JP2021080171A - Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein - Google Patents

Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein Download PDF

Info

Publication number
JP2021080171A
JP2021080171A JP2018046025A JP2018046025A JP2021080171A JP 2021080171 A JP2021080171 A JP 2021080171A JP 2018046025 A JP2018046025 A JP 2018046025A JP 2018046025 A JP2018046025 A JP 2018046025A JP 2021080171 A JP2021080171 A JP 2021080171A
Authority
JP
Japan
Prior art keywords
hla
protein
amino acid
acid sequence
multimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018046025A
Other languages
Japanese (ja)
Inventor
勝実 前仲
Katsumi Maenaka
勝実 前仲
喜美子 黒木
Kimiko Kuroki
喜美子 黒木
直良 前田
Naoyoshi Maeda
直良 前田
千聖 山田
Chisato Yamada
千聖 山田
愛実 ▲高▼橋
愛実 ▲高▼橋
Ami TAKAHASHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2018046025A priority Critical patent/JP2021080171A/en
Priority to PCT/JP2019/010366 priority patent/WO2019177056A1/en
Publication of JP2021080171A publication Critical patent/JP2021080171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Pain & Pain Management (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

To provide a modified protein that is high in storage stability and in vivo stability and has high prophylactic or therapeutic effect on diseases, and a drug, a prophylactic or therapeutic agent for inflammatory diseases, and a method for producing a modified protein.SOLUTION: A modified protein is characterized by: comprising a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked; and at least one amino acid residue in the amino acid sequence constituting the protein being PEGylated by polyethylene glycol (PEG).SELECTED DRAWING: Figure 1

Description

本発明は、改変タンパク質、医薬品、炎症性疾患の予防又は治療剤及び改変タンパク質の製造方法に関する。 The present invention relates to modified proteins, pharmaceuticals, prophylactic or therapeutic agents for inflammatory diseases, and methods for producing modified proteins.

HLA−Gは、非古典的MHCI分子の1つであり、HLA−G分子は、白血球Ig様受容体(LILR)などの抑制性受容体への結合により、骨髄系単球細胞、T細胞及びNK細胞をはじめとする広範な免疫細胞の免疫応答を阻害し、免疫寛容を誘導する。 HLA-G is one of the non-classical MHCI molecules, which are myeloid monocyte cells, T cells and by binding to inhibitory receptors such as leukocyte Ig-like receptors (LILRs). It inhibits the immune response of a wide range of immune cells, including NK cells, and induces immune tolerance.

HLA−Gタンパク質は、ヒト生体内で多様な形態で存在し、天然の抑制性分子として機能している。HLA−G1アイソフォームは、ペプチド、重鎖、β2ミクログロブリンからなるヘテロ三量体として存在する。一方、ドメイン欠損型のHLA−G2アイソフォームは、ドメイン欠損重鎖のみからなるホモ二量体である。HLA−G2については、HLA−G1の機能を補完する活性を持つことが知られていたが、詳細な機能については長期間にわたって不明であった。 The HLA-G protein exists in various forms in the human body and functions as a natural inhibitory molecule. The HLA-G1 isoform exists as a heterotrimer consisting of peptides, heavy chains and β2 microglobules. On the other hand, the domain-deficient HLA-G2 isoform is a homodimer consisting only of domain-deficient heavy chains. HLA-G2 was known to have an activity that complements the function of HLA-G1, but the detailed function was unknown for a long period of time.

近年、HLA−G2について、種々の報告がなされている。非特許文献1には、HLA−G2がホモ二量体として存在すること、受容体として免疫抑制性受容体LILRB2を介してシグナルを伝達することが開示されている。また、非特許文献2及び特許文献1には、HLA−G2について、in vivoで抗炎症効果を解析した結果、マウス受容体PIR−Bに強固に結合すること、関節リウマチモデルマウスへの単回投与により長期間の免疫抑制効果が得られたことが開示されている。 In recent years, various reports have been made on HLA-G2. Non-Patent Document 1 discloses that HLA-G2 exists as a homodimer and transmits a signal via the immunosuppressive receptor LILRB2 as a receptor. Further, in Non-Patent Document 2 and Patent Document 1, as a result of analyzing the anti-inflammatory effect of HLA-G2 in vivo, it is strongly bound to the mouse receptor PIR-B, and a single dose to a rheumatoid arthritis model mouse. It is disclosed that long-term immunosuppressive effect was obtained by administration.

ポリエチレングリコール(PEG)は、エチレングリコールが重合した構造を持つ高分子化合物である。親水性のPEGをタンパク質などの高分子に付加すること(PEG化)により、酵素による攻撃や疎水部の露出からタンパク質を遮蔽し、結果としてタンパク質の分解や凝集を抑制する効果が期待できる。また、PEGの付加により分子サイズが大きくなることで糸球体での濾過が抑制されるため、タンパク質血中半減期の延長が、PEG自身は抗原性を持たないことから、タンパク質投与による副作用の軽減が期待できる(非特許文献3)。実際に、現在十数種のPEG化医薬品がFood and Drug Administration (FDA)により承認されており(非特許文献4、5)、臨床的に使用されている。 Polyethylene glycol (PEG) is a polymer compound having a structure in which ethylene glycol is polymerized. By adding hydrophilic PEG to a polymer such as protein (PEGylation), the protein can be shielded from attack by enzymes and exposure of hydrophobic parts, and as a result, the effect of suppressing protein decomposition and aggregation can be expected. In addition, since the addition of PEG increases the molecular size and suppresses filtration in the glomerulus, the half-life of protein in blood is extended, and since PEG itself does not have antigenicity, side effects due to protein administration are reduced. Can be expected (Non-Patent Document 3). In fact, more than a dozen PEGylated drugs are currently approved by the Food and Drug Administration (FDA) (Non-Patent Documents 4 and 5) and are in clinical use.

特開2015−140322号公報Japanese Unexamined Patent Publication No. 2015-14022

Cutting Edge: Class II−like Structural Features and Strong Receptor Binding of the Nonclassical HLA−G2 Isoform Homodimer.Kuroki K, Mio K, Takahashi A, Matsubara H, Kasai Y, Manaka S, Kikkawa M, Hamada D, Sato C, Maenaka K.J Immunol. 2017 May 1;198(9):3399−3403. doi: 10.4049/jimmunol.1601296.Cutting Edge: Class II-like Structure Structures and Strong Receptor Binding of the Nonclassical HLA-G2 Isoform Homedimer. Kuroki K, Mio K, Takahashi A, Matsubara H, Kasai Y, Manaka S, Kikawa M, Hamada D, Sato C, Maenaka K. J Immunol. 2017 May 1; 198 (9): 3399-3403. doi: 10.4049 / jimmul. 1601296. The immunosuppressive effect of domain−deleted dimer of HLA−G2 isoform in collagen−induced arthritis mice.Takahashi A, Kuroki K, Okabe Y, Kasai Y, Matsumoto N, Yamada C, Takai T, Ose T, Kon S, Matsuda T, Maenaka K.Hum Immunol. 2016 Sep;77(9):754−9. doi: 10.1016/j.humimm.2016.01.010.The immunosuppressive effect of domain-deleted dimer of HLA-G2 isoform in collagen-induced arthritis meeting. Takahashi A, Kuroki K, Okabe Y, Kasai Y, Matsumoto N, Yamada C, Takai T, Ose T, Kon S, Masada T, Maenaka. Hum Immunol. 2016 Sep; 77 (9): 754-9. doi: 10.1016 / j. humimm. 2016.01.010. Harris, J. M., and Chess, R. B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214-221Harris, J.M. M. , And Chess, R.M. B. (2003) Effect of PEGylation on pharmaceuticals. Nat. Rev. Drag Discov. 2, 214-221 Dozier, J. K., and Distefano, M. D. (2015) Site−specific pegylation of therapeutic proteins. Int. J. Mol. Sci. 16, 25831-25864Dozier, J. et al. K. , And Distefano, M.D. D. (2015) Site-specific PEGylation of therapeutic proteins. Int. J. Mol. Sci. 16, 25831-25864 Turecek, P. L., Bossard, M. J., Schoetens, F., and Ivens, I. A. (2016) PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J. Pharm. Sci. 105, 460-475Turek, P.M. L. , Bossard, M.D. J. , Schoetens, F. , And Events, I. A. (2016) PEGylation of Biopharmacyticals: A Review of Chemistry and Nonclinical Safety Information of Applied Drugs. J. Pharm. Sci. 105, 460-475

しかしながら、HLA−G2は、医薬品としての使用が期待されるものの、組換え蛋白質としての安定性及び均一性が経時的に低下するという問題を有しており、長期的保存の点で課題を残していた。 However, although HLA-G2 is expected to be used as a pharmaceutical product, it has a problem that its stability and homogeneity as a recombinant protein decrease with time, which leaves a problem in terms of long-term storage. Was there.

本発明は、上記事情に鑑みてなされたものであり、保存安定性及び生体内での安定性が高く、疾患に対する予防又は治療効果の高い改変タンパク質、医薬品、炎症性疾患の予防又は治療剤及び改変タンパク質の製法方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a modified protein, a drug, a prophylactic or therapeutic agent for an inflammatory disease, which has high storage stability and in vivo stability and is highly effective in preventing or treating a disease. It is an object of the present invention to provide a method for producing a modified protein.

上記目的を達成するため、本発明の第1の観点に係る改変タンパク質は、
HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
前記タンパク質を構成するアミノ酸配列中の少なくとも1つのシステイン残基は、ポリエチレングリコール(PEG)でPEG化修飾されている、
ことを特徴とする。
In order to achieve the above object, the modified protein according to the first aspect of the present invention is
It consists of a multimeric protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked.
At least one cysteine residue in the amino acid sequence constituting the protein is PEGylated and modified with polyethylene glycol (PEG).
It is characterized by that.

例えば、PEG化修飾に用いるPEGの分子量は、5kDa〜100kDaである。 For example, the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.

例えば、前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
上記多量体が、上記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである。
For example, the protein is a protein consisting of the amino acid sequence described in (a) or (b) below.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1.
(B) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to the leukocyte Ig-like receptor B2. ..

本発明の第2の観点に係る医薬品は、
本発明の第1の観点に係るに改変タンパク質又はその塩を有効成分として含む。
The pharmaceutical product according to the second aspect of the present invention is
The modified protein or a salt thereof according to the first aspect of the present invention is contained as an active ingredient.

本発明の第3の観点に係る炎症性疾患の予防又は治療剤は、
本発明の第1の観点に係るに改変タンパク質又はその塩を有効成分として含む。
The prophylactic or therapeutic agent for an inflammatory disease according to the third aspect of the present invention is
The modified protein or a salt thereof according to the first aspect of the present invention is contained as an active ingredient.

本発明の第4の観点に係る改変タンパク質の製造方法は、
(A)HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体を調製する工程と、
(B)工程(A)で得られた前記タンパク質の多量体を脱気処理した後、還元処理する工程と、
(C)工程(B)で還元処理された前記タンパク質の多量体をPEG化修飾する工程と、
を含む。
The method for producing a modified protein according to the fourth aspect of the present invention is
(A) A step of preparing a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and
(B) A step of degassing and then reducing the multimer of the protein obtained in the step (A), and a step of reducing the protein.
(C) A step of PEGylating and modifying the multimer of the protein subjected to the reduction treatment in the step (B), and
including.

例えば、PEG化修飾に用いるPEGの分子量は、5kDa〜100kDaである。 For example, the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.

例えば、前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
上記多量体が、上記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである。
For example, the protein is a protein consisting of the amino acid sequence described in (a) or (b) below.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1.
(B) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to the leukocyte Ig-like receptor B2. ..

本発明によれば、保存安定性及び生体内での安定性が高く、疾患に対する予防又は治療効果の高い改変タンパク質、医薬品、炎症性疾患の予防又は治療剤及び改変タンパク質の製法方法を提供することができる。 According to the present invention, there is provided a method for producing a modified protein, a drug, a prophylactic or therapeutic agent for an inflammatory disease, and a modified protein, which are highly stable in storage and in vivo and have a high preventive or therapeutic effect on a disease. Can be done.

PEG化HLA−G2を模式的に示す図である。It is a figure which shows typically the PEGylated HLA-G2. (a)はHLA−G2の調製において封入体巻き戻し後、HiLoad26/60 Superdex75 pgカラムを用いたSEC精製のクロマトグラムを示した図であり、(b)は還元剤(TCEP)の添加によって得られたPEG化HLA−G2のCBB染色の結果を示した図である。(A) is a diagram showing a chromatogram of SEC purification using a HiLoad 26/60 Superdex75 pg column after rewinding the inclusion body in the preparation of HLA-G2, and (b) is obtained by adding a reducing agent (TCEP). It is a figure which showed the result of CBB staining of the PEGylated HLA-G2. PEG分子量による反応効率の比較を示した図であり、(a)はCBB染色、(b)はBaI染色の結果を示す図である。It is a figure which showed the comparison of the reaction efficiency by the PEG molecular weight, (a) is the figure which shows the result of CBB staining, (b) is the figure which shows the result of BaI 2 staining. 各分子量のPEGによるPEG化反応液のSuperdex 200 10/300 GLを用いたSEC精製、濃縮し、SDS−PAGE後、銀染色した結果を示す図であり、(a)はPEG5−HLA−G2、(b)はPEG10−HLA−G2、(c)はPEG20−HLA−G2、(d)はPEG40−HLA−G2の結果を示す図である。It is a figure which shows the result of SEC purification using Superdex 200 10/300 GL of the PEGylation reaction solution by PEG of each molecular weight, concentration, SDS-PAGE, and silver staining, and (a) is PEG5-HLA-G2. (B) is a diagram showing the results of PEG10-HLA-G2, (c) is a diagram showing the results of PEG20-HLA-G2, and (d) is a diagram showing the results of PEG40-HLA-G2. LILRB2受容体との結合実験により得られたセンサグラムを示す図であり、(a)はHLA−G2、(b)はPEG5−HLA−G2、(c)はPEG10−HLA−G2、(d)はPEG20−HLA−G2の結果を示す図である。It is a figure which shows the sensorgram obtained by the binding experiment with LILRB2 receptor, (a) is HLA-G2, (b) is PEG5-HLA-G2, (c) is PEG10-HLA-G2, (d). Is a diagram showing the results of PEG20-HLA-G2. PEG化部位の異なるHLA−G2変異体(HLA−G2N86C、HLA−G2CTER)のPEG20によるPEG化反応効率を比較した図であり、(a)はCBB染色、(b)はBaI染色の結果を示す図である。It is a figure which compared the PEGylation reaction efficiency by PEG20 of HLA-G2 mutants (HLA-G2N86C, HLA-G2CTER) having different PEGylation sites, (a) is the result of CBB staining, (b) is the result of BaI 2 staining. It is a figure which shows. (a)は凍結乾燥処理有無によるHLA−G2及びPEG20−HLA−G2のSDS−PAGE、CBB染色の結果を示す図であり、(b)は凍結乾燥処理前後のHLA−G2(LILRB2固定化量:512RU)の結合実験によって得られたセンサグラムを示す図であり、(c)は凍結乾燥処理前後のPEG20−HLA−G2(LILRB2固定化量:272RU)の結合実験によって得られたセンサグラムを示す図である。(A) is a figure showing the result of SDS-PAGE and CBB staining of HLA-G2 and PEG20-HLA-G2 with and without freeze-drying treatment, and (b) is the amount of HLA-G2 (LILRB2 immobilized amount) before and after freeze-drying treatment. It is a figure which shows the sensorgram obtained by the binding experiment of: 512RU), and (c) is the sensorgram obtained by the binding experiment of PEG20-HLA-G2 (LILRB2 immobilization amount: 272RU) before and after the freeze-drying treatment. It is a figure which shows. 加熱処理によるタンパク質凝集及び分解度の比較結果(CBB染色)を示す図であり、(a)はHLA−G2、(b)はPEG20−HLA−G2である。It is a figure which shows the comparison result (CBB staining) of the protein aggregation and decomposition degree by heat treatment, (a) is HLA-G2, (b) is PEG20-HLA-G2. HLA−G2、PEG20−HLA−G2タンパク質の血清中安定性比較を示す図であり、(a)はHLA−G2、PEG20−HLA−G2の血清中安定性を示す図であり、(b)はHLA−G2、PEG20−HLA−G2の血清中の継時的残存率の変化示す図である。It is a figure which shows the serum stability comparison of HLA-G2, PEG20-HLA-G2 protein, (a) is a figure which shows the serum stability of HLA-G2, PEG20-HLA-G2, (b) is a figure which shows. It is a figure which shows the change of the survival rate over time in the serum of HLA-G2, PEG20-HLA-G2. (a)はアトピー性皮膚炎誘発軟膏による皮膚炎の誘導及びタンパク質の投与スケジュール並びに耳介の厚さの記録日を示す図であり、(b)はマウス耳介の腫脹度を示す図であり、(c)は投与18日目のマウス耳介を示す写真図である。(A) is a diagram showing the induction of dermatitis by atopic dermatitis-inducing ointment, the protein administration schedule, and the recording date of the auricle thickness, and (b) is a diagram showing the degree of swelling of the mouse auricle. , (C) are photographic views showing the mouse pinna on the 18th day of administration. 各組換えタンパク質の一次構造(左)及び分子模式図(右)を表す図であり、(a)はHLA−G2、(b)はHLA−G2C42S、(c)はHLA−G2N86C、(d)はHLA−G2CTER、(e)はHLA−G1C42S重鎖、(f)はβ2m、(g)はLILRB2を示す模式図である。It is a figure showing the primary structure (left) and molecular schematic diagram (right) of each recombinant protein, (a) is HLA-G2, (b) is HLA-G2C42S, (c) is HLA-G2N86C, (d). Is HLA-G2CTER, (e) is HLA-G1C42S heavy chain, (f) is β2m, and (g) is LILRB2. センサーチップCAP上へのビオチン化タンパク質固定化の原理を表す模式図である。It is a schematic diagram which shows the principle of biotinylated protein immobilization on a sensor chip CAP.

まず、本実施形態による改変タンパク質について詳細に説明する。 First, the modified protein according to this embodiment will be described in detail.

本実施形態による改変タンパク質は、HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、該タンパク質を構成するアミノ酸配列中の少なくとも1つのシステイン残基は、ポリエチレングリコール(PEG)でPEG化修飾されている(図1)。 The modified protein according to the present embodiment consists of a multimeric protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and at least one cysteine residue in the amino acid sequence constituting the protein. The group is PEGylated and modified with polyethylene glycol (PEG) (Fig. 1).

本実施形態が対象とするHLA−Gは、好ましくはヒト由来のHLA−Gである。なお、ヒトのHLA−G分子の配列情報は、例えばNCBI等により既に公知である。具体的には、アイソフォームの一つとして、NCBIには、NM_002127.5にヒト由来のHLA−G全長(=HLA−G1)の遺伝子配列が記載されており、このうちHLA−Gのα1ドメイン及びα3ドメインの遺伝子領域に相当する塩基配列が、それぞれ下記に示す配列番号2の「1〜270番目の塩基配列」及び「271〜540番目の塩基配列」である。なお、HLA−G分子には種々のアイソフォームが存在しており、アイソフォームによってそれらのアミノ酸配列は若干相違する。 The HLA-G targeted by the present embodiment is preferably a human-derived HLA-G. The sequence information of the human HLA-G molecule is already known by, for example, NCBI. Specifically, as one of the isoforms, NCBI describes a human-derived HLA-G full-length (= HLA-G1) gene sequence in NM_002127.5, of which the α1 domain of HLA-G is described. The base sequences corresponding to the gene regions of the α3 domain are the “1-270th base sequence” and the “271-540th base sequence” of SEQ ID NO: 2 shown below, respectively. Various isoforms exist in the HLA-G molecule, and their amino acid sequences differ slightly depending on the isoforms.

本実施形態が対象とするHLA−G多量体は、例えば、HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体であり、好ましくは、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
であって、
前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
The HLA-G multimer targeted by the present embodiment is, for example, a multimer of a protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and preferably.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
And
It is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b).

本明細書において、「HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体」を“HLA−G2”又は“HLA−G2多量体”と称する場合がある。 In the present specification, "a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked" may be referred to as "HLA-G2" or "HLA-G2 multimer". is there.

上記の「配列番号1に示されるアミノ酸配列からなるタンパク質」は、HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の二量体のうちの一つである。ここでHLA−G分子は、好ましくはヒト由来のHLA−Gである。当該配列番号1において「1〜90番目のアミノ酸領域」がα1ドメインのアミノ酸配列に相当し、「91〜180番目のアミノ酸領域」がα3ドメインのアミノ酸配列に相当する。また、当該アミノ酸配列(配列番号1)をコードする塩基配列を表す配列番号2において「1〜270番目の塩基配列」領域がα1ドメインをコードする遺伝子領域に相当し、「271〜540番目の塩基配列」領域がα3ドメインをコードする遺伝子領域に相当する。 The above-mentioned "protein consisting of the amino acid sequence shown in SEQ ID NO: 1" is one of the dimers of the protein having the amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked. .. Here, the HLA-G molecule is preferably human-derived HLA-G. In SEQ ID NO: 1, the "1-90th amino acid region" corresponds to the amino acid sequence of the α1 domain, and the "91-180th amino acid region" corresponds to the amino acid sequence of the α3 domain. Further, in SEQ ID NO: 2 representing the base sequence encoding the amino acid sequence (SEQ ID NO: 1), the "1-270th base sequence" region corresponds to the gene region encoding the α1 domain, and the "271-540th base". The "sequence" region corresponds to the gene region encoding the α3 domain.

上記の「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」として、HLA−G分子のα1ドメインとα3ドメインとの連結体(α1−3連結体)のアミノ酸配列(配列番号1)のC端側にさらにHLA−G分子のイントロン4によってコードされるアミノ酸配列(配列番号3)を有するタンパク質が例示され、本明細書においてこれを“HLA−G2”と称する場合がある。また、他の「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」として、HLA−G分子のα1ドメインとα3ドメインとの連結体のアミノ酸配列(配列番号1)のC端側にさらにHLA−G2分子の膜貫通ドメイン及び細胞内ドメインのアミノ酸配列(配列番号4)を有するタンパク質を例示することができる。 As the above-mentioned "protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added", the amino acid sequence (sequence) of the link (α1-3 link) between the α1 domain and the α3 domain of the HLA-G molecule. A protein having an amino acid sequence (SEQ ID NO: 3) encoded by the intron 4 of the HLA-G molecule is further exemplified on the C-terminal side of No. 1), and this may be referred to as "HLA-G2" in the present specification. .. Further, as another "protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added", C of the amino acid sequence (SEQ ID NO: 1) of the link between the α1 domain and the α3 domain of the HLA-G molecule. Examples of proteins having the amino acid sequences (SEQ ID NO: 4) of the transmembrane domain and the intracellular domain of the HLA-G2 molecule on the terminal side can be exemplified.

「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」のうち、好ましくは上記HLA−G分子のα1ドメインとα3ドメインとの連結体の多量体の機能(白血球Ig様受容体B2との結合活性)を備え、かつ当該α1−3連結体のアミノ酸配列(配列番号1)と好ましくは90%以上、好ましくは95%以上同一のアミノ酸配列を有することを限度として、アミノ酸が欠失、置換若しくは付加してなるタンパク質である。より好ましくは上記連結体のアミノ酸配列(配列番号1)と96%以上同一、さらに好ましくは98%以上同一のアミノ酸配列を有するタンパク質である。 Among "proteins consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added", preferably, the function of the multimer of the link between the α1 domain and the α3 domain of the HLA-G molecule (leukocyte Ig-like acceptance). The amino acid has the same amino acid sequence as that of the α1-3 conjugate (SEQ ID NO: 1), preferably 90% or more, preferably 95% or more. A protein that is deleted, substituted or added. A protein having an amino acid sequence that is 96% or more identical to the amino acid sequence (SEQ ID NO: 1) of the above conjugate, and more preferably 98% or more the same.

本明細書において、HLA−G多量体のうち、(a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、であって、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体を、“HLA−G2多量体”と称する場合がある。 In the present specification, among the HLA-G multimers, one or several amino acids are missing in (a) the protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or (b) the amino acid sequence shown in SEQ ID NO: 1. A protein consisting of a lost, substituted or added amino acid sequence, which is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), is referred to as "HLA-G2. Sometimes referred to as "multimer".

本実施形態が対象とするHLA−G2多量体は、前述するHLA−G分子のα1ドメインとα3ドメインとの連結体そのもの(以下これを単に「α1−3連結体」ともいう)に限定されず、HLA−G分子のα1ドメインとα3ドメインとの連結構造を有し、かつ当該二量体が白血球Ig様受容体B2(LILRB2)に対して結合活性を有するものであればよい。例えば、上記条件を有するものである限り、当該HLA−G分子のα1ドメインとα3ドメインとの連結体(α1−3連結体)のアミノ酸配列(配列番号1)のうち、1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質であってもよい。ここで、「白血球Ig様受容体B2(LILRB2)に対する結合活性」とは、HLA−G2多量体がLILRB2と直接結合する活性であって、これによりLILRB2を介してシグナルを伝達し、免疫制御効果を発揮することができる活性を意味する。 The HLA-G2 multimer targeted by the present embodiment is not limited to the above-mentioned conjugate itself of the α1 domain and the α3 domain of the HLA-G molecule (hereinafter, this is also simply referred to as “α1-3 conjugate”). , The dimer has a linking structure between the α1 domain and the α3 domain of the HLA-G molecule, and the dimer has binding activity to the leukocyte Ig-like receptor B2 (LILRB2). For example, as long as it has the above conditions, one or more amino acids are missing from the amino acid sequence (SEQ ID NO: 1) of the link (α1-3 link) between the α1 domain and the α3 domain of the HLA-G molecule. It may be a protein consisting of a lost, substituted or added amino acid sequence. Here, the "binding activity to leukocyte Ig-like receptor B2 (LILRB2)" is an activity in which the HLA-G2 multimer directly binds to LILRB2, thereby transmitting a signal via LILRB2 and having an immunoregulatory effect. It means the activity that can exert.

なお、HLA−G2多量体が、白血球Ig様受容体B2(LILRB2)との結合活性を有するか否かの確認は、例えば、T細胞ハイブリドーマを用いたレポーターアッセイなどにより行うことができる。かかるT細胞ハイブリドーマとしては、LILRB2の細胞外ドメインと活性型受容体PILRβの膜貫通・細胞内ドメインを融合させたキメラ分子を発現したNFAT−GFP導入レポーター細胞(マウスT細胞ハイブリドーマ)を例示することができる。この場合、HLA−G2多量体がLILRB2受容体に結合すると、PILRβの細胞内ドメインを介したシグナルが伝達され、転写因子NFATが活性化される。レポーターアッセイは、当該NFATの活性化によりGFPの発現が誘導されることを利用したアッセイ系である。GFP発現は、LILRB2とHLA−G2多量体とが結合したことを示すが、かかるGFP発現による蛍光の出現はフローサイトメトリーで確認することができる。 Whether or not the HLA-G2 multimer has a binding activity to the leukocyte Ig-like receptor B2 (LILRB2) can be confirmed by, for example, a reporter assay using a T cell hybridoma. Examples of such T cell hybridomas include NFAT-GFP-introduced reporter cells (mouse T cell hybridomas) expressing a chimeric molecule in which the extracellular domain of LILRB2 and the transmembrane / intracellular domain of active receptor PILRβ are fused. Can be done. In this case, when the HLA-G2 multimer binds to the LILRB2 receptor, a signal is transmitted via the intracellular domain of PILRβ, and the transcription factor NFAT is activated. The reporter assay is an assay system utilizing the fact that the expression of GFP is induced by the activation of the NFAT. GFP expression indicates that LILRB2 and the HLA-G2 multimer were bound, and the appearance of fluorescence due to such GFP expression can be confirmed by flow cytometry.

HLA−G2多量体は、前述するHLA−G2同士が、ジスルフィド結合するか、又はジスルフィド結合によらないで非共有結合的に結合することにより、多量体化したものである。なお、本実施形態におけるHLA−G2多量体において、該タンパク質を構成するアミノ酸配列中のどのシステイン残基がPEG化修飾されているかにもよるが、例えば、自然形成するホモ二量体の場合、ジスルフィド結合によらず多量体化し、システイン残基(Cys42)は分子表面にフリーのまま存在していてもよく、また、ホモ二量体を1単位とするさらなる二量体(四量体)又はそれらのさらなる多量体の場合、ホモ二量体分子表面に存在するシステイン残基(Cys42)同士を介したジスルフィド結合により多量体化していてもよい。 The HLA-G2 multimer is a multimerized product of the above-mentioned HLA-G2 by disulfide bond or non-covalent bond without disulfide bond. In the HLA-G2 multimer of the present embodiment, which cysteine residue in the amino acid sequence constituting the protein is PEGylated and modified, for example, in the case of a naturally formed homodimer, It is multimerized regardless of the disulfide bond, and the cysteine residue (Cys42) may remain free on the surface of the molecule, or a further dimer (tetramer) having a homodimer as one unit or In the case of these additional multimers, they may be multimerized by disulfide bonds via cysteine residues (Cys42) existing on the surface of the homodimer molecule.

HLA−G2多量体は、前述するα1−3連結体同士又は変異型同士からなるホモ多量体であってもよいし、又はα1−3連結体と変異型からなるヘテロ多量体であってもよく、限定はされない。好ましくはα1−3連結体同士からなるホモ多量体である。 The HLA-G2 multimer may be a homomultimer composed of the above-mentioned α1-3 conjugates or mutants, or may be a heteromultimer composed of the α1-3 conjugate and the mutant. , Not limited. It is preferably a homomultimer composed of α1-3 conjugates.

また、HLA−G2多量体は、白血球Ig様受容体B2(LILRB2)との結合部位を表面に露出した構造を有し、これらの受容体との結合が立体障害により妨げられないものである。そのため、HLA−G2多量体は、HLA−G2と同種の機能(白血球Ig様受容体への結合活性)を保持しうる構造を有する。 In addition, the HLA-G2 multimer has a structure in which the binding site with the leukocyte Ig-like receptor B2 (LILRB2) is exposed on the surface, and the binding with these receptors is not hindered by steric hindrance. Therefore, the HLA-G2 multimer has a structure capable of retaining the same function as HLA-G2 (binding activity to leukocyte Ig-like receptor).

HLA−G2多量体の調製方法については後述する。 The method for preparing the HLA-G2 multimer will be described later.

本実施形態による改変タンパク質は、上述の通り、HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、該タンパク質を構成するアミノ酸配列中の少なくとも1つのシステイン残基は、ポリエチレングリコール(PEG)でPEG化修飾されている。 As described above, the modified protein according to the present embodiment comprises a multimeric protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and at least in the amino acid sequence constituting the protein. One cysteine residue is PEGylated and modified with polyethylene glycol (PEG).

PEG化修飾されるシステイン残基は、該タンパク質において受容体との結合に影響しない部位に存在することが好ましい。PEG化修飾されるシステイン残基は、例えば、該タンパク質を構成するアミノ酸配列中の1つのシステイン残基であって、例えば、HLA−G2の42番目のフリーのシステイン残基であってもよい。また、任意の部位に存在するアミノ酸残基をシステイン残基に置換し、該システイン残基をPEG化修飾してもよく、例えば、HLA−Gの糖鎖修飾部位である86番目のアスパラギンをシステインに置換し、PEG化修飾してもよい。また、任意の部位にシステイン残基を付加し、該システイン残基をPEG化修飾してもよく、例えば、HLA−GのC末端にシステインを付加し、PEG化修飾してもよい。これらの置換及び付加の方法については、後述する。 The PEGylated modified cysteine residue is preferably present at a site in the protein that does not affect receptor binding. The PEGylated modified cysteine residue may be, for example, one cysteine residue in the amino acid sequence constituting the protein, for example, the 42nd free cysteine residue of HLA-G2. Further, the amino acid residue existing at an arbitrary site may be replaced with a cysteine residue, and the cysteine residue may be PEGylated and modified. For example, the 86th asparagine, which is the sugar chain modification site of HLA-G, may be cysteine. It may be substituted with PEGylation modification. Further, a cysteine residue may be added to an arbitrary site and the cysteine residue may be PEGylated and modified. For example, cysteine may be added to the C-terminal of HLA-G and PEGylated and modified. The methods of these substitutions and additions will be described later.

本実施形態において、PEG化修飾に用いるPEGの分子量は、例えば、5kDa〜100kDaであり、好ましくは5kDa〜40kDaである。PEG化修飾の詳細については、後述する。 In the present embodiment, the molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, preferably 5 kDa to 40 kDa. Details of the PEGylation modification will be described later.

本実施形態によるPEG化修飾された改変タンパク質の保存安定性を確認する方法として、例えば、改変タンパク質を凍結乾燥処理後に滅菌水に溶解させ、SDS−PAGEを行うことで凝集・分解の程度をバンドパターンとして確認する方法;改変タンパク質を凍結乾燥処理後に前述の方法によりLILRB2への結合活性を確認する方法;改変タンパク質を高温条件下でインキュベートした後にSDS−PAGEを行うことで凝集・分解の程度をバンドパターンとして確認する方法等が挙げられる。また、本実施形態によるPEG化修飾された改変タンパク質の生体内での安定性を確認する方法として、例えば、改変タンパク質を血清(例えば、FBS)中でインキュベートした後に、ウエスタンブロッティングを行うことで分解の程度を確認する方法等が挙げられる。 As a method for confirming the storage stability of the PEGylated modified protein according to the present embodiment, for example, the modified protein is lyophilized and then dissolved in sterilized water, and SDS-PAGE is performed to band the degree of aggregation / degradation. Method of confirming as a pattern; Method of confirming binding activity to LILRB2 by the above-mentioned method after freeze-drying of the modified protein; SDS-PAGE after incubating the modified protein under high temperature conditions to determine the degree of aggregation / degradation. Examples include a method of confirming as a band pattern. Further, as a method for confirming the stability of the PEGylated modified protein according to the present embodiment in vivo, for example, the modified protein is incubated in serum (for example, FBS) and then degraded by Western blotting. There is a method of confirming the degree of.

次に、本実施形態による改変タンパク質の製造方法について詳細に説明する。 Next, the method for producing the modified protein according to the present embodiment will be described in detail.

本実施形態による改変タンパク質の製造方法は、
(A)HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体を調製する工程と、
(B)工程(A)で得られた前記タンパク質の多量体を脱気処理した後、還元処理する工程と、
(C)工程(B)で還元処理された前記タンパク質の多量体をPEG化修飾する工程と、
を含む。
The method for producing a modified protein according to this embodiment is
(A) A step of preparing a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and
(B) A step of degassing and then reducing the multimer of the protein obtained in the step (A), and a step of reducing the protein.
(C) A step of PEGylating and modifying the multimer of the protein subjected to the reduction treatment in the step (B), and
including.

HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体(HLA−G2又はHLA−G2多量体)の詳細については、前述の通りである。 Details of the protein multimer (HLA-G2 or HLA-G2 multimer) having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked are as described above.

本実施形態が対象とするHLA−G2多量体は、前述同様、例えば、HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体であり、好ましくは、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
であって、
前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
The HLA-G2 multimer targeted by the present embodiment is, for example, a multimer of a protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, as described above, and is preferably preferred.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
And
It is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b).

工程(A)において、一例として、HLA−G2多量体の調製方法について説明する。 In the step (A), a method for preparing an HLA-G2 multimer will be described as an example.

まず、公知の遺伝子組換え技術を用いて、HLA−G2多量体のアミノ酸配列をコードする遺伝子(例えば、配列番号2)を発現ベクター等に組込んだ組換えベクターを構築し、次いで、公知の各種形質転換法により、構築した組換えベクターを宿主に導入して形質転換体を得、これを培養することにより、組換えHLA−G2多量体を発現させ、回収することにより行うことができる。 First, using a known gene recombination technique, a recombinant vector in which a gene encoding the amino acid sequence of the HLA-G2 multimer (for example, SEQ ID NO: 2) is incorporated into an expression vector or the like is constructed, and then a known gene recombination vector is constructed. It can be carried out by introducing the constructed recombinant vector into a host by various transformation methods to obtain a transformant, culturing the transformant, and expressing and recovering the recombinant HLA-G2 multimer.

ここでHLA−G2多量体のアミノ酸配列をコードする遺伝子としては、HLA−Gのα1ドメインとα3ドメインとの連結体のアミノ酸配列(配列番号1)をコードする遺伝子(配列番号2)のほか、当該連結体のアミノ酸配列の一部を欠失、置換又は付加してなる前述のHLA−G2(以下、これを便宜上「変異型HLA−G2」という)のアミノ酸配列をコードする遺伝子を用いることもできる。また、収量増加の観点から、HLA−G2のアミノ酸配列をコードする遺伝子として、例えば配列番号2に示す塩基配列の第1〜18番目(HLA−G2のアミノ酸配列において1〜6番目のアミノ酸をコードする塩基配列に相当する)の塩基配列を、配列番号5に示す塩基配列で置換して得られる遺伝子(以下、「改変遺伝子」という)(配列番号6)を用いることもできる。 Here, as the gene encoding the amino acid sequence of the HLA-G2 multimer, in addition to the gene (SEQ ID NO: 2) encoding the amino acid sequence (SEQ ID NO: 1) of the link between the α1 domain and the α3 domain of HLA-G, It is also possible to use a gene encoding the amino acid sequence of the above-mentioned HLA-G2 (hereinafter, this is referred to as “mutant HLA-G2” for convenience) obtained by deleting, substituting or adding a part of the amino acid sequence of the conjugate. it can. Further, from the viewpoint of increasing yield, as a gene encoding the amino acid sequence of HLA-G2, for example, the 1st to 18th amino acids of the base sequence shown in SEQ ID NO: 2 (the 1st to 6th amino acids in the amino acid sequence of HLA-G2 are encoded. A gene (hereinafter referred to as "modified gene") (SEQ ID NO: 6) obtained by substituting the base sequence of (corresponding to the base sequence) with the base sequence shown in SEQ ID NO: 5 can also be used.

変異型HLA−G2多量体をコードする遺伝子は、α1−3連結体の遺伝子のDNA配列に変異を導入して調製すればよく、例えば、Molecular Cloning, A Laboratory Manual 2nd ed.,Cold Spring Harbor Laboratory Press (1989),Current Protocols in Molecular Biology,John Wiley & Sons(1987−1997)等に記載の部位特異的変異導入法に準じて調製することができる。具体的には、Kunkel法やGapped duplex法等の公知手法により、部位特異的突然変異導入法を利用した変異導入用キットを用いて調製することができる。当該キットとしては、例えば、QuickChangeTM Site−Directed Mutagenesis Kit(ストラタジーン社製)、GeneTailorTM Site−Directed Mutagenesis System(インビトロジェン社製)、TaKaRa Site−Directed Mutagenesis System(Mutan−K、Mutan−Super Express Km等:タカラバイオ社製)等が好ましく挙げられる。 The gene encoding the mutant HLA-G2 multimer may be prepared by introducing a mutation into the DNA sequence of the α1-3 conjugate gene. For example, Molecular Cloning, A Laboratory Manual 2nd ed. , Cold Spring Harbor Laboratory Press (1989), Cold Spring Harbor Laboratory, John Wiley & Sons (1987-1997), and the like. Specifically, it can be prepared using a mutation introduction kit utilizing a site-specific mutation introduction method by a known method such as the Kunkel method or the Gapped duplex method. Examples of the kit include QuickChangeTM Site-Directed Mutagesis Kit (manufactured by Stratagene), GeneTailorTM Site-Directed Mutagesys System (manufactured by Invitrogen), TakaRageSiteMuteMute-Mut (Manufactured by Takara Bio Inc.) and the like are preferably mentioned.

形質転換体の作成に使用される宿主は、導入された組換えベクター等からHLA−G2(α1−3連結体、変異型)を発現し得るものであれば、特に限定はされず、例えば、ヒトやマウス等の各種動物に由来する細胞、各種昆虫に由来する細胞、大腸菌などの原核細胞、酵母などの真核細胞、植物細胞等、宿主となりえる公知の細胞が使用できる。 The host used to prepare the transformant is not particularly limited as long as it can express HLA-G2 (α1-3 conjugate, variant) from the introduced recombinant vector or the like, and is not particularly limited, for example. Known cells that can serve as hosts can be used, such as cells derived from various animals such as humans and mice, cells derived from various insects, prokaryotic cells such as Escherichia coli, eukaryotic cells such as yeast, and plant cells.

組換えHLA−G2多量体の製造は、具体的には、上述の形質転換体を培養する工程と、得られる培養物から組換えHLA−G2多量体を採取する工程とを含む方法により行うことができる。ここで、「培養物」とは、培養上清、培養細胞、培養菌体、又は細胞若しくは菌体の破砕物のいずれをも意味するものである。上記形質転換体の培養は、宿主の培養に用いられる通常の方法に従って行うことができる。目的のタンパク質は、上記培養物中に蓄積される。 The production of the recombinant HLA-G2 multimer is specifically carried out by a method including a step of culturing the above-mentioned transformant and a step of collecting the recombinant HLA-G2 multimer from the obtained culture. Can be done. Here, the "culture" means any of a culture supernatant, cultured cells, cultured cells, or crushed cells or cells. Culturing of the transformant can be carried out according to the usual method used for culturing the host. The protein of interest is accumulated in the culture.

組換えHLA−G2多量体が細胞外に生産される場合は、培養液をそのまま使用するか、遠心分離やろ過等により細胞を除去する。その後、必要に応じて硫安沈澱による抽出等により、培養物中から組換えHLA−G2多量体を採取し、さらに必要に応じて透析、各種クロマトグラフィー(ゲルろ過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等)を用いて単離精製することができる。 When the recombinant HLA-G2 multimer is produced extracellularly, the culture solution is used as it is, or the cells are removed by centrifugation, filtration, or the like. Then, if necessary, the recombinant HLA-G2 multimer is collected from the culture by extraction with ammonium sulfate precipitation or the like, and if necessary, dialysis and various chromatographys (gel filtration, ion exchange chromatography, affinity chromatography) are performed. Etc.) can be used for isolation and purification.

組換えHLA−G2多量体が細胞内に生産される場合は、細胞を破砕することにより組換えHLA−G2多量体を採取することができる。可溶性画分にHLA−G2多量体が含まれる場合は、破砕後、遠心分離や濾過などにより、必要に応じて細胞の破砕残渣(細胞抽出液不溶性画分を含む)を除く。残渣除去後の上清は、細胞抽出液可溶性画分であり、粗精製したタンパク質溶液とすることができる。一方、不溶性画分に封入体としてHLA−G2多量体が発現する場合は、破砕後、遠心分離により不溶性画分を単離し、界面活性剤等を含んだバッファーで洗浄、遠心を繰り返すことにより、細胞の破砕残渣を取り除く。得られた封入体はグアニジンや尿素などの変性剤を含むバッファーで可溶化した後、希釈法や透析法を利用した蛋白質の巻き戻しを行う。機能的に巻き戻ったHLA−G2多量体の精製は各種クロマトグラフィー(ゲルろ過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等)を用いて単離精製することができる。 When the recombinant HLA-G2 multimer is produced intracellularly, the recombinant HLA-G2 multimer can be collected by disrupting the cell. When the soluble fraction contains an HLA-G2 multimer, after crushing, the crushed residue of cells (including the cell extract insoluble fraction) is removed by centrifugation or filtration as necessary. The supernatant after removing the residue is a cell extract-soluble fraction and can be a crudely purified protein solution. On the other hand, when the HLA-G2 multimer is expressed as an inclusion body in the insoluble fraction, the insoluble fraction is isolated by centrifugation after crushing, washed with a buffer containing a surfactant or the like, and centrifuged repeatedly. Remove cell disruption residues. The obtained inclusion bodies are solubilized in a buffer containing a denaturing agent such as guanidine or urea, and then the protein is rewound using a dilution method or a dialysis method. The functionally rewound HLA-G2 multimer can be purified by isolation using various types of chromatography (gel filtration, ion exchange chromatography, affinity chromatography, etc.).

また、組換えHLA−G2多量体の産生は、形質転換体を用いたタンパク質合成系のほか、生細胞を全く使用しない無細胞タンパク質合成系を用いて行うこともでき、産生された組換えHLA−G2多量体は、クロマトグラフィー等の手段を適宜選択して精製することができる。 In addition, the recombinant HLA-G2 multimer can be produced using a protein synthesis system using a transformant or a cell-free protein synthesis system that does not use live cells at all, and the produced recombinant HLA can be produced. The -G2 multimer can be purified by appropriately selecting a means such as chromatography.

HLA−G2多量体は、どのような方法で得られるものであってもよく、その取得方法に特に限定はされない。 The HLA-G2 multimer may be obtained by any method, and the acquisition method thereof is not particularly limited.

工程(B)は、工程(A)で得られた前記タンパク質の多量体を脱気処理した後、還元処理する工程である。 The step (B) is a step of degassing and then reducing the multimer of the protein obtained in the step (A).

工程(B)において、嫌気条件下でPEG化反応を進行させるために、脱気処理を行う。脱気処理は、例えば、アスピレーターを用いて1時間行ってもよい。脱気処理の前に、例えば、工程(A)で得られた前記タンパク質の多量体をPEG化バッファー(例えば、1×Phosphate−Bufferd Saline(PBS),5mM EDTA)への置換を行ってもよい。脱気処理の方法として、他の公知の方法を用いてもよい。 In step (B), degassing is performed to allow the PEGylation reaction to proceed under anaerobic conditions. The degassing treatment may be performed for 1 hour using, for example, an aspirator. Prior to the degassing treatment, for example, the multimer of the protein obtained in step (A) may be replaced with a PEGylated buffer (for example, 1 × Phosphate-Buffer Saline (PBS), 5 mM EDTA). .. Other known methods may be used as the degassing treatment method.

工程(B)において、還元剤は、還元処理によってジスルフィド結合を切断し、PEG化ターゲットとなる残基のチオール基を再度露出させ、反応効率を向上させるために、添加される。還元剤は、還元作用を有する任意の還元剤を用いることができ、例えば、マレイミドとシステインを用いた反応時に多用されるtris(2−carboxyethyl)phosphine(TCEP)を用いてもよい。還元剤としてTCEPを用いる場合、例えば、TCEPを終濃度0.1mM以上となるように加えてもよい In step (B), the reducing agent is added in order to cleave the disulfide bond by the reduction treatment, re-expose the thiol group of the residue to be PEGylated, and improve the reaction efficiency. As the reducing agent, any reducing agent having a reducing action can be used, and for example, tris (2-carboxythyl) phosphorine (TCEP), which is often used in a reaction using maleimide and cysteine, may be used. When TCEP is used as the reducing agent, for example, TCEP may be added so that the final concentration is 0.1 mM or more.

工程(C)は、工程(B)で還元処理された該タンパク質の多量体をPEG化修飾する工程である。 The step (C) is a step of PEGylating and modifying the multimer of the protein reduced in the step (B).

工程(C)において、具体的には、PEGの末端にマレイミド基、スクシンイミド基などの反応性官能基を有するPEG化試薬と本実施形態のタンパク質を溶液中で反応させることによりPEG化された改変タンパク質を得ることができる。使用されるPEG化試薬としては、例えば、システインのSH基とチオエーテル結合を形成する直鎖型メチルPEGn(nはPEGのリピート数)マレイミド、分岐型(メチル−PEGn)n−PEGnマレイミド等が挙げられる。PEG化修飾に用いるPEGの分子量は、例えば、5kDa〜100kDaであり、好ましくは5kDa〜40kDaである。PEG化試薬として、例えば、反応基としてマレイミド基を持ち、チオール基を認識して反応する高純度直鎖PEGであるME−400MA(MW:42,653Da)(PEG40)、ME−200MAOB(MW:20,841Da)(PEG20)、ME−100MA(MW:10,303Da)(PEG10)、ME−050MA(MW:5,393Da)(PEG5)(いずれも日油株式会社)等を用いることができる。 In step (C), specifically, a modification PEGylated by reacting a PEGylation reagent having a reactive functional group such as a maleimide group or a succinimide group at the end of PEG in a solution with the protein of the present embodiment. Protein can be obtained. Examples of the PEGylation reagent used include linear methyl PEGn (n is the number of PEG repeats) maleimide forming a thioether bond with the SH group of cysteine, branched (methyl-PEGn) n-PEGn maleimide, and the like. Be done. The molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, preferably 5 kDa to 40 kDa. As the PEGylation reagent, for example, ME-400MA (MW: 42,653Da) (PEG40), ME-200MAOB (MW:), which are high-purity linear PEGs having a maleimide group as a reactive group and recognizing and reacting with a thiol group. 20,841Da) (PEG20), ME-100MA (MW: 10,303Da) (PEG10), ME-050MA (MW: 5,393Da) (PEG5) (all of which are Nichiyu Co., Ltd.) and the like can be used.

工程(C)において、PEGが該タンパク質の多量体に対して過剰量となるように、例えば、PEG:タンパク質の多量体=5:1、10:1、20:1、30:1(モル比)等でPEG化試薬を混合してもよい。PEG化試薬を加え、例えば、4℃で一晩反応させることでPEG化修飾することができる。前述の通り、該タンパク質を構成するアミノ酸配列中の少なくとも1つのシステイン残基が、PEGでPEG化修飾される。 In step (C), for example, PEG: protein multimer = 5: 1, 10: 1, 20: 1, 30: 1 (molar ratio) so that PEG is in excess of the protein multimer. ) Etc. may be mixed with the PEGylation reagent. PEGylation modification can be performed by adding a PEGylation reagent and reacting at 4 ° C. overnight, for example. As described above, at least one cysteine residue in the amino acid sequence constituting the protein is PEGylated and modified with PEG.

PEG化修飾されたタンパク質は、例えば、ゲルろ過クロマトグラフィー(Size Exclusion Chromatography:SEC)による精製を行ってもよい。 The PEGylated modified protein may be purified by, for example, gel filtration chromatography (SEC).

次に、本実施形態による医薬品及び炎症性疾患の予防又は治療剤について詳細に説明する。 Next, a drug and a preventive or therapeutic agent for an inflammatory disease according to the present embodiment will be described in detail.

本実施形態による医薬品及び炎症性疾患の予防又は治療剤は、上述した改変タンパク質又はその塩を含む。 The pharmaceutical product and the prophylactic or therapeutic agent for an inflammatory disease according to the present embodiment include the above-mentioned modified protein or a salt thereof.

改変タンパク質の塩としては、生理学的に許容される酸(例、無機酸、有機酸)や塩基(例、アルカリ金属塩)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。 As the salt of the modified protein, a salt with a physiologically acceptable acid (eg, inorganic acid, organic acid) or base (eg, alkali metal salt) is used, and in particular, a physiologically acceptable acid addition salt is used. Is preferable. Examples of such salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid). Acids, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like are used.

本実施形態による炎症性疾患の予防又は治療剤は、前述の改変タンパク質又はその塩を含み、例えば、アトピー性皮膚炎、接触性皮膚炎、かぶれ、乾癬、尋常性天疱瘡等の炎症性疾患に対して予防又は治療効果を奏する。 The prophylactic or therapeutic agent for inflammatory diseases according to the present embodiment contains the above-mentioned modified protein or a salt thereof, and is used for inflammatory diseases such as atopic dermatitis, contact dermatitis, rash, psoriasis, and pemphigus vulgaris. On the other hand, it has a preventive or therapeutic effect.

本実施形態による医薬品は、前述の改変タンパク質又はその塩を含み、所望の医薬用途に用いられ、例えば、前述の炎症性疾患の予防又は治療剤等として用いられ得る。本実施形態による医薬品は、例えば、関節リウマチ、シェーグレン症候群、乾燥性角結膜炎及びそれによるドライアイ、リウマトイド結節、穿孔性強膜軟化症、上強膜及び強膜炎等の眼科疾患;間質性肺炎、閉塞性細気管支炎、胸膜炎、気胸、膿胸、気道病変、胸膜病変、リウマチ結節、血管病変及び睡眠時無呼吸症候群(顎関節病変、輪状披裂関節病変)等の呼吸器系の疾患;心外膜炎、症候性心外膜炎、慢性収縮性心膜炎、弁機能障害、塞栓症、伝導障害、心筋障害、大動脈炎、大動脈弁閉鎖不全及び動脈瘤破裂等の心臓系の疾患;慢性炎症によるAAアミロイドーシス、リウマトイド血管炎による虚血性腸炎等の消化管系疾患;関節リウマチに合併するシェーグレン症候群による間質性腎炎、間質性腎病変、蛋白尿、続発性アミロイドーシス、関節リウマチに合併するAAアミロイドーシスによる糸球体病変(膜性腎症)等の腎臓系疾患;頚椎変形による脊髄障害、腱滑膜炎による圧迫性神経障害、関節リウマチに合併する血管炎による多発性単神経炎などの神経系疾患;リウマトイド結節、皮膚血管炎(白血球破砕性血管炎)及び虚血性皮膚潰瘍等の皮膚科系の疾患;貧血(小球性低色素性貧血)、脾腫、白血球(好中球のみ)減少をきたしたフェルティー症候群等の血液系の疾患の予防又は治療剤として用いられ得る。また、本実施形態による医薬品は、例えば、膠原病の予防又は治療剤として用いられ得、膠原病には、例えば、全身性エリテマトーデス、全身性強皮症、多発性筋炎・皮膚筋炎、シェーグレン症候群、混合性結合組織病、抗リン脂質抗体症候群、ベーチェット病、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群)、成人スティル病、好酸球性筋膜炎、結節性動脈周囲炎(結節性多発動脈炎・顕微鏡的多発血管炎)、大動脈炎症候群(高安動脈炎)、ウェゲナー肉芽腫症、側頭動脈炎、悪性関節リウマチ等が含まれる。 The drug according to the present embodiment contains the above-mentioned modified protein or a salt thereof, and can be used for a desired pharmaceutical use, for example, as a preventive or therapeutic agent for the above-mentioned inflammatory disease. The drug according to this embodiment is, for example, an ophthalmic disease such as rheumatoid arthritis, Sjogren's syndrome, keratoconjunctivitis sicca and the resulting dry eye, rheumatoid nodule, amyloidosis perforation, amyloidosis and amyloidosis; interstitial. Respiratory disorders such as pneumonia, obstructive bronchitis, pleural inflammation, pneumococcal, pyorrhea, airway lesions, pleural lesions, rheumatoid nodules, vascular lesions and sleep amyloidosis (jaw joint lesions, cricoid arthritis lesions); Cardiac diseases such as epidermitis, symptomatic epicarditis, chronic contractile peritonitis, valve dysfunction, embolism, conduction disorders, myocardial disorders, aortitis, aortic valve insufficiency and aneurysm rupture; Gastrointestinal diseases such as AA amyloidosis due to inflammation and ischemic enteritis due to rheumatoid vasculitis; interstitial nephritis due to Sjogren's syndrome associated with rheumatoid arthritis, interstitial renal lesions, proteinuria, secondary amyloidosis, and rheumatoid arthritis Kidney diseases such as glomerular lesions (membranous nephropathy) due to AA amyloidosis; spinal cord disorders due to cervical spinal deformity, compressive neuropathy due to rheumatoid arthritis, and multiple mononeuritis due to vasculitis associated with rheumatoid arthritis System diseases; dermatological diseases such as rheumatoid nodules, cutaneous vasculitis (leukocyte crushing vasculitis) and ischemic skin ulcers; anemia (microcytic hypopigmentation anemia), splenoma, leukocyte (neutrophil only) decrease It can be used as a prophylactic or therapeutic agent for blood system diseases such as Felty's syndrome. Further, the drug according to the present embodiment can be used, for example, as a preventive or therapeutic agent for collagen disease, and the collagen disease includes, for example, systemic lupus erythematosus, systemic granulomatosis, polyarteritis nodosa / dermatomyositis, Schegren's syndrome, etc. Mixed binding tissue disease, antiphospholipid antibody syndrome, Bechet's disease, allergic granulomatous vasculitis (Charg-Strauss syndrome), adult Still's disease, eosinophilic myositis, polyarteritis nodosa (polyarteritis nodosa) Includes arteritis / microscopic polyarteritis), aortitis syndrome (Takayasu's arteritis), Wegener's granulomatosis, temporal arteritis, malignant rheumatoid arthritis, etc.

本実施形態による医薬品及び炎症性疾患の予防又は治療剤の投与方法は、経口投与、局所投与、静脈内投与、腹腔内投与、皮内投与、舌下投与等、適宜選択され得る。投与剤型も任意であってよく、例えば、錠剤、顆粒剤、散剤、カプセル剤等の経口用固形製剤、内服液剤、シロップ剤等の経口用液体製剤、注射剤などの非経口用液体製剤等に適宜調製することができる。また、適切なドラッグデリバリーシステム(DDS)を用いてもよい。 The method for administering the drug and the prophylactic or therapeutic agent for the inflammatory disease according to the present embodiment can be appropriately selected from oral administration, local administration, intravenous administration, intraperitoneal administration, intradermal administration, sublingual administration and the like. The dosage form may be arbitrary, for example, oral solid preparations such as tablets, granules, powders and capsules, oral liquid preparations such as oral liquids and syrups, parenteral liquid preparations such as injections and the like. Can be appropriately prepared. Alternatively, a suitable drug delivery system (DDS) may be used.

以上説明したように、保存安定性及び生体内での安定性が高く、疾患に対する予防又は治療効果の高い改変タンパク質、医薬品、炎症性疾患の予防又は治療剤及び改変タンパク質の製法方法を提供することができる。 As described above, to provide a modified protein, a drug, a prophylactic or therapeutic agent for an inflammatory disease, and a method for producing a modified protein, which are highly stable in storage and in vivo and have a high preventive or therapeutic effect on diseases. Can be done.

以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(HLA−G2部位特異的PEG化の条件検討)
PEG化のターゲットタンパク質となるHLA−G2タンパク質と、今回用いるPEG試薬の修飾部位となる42番目のフリーのシステイン残基(Cys42)をセリン残基に置換した変異体タンパク質(HLA−G2C42S)と、を作製し、これらのタンパク質のPEG化進行を比較することで、Cys42残基に対して部位特異的にPEG化が進行するかを確認した。PEG化部位検討用の変異体タンパク質及び、PEG化HLA−G2タンパク質の受容体に対する結合能を評価するために、C末端のbirAタグ特異的ビオチン化標識可能なLILRB2birAタンパク質を調製し、結合解析を行った。
(Example 1)
(Examination of conditions for HLA-G2 site-specific PEGylation)
The HLA-G2 protein, which is the target protein for PEGylation, and the mutant protein (HLA-G2C42S), in which the 42nd free cysteine residue (Cys42), which is the modification site of the PEG reagent used this time, is replaced with a serine residue. And by comparing the PEGylation progress of these proteins, it was confirmed whether the PEGylation progressed site-specifically with respect to the Cys42 residue. In order to evaluate the binding ability of the PEGylated HLA-G2 protein to the receptor and the mutant protein for PEGylation site examination, a C-terminal virA tag-specific biotinylated labelable LILRB2 virA protein was prepared and binding analysis was performed. went.

(各種組換えタンパク質の調製)
検討に先立ち、以下の通り、各種組換えタンパク質を以下の通り調製及び精製した。
(Preparation of various recombinant proteins)
Prior to the study, various recombinant proteins were prepared and purified as follows.

(HLA−G2組換えタンパク質発現プラスミド)
シグナル配列を除去し、N末端に翻訳開始コドンであるメチオニン残基を付加したHLA−G2(WT)の細胞外領域(Gly1−Trp182)を大腸菌発現用ベクターpGM7に組み込み、さらに発現量増強のためN末端近傍5残基分の塩基配列を同義置換した、当研究室保有の発現用プラスミド(HLA−G2−pGMT7)を用いた(図11(a)、塩基配列:配列番号7、アミノ酸配列:配列番号8)。
(HLA-G2 recombinant protein expression plasmid)
The extracellular region (Gly1-Trp182) of HLA-G2 (WT) with the signal sequence removed and the methionine residue, which is the translation initiation codon, added to the N-terminal was incorporated into the Escherichia coli expression vector pGM7 to further enhance the expression level. An expression plasmid (HLA-G2-pGMT7) possessed by our laboratory in which the base sequences of 5 residues near the N-terminal were synonymously substituted was used (FIG. 11 (a), base sequence: SEQ ID NO: 7, amino acid sequence: SEQ ID NO: 8).

(HLA−G2組換えタンパク質変異体発現プラスミド)
PEG化試薬がHLA−G2が保有するフリーのシステイン残基(Cys42残基)に対して部位特異的に反応することを確認するため、42番目のシステインをセリンに置換した、当研究保有のHLA−G2C42S−pGMT7プラスミドを用いた(図11(b)、塩基配列:配列番号9、アミノ酸配列:配列番号10)。HLA−G2C42S組換えタンパク質がHLA−G2と同様の分子構造、受容体結合能を維持していることは当研究室にて確認している。
(HLA-G2 recombinant protein mutant expression plasmid)
In order to confirm that the PEGylation reagent reacts site-specifically with the free cysteine residue (Cys42 residue) possessed by HLA-G2, the 42nd cysteine was replaced with serine. -G2C42S-pGMT7 plasmid was used (FIG. 11 (b), base sequence: SEQ ID NO: 9, amino acid sequence: SEQ ID NO: 10). It has been confirmed in our laboratory that the HLA-G2C42S recombinant protein maintains the same molecular structure and receptor binding ability as HLA-G2.

さらに、システイン残基を標的としたPEG修飾部位検討のためのシステイン変異体も作製した。HLA−G2が有するフリーのシステインが1か所になるように、HLA−G2C42S−pGMT7プラスミドに新たなシステイン変異を導入した。作製した変異体発現プラスミドは、以下の2つである。
(1)HLA−Gの糖鎖修飾部位である86番目のアスパラギンをシステインに置換したコンストラクト(HLA−G2N86C−pGMT7)(図11(c)、塩基配列:配列番号11、アミノ酸配列:配列番号12)
(2)C末端にシステインを付加したコンストラクト(HLA−G2CTER−pGMT7)(図11(d)、塩基配列:配列番号13、アミノ酸配列:配列番号14)
In addition, a cysteine variant was also prepared for studying PEG modification sites targeting cysteine residues. A new cysteine mutation was introduced into the HLA-G2C42S-pGMT7 plasmid so that the HLA-G2 had one free cysteine. The prepared mutant expression plasmids are the following two.
(1) A construct (HLA-G2N86C-pGMT7) in which the 86th asparagine, which is the sugar chain modification site of HLA-G, is replaced with cysteine (FIG. 11 (c), base sequence: SEQ ID NO: 11, amino acid sequence: SEQ ID NO: 12). )
(2) A construct (HLA-G2CTER-pGMT7) in which cysteine is added to the C-terminal (FIG. 11 (d), base sequence: SEQ ID NO: 13, amino acid sequence: SEQ ID NO: 14).

上記2種のプラスミドは、制限酵素DpnIを用いた変異導入法により作製した。具体的には、HLA−G2C42S−pGMT7をテンプレートとしてDNA合成酵素KOD Plus(TOYOBO)と、以下のプライマーを用いたPCR反応により、それぞれの変異を導入した。
・変異体作製に用いたプライマー
(1)HLA−G2−N86C
N86C_F:5’−CGCGGCTACTACTGCCAGAGCGAGGCC−3’ (配列番号21)
N86C_R:5’−GCGCCGATGATGACGGTCTCGCTCCGG−3’ (配列番号22)
(2)HLA−G2−CTER
CTER_F:5’−TGGAAGCAGTGCGGTTAAAAGCTTGAA−3’ (配列番号23)
CTER_R:5’−ACCTTCGTCACGCCAATTTTCGAACTT−3’ (配列番号24)
The above two types of plasmids were prepared by a mutation introduction method using a restriction enzyme DpnI. Specifically, each mutation was introduced by PCR reaction using DNA synthase KOD Plus (TOYOBO) and the following primers using HLA-G2C42S-pGMT7 as a template.
-Primers used for mutant production (1) HLA-G2-N86C
N86C_F: 5'-CGCGGCTACTACTGCCAGAGCGGCC-3'(SEQ ID NO: 21)
N86C_R: 5'-GCCGCCGATAGATGACGGTCCGCTCCGG-3'(SEQ ID NO: 22)
(2) HLA-G2-CTER
CTER_F: 5'-TGGAAGCAGTGCGGGTTAAAAGCTTGAA-3'(SEQ ID NO: 23)
CTER_R: 5'-ACCTTCCGTCACGCCAAATTTCGAACTT-3'(SEQ ID NO: 24)

PCR反応は、Veriti(登録商標)サーマルサイクラー(Applied Biosystems)を使用し、94℃で2分熱変性させた後、98℃で10秒熱変性、60℃で30秒アニーリング、68℃で4分の伸長反応のサイクルを20回繰り返した。反応後、DpnI酵素(TOYOBO)1μLを加え、37℃で1時間インキュベートした。 The PCR reaction was performed using a Veriti® thermal cycler (Applied Biosystems) at 94 ° C for 2 minutes, then heat denaturation at 98 ° C for 10 seconds, 60 ° C for 30 seconds annealing, and 68 ° C for 4 minutes. The cycle of the extension reaction was repeated 20 times. After the reaction, 1 μL of DpnI enzyme (TOYOBO) was added, and the mixture was incubated at 37 ° C. for 1 hour.

得られた変異プラスミドについて、シークエンス法を用いて配列を確認した。具体的には、各プラスミド0.5μLを大腸菌DH5αコンピテントセル100μLに加え、氷上に約30分静置した後、42℃で45秒間インキュベートして形質転換した。形質転換後の大腸菌を、100μg/mLのアンピシリン含有Luria−Bertani(LB)寒天培地に播種後、37℃で一晩培養した。得られたシングルコロニーを、100μg/mLアンピシリン含有2×Yeast−tryptone(YT)培地(5mL)に植菌し、37℃、150rpmの条件で一晩振盪培養した。培養菌液全量を遠心分離し(13,200rpm、4℃、1分間)、得られた大腸菌のペレットからプラスミド精製キット(QIAprep(登録商標)Spin Miniprep kit(250)、QIAGEN)を用いてプラスミドDNAを精製した。精製したプラスミドを、Big Dye(登録商標)Terminator v3.1 Cycle Sequencing kit(Applied Biosystems)、T7 promotor又はT7 terminatorユニバーサルプライマーを用いて、Veriti(登録商標)サーマルサイクラーを使用し、96℃で1分熱変性させた後、96℃で10秒熱変性、50℃で5秒アニーリング、60℃で4分の伸長反応を30回繰り返すことによってシークエンス反応を行った。シークエンス反応液をエタノール沈殿し、Hi−DiTM formamide(Applied Biosystems)を20μL加え、95℃で2分間インキュベートした後、シークエンサー3130 Genetic Analyzer (Applied Biosystems)で解析した。 The sequences of the obtained mutant plasmids were confirmed using the sequencing method. Specifically, 0.5 μL of each plasmid was added to 100 μL of Escherichia coli DH5α competent cells, allowed to stand on ice for about 30 minutes, and then incubated at 42 ° C. for 45 seconds for transformation. The transformed Escherichia coli was inoculated on 100 μg / mL ampicillin-containing Luria-Bertani (LB) agar medium and then cultured overnight at 37 ° C. The obtained single colony was inoculated into 2 × Yeast-tryptone (YT) medium (5 mL) containing 100 μg / mL ampicillin, and cultured with shaking at 37 ° C. and 150 rpm overnight. Centrifugate the entire amount of the cultured bacterial solution (13,200 rpm, 4 ° C., 1 minute), and use a plasmid purification kit (QIAprep® Spin Miniprep kit (250), QIAGEN) from the obtained E. coli pellets to obtain plasmid DNA. Was purified. Purified plasmids were used on a Big Dye® Terminator v3.1 Cycle Sequencing kit (Applied Biosystems), T7 promotor or T7 Terminator universal primer, 1 min at Veriti® thermal cycler, and 96% at Veriti® thermal cycler. After heat denaturation, a sequence reaction was carried out by repeating heat denaturation at 96 ° C. for 10 seconds, annealing at 50 ° C. for 5 seconds, and extension reaction at 60 ° C. for 4 minutes 30 times. The sequence reaction solution was precipitated with ethanol, 20 μL of Hi-DiTM formamide (Applied Biosystems) was added, and the mixture was incubated at 95 ° C. for 2 minutes and then analyzed with a sequencer 3130 Genetic Analyzer (Applied Biosystems).

(HLA−G1組換えタンパク質発現プラスミド)
HLA−G1単量体調製には、シグナル配列を除去し、N末端に翻訳開始コドンであるメチオニン残基を付加し、HLA−G1の42番目のシステインをセリンに置換した細胞外発現領域(Gly1−Gln276)をpGM7ベクターに組み込んだ当研究室保有の大腸菌発現用プラスミド(HLA−G1C42S−pGMT7)を用いた(図11(e)、塩基配列:配列番号15、アミノ酸配列:配列番号16)。
(HLA-G1 recombinant protein expression plasmid)
To prepare the HLA-G1 monomer, the signal sequence was removed, a methionine residue, which is a translation initiation codon, was added to the N-terminal, and the 42nd cysteine of HLA-G1 was replaced with serine in an extracellular expression region (Gly1). An Escherichia coli expression plasmid (HLA-G1C42S-pGMT7) possessed by our laboratory in which −Gln276) was incorporated into a pGM7 vector was used (FIG. 11 (e), nucleotide sequence: SEQ ID NO: 15, amino acid sequence: SEQ ID NO: 16).

(β2m組換えタンパク質発現プラスミド)
シグナル配列を除き、N末端に翻訳開始コドンであるメチオニン残基を付加したIg−likeドメイン部分(Ile1−Met99)をpGMT7ベクターに組み込んだ当研究室保有の大腸菌発現用プラスミド(β2m−pGM7)を使用した(図11(f)、塩基配列:配列番号17、アミノ酸配列:配列番号18)。
(Β2m recombinant protein expression plasmid)
An Escherichia coli expression plasmid (β2m-pGM7) possessed by our laboratory in which the Ig-like domain moiety (Ile1-Met99) having a methionine residue, which is a translation initiation codon, added to the N-terminal, excluding the signal sequence, was incorporated into the pGMT7 vector was used. It was used (FIG. 11 (f), base sequence: SEQ ID NO: 17, amino acid sequence: SEQ ID NO: 18).

(LILRB2birA組換えタンパク質発現プラスミド)
シグナル配列を除去し、開始コドンであるメチオニンを付加したLILRB2のリガンド結合に関与する細胞外領域N末端側の2つのIg−likeドメイン(Gry1−Pro197)をpGM7ベクターに組み込み、さらにC末端に17アミノ酸残基からなるビオチン化酵素認識配列(GSLHHILDAQKMVWNHR(配列番号25))を付加した、当研究室保有の大腸菌発現用プラスミド(LILRB2birA−pGM7)を使用した(Shiroishi,M.,Tsumoto,K.,Amano,K.,Shirakihara,Y.,Colonna,M.,Braud,V.M.,Allan,D.S.J.,Makadzange,A.,Rowland−Jones,S.,Willcox,B.,Jones,E.Y.,van der Merwe,P.A.,Kumagai,I.,and Maenaka,K.(2003)Human inhibitory receptors Ig−like transcript 2(ILT2)and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA−G.Proc.Natl.Acad.Sci.U.S.A.100,8856−61)(図11(g)、塩基配列:配列番号19、アミノ酸配列:配列番号20)。
(LILRB2virA recombinant protein expression plasmid)
Two Ig-like domains (Gry1-Pro197) on the N-terminal side of the extracellular region involved in ligand binding of LILRB2 with the start codon methionine added by removing the signal sequence were integrated into the pGM7 vector, and 17 at the C-terminal. A plasmid for expressing Escherichia coli (LILRB2virA-pGM7) possessed by our laboratory to which a biotinylated enzyme recognition sequence consisting of amino acid residues (GSLHHILDAQKMVWNHR (SEQ ID NO: 25)) was added was used (Shiroishi, M., Tsumoto, K., Amano, K., Shirakihara, Y., Colonna, M., Brand, VM, Allan, DSJ, Makadzage, A., Rowland-Jones, S., Willcox, B., Jones, EY, van der Merwe, PA, Kumagai, I., and Maenaka, K. (2003) Human inhibitory acceptor's Ig-like transcript 2 (ILT2) and ILT4 index Premierly to HLA-G. Proc. Natl. Acad. Sci. USA 100, 8856-61) (FIG. 11 (g), base sequence: SEQ ID NO: 19, amino acid sequence: SEQ ID NO: 20).

(大腸菌発現系を用いた各種組換えタンパク質の封入体調製)
本研究で用いた組換えタンパク質はすべて大腸菌を用いて封入体として発現させた。HLA−G1、β2m、LILRB2birA組換えタンパク質は、前述の各種プラスミドを用いて、大腸菌BL21(DE3)pLysS株(Novagen)を形質転換することにより封入体として発現させた。また、HLA−G2、HLA−G2変異体(HLA−G2C42S、HLA−G2N86C、HLA−G2CTER)組換えタンパク質は、それぞれのプラスミドを用いて大腸菌ClearColi(登録商標)BL21(DE3)competent cell(ClearColi(登録商標)BL21(DE3)competent cell(Lucigen)を当研究室にてchemical competent cellに作り替えたもの)を形質転換することにより封入体として発現させた。具体的には、形質転換後、100μg/mLアンピシリン含有LB寒天培地に播種後、37℃で一晩培養した。得られたコロニーを100μg/mLアンピシリン含有2×YT培地(10mL)に植菌し、37℃一晩振盪培養した。100μg/mL アンピシリンを含む2×YT培地1Lに前培養した10mLの菌液を植菌し、37℃で振盪培養した。対数増殖前期であるOptical Density(OD)600=0.6に達したところで、Isopropyl β−D−1−thiogalactopyranoside(IPTG)を終濃度1mMとなるように加えて組換えタンパク質 の発現を誘導し、その後INNOVA(エッペンドルフ)で150rpm、37℃で5時間振盪培養した。培養後の菌液を遠心分離(5000rpm、4℃、10分間)して得た菌体を懸濁バッファー(50 mM Tris hydroxymethyl aminomethane[Tris]−HCl pH8.0,150mM NaCl)で懸濁し、氷上で超音波破砕を行った。破砕後、8000rpm、4℃で5分間遠心し、得られた沈殿を封入体として、さらに洗浄バッファー(50mM Tris−HCl pH8.0,150 mM NaCl,0.5% Triton X−100)で懸濁、8000rpm、4℃で5分間遠心する洗浄操作を4回繰り返した。その後、封入体から界面活性剤であるTriton X−100を除去するために、懸濁バッファーを用いて同様の操作を4回繰り返し、封入体を得た。得られた封入体は可溶化バッファー(50mM Tris−HCl pH8.0,100 mM NaCl,6M guanidine−HCl,10mM Etylenediamine−N,N,N’,N’,−tetraacetic acid[EDTA])で一晩4℃静置することによって、完全に溶解させた。可溶化後、5000×g、4℃で5分間遠心して得られた上清を封入体として−80℃で保存した。タンパク質発現誘導以降の遠心操作はすべてユニバーサル冷却遠心機を用いて行った(KUBOTA)。
(Preparation of inclusions of various recombinant proteins using E. coli expression system)
All recombinant proteins used in this study were expressed as inclusion bodies using Escherichia coli. The HLA-G1, β2m, and LILRB2virA recombinant proteins were expressed as inclusion bodies by transforming Escherichia coli BL21 (DE3) pLysS strain (Novagen) with the various plasmids described above. In addition, HLA-G2 and HLA-G2 mutants (HLA-G2C42S, HLA-G2N86C, HLA-G2CTER) recombinant proteins were prepared using their respective plasmids for Escherichia coli ClearColi® BL21 (DE3) competent cell (ClearColi). The registered trademark) BL21 (DE3) competent cell (Lucien) was transformed into a chemic competent cell in our laboratory) and expressed as an enclosure. Specifically, after transformation, the cells were seeded on LB agar medium containing 100 μg / mL ampicillin and then cultured overnight at 37 ° C. The obtained colonies were inoculated into 2 × YT medium (10 mL) containing 100 μg / mL ampicillin and cultured with shaking at 37 ° C. overnight. 10 mL of pre-cultured bacterial solution was inoculated into 1 L of 2 × YT medium containing 100 μg / mL ampicillin, and cultured with shaking at 37 ° C. When the Exponential Density (OD) 600 = 0.6, which is the early stage of logarithmic growth, was reached, Isopropanol β-D-1-thiogalactopylanoside (IPTG) was added to a final concentration of 1 mM to induce the expression of the recombinant protein. Then, it was cultured with shaking in INNOVA (Eppendorf) at 150 rpm and 37 ° C. for 5 hours. The bacterial solution obtained by centrifuging the cultured bacterial solution (5000 rpm, 4 ° C., 10 minutes) was suspended in a suspension buffer (50 mM Tris hydroxymethyl aminomethane [Tris] -HCl pH 8.0, 150 mM NaCl) and placed on ice. Ultrasonic crushing was performed in. After crushing, centrifuge at 8000 rpm at 4 ° C. for 5 minutes, and suspend the obtained precipitate as an inclusion body in a washing buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% Triton X-100). The washing operation of centrifuging at 8000 rpm and 4 ° C. for 5 minutes was repeated 4 times. Then, in order to remove the surfactant Triton X-100 from the inclusion body, the same operation was repeated 4 times using a suspension buffer to obtain an inclusion body. The resulting inclusions were placed overnight in solubilization buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 6 M guanidine-HCl, 10 mM Ethylenediamine-N, N, N', N', -tellaacetic acid [EDTA]). It was completely dissolved by allowing it to stand at 4 ° C. After solubilization, the supernatant obtained by centrifuging at 5000 × g at 4 ° C. for 5 minutes was stored as an inclusion body at −80 ° C. All centrifugation operations after protein expression induction were performed using a universal cooling centrifuge (KUBOTA).

(巻き戻し法による組換えタンパク質の調製)
HLA−G2、HLA−G2変異体(HLA−G2C42S、HLA−G2N86C、HLA−G2CTER)、HLA−G1及びLILRB2birA組換えタンパク質は、大腸菌封入体の希釈法による巻き戻しにより調製した。希釈時の最終濃度が1〜2μM程度になるように、HLA−G2(8mg)、HLA−G2変異体(8mg)、LILRB2birA(4mg)の各可溶化済み封入体にDithiothreitol(DTT)を終濃度10mMとなるように加え、室温で1時間インキュベートした。DTTによる還元処理した封入体変性溶液に、タンパク質の凝集抑制効果を持つアルギニンを含むリフォールディングバッファー(0.1M Tris−HCl pH8.0,1M L−arginine−HCl,2mM EDTA,3.73mM cystamine,6.73mM cysteamine)を1滴ずつグアニジン濃度が1.5M(ジスルフィド結合を組んで、2次構造を取ると考えられている濃度)になるまで加えた。さらに、その希釈溶液を200mLのリフォールディングバッファーに1滴ずつ加えることによってさらに希釈し、4℃で72時間攪拌した。
(Preparation of recombinant protein by rewinding method)
HLA-G2, HLA-G2 mutants (HLA-G2C42S, HLA-G2N86C, HLA-G2CTER), HLA-G1 and LILRB2virA recombinant proteins were prepared by rewinding by dilution of E. coli inclusion bodies. The final concentration of Dithiothreitol (DTT) in each solubilized inclusion body of HLA-G2 (8 mg), HLA-G2 mutant (8 mg), and LILRB2virA (4 mg) so that the final concentration at the time of dilution is about 1 to 2 μM. It was added to 10 mM and incubated for 1 hour at room temperature. Refolding buffer (0.1M Tris-HCl pH 8.0, 1M L-arginine-HCl, 2 mM EDTA, 3.73 mM cystamine,) containing arginine, which has an inhibitory effect on protein aggregation, in the inclusion denaturing solution reduced by DTT. 6.73 mM cystamine) was added drop by drop until the guanidine concentration reached 1.5 M (a concentration believed to form a disulfide bond and form a secondary structure). Further, the diluted solution was further diluted by adding drop by drop to 200 mL of refolding buffer, and the mixture was stirred at 4 ° C. for 72 hours.

HLA−G1組換えタンパク質は、HLA−G1重鎖、β2m、ペプチドのヘテロ三量体として巻き戻す必要がある。巻き戻りやすく、単体として安定なユニットから順に巻き戻して複合体として得るために、β2m封入体(4mg)を上記方法と同様に希釈し、4℃で4〜6時間攪拌した。続いて、完全に溶解したHLA−G1結合合成ペプチド(RIIPRHLQL)0.2 mg/0.2mL DMSOをβ2mリフォールディング溶液にゆっくり滴下し、さらに4℃で1〜2時間攪拌した。最後に、HLA−G1封入体(4mg)を、β2mとペプチドを含むリフォールディング溶液を用いて上記と同様の方法で希釈し、4℃で72時間攪拌した。 The HLA-G1 recombinant protein needs to be rewound as a heterotrimer of the HLA-G1 heavy chain, β2m, peptide. The β2m inclusion body (4 mg) was diluted in the same manner as in the above method and stirred at 4 ° C. for 4 to 6 hours in order to rewind in order from a unit that is easy to rewind and is stable as a simple substance to obtain a complex. Subsequently, 0.2 mg / 0.2 mL DMSO of completely dissolved HLA-G1 binding synthetic peptide (RIIPRHLQL) was slowly added dropwise to the β2 m refolding solution, and the mixture was further stirred at 4 ° C. for 1 to 2 hours. Finally, the HLA-G1 inclusion body (4 mg) was diluted with a refolding solution containing β2 m and a peptide in the same manner as described above, and stirred at 4 ° C. for 72 hours.

(巻き戻した組換えタンパク質の精製)
希釈法により巻き戻した各組換えタンパク質は、希釈により容量が増えるため、VIVAFLOW system(MWCO:10000Da、Sartorius)を用いた限外ろ過法、必要に応じてその後Amicon Ultra(MWCO:10000 Da、Merk Millipore)を用いた限外ろ過法を行ったのちに、Millex−GV(0.22μm、PVDF、Merk Millipore)フィルタを用いて、凝集体などの微粒子を取り除き、ゲルろ過クロマトグラフィー(Size Exclusion Chromatography:SEC)による精製を行った。SECは、AKTApurifierもしくはAKTApureシステム(いずれもGE Healthcare)を用い、ランニングバッファーとして20mM Tris−HCl pH8.0,100mM NaClを使用した。
(Purification of rewound recombinant protein)
Since the volume of each recombinant protein rewound by the dilution method increases due to dilution, an ultrafiltration method using a VIVAFLOW system (MWCO: 10000 Da, Sartorius) is performed, and if necessary, then Amicon Ultra (MWCO: 10000 Da, Merk). After performing an ultrafiltration method using Millipore), fine particles such as aggregates are removed using a Millex-GV (0.22 μm, PVDF, Merck Millipore) filter, and gel filtration chromatography (Size Expression Chromatography): Purification by SEC) was performed. For SEC, an AKTA purifier or AKTA pure system (both GE Healthcare) was used, and 20 mM Tris-HCl pH 8.0, 100 mM NaCl was used as a running buffer.

具体的には、HLA−G2、HLA−G2変異体(HLA−G2C42S、HLA−G2N86C、HLA−G2CTER)、HLA−G1組換えタンパク質は、VIVAFLOW systemで15mL以下まで濃縮した後、フィルタ処理を行い、Hiload 26/60 Superdex75 pg(GE Healthcare)カラムを用いて精製した。さらに、HLA−G1タンパク質については、二次精製としてイオン交換クロマトグラフィー(Ion Exchange Chromatography: IEX)を行った。SECで得られた目的のピークフラクションをAmicon Ultra(MWCO:10000 Da、Merk Millipore)を使用して5mL以下まで濃縮した後、透析法を用いて20mM Tris−HCl pH8.0に置換した。フィルタ処理後、Resource Q 1mL(GE Healthcare)カラムに注入した。IEXは、20mM Tris−HCl pH8.0,0−0.5M NaCl/20 Column volume(CV)の条件で行った。 Specifically, HLA-G2, HLA-G2 mutants (HLA-G2C42S, HLA-G2N86C, HLA-G2CTER), and HLA-G1 recombinant protein are concentrated to 15 mL or less in the VIVAFLOW system and then filtered. , Hiload 26/60 Superdex75 pg (GE Healthcare) column was used for purification. Furthermore, for the HLA-G1 protein, ion exchange chromatography (IEX) was performed as a secondary purification. The desired peak fraction obtained by SEC was concentrated to 5 mL or less using Amicon Ultra (MWCO: 10000 Da, Merck Millipore) and then replaced with 20 mM Tris-HCl pH 8.0 using dialysis. After filtering, it was injected into a Resource Q 1 mL (GE Healthcare) column. IEX was performed under the condition of 20 mM Tris-HCl pH 8.0, 0-0.5 M NaCl / 20 Volume volume (CV).

LILRB2birA組換えタンパク質はVIVAFLOW system及びAmicon Ultraを用いて0.5mL以下まで濃縮した後、フィルタ処理を行ない、Superdex75 10/300 GL(GE Healthcare)カラムで精製した。ランニングバッファーは20mM Tris−HCl pH8.0,200mM NaClを使用した。 The LILRB2virA recombinant protein was concentrated to 0.5 mL or less using the VIVAFLOW system and Amicon Ultra, filtered, and purified on a Superdex75 10/300 GL (GE Healthcare) column. As the running buffer, 20 mM Tris-HCl pH 8.0, 200 mM NaCl was used.

(ビオチン化LILRB2の調製)
SEC法により精製したLILRB2birAを、体積比でLILRB2birA:5×BiomixA buffer(0.25M bicine buffer pH8.3):5×BiomixB buffer(50mM Adenosine triphosphate[ATP],50mM MgOAc,250μM d−biotin)=3:1:1になるように混合して、BirA酵素1μL(当研究室で調製したもの)を加え、30℃で1時間インキュベートした。その後未反応のビオチンを取り除くために、Superdex 75 10/300 GL(GE Healthcare)カラムでSEC精製を行った。ランニングバッファーは20mM Tris−HCl pH8.0,400mM NaClを用いた。
(Preparation of biotinylated LILRB2)
LILRB2virA purified by the SEC method, by volume ratio, LILRB2virA: 5 × BiomixA buffer (0.25M bicine buffer pH 8.3): 5 × BiomixB buffer (50 mM Biotin Atembito The mixture was mixed at a ratio of 1: 1, and 1 μL of BirA enzyme (prepared in our laboratory) was added, and the mixture was incubated at 30 ° C. for 1 hour. Then, in order to remove unreacted biotin, SEC purification was performed on a Superdex 75 10/300 GL (GE Healthcare) column. As the running buffer, 20 mM Tris-HCl pH 8.0, 400 mM NaCl was used.

上記の通り調製したHLA−G2タンパク質をSEC精製した結果、これまでの知見と一致して、目的の分子量(HLA−G2:22kDa)の約2倍の分子量(44kDa)相当の位置に溶出ピークが得られた(図2(a))。 As a result of SEC purification of the HLA-G2 protein prepared as described above, an elution peak was found at a position corresponding to a molecular weight (44 kDa) approximately twice the target molecular weight (HLA-G2: 22 kDa), in agreement with the findings so far. It was obtained (Fig. 2 (a)).

(HLA−G2のCys42残基特異的なPEG化反応)
上記の通り調製したHLA−G2タンパク質を用いて、PEG化反応を試みた。PEG化試薬は、高純度直鎖PEGであるME−400MA(MW:42,653Da)(PEG40)、ME−200MAOB(MW:20,841Da)(PEG20)、ME−100MA(MW:10,303Da)(PEG10)、ME−050MA(MW:5,393Da)(PEG5)(いずれも日油株式会社)を用いた。これらの試薬は反応基としてマレイミド基を持ち、チオール基を認識して反応する。
(Cys42 residue-specific PEGylation reaction of HLA-G2)
A PEGylation reaction was attempted using the HLA-G2 protein prepared as described above. The PEGylation reagents are ME-400MA (MW: 42,653Da) (PEG40), ME-200MAOB (MW: 20,841Da) (PEG20), ME-100MA (MW: 10,303Da), which are high-purity linear PEGs. (PEG10) and ME-050MA (MW: 5,393 Da) (PEG5) (both from NOF CORPORATION) were used. These reagents have a maleimide group as a reaction group and react by recognizing a thiol group.

(還元剤)
PEG化反応前に、還元処理によってジスルフィド結合を切断し、PEG化ターゲットとなるCys42残基のチオール基を再度露出させ、反応効率を向上させるために、還元剤を添加した。
(Reducing agent)
Prior to the PEGylation reaction, the disulfide bond was cleaved by a reduction treatment to re-expose the thiol group of the Cys42 residue to be the PEGylation target, and a reducing agent was added to improve the reaction efficiency.

精製したHLA−G2タンパク質について、Amicon Ultra(MWCO:10000Da、Merk Millipore)を用いた限外ろ過による濃縮、及びPEG化バッファー(1×Phosphate−Bufferd Saline(PBS), 5mM EDTA)への置換を行い0.5mLに調製した溶液を、嫌気条件下でPEG化反応を進行させるために、アスピレーターを用いて1時間脱気処理を行った。続いて、還元剤tris(2−carboxyethyl)phosphine(TCEP)を終濃度0.1、0.5、1、5、10mMとなるように加えたあと、PEG20を加え、4℃で一晩反応させた。還元剤として、無臭で使いやすく、マレイミドとシステインを用いた反応時に多用されるtris(2−carboxyethyl)phosphine(TCEP)を用いた。 The purified HLA-G2 protein was concentrated by ultrafiltration using an Amazon Ultra (MWCO: 10000 Da, Merck Millipore) and replaced with a PEGylated buffer (1 x Phosphate-Buffer Saline (PBS), 5 mM EDTA). The solution prepared to 0.5 mL was degassed using an aspirator for 1 hour in order to allow the PEGylation reaction to proceed under anaerobic conditions. Subsequently, the reducing agent tris (2-carboxythyl) phophine (TCEP) was added to a final concentration of 0.1, 0.5, 1, 5, and 10 mM, then PEG20 was added, and the mixture was reacted overnight at 4 ° C. It was. As the reducing agent, tris (2-carboxythyl) phosphorine (TCEP), which is odorless and easy to use and is often used in the reaction using maleimide and cysteine, was used.

PEG化反応の進行は、反応液を非還元条件でSodium Dodecyl Sulfate−Poly Acrylamide Gel Electrophoresis(SDS−PAGE)(12.5% アクリルアミドゲル、30mA/枚、70分間泳動)し、Coomassie Brilliant Blue(CBB)染色、及び、PEG分子を検出するBarium Iodide(BaI)染色により確認した。BaI2染色は、泳動後のアクリルアミドゲルを5% BaI溶液(15分間)、イオン交換水(30分間)、0.1Mヨウ素溶液(5分間)の順に浸して振盪する、という手順で行った。 To proceed with the PEGylation reaction, the reaction solution was subjected to Sodium Dodecyl Sulfate-Poly Stain Gel Electrophoresis (SDS-PAGE) (12.5% acrylamide gel, 30 mA / sheet, 70 minutes electrophoresis) under non-reducing conditions, and Coomassie Brilli (Coomasie Brilli). ) Staining and Barium Iodide (BaI 2 ) staining to detect PEG molecules. BaI2 staining, 5% BaI 2 solution (15 min) acrylamide gel after electrophoresis, ion-exchanged water (30 minutes) and shaken immersed in the order of 0.1M iodine solution (5 min), was carried out in the procedure of.

PEG化HLA−G2の精製はSuperdex 200 10/300 GL(GE Healthcare)、Superdex 75 10/300 GL(GE Healthcare)、あるいはSuperose6 10/300 GL(GE Healthcare)カラムを用いたSECにより行った。PEG化反応液を、Amicon Ultra(MWCO:10000Da、Merk Millipore)を使用してSECランニングバッファー(20mM Tris−HCl pH8.0,100mM NaCl)へ置換し、0.5mLまで濃縮してカラムへ打ち込んだ。SECには、AKTApurifierシステム(GE Healthcare)を用いた。精製度は、各フラクションサンプルを非還元条件でSDS−PAGEにより展開し、銀染色(2D−SILVER STAIN REAGENT II、コスモ・バイオ株式会社)で検出して確認した。 Purification of PEGylated HLA-G2 was performed using Superdex 200 10/300 GL (GE Healthcare), Superdex 75 10/300 GL (GE Healthcare), or Superose6 10/300 GL (GE Healthcare) columns. The PEGylation reaction solution was replaced with SEC running buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl) using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), concentrated to 0.5 mL, and driven into a column. .. For SEC, an AKTA purifier system (GE Healthcare) was used. The degree of purification was confirmed by developing each fraction sample by SDS-PAGE under non-reducing conditions and detecting by silver staining (2D-SILVER STAIN REAGENT II, Cosmo Bio Co., Ltd.).

反応液を上記の通りSDS−PAGEで展開し、CBB染色したところ、目的のPEG化タンパク質のバンドを確認することができた(図2(b))。以上の結果からTCEPを加えることにより反応効率は大きく向上すること、さらに、TCEP終濃度が0.1mMの条件で最も高い反応効率が得られることがわかった。そのため、以後の実験において、PEG化反応は0.1mM TCEP処理をした条件下で行うこととした。 When the reaction solution was developed by SDS-PAGE as described above and stained with CBB, the band of the target PEGylated protein could be confirmed (FIG. 2 (b)). From the above results, it was found that the reaction efficiency was greatly improved by adding TCEP, and that the highest reaction efficiency was obtained under the condition of a final TCEP concentration of 0.1 mM. Therefore, in the subsequent experiments, the PEGylation reaction was performed under the condition of 0.1 mM TCEP treatment.

なお、PEGがターゲットとしているHLA−G2タンパク質のCys42残基特異的に結合しているかを確認するために、システイン残基をセリン残基に置換した変異体(HLA−G2C42S、図11(b))組換えタンパク質を調製し、HLA−G2タンパク質と比較した。HLA−G2C42Sタンパク質はHLA−G2と同様に調製し、目的のピークフラクションを回収してPEG化反応に用いた。HLA−G2C42Sはフリーのシステイン残基を失ったため、多量体形成は起こらず、非還元SDS−PAGEでも多量体形成を示唆する高分子量の位置にバンドは認められなかった(図示せず)。 In order to confirm whether PEG specifically binds to the Cys42 residue of the target HLA-G2 protein, a variant in which the cysteine residue is replaced with a serine residue (HLA-G2C42S, FIG. 11B). ) Recombinant protein was prepared and compared with HLA-G2 protein. The HLA-G2C42S protein was prepared in the same manner as HLA-G2, and the desired peak fraction was recovered and used in the PEGylation reaction. Since HLA-G2C42S lost a free cysteine residue, multimer formation did not occur, and no band was observed at the high molecular weight position suggesting multimer formation even in non-reducing SDS-PAGE (not shown).

以上、PEG化反応時の種々の条件検討を行った結果から、PEG化反応条件を以下のように確定した。以後のPEG化反応はすべてこの反応条件で行った。
(1)PEG化反応前の脱気処理:調製したHLA−G2溶液についてアスピレーター脱気(1時間、氷上)を行う。
(2)PEG化反応時の還元剤の添加:アスピレーター脱気処理後、PEG試薬を加える前にTCEPを終濃度0.1mMとなるようにタンパク質溶液に加える。
(3)PEG試薬量:PEG:HLA−G2=10:1(モル比)となるように、脱気処理及び還元剤処理後のHLA−G2溶液にPEG試薬を加える。
From the results of examining various conditions during the PEGylation reaction, the PEGylation reaction conditions were determined as follows. All subsequent PEGylation reactions were carried out under these reaction conditions.
(1) Degassing treatment before PEGylation reaction: The prepared HLA-G2 solution is subjected to ejector degassing (1 hour, on ice).
(2) Addition of reducing agent during PEGylation reaction: After degassing the aspirator, TCEP is added to the protein solution to a final concentration of 0.1 mM before adding the PEG reagent.
(3) PEG reagent is added to the HLA-G2 solution after the degassing treatment and the reducing agent treatment so that the amount of PEG reagent: PEG: HLA-G2 = 10: 1 (molar ratio).

(PEG分子量の検討)
続いて、結合させるPEGの分子量によって、PEG化反応効率、PEG化タンパク質の精製度が異なるかどうかを検証するため、反応基としてマレイミドを持つ4種類の分子量(5、10、20、40kDa)の分子量のPEG化試薬(PEG5、PEG10、PEG20、PEG40)(前述)を用いてHLA−G2のPEG化を行った。得られたPEG化体は以下の通りである。
・PEG5−HLA−G2(HLA−G2をPEG5でPEG化したもの)
・PEG10−HLA−G2(HLA−G2をPEG10でPEG化したもの)
・PEG20−HLA−G2(HLA−G2をPEG20でPEG化したもの)
・PEG40−HLA−G2(HLA−G2をPEG40でPEG化したもの)
(Examination of PEG molecular weight)
Subsequently, in order to verify whether the PEGylation reaction efficiency and the degree of purification of the PEGylated protein differ depending on the molecular weight of the PEG to be bound, four kinds of molecular weights (5, 10, 20, 40 kDa) having maleimide as a reactive group are used. PEGylation of HLA-G2 was performed using molecular weight PEGylation reagents (PEG5, PEG10, PEG20, PEG40) (described above). The obtained PEGylated product is as follows.
-PEG5-HLA-G2 (HLA-G2 PEGylated with PEG5)
PEG10-HLA-G2 (HLA-G2 PEGylated with PEG10)
PEG20-HLA-G2 (HLA-G2 PEGylated with PEG20)
PEG40-HLA-G2 (HLA-G2 PEGylated with PEG40)

PEG化した反応液についてSDS−PAGEで展開後、CBB染色及びBaI染色し反応の進行を確認したところ、4種類のPEG化タンパク質すべてを確認できた(図3(a)、(b))。また、PEG化タンパク質のバンドの濃さから、PEG化反応率については低分子量のPEG(PEG5、PEG10)のほうが高いことが明らかとなった。 After developing the PEGylated reaction solution with SDS-PAGE, CBB staining and BaI 2 staining were performed to confirm the progress of the reaction, and all four types of PEGylated proteins were confirmed (FIGS. 3 (a) and 3 (b)). .. Further, from the density of the band of the PEGylated protein, it was clarified that the low molecular weight PEG (PEG5, PEG10) had a higher PEGylation reaction rate.

これらのPEG化HLA−G2を精製する方法として、PEG化前後の分子量差を利用して分離するSECを選択した。4種類のPEG化反応液についてSEC精製を行ない、得られたピークフラクションについてSDS−PAGE後、銀染色によって精製度の確認を行ったところ、SECによって、PEG10−HLA−G2、PEG20−HLA−G2については目的のPEG化HLA−G2を未反応のHLA−G2タンパク質と分離して精製することができた(図4(b)、(c))。 As a method for purifying these PEGylated HLA-G2, SEC for separation using the difference in molecular weight before and after PEGylation was selected. SEC purification was performed on four types of PEG-forming reaction solutions, and the obtained peak fraction was confirmed by silver staining after SDS-PAGE. As a result, PEG10-HLA-G2 and PEG20-HLA-G2 were confirmed by SEC. The target PEGylated HLA-G2 could be separated from the unreacted HLA-G2 protein and purified (FIGS. 4 (b) and 4 (c)).

(受容体LILRB2との結合実験)
続いて、PEG化タンパク質として精製できたPEG10−HLA−G2及びPEG20−HLA−G2、並びにPEG化タンパク質をメインに含むSECピークとして得られたPEG5−HLA−G2のSEC精製後サンプルを用いて、Surface Plasmon Resonance(SPR)による受容体LILRB2との相互作用解析を行い、各分子量のPEGが結合したHLA−G2が受容体結合能を維持しているかを確認した。比較対照としてPEG化していないHLA−G2を用いた。
(Experiment with binding to receptor LILRB2)
Subsequently, PEG10-HLA-G2 and PEG20-HLA-G2 that could be purified as PEGylated proteins, and PEG5-HLA-G2 SEC-purified samples obtained as SEC peaks mainly containing PEGylated proteins were used. The interaction with the receptor LILRB2 was analyzed by Surface Plasmon Resonance (SPR), and it was confirmed whether HLA-G2 to which the PEG of each molecular weight was bound maintained the receptor binding ability. HLA-G2 that was not PEGylated was used as a comparative control.

LILRB2は、上述の通り、C末端側にビオチン化タグが付加されている精製LILRB2birAタンパク質を用いて、酵素による部位特異的ビオチン化後、SEC精製によりビオチン化LILRB2として調製した。 As described above, LILRB2 was prepared as biotinylated LILRB2 by SEC purification after site-specific biotinlation with an enzyme using a purified LILRB2virA protein having a biotinylated tag added to the C-terminal side.

アナライトとして、2倍ずつ連続希釈したHLA−G2(0.2〜0.7μM)、PEG5−HLA−G2(0.4〜1.6μM)、PEG10−HLA−G2(0.3〜1.1μM)、PEG20−HLA−G2(0.3〜1.1μM)を流した。 As analysts, HLA-G2 (0.2 to 0.7 μM), PEG5-HLA-G2 (0.4 to 1.6 μM), and PEG10-HLA-G2 (0.3 to 1.), which were continuously diluted 2-fold each. 1 μM), PEG20-HLA-G2 (0.3 to 1.1 μM) was flowed.

(Surface Plasmon Resonance(SPR)による相互作用解析)
PEG化HLA−G2のLILRB2結合への影響を確認するために、SPR法による相互作用解析をBiacore3000(GE Healthcare)を用いて行った。センサーチップ上にはビオチン化LILRB2及びコントロールとしてビオチン化BSAをBiotin CAPture Kit(GE Healthcare)を使用して、プロトコル通りにセンサーチップCAPに固定化した。センサーチップCAP上には一本鎖DNAが固定化されており(図12(a))、そこへストレプトアビジンが付加した相補鎖DNAをハイブリダイゼーションさせることによってストレプトアビジンをチップ上に固定(図12(b))、さらにストレプトアビジンとビオチンの相互作用を利用してビオチン化LILRB2及びビオチン化BSAを200RU〜500RUの固定化量で固定化した(図12(c))。
(Interaction analysis by Surface Plasmon Resonance (SPR))
In order to confirm the effect of PEGylated HLA-G2 on LILRB2 binding, an interaction analysis by the SPR method was performed using Biacore3000 (GE Healthcare). Biotinylated LILRB2 on the sensor chip and biotinylated BSA as a control were immobilized on the sensor chip CAP according to the protocol using Biotin CAPture Kit (GE Healthcare). Single-stranded DNA is immobilized on the sensor chip CAP (FIG. 12 (a)), and streptavidin is immobilized on the chip by hybridizing the complementary strand DNA to which streptavidin is added (FIG. 12). (B)) Further, biotinylated LILRB2 and biotinylated BSA were immobilized at an immobilized amount of 200 RU to 500 RU by utilizing the interaction between streptavidin and biotin (FIG. 12 (c)).

アナライトとしては、Amicon Ultra(MWCO:10000、Millipore)を用いた限外ろ過によりランニングバッファーであるHBS−EPバッファー(10mM Na−HEPES pH7.4、150mM NaCl、3mM EDTA、0.005%(v/v)Surfactant P20:GE Healthcare)に置換したHLA−G2、PEG化HLA−G2各タンパク質溶液について、3段階に2倍ずつ段階希釈したサンプルを、低濃度のものから順番に流速10μL/minで流した。測定温度は25℃、結合時間及び解離時間はそれぞれ120秒でカイネティクス測定を行った。解析にはBIAevaluation version:4.1.1(GE Healthcare)を用いた。 As an analyzer, HBS-EP buffer (10 mM Na-HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA), 0.005% (v), which is a running buffer by ultrafiltration using Amicon Ultra (MWCO: 10000, Millipore). / V) For each HLA-G2 and PEGylated HLA-G2 protein solution substituted with Buffertant P20: GE Healthcare), samples diluted 2-fold in 3 steps were serially diluted in order from the lowest concentration at a flow rate of 10 μL / min. Shed. Kinetics were measured at a measurement temperature of 25 ° C. and a binding time and a dissociation time of 120 seconds each. BIA evolution version: 4.1.1 (GE Healthcare) was used for the analysis.

結合解析の結果、3種類すべてのPEG化体についてLILRB2との結合を確認することができた(図5(b)−(d))。 As a result of the binding analysis, it was possible to confirm the binding to LILRB2 for all three types of PEGylated products (FIGS. 5 (b)-(d)).

以上の結果から、3種類の分子量でPEG化効率及び受容体との結合能に大きな差は見られないことから、PEG化タンパク質の精製度が高く、さらにPEG化タンパク質の安定性に寄与すると考えられるPEG分子量が3つのうちで最も大きい20kDaのPEGを用いて今後のPEG化反応、及び解析を行うこととした。 From the above results, since there is no significant difference in PEGylation efficiency and binding ability to the receptor between the three molecular weights, it is considered that the degree of purification of the PEGylated protein is high and further contributes to the stability of the PEGylated protein. It was decided to carry out the future PEGylation reaction and analysis using 20 kDa PEG having the largest PEG molecular weight among the three.

(PEG導入部位の検討)
これまで、HLA−G2タンパク質が本来保有するCys42残基をターゲットとしてPEGを導入してきたが、PEGの導入箇所を変えることにより反応性や機能性が向上することを期待して、PEG化する部位の検討を行った。
(Examination of PEG introduction site)
So far, PEG has been introduced by targeting the Cys42 residue originally possessed by the HLA-G2 protein, but the site to be PEGylated is expected to improve reactivity and functionality by changing the introduction site of PEG. Was examined.

HLA−G2分子上のLILRB2結合領域が明らかになっていないため、膜結合型HLA−G2で細胞膜側に位置するHLA−G2タンパク質のC末端にシステイン残基を付加したコンストラクト(HLA−G2CTER)、及びHLA−G1の糖鎖付加サイトであるために、HLA−G2においても糖鎖が付加していると予測される86番目のアスパラギン残基をシステイン残基に置換したコンストラクト(HLA−G2N86C)を作製し、タンパク質を調製した。これらの場所へのPEG導入は、受容体への結合に影響しないと考えた。 Since the LILRB2 binding region on the HLA-G2 molecule has not been clarified, a construct (HLA-G2CTER) in which a cysteine residue is added to the C-terminal of the HLA-G2 protein located on the cell membrane side in the membrane-bound HLA-G2, And a construct (HLA-G2N86C) in which the 86th asparagine residue, which is predicted to have a sugar chain added to HLA-G2, is replaced with a cysteine residue because it is a glycosylated site of HLA-G1. It was prepared and the protein was prepared. Introducing PEG into these locations was not considered to affect receptor binding.

これらの変異体タンパク質において、HLA−G2タンパク質が本来保有するフリーのシステイン残基(Cys42残基)はセリン残基に置換させており、PEG分子は、これらの変異部位1か所のみに導入されると予想される。 In these mutant proteins, the free cysteine residue (Cys42 residue) originally possessed by the HLA-G2 protein is replaced with a serine residue, and the PEG molecule is introduced into only one of these mutation sites. Is expected.

各HLA−G2変異体タンパク質を、前述の通り、大腸菌を用いて封入体として発現させた。さらに、前述の通り、各タンパク質を巻き戻し後、SEC精製を行い、各HLA−G2変異体の溶出画分を回収した。 Each HLA-G2 mutant protein was expressed as an inclusion body using Escherichia coli as described above. Further, as described above, after rewinding each protein, SEC purification was performed, and the eluted fraction of each HLA-G2 mutant was collected.

続いて、精製した各変異体タンパク質について、前述同様にPEG20によってPEG化を行った。PEGの導入箇所を変えたいずれのHLA−G2変異体タンパク質についても、PEG化反応溶液のSDS−PAGE、CBB及びBaI染色の結果から、PEG化反応の進行が確認できた(図6(a)、(b))。 Subsequently, each purified mutant protein was PEGylated with PEG20 in the same manner as described above. The progress of the PEGylation reaction was confirmed from the results of SDS-PAGE, CBB and BaI 2 staining of the PEGylation reaction solution for all HLA-G2 mutant proteins in which the PEG introduction site was changed (FIG. 6 (a)). ), (B)).

(実施例2)
(PEG化HLA−G2のin vitroでの安定性評価)
実施例1で得られたPEG20−HLA−G2を用いて、in vitroでの安定性を評価した。
(Example 2)
(In vitro stability evaluation of PEGylated HLA-G2)
The PEG20-HLA-G2 obtained in Example 1 was used to evaluate in vitro stability.

(凍結乾燥に対する安定性評価)
バイオ医薬品は、酸素、日光、pHなどの外的要因による影響を避けるために、製造されてから実際に使用されるまで、凍結乾燥した状態で保存されるのが一般的である。そのため凍結乾燥した医薬品が再溶解後も分解、凝集せず、生物活性を維持しているかどうかは、バイオ医薬品を製品化する上で非常に重要な指標となる。そこで本研究では、PEG化により凍結乾燥に対する安定性が向上するかどうかの検証を行った。
(Stability evaluation against freeze-drying)
Biopharmacy is generally stored lyophilized from the time it is manufactured until it is actually used, in order to avoid the effects of external factors such as oxygen, sunlight and pH. Therefore, whether or not the lyophilized drug does not decompose or aggregate even after re-dissolution and maintains its biological activity is a very important index for commercializing a biopharmacy. Therefore, in this study, we verified whether PEGylation improves stability against freeze-drying.

SEC精製したHLA−G2、PEG20−HLA−G2を凍結乾燥し、滅菌水に再溶解した後、SDS−PAGEを行った。より具体的には、HLA−G2及びPEG20−HLA−G2(0.15mg/mL、HBS−EPバッファー)各50μLを、凍結乾燥器を用いて凍結乾燥した。凍結乾燥直後に、当量(50μL)の滅菌水に再溶解し、非還元条件でSDS−PAGEを行い、CBB染色で検出することにより凍結乾燥前後のタンパク質の状態を比較した。 SEC-purified HLA-G2 and PEG20-HLA-G2 were freeze-dried, redissolved in sterilized water, and then SDS-PAGE was performed. More specifically, 50 μL each of HLA-G2 and PEG20-HLA-G2 (0.15 mg / mL, HBS-EP buffer) were lyophilized using a lyophilizer. Immediately after lyophilization, the proteins were redissolved in an equivalent amount (50 μL) of sterilized water, subjected to SDS-PAGE under non-reducing conditions, and detected by CBB staining to compare the protein states before and after lyophilization.

凍結乾燥処理有無で、HLA−G2分子としての安定性の指標となる凝集・分解の程度をバンドパターンとして比較した。その結果、PEG化の有無に関わらず、凍結乾燥処理によるHLA−G2分子の凝集や分解は起きておらず、明らかな差は認められなかった(図7(a))。 The degree of aggregation / decomposition, which is an index of stability as an HLA-G2 molecule, was compared as a band pattern with or without freeze-drying treatment. As a result, no aggregation or decomposition of the HLA-G2 molecule by freeze-drying occurred regardless of the presence or absence of PEGylation, and no clear difference was observed (FIG. 7 (a)).

続いて、凍結乾燥処理により、HLA−G2及びPEG20−HLA−G2の受容体結合活性が変化するか、またPEG化による程度の差があるかどうかを検証するため、上記と同様に凍結乾燥処理したHLA−G2、PEG20−HLA−G2について、SPR法を用いて受容体LILRB2との結合実験を行った。前述同様に、ビオチン化LILRB2をセンサーチップにストレプトアビジンを介して固定化し、そこへ2倍段階希釈(HLA−G2:0.3〜1.1μM、PEG20−HLA−G2:0.3〜1.1μM)した凍結乾燥処理済みHLA−G2、PEG20−HLA−G2をアナライトとして流した。 Subsequently, in order to verify whether the receptor binding activity of HLA-G2 and PEG20-HLA-G2 is changed by the lyophilization treatment and whether there is a difference in the degree due to PEGylation, the lyophilization treatment is carried out in the same manner as described above. HLA-G2 and PEG20-HLA-G2 were subjected to a binding experiment with the receptor LILRB2 using the SPR method. In the same manner as described above, biotinylated LILRB2 was immobilized on the sensor chip via streptavidin, and there was 2-fold serial dilution (HLA-G2: 0.3 to 1.1 μM, PEG20-HLA-G2: 0.3 to 1. 1 μM) freeze-dried HLA-G2 and PEG20-HLA-G2 were flowed as an analyzer.

まず、凍結乾燥処理により受容体との結合能を失った分子の割合をHLA−G2とPEG20−HLA−G2との間で比較するため、今回の結合実験で得られたセンサグラムを、凍結乾燥処理していないHLA−G2及びPEG20−HLA−G2を用いてLILRB2との結合実験を行った結果のセンサグラム(図5(a)、(d))と比較した。両結合実験において、HLA−G2及びPEG20−HLA−G2は同じロットのサンプルを使用した。LILRB2固定化量を両者で一致させた。 First, in order to compare the proportion of molecules that lost their ability to bind to the receptor due to the freeze-drying treatment between HLA-G2 and PEG20-HLA-G2, the sensorgram obtained in this binding experiment was freeze-dried. It was compared with the sensorgrams (FIGS. 5 (a) and 5 (d)) of the results of a binding experiment with LILRB2 using untreated HLA-G2 and PEG20-HLA-G2. In both binding experiments, HLA-G2 and PEG20-HLA-G2 used samples from the same lot. The amount of LILRB2 immobilization was matched between the two.

サンプル濃度0.6μM付近で流した時のセンサグラムに着目すると、HLA−G2ではLILRB2に対する結合レスポンス値が凍結乾燥前後で約250RUから約150 RUに低下している(図7(b))のに対し、PEG20−HLA−G2では大きなレスポンスの低下は見られなかった(図7(c))。 Focusing on the sensorgram when flowing at a sample concentration of around 0.6 μM, the binding response value for LILRB2 decreased from about 250 RU to about 150 RU before and after freeze-drying in HLA-G2 (FIG. 7 (b)). On the other hand, PEG20-HLA-G2 did not show a significant decrease in response (Fig. 7 (c)).

この結果から、PEG20−HLA−G2ではHLA−G2と比較して、凍結乾燥後も受容体との結合活性を保持している分子の割合が多いことがわかった。以上より、HLA−G2タンパク質は、PEG化することにより凍結乾燥に対する安定性は向上することが示唆された。 From this result, it was found that the proportion of molecules in PEG20-HLA-G2 that retain the receptor-binding activity even after lyophilization is higher than that in HLA-G2. From the above, it was suggested that the HLA-G2 protein is improved in stability against freeze-drying by being PEGylated.

(熱安定性の評価)
PEG化によりHLA−G2タンパク質の熱安定性が向上するかどうかを検証するため、精製したHLA−G2及びPEG20−HLA−G2を、50℃、60℃条件下でインキュベートした。インキュベーション開始時を0時間として、7、24、48時間後に回収し、SDS−PAGE Sample bufferを加えたのち、4℃で保存した。全てのサンプルを回収後、還元条件下あるいは非還元条件下でSDS−PAGEを行ない、タンパク質分解・凝集の程度を比較した。
(Evaluation of thermal stability)
Purified HLA-G2 and PEG20-HLA-G2 were incubated under 50 ° C. and 60 ° C. conditions to verify whether PEGylation improved the thermal stability of the HLA-G2 protein. It was collected after 7, 24, and 48 hours with the start of incubation as 0 hour, and after adding SDS-PAGE Sample buffer, it was stored at 4 ° C. After collecting all the samples, SDS-PAGE was performed under reducing or non-reducing conditions, and the degree of proteolysis / aggregation was compared.

より具体的には、SEC精製後のHLA−G2及びPEG20−HLA−G2(0.08mg/mL、20mM Tris−HCl pH8.0、100mM NaCl)を50、60、70℃でインキュベートし、それぞれ7、24、48時間後に回収したサンプルについて5×SDS−PAGE Sample buffer(25mM Tris−HCl pH6.5、5% glycerol、1% SDS、0.05% bromophenol blue)を加え、4℃で保存した。全てのサンプルを回収した後、非還元条件でSDS−PAGEを行い(12.5%又は15%アクリルアミドゲル、30mA/枚、70分間泳動)、CBB染色で検出することによって、タンパク質の分解度及び多量体・凝集体形成度を比較した。 More specifically, SEC-purified HLA-G2 and PEG20-HLA-G2 (0.08 mg / mL, 20 mM Tris-HCl pH 8.0, 100 mM NaCl) were incubated at 50, 60, and 70 ° C., respectively, at 7 ° C. , 5 × SDS-PAGE Sample buffer (25 mM Tris-HCl pH 6.5, 5% glycerol, 1% SDS, 0.05% chloride blue) was added to the sample collected after 24 and 48 hours, and the sample was stored at 4 ° C. After collecting all samples, SDS-PAGE was performed under non-reducing conditions (12.5% or 15% acrylamide gel, 30 mA / sheet, 70 minutes electrophoresis), and detection by CBB staining was performed to determine the degree of protein degradation and the degree of protein degradation. The degree of multimer / aggregate formation was compared.

非還元条件で泳動した結果から、HLA−G2は高温条件下において目的物のバンドが消失し、40kDa以上の凝集体及び12kDa周辺の分解産物とみられるバンドが増える(図8(a))のに対し、PEG20−HLA−G2では高温条件下でも目的物のバンドの消失及び目的物以外のバンドの出現は少なかった(図8(b))。 From the results of electrophoresis under non-reducing conditions, the band of the target substance disappeared in HLA-G2 under high temperature conditions, and the number of aggregates of 40 kDa or more and the band considered to be a decomposition product around 12 kDa increased (FIG. 8 (a)). On the other hand, in PEG20-HLA-G2, the disappearance of the target band and the appearance of non-target bands were small even under high temperature conditions (FIG. 8 (b)).

以上の結果から、PEG化は、高温条件下で引き起こされるタンパク質凝集及び分解を抑制することを見出した。 From the above results, it was found that PEGylation suppresses protein aggregation and degradation caused under high temperature conditions.

(血清中安定性評価)
調製したPEG20−HLA−G2について、in vitroの系において、血清(FBS)中でのHLA−G2の分解又は凝集がPEG化により抑制されるかどうかを調べた。
(Evaluation of serum stability)
Regarding the prepared PEG20-HLA-G2, it was investigated whether the degradation or aggregation of HLA-G2 in serum (FBS) was suppressed by PEGylation in an in vitro system.

精製したHLA−G2及びPEG20−HLA−G2を、5%FBS、37℃条件下でインキュベートした。インキュベーション開始時を0時間として、24時間後より1時間ごとにサンプルを回収し、SDS−PAGE Sample bufferを加えたのち、4℃で保存した。全てのサンプルを回収後、非還元条件下でSDS−PAGE、ウエスタンブロッティング法を用いてHLA−G2及びPEG20−HLA−G2残存量を定量した。 Purified HLA-G2 and PEG20-HLA-G2 were incubated under 5% FBS, 37 ° C. conditions. Samples were collected every hour from 24 hours after the start of incubation as 0 hours, SDS-PAGE Sample buffer was added, and the mixture was stored at 4 ° C. After collecting all the samples, the residual amounts of HLA-G2 and PEG20-HLA-G2 were quantified using SDS-PAGE and Western blotting under non-reducing conditions.

より具体的には、SEC精製後のHLA−G2及びPEG20−HLA−G2(HLA−G2:0.3mg/mL、PEG20−HLA−G2:0.15mg/mL、20mM Tris−HCl pH8.0、100mM NaCl)を10%のFetal Bovine Serum(FBS)(Thermo Fisher Scientific)と、FBSの終濃度が5%となるように混合した。37℃条件下で22〜30時間インキュベートし、2時間おきに回収したサンプルに5×SDS−PAGE Sample bufferを加え、4℃で保存した。全てのサンプルを回収した後、ウエスタンブロッティングを行うことによりタンパク質の分解度を比較した。ウエスタンブロッティングは、サンプルを非還元条件でSDS−PAGE(12.5%あるいは15% アクリルアミドゲル、30mA/枚、70分間泳動)により展開後、Poly Vinylidene Di Fluoride(PVDF)メンブレン(Bio Rad)に転写した。5%スキムミルク(雪印メグミルク)/Phosphate−bufferd saline(PBS)−Tでメンブレンを、1時間もしくは一晩室温で振盪してブロッキングした。その後メンブレンをPBST溶液約10mLに浸し、一次抗体として抗HLA−G抗体(MEM−G1、Abcam)(×1/5000)と1時間室温で振盪して反応させた。二次抗体として抗マウスIgG(Fc)−Horserdish peroxidase(HRP)標識抗体(Thremo Fisher Scientific)(×1/10000)と1時間室温で振盪して反応させた。その後メンブレンをPBS−Tで数回洗浄して、ECL Prime(GE Healthcare)で発光させてImage Quant LAS4000mini(GE Healthcare)を用いて検出を行った。 More specifically, HLA-G2 and PEG20-HLA-G2 (HLA-G2: 0.3 mg / mL, PEG20-HLA-G2: 0.15 mg / mL, 20 mM Tris-HCl pH 8.0, after SEC purification, 100 mM NaCl) was mixed with 10% Fetal Bovine Serum (FBS) (Thermo Fisher Scientific) so that the final concentration of FBS was 5%. Incubation was carried out under 37 ° C. conditions for 22 to 30 hours, 5 × SDS-PAGE Sample buffer was added to the sample collected every 2 hours, and the sample was stored at 4 ° C. After collecting all the samples, the degree of protein degradation was compared by Western blotting. Western blotting involves developing a sample on SDS-PAGE (12.5% or 15% acrylamide gel, 30 mA / sheet, 70 minutes electrophoresis) under non-reducing conditions and then transferring it to a Poly Vinylidene Di Fluoride (PVDF) membrane (Bio Rad). did. Membranes were blocked with 5% skim milk (Skim Milk) / Phosphate-buffered saline (PBS) -T by shaking at room temperature for 1 hour or overnight. Then, the membrane was immersed in about 10 mL of PBST solution and reacted with anti-HLA-G antibody (MEM-G1, Abcam) (× 1/5000) as a primary antibody by shaking at room temperature for 1 hour. As a secondary antibody, it was reacted with an anti-mouse IgG (Fc) -Horserdic peroxidase (HRP) -labeled antibody (Thremo Fisher Scientific) (× 1/10000) by shaking at room temperature for 1 hour. After that, the membrane was washed with PBS-T several times, emitted with ECL Prime (GE Healthcare), and detected using Image Quant LAS4000mini (GE Healthcare).

今回ウエスタンブロッティング法に用いたMEM−G1抗体は、HLA−G特異的抗体であり、エピトープ部位は不明であるが、当研究室で変性状態のHLA−G2を検出可能なことを確認している(未発表データ)。また、予備実験にて、MEM−G1抗体を用いたウエスタンブロッティングにおいてPEG20−HLA−G2の検出も可能であることを確認し、今回の実験を行った。 The MEM-G1 antibody used for the Western blotting method this time is an HLA-G specific antibody, and although the epitope site is unknown, it has been confirmed in our laboratory that the denatured HLA-G2 can be detected. (Unpublished data). In addition, in a preliminary experiment, it was confirmed that PEG20-HLA-G2 can be detected by Western blotting using the MEM-G1 antibody, and this experiment was performed.

5%FBS存在下でのHLA−G2、PEG20−HLA−G2量の経時的変化を比較したところ、タンパク質が分解し、消失する割合が、HLA−G2ではPEG20−HLA−G2と比較して、特に26〜30時間で多かった(図9(a))。このバンドをImageQuant LAS 4000を用いて定量し、インキュベート時間ごとのバンドの残存量をグラフに示したところ、PEG20−HLA−G2ではHLA−G2と比較して、タンパク質の消失速度が緩やかであることがわかった(図9(b))。 Comparing the changes over time in the amounts of HLA-G2 and PEG20-HLA-G2 in the presence of 5% FBS, the rate of protein degradation and disappearance was higher in HLA-G2 than in PEG20-HLA-G2. Especially, it was high in 26 to 30 hours (Fig. 9 (a)). This band was quantified using ImageQuant LAS 4000, and the residual amount of the band for each incubation time was shown in the graph. As a result, the protein disappearance rate of PEG20-HLA-G2 was slower than that of HLA-G2. Was found (Fig. 9 (b)).

以上の結果から、HLA−G2タンパク質の血清中におけるタンパク質の安定性は、PEG化により向上する傾向にあることがわかった。 From the above results, it was found that the stability of the HLA-G2 protein in serum tends to be improved by PEGylation.

(実施例3)
(in vivoでのHLA−G2、PEG化HLA−G2抗炎症効果の評価)
アトピー性皮膚炎疾患モデルマウスを用いて、HLA−G2及びPEG20−HLA−G2タンパク質のin vivoでの抗炎症効果を検証した。
(Example 3)
(Evaluation of HLA-G2, PEGylated HLA-G2 anti-inflammatory effect in vivo)
The in vivo anti-inflammatory effects of HLA-G2 and PEG20-HLA-G2 proteins were examined using atopic dermatitis disease model mice.

具体的には、皮膚炎発症モデルマウスの耳介にHLA−G2、PEG20−HLA−G2及び、ポジティブコントロールとして、当研究室にてダニ抗原誘発皮膚炎モデルマウスで治療効果を確認したHLA−G1を投与し、炎症度の観察を行った。ネガティブコントロールにはPBSを用いた。アトピー性皮膚炎疾患モデルマウスは、コナヒョウヒダニ虫成分を含有したアトピー性皮膚炎誘発軟膏(ビオスタAD)をマウスの耳介表面に塗布することにより作製した。 Specifically, HLA-G2, PEG20-HLA-G2 in the auricle of a dermatitis onset model mouse, and HLA-G1 whose therapeutic effect was confirmed in a mite antigen-induced dermatitis model mouse as a positive control in our laboratory. Was administered, and the degree of inflammation was observed. PBS was used as a negative control. Atopic dermatitis disease model mice were prepared by applying an atopic dermatitis-inducing ointment (Biosta AD) containing a Kona leopard mite component to the surface of the auricle of a mouse.

(アトピー性皮膚炎モデルマウスの作製)
タンパク質の投与に先立ち、アトピー性皮膚炎モデルマウスを作製するために、ビオスタAD 100mgを3日おきに計6回NC/Nga Slcマウスへ塗布した。より具体的には、日本エスエルシー株式会社から購入したNC/Nga Slcマウス(10週齢、雄)16匹について、エレクトリッククリッパーと除毛クリームを用いて耳後部の体毛を除去した。体毛を除去した耳介表面に、コナヒョウヒダニ虫成分を含有したアトピー性皮膚炎誘発軟膏(ビオスタAD(登録商標))100mgを3日おきに計6回塗布することによりアトピー性皮膚炎を発症させた(図10(a))。ただし、2回目以降の誘発操作の際には、ビオスタADを塗布する前に、耳介に4%SDSを塗布する操作を行った。アトピー性皮膚炎誘発軟膏を処置しない群(1匹)を皮膚炎発症の対照群とした。
(Preparation of atopic dermatitis model mouse)
Prior to protein administration, 100 mg of Biosuta AD was applied to NC / Nga Slc mice every 3 days for a total of 6 times in order to prepare atopic dermatitis model mice. More specifically, 16 NC / Nga Slc mice (10 weeks old, male) purchased from Nippon SLC Co., Ltd. were used with an electric clipper and a hair removal cream to remove hair from the back of the ear. Atopic dermatitis was caused by applying 100 mg of atopic dermatitis-inducing ointment (Biosta AD (registered trademark)) containing a Kona leopard mite component to the surface of the auricle from which hair was removed every 3 days for a total of 6 times. (Fig. 10 (a)). However, in the second and subsequent induction operations, the operation of applying 4% SDS to the auricle was performed before applying Biosuta AD. The group (1 animal) not treated with the atopic dermatitis-inducing ointment was used as a control group for the onset of dermatitis.

ビオスタADを塗布したマウス群においては、ビオスタADを塗布していない対照マウス群と比較して、アトピー性皮膚炎に特徴的な掻痒行動、紅斑、出血などの症状が観察され、アトピー性皮膚炎の誘発を確認できた。 In the group of mice to which Biosuta AD was applied, symptoms such as pruritus, erythema, and bleeding characteristic of atopic dermatitis were observed as compared with the group of control mice to which Biosuta AD was not applied, and atopic dermatitis was observed. I was able to confirm the induction of.

(各投与タンパク質(HLA−G2、PEG20−HLA−G2、HLA−G1)の調製)
続いて、作製したアトピー性皮膚炎疾患モデルマウスへの各投与タンパク質を調製した。前述の通りSEC精製により得られたHLA−G2及びPEG20−HLA−G2を、透析法によりPBSバッファーに置換し、投与タンパク質溶液とした。
(Preparation of each administered protein (HLA-G2, PEG20-HLA-G2, HLA-G1))
Subsequently, each administered protein to the prepared atopic dermatitis disease model mouse was prepared. As described above, HLA-G2 and PEG20-HLA-G2 obtained by SEC purification were replaced with PBS buffer by a dialysis method to prepare a protein solution to be administered.

HLA−G1(分子量44kDa)は、SEC精製後、目的タンパク質を含むピークを回収し、限外濾過により塩を含まないバッファー(Tris pH8.0)に置換し、二次精製としてIEXを行った。さらに、HLA−G1についてはエンドトキシン含有BL21(DE3)pLysS株を用いて発現させたため、IEX精製、及びPBSバッファーへ置換後、LPS除去処理した溶液を投与タンパク質とした。 For HLA-G1 (molecular weight 44 kDa), after SEC purification, the peak containing the target protein was recovered, replaced with a salt-free buffer (Tris pH 8.0) by ultrafiltration, and IEX was performed as secondary purification. Furthermore, since HLA-G1 was expressed using an endotoxin-containing BL21 (DE3) pLysS strain, a solution that had been purified by IEX and replaced with PBS buffer and then LPS-removed was used as the administered protein.

(作製した皮膚炎モデルマウスへのタンパク質投与)
調製したHLA−G2、PEG20−HLA−G2、HLA−G1を1日おきに計10回マウスの耳介表面に5μg/earで経皮投与し(各群4匹)、耳介の炎症度を、ダイヤルシックネスゲージ(尾崎製作所)を用いて耳介の厚さを投与開始後0、6、10、14、18、22日目に測定することにより記録した(図10(a))。
(Protein administration to the prepared dermatitis model mouse)
The prepared HLA-G2, PEG20-HLA-G2, and HLA-G1 were transdermally administered to the auricle surface of mice 10 times every other day at 5 μg / ear (4 animals in each group) to determine the degree of ear inflammation. , The thickness of the auricle was measured using a dial thickness gauge (Ozaki Seisakusho) on the 0th, 6th, 10th, 14th, 18th, and 22nd days after the start of administration (FIG. 10 (a)).

統計解析は、JMP(登録商標)11(SAS Institute Inc.,Cary,NC,USA)ソフトウェアを用いて行った。タンパク質投与開始後22日目の耳介の炎症度についてt検定を行い、HLA−G2、PEG20−HLA−G2投与群とPBS投与群間で、及びHLA−G2投与群とPEG20−HLA−G2投与群間で統計的有意差が認められるかどうかを検証した。 Statistical analysis was performed using JMP® 11 (SAS Institute Inc., Cary, NC, USA) software. A t-test was performed on the degree of auricular inflammation 22 days after the start of protein administration, and HLA-G2, PEG20-HLA-G2 administration group and PBS administration group, and HLA-G2 administration group and PEG20-HLA-G2 administration. We examined whether there was a statistically significant difference between the groups.

投与開始0日目から22日目について、HLA−G2、PEG20−HLA−G2、HLA−G1の投与により、抗炎症効果が確認できた。さらに、HLA−G2投与群とPEG20−HLA−G2投与群で比較すると、HLA−G2投与群に比べPEG20−HLA−G2投与群ではより強い炎症抑制効果が観察された(図10(b)、(c))。22日目の両耳介の腫脹度について、HLA−G2及びPEG20−HLA−G2タンパク質投与群とPBS投与群間、又はHLA−G2タンパク質投与群間とPEG20−HLA−G2タンパク質投与群間でt検定を行ったところ、すべての2群間比較において統計的有意差が認められた(図10(b))。また、被験物質の投与により、体重減少は見られなかった(図示せず)。 The anti-inflammatory effect was confirmed by administration of HLA-G2, PEG20-HLA-G2, and HLA-G1 from the 0th day to the 22nd day after the start of administration. Furthermore, when comparing the HLA-G2 administration group and the PEG20-HLA-G2 administration group, a stronger anti-inflammatory effect was observed in the PEG20-HLA-G2 administration group as compared with the HLA-G2 administration group (FIG. 10 (b), FIG. (C)). Regarding the degree of swelling of both auricles on the 22nd day, t between the HLA-G2 and PEG20-HLA-G2 protein administration group and the PBS administration group, or between the HLA-G2 protein administration group and the PEG20-HLA-G2 protein administration group. When the test was performed, a statistically significant difference was observed in all comparisons between the two groups (Fig. 10 (b)). In addition, no weight loss was observed by administration of the test substance (not shown).

以上のタンパク質投与実験の結果から、PEG20−HLA−G2では抗炎症剤として、アトピー性皮膚炎マウスに対し、副作用を伴うことなく、十分な抗炎症効果及び治療効果を示すことを見出した。また、その効果はHLA−G2と比較してPEG20−HLA−G2でより高いことが明らかとなった。 From the results of the above protein administration experiments, it was found that PEG20-HLA-G2 exhibits a sufficient anti-inflammatory effect and therapeutic effect as an anti-inflammatory agent on atopic dermatitis mice without any side effects. It was also revealed that the effect was higher with PEG20-HLA-G2 than with HLA-G2.

以上より、PEGを、HLA−G2分子表面に露出したフリーのシステイン残基(Cys42)に付加することで、in vitroでの温度安定性、凍結乾燥耐性、血中安定性の向上が認められた。さらに、in vivoでアトピー性皮膚炎マウスにおける抗炎症効果がPEG化することによって増強することが明らかとなり、PEG化HLA−G2ではHLA−G2に比べ、炎症抑制効果が大きく、マウス生体内での安定性が向上していることが示唆された。PEG化HLA−G2を用いることで、投与量や投与回数の低減が期待でき、他剤との併用を想定する上でも、患者への金銭的、身体的負担を軽減できるものと期待される。 From the above, it was confirmed that the addition of PEG to the free cysteine residue (Cys42) exposed on the surface of the HLA-G2 molecule improved the temperature stability, freeze-drying resistance, and blood stability in vitro. .. Furthermore, it was clarified that the anti-inflammatory effect in atopic dermatitis mice was enhanced by PEGylation in vivo, and the PEGylated HLA-G2 had a greater anti-inflammatory effect than HLA-G2 in vivo in mice. It was suggested that the stability was improved. By using PEGylated HLA-G2, it is expected that the dose and the number of administrations can be reduced, and it is expected that the financial and physical burden on the patient can be reduced even when it is assumed that the drug is used in combination with other drugs.

Claims (8)

HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
前記タンパク質を構成するアミノ酸配列中の少なくとも1つのシステイン残基は、ポリエチレングリコール(PEG)でPEG化修飾されている、
ことを特徴とする改変タンパク質。
It consists of a multimeric protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked.
At least one cysteine residue in the amino acid sequence constituting the protein is PEGylated and modified with polyethylene glycol (PEG).
A modified protein characterized by that.
PEG化修飾に用いるPEGの分子量は、5kDa〜100kDaである、
ことを特徴とする請求項1に記載の改変タンパク質。
The molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
The modified protein according to claim 1.
前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
上記多量体が、上記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである、
ことを特徴とする請求項1又は2に記載の改変タンパク質。
The protein is a protein consisting of the amino acid sequence described in (a) or (b) below.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1.
(B) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to the leukocyte Ig-like receptor B2. ,
The modified protein according to claim 1 or 2.
請求項1乃至3のいずれか1項に記載の改変タンパク質又はその塩を有効成分として含む医薬品。 A pharmaceutical product containing the modified protein according to any one of claims 1 to 3 or a salt thereof as an active ingredient. 請求項1乃至3のいずれか1項に記載の改変タンパク質又はその塩を有効成分として含む炎症性疾患の予防又は治療剤。 A prophylactic or therapeutic agent for an inflammatory disease containing the modified protein according to any one of claims 1 to 3 or a salt thereof as an active ingredient. (A)HLA−Gのα1ドメインとHLA−Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体を調製する工程と、
(B)工程(A)で得られた前記タンパク質の多量体を脱気処理した後、還元処理する工程と、
(C)工程(B)で還元処理された前記タンパク質の多量体をPEG化修飾する工程と、
を含む改変タンパク質の製造方法。
(A) A step of preparing a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and
(B) A step of degassing and then reducing the multimer of the protein obtained in the step (A), and a step of reducing the protein.
(C) A step of PEGylating and modifying the multimer of the protein subjected to the reduction treatment in the step (B), and
A method for producing a modified protein containing.
PEG化修飾に用いるPEGの分子量は、5kDa〜100kDaである、
ことを特徴とする請求項6に記載の改変タンパク質の製造方法。
The molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
The method for producing a modified protein according to claim 6, wherein the modified protein is produced.
前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
(a)配列番号1に示されるアミノ酸配列からなるタンパク質、
(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
上記多量体が、上記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである、
ことを特徴とする請求項6又は7に記載の改変タンパク質の製造方法。
The protein is a protein consisting of the amino acid sequence described in (a) or (b) below.
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1.
(B) A protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to the leukocyte Ig-like receptor B2. ,
The method for producing a modified protein according to claim 6 or 7.
JP2018046025A 2018-03-13 2018-03-13 Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein Pending JP2021080171A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018046025A JP2021080171A (en) 2018-03-13 2018-03-13 Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein
PCT/JP2019/010366 WO2019177056A1 (en) 2018-03-13 2019-03-13 Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046025A JP2021080171A (en) 2018-03-13 2018-03-13 Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein

Publications (1)

Publication Number Publication Date
JP2021080171A true JP2021080171A (en) 2021-05-27

Family

ID=67908371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046025A Pending JP2021080171A (en) 2018-03-13 2018-03-13 Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein

Country Status (2)

Country Link
JP (1) JP2021080171A (en)
WO (1) WO2019177056A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249329A (en) * 2021-04-23 2021-08-13 台州恩泽医疗中心(集团) Cell strain for expressing HLA-G isomer standard protein with alpha 1 structural domain deletion and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184070A1 (en) * 2008-11-07 2010-05-12 Hla-G Technologies HLA-G proteins and pharmaceutical uses thereof
JP6416480B2 (en) * 2014-01-29 2018-10-31 国立大学法人北海道大学 Preventive or therapeutic agent for rheumatoid arthritis or related diseases

Also Published As

Publication number Publication date
WO2019177056A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
RU2645256C2 (en) High-stable t-cell receptor and method for its obtaining and application
JP6025889B2 (en) Compositions and methods comprising glycyl-tRNA synthetase with non-canonical biological activity
JP5902679B2 (en) Tear lipocalin mutein that binds to IL-4Rα
SG173332A1 (en) Muteins of tear lipocalin and methods for obtaining the same
CN106565836B (en) High affinity soluble PDL-1 molecules
TW201130501A (en) Fibronectin based scaffold domain proteins that bind IL-23
CN105837680A (en) Methods of treating FGF21-associated disorders
CN107787327A (en) To glypican 3(GPC3)The mutain of people's ALPHA-2u with affinity
US10875903B2 (en) Bifunctional fusion proteins to inhibit angiogenesis in tumor microenvironment and to activate adaptive immune responses and the genes and uses thereof
CN110950967B (en) Anti-human serum albumin nano antibody and IL-2 fusion protein and preparation method thereof
JP2018535964A (en) Treatment of steroid-induced hyperglycemia with fibroblast growth factor (FGF) 1 analog
US11116796B2 (en) Nanoparticle formulations
JP5807937B2 (en) Therapeutic agent, therapeutic method and test method for diseases caused by neutrophil activation
JP5093783B2 (en) Modified HGF precursor protein and active protein thereof
CN101516907A (en) Muteins of tear lipocalin and methods for obtaining the same
JP2013515474A (en) Recombinant factor H and variants and conjugates thereof
JP2018522547A (en) IL-37 variant
JP2021080171A (en) Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein
TW200948377A (en) Affinity matured CRIg variants
TW202237634A (en) Dsg2 compositions and methods for the treatment of covid-19
Zhao et al. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris
CN107223133B (en) Soluble heterogeneous dimeric T cell receptor and preparation method and application thereof
WO2019177053A1 (en) Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases
WO2024046280A1 (en) Polyethylene glycol-modified il-21 derivative and use thereof
JP2004518410A5 (en)