), and while rotating the rotary rod 30 around the axis (see arrow Y1), the cement milk M is ejected laterally from the ejection nozzle 32 at the tip portion and rotates. It has a function of raising and lowering the rod 30 (see arrow Y2). Further, the apparatus main body 20 has an operation unit 22 in which a worker (not shown) operates the rotation speed of the rotary rod 30, the vertical movement of the rotary rod 30, the amount of cement milk M ejected per unit time, and the like. ing.

図1及び図2に示すように、測定装置100は、計測器34と、検出部の一例としての検出装置120と、を有している。 As shown in FIGS. 1 and 2, the measuring device 100 includes a measuring device 34 and a detecting device 120 as an example of the detecting unit.

図1に示すように、計測器34は、回転ロッド30の噴出ノズル32の下端部に取り付けられ、計測器34の下端部に掘削ビット40が取り付けられている。よって、計測器34は、回転ロッド30の回転に伴って一緒に回転する。検出装置120は、地盤G上(地上)に設置されている。計測器34と検出装置120とは、ケーブル102によって電気的に接続されている。 As shown in FIG. 1, the measuring instrument 34 is attached to the lower end of the ejection nozzle 32 of the rotating rod 30, and the excavation bit 40 is attached to the lower end of the measuring instrument 34. Therefore, the measuring instrument 34 rotates together with the rotation of the rotating rod 30. The detection device 120 is installed on the ground G (ground). The measuring instrument 34 and the detection device 120 are electrically connected by a cable 102.

図2に示すように、計測器34は、機能的には、発信部112と受信部114とを有して構成されている。発信部112は、異なる周波数の超音波を同一音源から同一方向に同時に発信する機能を有する。図1に示すように、異なる周波数の超音波の相互作用によって、差周波数の音波Sが発生し、差周波数の音波Sは、地盤改良体50の地盤Gとの境界及び地盤Gに埋設されている埋設物55で反射する。受信部114(図2参照)は、地盤改良体50の地盤Gとの境界で反射した反射波H1及び地盤Gに埋設されている埋設物55で反射した反射波H2を受信する機能を有する。 As shown in FIG. 2, the measuring instrument 34 is functionally configured to include a transmitting unit 112 and a receiving unit 114. The transmitting unit 112 has a function of simultaneously transmitting ultrasonic waves of different frequencies from the same sound source in the same direction. As shown in FIG. 1, a sound wave S having a difference frequency is generated by the interaction of ultrasonic waves having different frequencies, and the sound wave S having a difference frequency is buried at the boundary between the ground improvement body 50 and the ground G and in the ground G. Reflected by the buried object 55. The receiving unit 114 (see FIG. 2) has a function of receiving the reflected wave H1 reflected at the boundary of the ground improvement body 50 with the ground G and the reflected wave H2 reflected by the buried object 55 buried in the ground G.

なお、図1に示すように、本実施形態では、計測器34の周面に、発信部112と受信部114とが一体的に構成された送受信部110が設けられている(図2も参照)。 As shown in FIG. 1, in the present embodiment, a transmission / reception unit 110 in which the transmission unit 112 and the reception unit 114 are integrally configured is provided on the peripheral surface of the measuring instrument 34 (see also FIG. 2). ).

また、図2に示す本実施形態における発信部112と受信部114とが一体的に構成された送受信部110を有する計測器34は、パラメトリック音響技術を用いた計測器である。パラメトリック音響技術は、音波伝搬の非線形性を応用した技術である。具体的には、二つ異なる周波数の1次波を同時に発信することで、二つ周波数の相互干渉により発生する差周波数の2次波を利用する技術である。 Further, the measuring instrument 34 having the transmitting / receiving unit 110 in which the transmitting unit 112 and the receiving unit 114 are integrally configured as shown in FIG. 2 is a measuring instrument using parametric acoustic technology. Parametric acoustic technology is a technology that applies the non-linearity of sound wave propagation. Specifically, it is a technique that utilizes the secondary wave of the difference frequency generated by the mutual interference of the two frequencies by simultaneously transmitting the primary waves of two different frequencies.

計測器34の送受信部110から発信する二つの超音波の周波数は、それぞれ85kHz以上が望ましく、100kHz以上が更に望ましい。差周波数は、10kHz以下が望ましく、5kHz以下が更に望ましい。なお、本実施形態では、異なる周波数の超音波は、100kHzと105kHzであり、差周波数は5kHzである。 The frequencies of the two ultrasonic waves transmitted from the transmission / reception unit 110 of the measuring instrument 34 are preferably 85 kHz or higher, and more preferably 100 kHz or higher. The difference frequency is preferably 10 kHz or less, and more preferably 5 kHz or less. In the present embodiment, the ultrasonic waves having different frequencies are 100 kHz and 105 kHz, and the difference frequency is 5 kHz.

図1に示すように、計測器34は、送受信部110で受信した反射波H1、H2を音響信号に変換し、ケーブル102を介して、検出装置120(図2も参照)に伝送する。 As shown in FIG. 1, the measuring instrument 34 converts the reflected waves H1 and H2 received by the transmission / reception unit 110 into acoustic signals and transmits them to the detection device 120 (see also FIG. 2) via the cable 102.

図1及び図2に示すように、検出装置120は、制御部122(図2参照)と、表示装置の一例としてのモニター124と、によって構成されている。制御部122(図2参照)は、図示していないCPU(Central Processing Unit)、各処理ルーチンを実現するためのプログラム等を記憶したROM(Read Only Memory)、データを一時的に記憶するRAM(Random Access Memory)、記憶手段としてのメモリ及びネットワークインタフェース等を含んで構成されている。 As shown in FIGS. 1 and 2, the detection device 120 includes a control unit 122 (see FIG. 2) and a monitor 124 as an example of a display device. The control unit 122 (see FIG. 2) includes a CPU (Central Processing Unit) (not shown), a ROM (Read Only Memory) that stores programs for realizing each processing routine, and a RAM (RAM) that temporarily stores data. Random Access Memory), memory as a storage means, network interface, etc. are included.

図2に示す検出装置120を構成する制御部122は、計測器34を制御する。また、制御部122は、超音波の発信と反射波H1、H2の受信との時間差によって、図1に示す地盤改良体50の地盤Gとの境界の位置(以降「境界位置K1」とする)及び埋設物55が埋設された位置(以降、「埋設位置K2」とする)との距離を測定し、境界位置K1及び埋設位置K2を検出する。 The control unit 122 constituting the detection device 120 shown in FIG. 2 controls the measuring instrument 34. Further, the control unit 122 determines the position of the boundary of the ground improvement body 50 shown in FIG. 1 with the ground G (hereinafter referred to as “boundary position K1”) due to the time difference between the transmission of ultrasonic waves and the reception of the reflected waves H1 and H2. And the distance from the position where the buried object 55 is buried (hereinafter referred to as “buried position K2”) is measured, and the boundary position K1 and the buried position K2 are detected.

なお、本実施形態における埋設物55とは、岩及び土管等の人工物等である。 The buried object 55 in the present embodiment is an artificial object such as a rock or a clay pipe.

本実施形態では、検出装置120の制御部122は、反射波H1、H2の音響信号に対して、ノイズ除去、増幅処理、時間変動利得調整及びエッジ検出等を行い境界位置K1及び埋設位置K2を明確にして、各位置を検出している。 In the present embodiment, the control unit 122 of the detection device 120 performs noise removal, amplification processing, time fluctuation gain adjustment, edge detection, and the like on the acoustic signals of the reflected waves H1 and H2, and determines the boundary position K1 and the buried position K2. Clarify and detect each position.

図3は、検出装置120のモニター124の画面の一例である。X[mm]は、計測された地盤改良体50の直径を示している。また、Y[mm]は地盤改良体50の鉛直方向長さを示している。 FIG. 3 is an example of the screen of the monitor 124 of the detection device 120. X [mm] indicates the measured diameter of the ground improvement body 50. Further, Y [mm] indicates the vertical length of the ground improvement body 50.

[造成方法]
次に、地盤改良体の造成方法の一例について説明する。
[Creation method]
Next, an example of a method for creating a ground improvement body will be described.

図1に示すように、地盤Gに挿入した回転ロッド30を引き上げながら先端部の噴出ノズル32からセメントミルクMを噴出し、掘削した地盤GとセメントミルクMとを攪拌混合して柱状の地盤改良体50を造成する。 As shown in FIG. 1, while pulling up the rotary rod 30 inserted into the ground G, cement milk M is ejected from the ejection nozzle 32 at the tip, and the excavated ground G and cement milk M are stirred and mixed to improve the columnar ground. Create body 50.

また、回転ロッド30に一体的に設けられた計測器34で、造成中の地盤改良体50の地盤Gとの境界位置K1及び地盤Gに埋設されている埋設物55の埋設位置K2を検出する。検出結果は、モニター124に表示される。モニター124には、地盤改良体50の造成形状及び埋設物55等が表示される。 Further, the measuring instrument 34 integrally provided on the rotating rod 30 detects the boundary position K1 of the ground improvement body 50 under construction with the ground G and the burial position K2 of the buried object 55 buried in the ground G. .. The detection result is displayed on the monitor 124. On the monitor 124, the molding shape of the ground improvement body 50, the buried object 55, and the like are displayed.

図示していない作業員は、モニター124に表示された境界位置K1及び埋設位置K2に基づいて、操作部22を操作し、回転ロッド30の回転数、回転ロッド30の引き上げ速度及びセメントミルクMの単位時間当たりの噴出量等を、地盤改良体50の造成形状が設計値に近づくように調整する。 A worker (not shown) operates the operation unit 22 based on the boundary position K1 and the buried position K2 displayed on the monitor 124, and operates the rotation speed of the rotary rod 30, the pulling speed of the rotary rod 30, and the cement milk M. The amount of ejection per unit time and the like are adjusted so that the molding shape of the ground improvement body 50 approaches the design value.

具体的には、境界位置K1が設計値よりも外側の場合は、セメントミルクMの噴出量を減少させたり、引き上げ速度を上げたりする。逆に境界位置K1が設計値よりも内側の場合はセメントミルクMの噴出量を増加させたり、引き上げ速度を下げたりする。 Specifically, when the boundary position K1 is outside the design value, the amount of cement milk M ejected is reduced or the pulling speed is increased. On the contrary, when the boundary position K1 is inside the design value, the amount of cement milk M ejected is increased or the pulling speed is decreased.

また、埋設物55が検出された場合は、埋設物55の大きさ及び位置等に応じて、セメントミルクMの噴出量の増加、造成作業の一旦停止及び埋設物55の除去等を検討する。 When the buried object 55 is detected, an increase in the amount of cement milk M ejected, a temporary stop of the construction work, removal of the buried object 55, etc. are examined according to the size and position of the buried object 55.

[作用及び効果]
次に、本実施形態の作用及び効果について説明する。
[Action and effect]
Next, the operation and effect of this embodiment will be described.

測定装置100は、計測器34から発信した異なる周波数の超音波の相互作用によって発生する差周波数の音波Sを用いて地盤改良体50の地盤Gとの境界位置K1及び埋設物55の埋設位置K2を検出する。よって、指向性が高く分解能が高い周波数の高い超音波、本実施形態では100kHz及び105kHzを発信しても、発信した超音波よりも周波数が低い差周波数、本実施形態では5kHzの音波Sを用いることで減衰が小さくなり、反射波H1、H2の測定が可能となる。したがって、地盤改良体50の造成形状の測定精度が向上すると共に埋設物55の検出が可能となる。 The measuring device 100 uses the sound wave S of the difference frequency generated by the interaction of ultrasonic waves of different frequencies transmitted from the measuring instrument 34 to the boundary position K1 of the ground improvement body 50 with the ground G and the buried position K2 of the buried object 55. Is detected. Therefore, a high frequency ultrasonic wave having high directivity and high resolution, a difference frequency having a lower frequency than the transmitted ultrasonic wave even if 100 kHz and 105 kHz are transmitted in the present embodiment, and a 5 kHz sound wave S are used in the present embodiment. As a result, the attenuation becomes small, and the reflected waves H1 and H2 can be measured. Therefore, the measurement accuracy of the molding shape of the ground improvement body 50 is improved, and the buried object 55 can be detected.

なお、仮に低周波の音波で測定した場合、指向性が低く分解能が低いので地盤改良体50の造成形状の測定精度が低い。また、分解能が低い低周波の音波で測定した場合、地盤Gに埋設物55が埋設されていても埋設物55を検出できない。 If the measurement is performed with a low-frequency sound wave, the directivity is low and the resolution is low, so that the measurement accuracy of the molded shape of the ground improvement body 50 is low. Further, when measured with a low-frequency sound wave having low resolution, the buried object 55 cannot be detected even if the buried object 55 is buried in the ground G.

具体的には、図4(A)のように、本実施形態の指向性が良く分解能が高い差周波数の音波Sでは、埋設物55の一部にのみ音波Sが照射されるので、埋設物55にのみ反射した反射波H2を検出可能である。しかし、図4(B)のように、分解能が低い低周波の音波SSでは、地盤Gに埋設物55の外側にも音波SSが照射されるので、埋設物55に反射した反射波HH2は弱く、検出することができない。よって、分解能が低い低周波の音波SSでは、地盤Gに埋設物55が埋設されていても埋設物55を検出できない。 Specifically, as shown in FIG. 4A, in the sound wave S having a difference frequency having good directivity and high resolution in the present embodiment, the sound wave S is irradiated only to a part of the buried object 55, so that the buried object The reflected wave H2 reflected only on 55 can be detected. However, as shown in FIG. 4B, in the low frequency sound wave SS having low resolution, the sound wave SS is also irradiated to the outside of the buried object 55 on the ground G, so that the reflected wave HH2 reflected on the buried object 55 is weak. , Cannot be detected. Therefore, in the low-frequency sound wave SS having low resolution, the buried object 55 cannot be detected even if the buried object 55 is buried in the ground G.

なお、同様の理由で、図4(A)のように、本実施形態の指向性が良く分解能が高い差周波数の音波Sでは、地盤改良体50の造成形状を正確に検出することができる。 For the same reason, as shown in FIG. 4A, the sound wave S having a difference frequency with good directivity and high resolution in the present embodiment can accurately detect the molding shape of the ground improvement body 50.

また、検出装置120は、反射波H1、H2の音響信号に対して、ノイズ除去、増幅処理、時間変動利得調整及びエッジ検出等を行い境界位置K1及び埋設位置K2を明確にして検出するので、検出精度が向上する。 Further, the detection device 120 clearly detects the boundary position K1 and the buried position K2 by performing noise removal, amplification processing, time fluctuation gain adjustment, edge detection, and the like on the acoustic signals of the reflected waves H1 and H2. Detection accuracy is improved.

また、高精度に検出した地盤改良体50の地盤Gとの境界位置K1及び埋設物55の埋設位置K2に応じて、セメントミルクMの噴出量等を調整するので、地盤改良体50を高精度に造成することができる。 Further, since the amount of cement milk M ejected is adjusted according to the boundary position K1 of the ground improvement body 50 with the ground G and the burial position K2 of the buried object 55 detected with high accuracy, the ground improvement body 50 is highly accurate. Can be created in.

また、地盤改良体50の造成に支障が生じるような埋設物55が検出された場合は、大きさ及び位置等を分析し、造成作業の一旦停止等を検討することができる。 Further, when a buried object 55 that hinders the construction of the ground improvement body 50 is detected, the size and position of the buried object 55 can be analyzed, and the temporary stop of the construction work can be considered.

(実験及び実験結果)
次に、本実施形態の測定装置100を用いて地盤改良体50の地盤Gと境界位置K1及び埋設物55の埋設位置K2を検出できることを確認した実験及びその実験結果について説明する。
(Experiment and experimental results)
Next, an experiment confirming that the ground G and the boundary position K1 of the ground improvement body 50 and the buried position K2 of the buried object 55 can be detected by using the measuring device 100 of the present embodiment and the experimental results thereof will be described.

図5(A)に示すように、実験装置200は、測定装置100、木板製の箱202、箱202に充填した硬化前のモルタル250、箱202に充填した飽和状態の砂210及び砂210に埋設した鋼管255を有している。なお、箱202の図における左側にモルタル250を充填し、図における右側に砂210を充填している。また、硬化前のモルタル250は地盤改良体50(図1参照)を模しており、飽和状態の砂210は地盤G(図1参照)を模しており、鋼管255は埋設物55(図1参照)を模している。 As shown in FIG. 5 (A), the experimental device 200 is attached to the measuring device 100, the wooden board box 202, the mortar 250 before curing filled in the box 202, and the saturated sand 210 and sand 210 filled in the box 202. It has a buried steel pipe 255. The left side of the box 202 is filled with mortar 250, and the right side of the box 202 is filled with sand 210. The mortar 250 before hardening imitates the ground improvement body 50 (see FIG. 1), the saturated sand 210 imitates the ground G (see FIG. 1), and the steel pipe 255 imitates the buried object 55 (see FIG. 1). 1) is imitated.

そして、硬化前のモルタル250に測定装置100の計測器34を埋設させ、異なる周波数の超音波の相互作用によって発生する差周波数の音波Sの反射波H1、H2を受信し、検出装置120(図1参照)で検出する。なお、音速は、モルタル250における音の速度である1645m/秒を用いて計算した。 Then, the measuring instrument 34 of the measuring apparatus 100 is embedded in the mortar 250 before curing, and the reflected waves H1 and H2 of the sound waves S having different frequencies generated by the interaction of ultrasonic waves of different frequencies are received, and the detecting apparatus 120 (FIG. 1) to detect. The speed of sound was calculated using 1645 m / sec, which is the speed of sound in the mortar 250.

図5(B)は、反射波H1、H2の音響信号を可視化した収録データの図である。この図は、濃いほど反射波H1、H2の強度が大きいことを表している、なお、実際には、反射波H1、H2の強度が大きいほど赤色が濃くなり、小さいほど青色が濃くなるようなグラデーションで表示される。 FIG. 5B is a diagram of recorded data in which the acoustic signals of the reflected waves H1 and H2 are visualized. In this figure, the darker the intensity of the reflected waves H1 and H2, the greater the intensity. In reality, the greater the intensity of the reflected waves H1 and H2, the darker the red color, and the smaller the intensity, the darker the blue color. It is displayed in gradation.

図5(C)は、反射波H1、H2の振幅値をグラフ化した図である。この図5(C)の振幅値グラフでは、モルタル250と砂210との境界位置K1と、鋼管255の埋設位置K2と、箱202の壁面203(図1)の位置と、がそれぞれ階段状になっている。 FIG. 5C is a graph showing the amplitude values of the reflected waves H1 and H2. In the amplitude value graph of FIG. 5C, the boundary position K1 between the mortar 250 and the sand 210, the buried position K2 of the steel pipe 255, and the position of the wall surface 203 (FIG. 1) of the box 202 are stepped. It has become.

図5(D)は、図5(B)の収録データに対して、ノイズ除去処理、増幅処理、時間変動利得調整処理及びエッジ処理を行って、反射波H1、H2の強度の強弱を明確にした処理データの図である。図5(B)と同様に、濃いほど反射波H1、H2の強度が大きいことを表している、また、実際には、反射波H1、H2の強度が大きいほど赤色が濃くなり、小さいほど青色が濃くなるようなグラデーションで表示される。 FIG. 5D shows that the recorded data of FIG. 5B is subjected to noise removal processing, amplification processing, time fluctuation gain adjustment processing, and edge processing to clarify the strength of the reflected waves H1 and H2. It is a figure of the processed data. Similar to FIG. 5B, the darker the intensity of the reflected waves H1 and H2, the stronger the intensity of the reflected waves H1 and H2. Is displayed in a gradation that makes the image darker.

図5(E)は、図5(D)のエッジ処理を行ったエッジ検出処理結果のグラフである。このグラフから境界位置K1、埋設位置K2及び壁面203の位置が正確に検出されていることが分かる。 FIG. 5 (E) is a graph of the edge detection processing result obtained by performing the edge processing of FIG. 5 (D). From this graph, it can be seen that the positions of the boundary position K1, the buried position K2, and the wall surface 203 are accurately detected.

<変形例>
次に、本実施形態の変形例について説明する。
<Modification example>
Next, a modified example of this embodiment will be described.

図1に示す上記実施形態の造成装置10では、図示していない作業員が、検出装置120のモニター124に表示された境界位置K1及び埋設位置K2に基づいて、操作部22を操作して、セメントミルクMの単位時間当たりの噴出量等を調整した。 In the construction device 10 of the above embodiment shown in FIG. 1, a worker (not shown) operates the operation unit 22 based on the boundary position K1 and the buried position K2 displayed on the monitor 124 of the detection device 120. The amount of cement milk M ejected per unit time was adjusted.

これに対して、図6に示す変形例の造成装置11では、検出装置120と装置本体20とがケーブル103で電気的に接続されている。また、検出装置120を構成する調整部の一例としての制御部122(図2参照)は、装置本体20を制御可能とされている。 On the other hand, in the modified example creation device 11 shown in FIG. 6, the detection device 120 and the device main body 20 are electrically connected by a cable 103. Further, the control unit 122 (see FIG. 2) as an example of the adjustment unit constituting the detection device 120 can control the device main body 20.

検出装置120の制御部122(図2参照)は、測定装置100が測定した境界位置K1及び埋設位置K2に基づいて、装置本体20を制御し、地盤改良体50の造成形状が設計値に近づくように、回転ロッド30の回転数、回転ロッド30の引き上げ速度及びセメントミルクMの単位時間当たりの噴出量等を調整する。つまり、測定装置100が測定した境界位置K1及び埋設位置K2に基づいて、自動的に回転ロッド30の引き上げ速度及びセメントミルクMの単位時間当たりの噴出量等が調整される。 The control unit 122 (see FIG. 2) of the detection device 120 controls the device main body 20 based on the boundary position K1 and the buried position K2 measured by the measuring device 100, and the molding shape of the ground improvement body 50 approaches the design value. As described above, the number of rotations of the rotary rod 30, the pulling speed of the rotary rod 30, the amount of cement milk M ejected per unit time, and the like are adjusted. That is, the pulling speed of the rotating rod 30 and the amount of cement milk M ejected per unit time are automatically adjusted based on the boundary position K1 and the buried position K2 measured by the measuring device 100.

<その他>
尚、本発明は上記実施形態及び変形例に限定されない。
<Others>
The present invention is not limited to the above embodiments and modifications.

例えば、上記実施形態及び変形例では、地盤改良体50を造成しながら測定装置100で境界位置K1及び埋設位置K2を測定したが、これに限定されない。造成後に硬化前の地盤改良体50に計測器34を挿入して測定してもよい。 For example, in the above-described embodiment and modified example, the boundary position K1 and the buried position K2 are measured by the measuring device 100 while creating the ground improvement body 50, but the present invention is not limited to this. The measuring instrument 34 may be inserted into the ground improvement body 50 after the formation and before the hardening for measurement.

また、例えば、上記実施形態及び変形例では、回転ロッド30に計測器34を取り付けたが、これに限定されない。回転ロッド30とは別のロッド(軸部材の一例)に計測器34を取り付けて、造成中又は造成後の地盤改良体50に挿入して測定してもよい。 Further, for example, in the above-described embodiment and modification, the measuring instrument 34 is attached to the rotating rod 30, but the present invention is not limited to this. The measuring instrument 34 may be attached to a rod (an example of a shaft member) different from the rotating rod 30 and inserted into the ground improvement body 50 during or after the construction for measurement.

また、例えば、上記実施形態及び変形例では、高圧噴射攪拌工法で造成する地盤改良体に本発明を適用したが、これに限定されない。高圧噴射攪拌工法以外の深層混合処理工法、例えば、機械攪拌工法で造成する地盤改良体に本発明を適用してもよいし、高圧噴射攪拌工法と機械攪拌工法とを併用して造成する地盤改良体に本発明を適用してもよい。 Further, for example, in the above-described embodiment and modified example, the present invention is applied to the ground improvement body created by the high-pressure injection stirring method, but the present invention is not limited thereto. The present invention may be applied to a ground improvement body created by a deep mixing treatment method other than the high-pressure injection stirring method, for example, a mechanical stirring method, or a ground improvement created by using the high-pressure injection stirring method and the mechanical stirring method in combination. The present invention may be applied to the body.

要は、硬化前の地盤改良体に軸部材に設けられた計測器34を挿入して測定すればよい。 In short, the measuring instrument 34 provided on the shaft member may be inserted into the ground improvement body before hardening for measurement.

また、上記実施形態及び変形例では、埋設物55は、地盤改良体50の造成領域の外側に埋設されていたが、これに限定されない。埋設物55は、地盤改良体50の造成領域内に埋設されていてもよい。 Further, in the above embodiment and the modified example, the buried object 55 is buried outside the created area of the ground improvement body 50, but is not limited thereto. The buried object 55 may be buried in the created area of the ground improvement body 50.

また、上記実施形態及び変形例では、計測器34が発信する超音波の周波数は、100kHzと105kHzで、差周波数は5kHzであったが、これに限定されない。計測器34が発信する超音波の周波数及び差周波数は、適宜設定することができる。 Further, in the above-described embodiment and modified example, the frequencies of the ultrasonic waves transmitted by the measuring instrument 34 are 100 kHz and 105 kHz, and the difference frequency is 5 kHz, but the difference is not limited thereto. The frequency and difference frequency of the ultrasonic waves transmitted by the measuring instrument 34 can be appropriately set.

また、上記実施形態及び変形例では、発信部112と受信部114とが一体的に構成された送受信部110を有する計測器34を用いたが、これに限定されない。発信部と受信部とが別々の機器に設けられていてもよい。 Further, in the above-described embodiment and modification, the measuring instrument 34 having the transmitting / receiving unit 110 in which the transmitting unit 112 and the receiving unit 114 are integrally configured is used, but the present invention is not limited thereto. The transmitting unit and the receiving unit may be provided in separate devices.

更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。複数の実施形態及び変形例等は、適宜、組み合わされて実施可能である。 Further, it can be carried out in various embodiments without departing from the gist of the present invention. A plurality of embodiments, modifications, and the like can be combined and implemented as appropriate.

10 造成装置
11 造成装置
30 回転ロッド(軸部材の一例)
32 噴出ノズル
34 計測器
50 地盤改良体
55 埋設物
100 測定装置
112 発信部
114 受信部
120 検出装置
122 制御部(調整部の一例)
G 地盤
H1 反射波
H2 反射波
K1 境界位置
K2 埋設位置
M セメントミルク(硬化材の一例)
S 音波
10 Construction equipment 11 Creation equipment 30 Rotating rod (an example of shaft member)
32 Ejection nozzle 34 Measuring instrument 50 Ground improvement body 55 Buried object 100 Measuring device 112 Transmitter 114 Receiver 120 Detection device 122 Control unit (example of adjustment unit)
G ground
H1 reflected wave
H2 reflected wave
K1 boundary position
K2 burial position
M Cement milk (an example of hardened material)
S sound wave

Claims (5)

硬化前の地盤改良体に挿入される軸部材と、
前記軸部材に設けられ、異なる周波数の超音波を同一音源から同一方向に同時に発信する発信部と、
前記軸部材に設けられ、前記発信部から発信された異なる周波数の前記超音波の相互作用によって発生する差周波数の音波が前記地盤改良体の地盤との境界及び地盤に埋設されている埋設物で反射した反射波を受信する受信部と、
前記発信部の前記超音波の発信と前記受信部の前記反射波の受信との時間差によって前記地盤改良体の地盤との境界位置及び前記埋設物の埋設位置を検出する検出部と、
を備えた地盤改良体及び埋設物の測定装置。
Shaft members to be inserted into the ground improvement body before hardening,
A transmitter provided on the shaft member and simultaneously transmitting ultrasonic waves of different frequencies from the same sound source in the same direction.
A buried object provided on the shaft member and having a difference frequency generated by the interaction of the ultrasonic waves of different frequencies transmitted from the transmitting portion at the boundary with the ground of the ground improvement body and buried in the ground. The receiver that receives the reflected reflected wave and
A detection unit that detects the boundary position of the ground improvement body with the ground and the buried position of the buried object by the time difference between the transmission of the ultrasonic wave of the transmitting unit and the reception of the reflected wave of the receiving unit.
A device for measuring ground improvement bodies and buried objects.
前記発信部が発信する超音波の周波数は、85kHz以上であり、
前記差周波数は、10kHz以下である、
請求項1に記載の地盤改良体及び埋設物の測定装置。
The frequency of the ultrasonic wave transmitted by the transmitting unit is 85 kHz or higher.
The difference frequency is 10 kHz or less.
The device for measuring a ground improvement body and a buried object according to claim 1.
前記検出部では、前記反射波の音響信号に対して、ノイズ除去、増幅処理、時間変動利得調整及びエッジ検出を行い前記境界位置及び前記埋設位置を検出する、
請求項1又は請求項2に記載の盤改良体及び埋設物の測定装置。
The detection unit detects the boundary position and the buried position by performing noise removal, amplification processing, time fluctuation gain adjustment, and edge detection on the acoustic signal of the reflected wave.
The measuring device for the improved panel and the buried object according to claim 1 or 2.
地盤に挿入した軸部材を引き上げながら先端部から硬化材を噴出して地盤改良体を造成する造成部と、
造成中の前記地盤改良体に挿入された請求項1〜請求項3のいずれか1項に記載の地盤改良体及び埋設物の測定装置と、
前記地盤改良体及び埋設物の測定装置で検出した前記境界位置及び前記埋設位置に応じて、前記硬化材の噴出量を調整する調整部と、
を備えた地盤改良体の造成装置。
A construction part that creates a ground improvement body by ejecting a hardening material from the tip while pulling up the shaft member inserted in the ground.
The device for measuring the ground improvement body and the buried object according to any one of claims 1 to 3, which is inserted into the ground improvement body under construction.
An adjusting unit that adjusts the amount of the hardened material ejected according to the boundary position and the buried position detected by the ground improvement body and the measuring device for the buried object.
Equipment for creating a ground improvement body equipped with.
地盤に挿入した軸部材を引き上げながら先端部から硬化材を噴出して地盤改良体を造成する造成工程と、
造成中の前記地盤改良体に挿入された請求項1〜請求項3のいずれか1項に記載の地盤改良体及び埋設物の測定装置で、前記地盤改良体の地盤との境界位置及び地盤に埋設されている埋設物の埋設位置を検出する検出工程と、
前記検出工程で検出した前記境界位置及び前記埋設位置に応じて、前記硬化材の噴出量を調整する調整工程と、
を備えた地盤改良体の造成方法。
A construction process in which a hardening material is ejected from the tip while pulling up the shaft member inserted into the ground to create a ground improvement body.
The device for measuring a ground improvement body and a buried object according to any one of claims 1 to 3, which is inserted into the ground improvement body under construction, at a boundary position with the ground and the ground of the ground improvement body. A detection process that detects the burial position of the buried object, and
An adjustment step of adjusting the ejection amount of the cured material according to the boundary position and the buried position detected in the detection step, and an adjustment step.
How to create a ground improvement body equipped with.
JP2019209643A 2019-11-20 2019-11-20 SOIL IMPROVEMENT BODY AND BUYING OBJECT MEASURING DEVICE, SOIL IMPROVEMENT CREATION DEVICE, AND SOIL IMPROVEMENT CREATION METHOD Active JP7293552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209643A JP7293552B2 (en) 2019-11-20 2019-11-20 SOIL IMPROVEMENT BODY AND BUYING OBJECT MEASURING DEVICE, SOIL IMPROVEMENT CREATION DEVICE, AND SOIL IMPROVEMENT CREATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209643A JP7293552B2 (en) 2019-11-20 2019-11-20 SOIL IMPROVEMENT BODY AND BUYING OBJECT MEASURING DEVICE, SOIL IMPROVEMENT CREATION DEVICE, AND SOIL IMPROVEMENT CREATION METHOD

Publications (2)

Publication Number Publication Date
JP2021080755A true JP2021080755A (en) 2021-05-27
JP7293552B2 JP7293552B2 (en) 2023-06-20

Family

ID=75964422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209643A Active JP7293552B2 (en) 2019-11-20 2019-11-20 SOIL IMPROVEMENT BODY AND BUYING OBJECT MEASURING DEVICE, SOIL IMPROVEMENT CREATION DEVICE, AND SOIL IMPROVEMENT CREATION METHOD

Country Status (1)

Country Link
JP (1) JP7293552B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640649A (en) * 1984-05-09 1987-02-03 N.I.T. Co., Ltd. Method and apparatus for forming an underground solidification structure
JPH05223923A (en) * 1992-02-18 1993-09-03 Oki Electric Ind Co Ltd Method and apparatus for detecting buried structure
JPH06158638A (en) * 1992-09-24 1994-06-07 Nit Co Ltd Method and device for constructing improved ground
JP2012172329A (en) * 2011-02-18 2012-09-10 Fujimi Consultants Co Ltd Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
JP2019196595A (en) * 2018-05-07 2019-11-14 小野田ケミコ株式会社 Ground improvement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640649A (en) * 1984-05-09 1987-02-03 N.I.T. Co., Ltd. Method and apparatus for forming an underground solidification structure
JPH05223923A (en) * 1992-02-18 1993-09-03 Oki Electric Ind Co Ltd Method and apparatus for detecting buried structure
JPH06158638A (en) * 1992-09-24 1994-06-07 Nit Co Ltd Method and device for constructing improved ground
JP2012172329A (en) * 2011-02-18 2012-09-10 Fujimi Consultants Co Ltd Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
JP2019196595A (en) * 2018-05-07 2019-11-14 小野田ケミコ株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP7293552B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP4449048B2 (en) Underground structure measuring device
CN105134170B (en) A kind of method for evaluating cased well second interface Cementation Quality
JP6700054B2 (en) Non-contact acoustic exploration system
JP2009047679A (en) Ultrasonic inspection method
JP2012172329A (en) Shape measuring method for unconsolidated deep layer mixture treated soil improved body, injection rod for cement-based deep layer mixture treatment method, and agitation rod
JP7293552B2 (en) SOIL IMPROVEMENT BODY AND BUYING OBJECT MEASURING DEVICE, SOIL IMPROVEMENT CREATION DEVICE, AND SOIL IMPROVEMENT CREATION METHOD
CN106770668A (en) A kind of pile quality sound wave transmission method detection method for single hole
JP6886860B2 (en) Method of confirming the range of ground improvement in the high-pressure injection stirring method
JP4113378B2 (en) Rebar position measurement method
DE4017238A1 (en) Locating leaks in underground, non-metallic pipes - using electromagnetic source moving in pipe, detecting and processing electromagnetic waves contg. position information
JP6960371B2 (en) Ground improvement method
JPS59106624A (en) Underground excavator
JP6998266B2 (en) Improved body measurement method for ground improvement
JP7271813B2 (en) Workmanship control method and device
JP5563894B2 (en) Detection method using sound waves, non-contact acoustic detection system, program used in the system, and recording medium recording the program
JP6963929B2 (en) Ground improvement condition inspection method
JP2675129B2 (en) Measuring device for crushing range in jet injection method
JP6873462B2 (en) Outer edge confirmation device for ground improvement body
JP2001337074A (en) Device for determining compaction of fresh concrete
Stepinski et al. Instrument for rock bolt inspection by means of ultrasound
JP2022016308A (en) Method and apparatus for measuring dimensional shape of ground improvement body
CN113390964B (en) Sound wave testing device and method for Hopkinson pressure bar testing system
JP7429008B2 (en) Sound wave transducer for measuring objects with rough internal structure
JP3272261B2 (en) Hole bending measurement method during drilling
Nomura et al. Feasibility of low-frequency ultrasound imaging using parametric sound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230517

R150 Certificate of patent or registration of utility model

Ref document number: 7293552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150