JP2021079417A - Spot welding method, spot welding control device and control program - Google Patents

Spot welding method, spot welding control device and control program Download PDF

Info

Publication number
JP2021079417A
JP2021079417A JP2019210067A JP2019210067A JP2021079417A JP 2021079417 A JP2021079417 A JP 2021079417A JP 2019210067 A JP2019210067 A JP 2019210067A JP 2019210067 A JP2019210067 A JP 2019210067A JP 2021079417 A JP2021079417 A JP 2021079417A
Authority
JP
Japan
Prior art keywords
spot welding
energization
polymer
joined
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019210067A
Other languages
Japanese (ja)
Inventor
松岡 秀明
Hideaki Matsuoka
秀明 松岡
崇史 浅田
Takashi Asada
崇史 浅田
尼子 龍幸
Tatsuyuki Amako
龍幸 尼子
広行 森
Hiroyuki Mori
広行 森
亨輔 泉野
Kyosuke Izuno
亨輔 泉野
弘宜 杉野
Hiroki Sugino
弘宜 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2019210067A priority Critical patent/JP2021079417A/en
Publication of JP2021079417A publication Critical patent/JP2021079417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

To provide a spot welding method that can reduce excessive power distribution and efficiently stabilize quality of a welded product.SOLUTION: The spot welding method, in which power is distributed from a pair of opposing electrodes contacting an outer surface of a polymer to the polymer in which a plurality of materials to be welded overlap, comprises: a first step of obtaining an index value for electric resistance of the polymer by performing power distribution so that the materials to be welded are not melted; and a second step of performing power distribution so that the materials to be welded are welded to each other inside the polymer, along a power distribution pattern set based on the index value. The second step comprises an increasing process in which amounts of power distribution increase, a main power distribution process following the increasing process, and a decreasing process following the main power distribution process, in which the amounts of power distribution decrease, for instance. The power distribution pattern is adjusted based on a rate of increase of the amounts of power distribution in the increasing process and/or current values in the main power distribution process or the index value for electric resistance.SELECTED DRAWING: Figure 5

Description

本発明はスポット溶接方法等に関する。 The present invention relates to a spot welding method and the like.

車体等は、複数の板材(被接合材)をスポット溶接して製造される。スポット溶接は、ジュール加熱を利用した抵抗溶接の一種であり、重ね合わせた被接合材の外表面に圧接した電極から大電流を短時間通電してなされる。この通電により、重ね合わされた被接合材の内側にある接触界面近傍(被接合部)に、溶融池が形成され、この溶融池が冷却凝固して溶接部(いわゆるナゲット)となる。こうして被接合材は、スポット状のナゲットにより接合されて溶接物(接合体)となる。 The car body and the like are manufactured by spot welding a plurality of plate materials (bonded materials). Spot welding is a type of resistance welding that utilizes Joule heating, and is performed by applying a large current for a short time from an electrode that is pressed against the outer surface of the superposed material to be joined. By this energization, a molten pool is formed in the vicinity of the contact interface (joint portion) inside the superposed materials to be joined, and the molten pool is cooled and solidified to become a welded portion (so-called nugget). In this way, the materials to be joined are joined by spot-shaped nuggets to form a welded product (joint body).

ところで、スポット溶接の場合、溶接部が被接合材の内側にあるため、溶接の良否を外観から判断することはできない。また、生産性を考慮すると、多数ある各溶接点を逐一検査することもできない。そこで、スポット溶接時に生じる種々の外乱(例えば、被接合材と電極または被接合材同士の接触状況等の変動)がある場合でも、安定したスポット溶接を可能とする提案が、例えば、下記の特許文献でなされている。 By the way, in the case of spot welding, since the welded portion is inside the material to be joined, it is not possible to judge the quality of welding from the appearance. Moreover, considering productivity, it is not possible to inspect each of a large number of welding points one by one. Therefore, a proposal that enables stable spot welding even when there are various disturbances (for example, fluctuations in the contact state between the electrode to be joined or the materials to be joined) that occur during spot welding is, for example, the following patent. It is done in the literature.

特開2011−31277JP 2011-31277 特開2011−104628JP 2011-104628 特開2012−183550JP 2012-183550 WO2013/31247WO2013 / 31247 WO2015/49998WO2015 / 49998

もっとも、いずれの特許文献にも、被接合部における被接合材の表面状態や接触状態等を予め随時評価してから、被接合部を溶融させる本通電を行う旨の記載はない。 However, none of the patent documents describes that the main energization for melting the jointed portion is performed after the surface condition, contact state, etc. of the bonded material at the jointed portion are evaluated at any time in advance.

本発明は、このような事情に鑑みて為されたものであり、従来とは異なる手法により、スポット溶接の安定化を図れるスポット溶接方法等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a spot welding method or the like capable of stabilizing spot welding by a method different from the conventional method.

本発明者はこの課題を解決すべく鋭意研究した結果、本通電前の被接合材の表面状態や接触状態等を反映した重合体の電気抵抗値等を、溶接スポット毎に評価し、それに基づいて適切な本通電を行うことを着想した。これを具現化すると共に発展させることにより、以降に述べる本発明を完成させるに至った。 As a result of diligent research to solve this problem, the present inventor evaluates the electric resistance value of the polymer, which reflects the surface state and contact state of the material to be joined before the main energization, for each welding spot, and based on the evaluation. The idea was to perform proper main energization. By embodying this and developing it, the present invention described below has been completed.

《スポット溶接方法》
(1)本発明は、複数の被接合材を重ね合わせた重合体へ該重合体の外表面に接触した一対の対向する電極から通電するスポット溶接方法であって、該被接合材を溶融させない通電を行って該重合体の電気抵抗の指標値を得る第1工程と、該指標値に基づいて設定される通電パターンに沿って、該重合体の内側で該被接合材同士を溶接する通電を行う第2工程と、を備えるスポット溶接方法である。
《Spot welding method》
(1) The present invention is a spot welding method in which a polymer in which a plurality of materials to be welded are superposed is energized from a pair of opposing electrodes in contact with the outer surface of the polymer, and the materials to be welded are not melted. Energization that welds the materials to be welded inside the polymer according to the first step of energizing to obtain an index value of the electrical resistance of the polymer and the energization pattern set based on the index value. This is a spot welding method including a second step of performing the above.

(2)本発明のスポット溶接方法(単に「溶接方法」ともいう。)では、先ず、第1工程で、本通電前における被接合材の表面状態や接触状態等を反映する重合体の電気抵抗の指標値を把握している。次に、第2工程で、その指標値に基づいて設定される通電パターンに沿って通電がなされ、被接合材同士が溶接される。このため、被接合材の表面状態や接触状態等が変化する場合でも、各溶接スポット毎で、効率的(または省エネルギー的)なスポット溶接が適切になされ得る。 (2) In the spot welding method of the present invention (also simply referred to as "welding method"), first, in the first step, the electrical resistance of the polymer that reflects the surface state, contact state, etc. of the material to be joined before the main energization. I know the index value of. Next, in the second step, energization is performed according to the energization pattern set based on the index value, and the materials to be joined are welded to each other. Therefore, even when the surface state or contact state of the material to be joined changes, efficient (or energy-saving) spot welding can be appropriately performed for each welding spot.

《スポット溶接の制御装置または制御プログラム》
本発明は、複数の被接合材を重ね合わせた重合体の外表面に接触する一対の対向する電極への通電量を少なくとも制御して、上述したスポット溶接方法を実行するスポット溶接制御装置としても把握できる。
<< Spot welding control device or control program >>
The present invention also provides a spot welding control device for executing the above-mentioned spot welding method by controlling at least the amount of electricity applied to a pair of opposing electrodes in contact with the outer surface of a polymer in which a plurality of materials to be joined are superposed. I can grasp it.

また、そのスポット溶接制御装置により実行されるスポット溶接制御プログラムとしても把握される。 It is also grasped as a spot welding control program executed by the spot welding control device.

なお、制御装置や制御プログラムでは、上述した方法に係る構成要素「〜工程」を「〜手段」または「〜部」と読み替えて、物に係る構成要素と把握してもよい。また、「〜工程」や「〜過程」を「〜ステップ」と読み替えて、その制御プログラムをコンピュータで実行する制御方法として本発明を把握してもよい。 In the control device or the control program, the component "-process" related to the above-mentioned method may be read as "-means" or "-part" and grasped as a component related to an object. Further, the present invention may be grasped as a control method in which "-process" and "-process" are read as "-step" and the control program is executed by a computer.

《その他》
(1)本明細書でいう「電気抵抗の指標値」は、電気抵抗値自体やその時間変化率の他、例えば、設定電流値(一次電流値)とそれに対して実際に流れる実電流値(二次電流値)との差分や比率等でもよい。つまり、電気抵抗の指標値は、電極から重合体への通電により把握されるものである限り、いずれでもよい。
<< Other >>
(1) The "index value of electrical resistance" referred to in the present specification is not only the electrical resistance value itself and its time change rate, but also, for example, a set current value (primary current value) and an actual current value actually flowing with respect to the set current value (primary current value). It may be a difference or ratio with the secondary current value). That is, the index value of the electric resistance may be any value as long as it can be grasped by energizing the polymer from the electrode.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x〜ymm」はxmm〜ymmを意味する。他の単位系についても同様である。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value. Further, unless otherwise specified, "x to ymm" in the present specification means xmm to ymm. The same applies to other unit systems.

スポット溶接の概要を示す模式図である。It is a schematic diagram which shows the outline of spot welding. 各種の板組の電気抵抗値を示すグラフである。It is a graph which shows the electric resistance value of various plate sets. 試料23に係る板組に生じた爆飛を示す写真である。It is a photograph which shows the explosion which occurred in the plate assembly which concerns on a sample 23. 試料11に係る板組の断面を示す写真である。It is a photograph which shows the cross section of the plate assembly which concerns on a sample 11. 良好なスポット溶接を行える電極間抵抗値と限界電流値の範囲を示す説明図である。It is explanatory drawing which shows the range of the resistance value between electrodes and the limit current value which can perform good spot welding. 加圧力と電極間抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the pressing force and the resistance value between electrodes. スポット溶接に係るタイムチャートの一例である。This is an example of a time chart related to spot welding. スポット溶接(第1工程)に係るフローチャートの一例である。This is an example of a flowchart relating to spot welding (first step). スポット溶接(第2工程)に係るフローチャートの一例である。This is an example of a flowchart relating to spot welding (second step).

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、溶接方法、制御装置、制御プログラム等の他、結果物(溶接物等)にも適宜該当し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification may be appropriately applied to a product (welded product, etc.) as well as a welding method, a control device, a control program, and the like. Which embodiment is the best depends on the target, required performance, and the like.

《電気抵抗》
電極間にある重合体の電気抵抗(R/「電極間抵抗」ともいう。)は、例えば、図1に示すように、重合体を構成する被接合材の外表面と電極の接触界面に生じる接触抵抗(Ro=Ro+Ro)と、重合体の内側にある被接合材の内表面間の接触界面に生じる接触抵抗(Ri)と、被接合材自体の電気抵抗(Rm=Rm+Rm)の総和となる。なお、重合体の一面側にある接触抵抗(Ro1)とその他面側にある接触抵抗(Ro2)とが略等しいとき(Ro1≒Ro2)、Ro≒2Ro1≒2Ro2となる。同様に、各被接合材自体の電気抵抗も略等しいとき(Rm1≒Rm2)、Rm≒2Rm1≒2Rm2となる。
《Electrical resistance》
The electrical resistance of the polymer between the electrodes (also referred to as R / “resistance between electrodes”) occurs, for example, at the contact interface between the outer surface of the material to be joined and the electrode, as shown in FIG. The contact resistance (Ro = Ro 1 + Ro 2 ), the contact resistance (Ri) generated at the contact interface between the inner surfaces of the material to be bonded inside the polymer, and the electrical resistance of the material to be bonded (Rm = Rm 1 + Rm). It is the sum of 2). When the contact resistance (Ro1) on one surface side of the polymer and the contact resistance (Ro2) on the other surface side are substantially equal (Ro1≈Ro2), Ro≈2Ro1≈2Ro2. Similarly, when the electrical resistance of each material to be joined is substantially equal (Rm1≈Rm2), Rm≈2Rm1≈2Rm2.

一方、電極から重合体へ直流通電を行う場合、電極間の印加電圧(V)と電極間の実電流値(I)とから、電気抵抗(R)はオームの法則によりR=V/Iとして求まる。 On the other hand, when direct current is applied from the electrodes to the polymer, the electric resistance (R) is set to R = V / I according to Ohm's law from the applied voltage (V) between the electrodes and the actual current value (I) between the electrodes. I want it.

被接合材の外表面における発熱が小さくて、被接合材の内表面における発熱が大きいと、良好なスポット溶接が望める。このため、RiはRoよりも十分に大きいとよい。Riが過小であると、重合体の内側で十分な溶接部(ナゲット)が形成されない。但し、Riが電極間の電流値に対して過大であると、重合体の内側におけるジュール熱量(Qi=Ri・I)も過大となり、被接合材が表面側まで溶融したり、爆飛(チリを含む)が発生したりする。ちなみに、Roが過大であると、被接合材と電極の間で金属間化合物の形成や溶着等が生じ易くなる。 Good spot welding can be expected when the heat generation on the outer surface of the material to be joined is small and the heat generation on the inner surface of the material to be joined is large. Therefore, Ri should be sufficiently larger than Ro. If Ri is too small, a sufficient weld (nugget) is not formed inside the polymer. However, if Ri is excessive with respect to the current value between the electrodes, the amount of Joule heat (Qi = Ri · I 2 ) inside the polymer is also excessive, and the material to be bonded melts to the surface side or explodes (explosion (Qi = Ri · I 2). (Including dust) may occur. By the way, if Ro is excessive, formation or welding of an intermetallic compound is likely to occur between the material to be bonded and the electrode.

ところで、電極間抵抗(R)は、スポット溶接を行う打点間で変化し得る。被接合材の材質や形態が変化するときは勿論、被接合材が同材質かつ同形態でも、各接触抵抗(Ri、Ro)は打点間で変化し得る。このような要因(外乱因子)として、接触面間における異物の噛み込み、接触面の汚染(油膜等)、接触面間の隙間(板隙等)、電極中心ずれ、電極の被接合材に対する傾き(直面崩れ等)、既溶接点への電流分岐等がある。 By the way, the resistance between electrodes (R) can change between the spot welding points. Not only when the material and form of the material to be joined change, but also when the material to be joined has the same material and form, each contact resistance (Ri, Ro) can change between the hitting points. Such factors (disturbance factors) include foreign matter biting between the contact surfaces, contamination of the contact surfaces (oil film, etc.), gaps between the contact surfaces (plate gaps, etc.), electrode center misalignment, and inclination of the electrodes with respect to the material to be welded. (Face collapse, etc.), current branching to existing welding points, etc.

各打点毎に安定したスポット溶接を効率的に行うためには、各打点におけるR(特にRi)に応じて、電極間の通電量を制御することが望ましい。ちなみに、Riだけをスポット溶接の打点毎に測定できないが、通常、RoはRiよりも十分に小さい。このため、電極間抵抗(R)は主にRiを間接的に反映していると考えることもできる。 In order to efficiently perform stable spot welding at each hitting point, it is desirable to control the amount of energization between the electrodes according to R (particularly Ri) at each hitting point. By the way, only Ri cannot be measured for each spot welding spot, but Ro is usually sufficiently smaller than Ri. Therefore, it can be considered that the inter-electrode resistance (R) mainly indirectly reflects Ri.

《第1工程》
第1工程により、被接合部を溶融凝固させる第2工程前に、重合体に接触している電極を通じて重合体の電気抵抗(指標値)を把握(センシング、モニタリング、監視)できる。電気抵抗の指標値の把握が可能であれば、第1工程における通電量は問わない。その通電は、少なくとも、被接合材を溶融させない範囲でなされるとよい。
<< First step >>
In the first step, the electrical resistance (index value) of the polymer can be grasped (sensing, monitoring, monitoring) through the electrodes in contact with the polymer before the second step of melting and solidifying the bonded portion. As long as the index value of electrical resistance can be grasped, the amount of energization in the first step does not matter. The energization should be performed at least within a range that does not melt the material to be joined.

被接合材は、その通電により、溶融しない範囲で予備加熱(プレヒート)されてもよい。この通電加熱により、被接合材は軟化し、被接合材間の接触状態や被接合材と電極の接触状態は変化し得る。つまり、被接合材間または被接合材と電極の間で、いわゆる「なじみ」が生じ得る。従って、第1工程は、被接合材を通電加熱して軟化させる軟化過程を含んでもよい。なお、被接合材の軟化に至らない程度(電気抵抗を測定する程度)の電流値または通電を、適宜、サーチ電流値またはサーチ通電という。被接合材を溶融させずに軟化させる程度の電流値または通電を、適宜、プレ電流値またはプレ通電という。 The material to be bonded may be preheated (preheated) by the energization within a range that does not melt. By this energization heating, the material to be bonded is softened, and the contact state between the materials to be bonded and the contact state between the material to be bonded and the electrode may change. That is, so-called "familiarity" may occur between the materials to be joined or between the materials to be joined and the electrodes. Therefore, the first step may include a softening process in which the material to be joined is energized and heated to soften it. The current value or energization to the extent that the material to be bonded does not soften (to the extent that the electrical resistance is measured) is appropriately referred to as a search current value or search energization. A current value or energization that softens the material to be joined without melting it is appropriately referred to as a pre-current value or pre-energization.

予備加熱により被接合材は高温状態となり、その電気抵抗は上昇する。このため、予備加熱したときは、少なくとも被接合部を冷却してから、電極間抵抗が計測(評価)されるとよい。すなわち、第1工程は、軟化過程後の被接合材を冷却する冷却過程を含むとよい。これにより、通電加熱した場合でも、第2工程における通電パターンの設定に係る電気抵抗の指標値が的確に把握され得る。 Preheating causes the material to be joined to become hot and its electrical resistance increases. Therefore, when preheating, it is preferable that the resistance between the electrodes is measured (evaluated) after at least cooling the jointed portion. That is, the first step may include a cooling step of cooling the material to be joined after the softening process. As a result, even when energized and heated, the index value of the electric resistance related to the setting of the energization pattern in the second step can be accurately grasped.

《第2工程》
第2工程により、被接合部に被接合材が溶融した溶融池が形成される。重ね合わされた被接合材同士は、その溶融池が凝固した接合部(ナゲット)により接合(溶接)される。
<< Second step >>
By the second step, a molten pool in which the material to be joined is melted is formed in the portion to be joined. The superposed materials to be joined are joined (welded) by a joint (nugget) in which the molten pool is solidified.

第2工程における通電は、第1工程で得られた電気抵抗の指標値に基づき設定された通電パターンに沿ってなされる。電気抵抗の指標値が想定通りであれば、例えば、基準となる通電パターン(基準通電パターン/マスターカーブ)に基づいて、通電がなされればよい。電気抵抗の指標値から種々の外乱の存在(被接合材間の接触状態や被接合材と電極の接触状態等の変動)が想定されるとき、基準通電パターンの少なくとも一部を変更(調整)した通電パターンに基づいて、第2工程の通電がなされるとよい。 The energization in the second step is performed according to the energization pattern set based on the index value of the electric resistance obtained in the first step. If the index value of electrical resistance is as expected, for example, energization may be performed based on a reference energization pattern (reference energization pattern / master curve). When the existence of various disturbances (changes in the contact state between the materials to be joined and the contact state between the materials to be joined and the electrodes, etc.) is assumed from the index value of electrical resistance, at least a part of the reference energization pattern is changed (adjusted). It is preferable that the energization in the second step is performed based on the energization pattern.

ちなみに、通電パターンの設定基準となる電気抵抗の指標値の特定方法は種々あり得る。例えば、変動幅(時間変化率等)が所定値以内(ほぼゼロ)になったときの電気抵抗の指標値を基準としてもよい。また、所定時間内における電気抵抗値の最小値を基準としてもよい。なお、電気抵抗の指標値は、通電パターンの選定基準となれば足り、正確な指標値自体が重要ではない。敢えていうなら、変化率が所定値以内となったときから起算して、所定時間内で算術平均した指標値を基準としてもよい。 Incidentally, there may be various methods for specifying the index value of the electric resistance which is the setting reference of the energization pattern. For example, the index value of electrical resistance when the fluctuation range (time change rate, etc.) falls within a predetermined value (nearly zero) may be used as a reference. Further, the minimum value of the electric resistance value within a predetermined time may be used as a reference. It should be noted that the index value of electrical resistance is sufficient as a criterion for selecting an energization pattern, and the accurate index value itself is not important. If you dare to say it, you may use the index value that is arithmetically averaged within the predetermined time as a reference, starting from the time when the rate of change is within the predetermined value.

第2工程は、少なくとも、被接合材を溶融させる熱量を被接合部へ投入する本通電(過程)がなされればよい。このため、第2工程は、例えば、電流値が所定値まで急上昇し、所定の電流値を所定時間維持した後、電流値が略ゼロまで急降下する通電工程でもよい。 In the second step, at least the main energization (process) of applying the amount of heat for melting the material to be joined to the portion to be joined may be performed. Therefore, the second step may be, for example, an energization step in which the current value suddenly rises to a predetermined value, the predetermined current value is maintained for a predetermined time, and then the current value suddenly drops to substantially zero.

もっとも、電流値の急上昇は、重合体の内部(被接合材同士の接触界面近傍)や重合体の外表面部(電極と被接合材の接触界面近傍)で、チリ等の発生を招く。そこで第2工程は、本通電過程前に、通電量の増加率を緩和させる上昇過程を備えるとよい。また、電流値の急降下は、溶接割れ(溶融池の凝固収縮に伴う凝固割れ、再結晶温度付近で生じ得る熱間割れ等)を招く。そこで第2工程は、本通電過程後に通電量の減少率を緩和させる加工過程を備えるとよい。つまり、第2工程は、本通電過程に加えて、本通電過程に至る前に通電量が緩やかに増加する上昇過程(アップスロープ過程)や、本通電過程後に通電量が緩やかに減少する下降過程(ダウンスロープ過程)を備えるとよい。第1工程で把握された電気抵抗の指標値に基づいて設定される通電パターンは、それらの過程を反映したものであるとよい。なお、本明細書では、適宜、上昇過程(アップスロープ過程)における通電をアップスロープ通電、下降過程(ダウンスロープ過程)における通電をダウンスロープ通電という。 However, a sudden increase in the current value causes dust and the like to be generated inside the polymer (near the contact interface between the materials to be bonded) and on the outer surface of the polymer (near the contact interface between the electrode and the material to be bonded). Therefore, the second step may include an ascending process for relaxing the rate of increase in the amount of energization before the main energizing process. Further, a sudden drop in the current value causes welding cracks (solidification cracks due to solidification shrinkage of the molten pool, hot cracks that may occur near the recrystallization temperature, etc.). Therefore, the second step may include a processing process for alleviating the reduction rate of the energization amount after the main energization process. That is, in the second step, in addition to the main energization process, an ascending process (upslope process) in which the energizing amount gradually increases before reaching the main energizing process, and a descending process in which the energizing amount gradually decreases after the main energizing process. (Downslope process) should be provided. The energization pattern set based on the index value of the electric resistance grasped in the first step may reflect those processes. In the present specification, energization in the ascending process (upslope process) is referred to as upslope energization, and energization in the descending process (downslope process) is referred to as downslope energization as appropriate.

勿論、通電パターンは、その電気抵抗の指標値に基づいて、本通電過程における電流値(特に限界電流値)も調整されるとよい。なお、限界電流値は、爆飛(チリを含む)を生じさせない範囲で、重合体(電極間)に印加できる最大の電流値である。 Of course, in the energization pattern, the current value (particularly the limit current value) in the main energization process may be adjusted based on the index value of the electric resistance. The limit current value is the maximum current value that can be applied to the polymer (between the electrodes) within a range that does not cause explosion (including dust).

《加圧力の調整》
電極と被接合材の接触状態や被接合材同士の接触状態は、電極による重合体への加圧力により調整され得る。加圧力は、第1工程から第2工程を通じて略一定でもよいし、各工程中に変更されても(変化しても)よい。加圧力の調整・変更は、通電パターンの設定前、つまり第2工程前になされると、スポット溶接が安定してなされる。そこで第2工程前に、電極による重合体の加圧力を調整する加圧力調整工程がなされるとよい。また、加圧力調整工程は、第1工程の一部としてなされるとよい。これにより、加圧力調整工程後の電気抵抗の指標値に基づいて、通電パターンを設定でき、その通電パターンに沿って第2工程の通電を安定して行える。
《Adjustment of pressing force》
The contact state between the electrode and the material to be bonded and the contact state between the materials to be bonded can be adjusted by the pressure applied to the polymer by the electrode. The pressing force may be substantially constant from the first step to the second step, or may be changed (changed) during each step. If the pressing force is adjusted or changed before the energization pattern is set, that is, before the second step, spot welding is stably performed. Therefore, before the second step, it is advisable to perform a pressurization adjustment step of adjusting the pressurization of the polymer by the electrodes. Further, the pressing force adjusting step may be performed as a part of the first step. Thereby, the energization pattern can be set based on the index value of the electric resistance after the pressurizing adjustment step, and the energization in the second step can be stably performed along the energization pattern.

ちなみに、加圧力が増加すると電気抵抗は減少傾向となり、加圧力が減少すると電気抵抗は増加傾向となる。例えば、電極と被接合材が接触不良なら、加圧力の増加により両者間の接触抵抗を減少させるとよい。これにより表面チリの発生等が抑止される。逆に、加圧力の減少により被接合部における被接合材間の接触抵抗を増加させれば、電流値の上昇を抑えつつ、被接合部の発熱量(ジュール熱量)を確保できる。 By the way, when the pressing force increases, the electric resistance tends to decrease, and when the pressing force decreases, the electric resistance tends to increase. For example, if the electrode and the material to be joined have poor contact, it is advisable to reduce the contact resistance between the two by increasing the pressing force. As a result, the generation of surface dust is suppressed. On the contrary, if the contact resistance between the materials to be joined is increased by reducing the pressing force, it is possible to secure the calorific value (Joule heat amount) of the joint while suppressing the increase in the current value.

《被接合材/重合体》
被接合材の材質や形態は問わない。被接合材は、例えば、鉄基材(鋼材等)の他、アルミニウム基材等でもよい。被接合材は、溶製材(展伸材や鋳造材)の他、焼結材でもよい。被接合材は板状に限らず、ブロック状等の非板状でもよい。溶接される被接合材の材質は同種でも異種でもよい。
<< Material to be bonded / Polymer >>
The material and form of the material to be joined do not matter. The material to be joined may be, for example, an iron base material (steel material or the like) or an aluminum base material or the like. The material to be joined may be a molten material (extended material or cast material) or a sintered material. The material to be joined is not limited to a plate shape, but may be a non-plate shape such as a block shape. The material of the material to be welded may be the same type or different types.

接合される被接合材の少なくとも一方は、通常、板状である。板状の被接合材同士を接合する場合、各被接合材の板厚は同じでも異なっていてもよい。重ね合わされる被接合材数は3以上でもよい。換言すると、電極中心方向に関して、被接合部は重合体の内側に複数あってもよい。 At least one of the materials to be joined is usually plate-shaped. When joining plate-shaped materials to be joined, the plate thickness of each material to be joined may be the same or different. The number of materials to be bonded may be 3 or more. In other words, there may be a plurality of bonded portions inside the polymer with respect to the electrode center direction.

《電極》
(1)形態
抵抗スポット溶接用の電極は、シャンクに着脱できるもの(キャップチップ型)でも、シャンクと一体化したもの(一体型)でもよい。通常、溶接コストを低減できるキャップチップ型の電極(「チップ」ともいう。)が用いられる。
"electrode"
(1) Form The electrode for resistance spot welding may be detachable from the shank (cap tip type) or integrated with the shank (integrated type). Usually, a cap tip type electrode (also referred to as a “tip”) that can reduce welding costs is used.

電極(チップ)は、例えば、有底略円筒状の先端部と、その先端部から連なる略円筒状の胴部とを有する。先端部の外表面(圧接面)は、被接合材に対して窪んだ凹状でも、窪んでいない凸状でもよい。電極の大きさは問わない。胴部の外径(B/元径/呼び径)は、例えば、φ10〜20mmさらにはφ15〜19mmである。 The electrode (chip) has, for example, a bottomed substantially cylindrical tip portion and a substantially cylindrical body portion continuous from the tip portion. The outer surface (pressure contact surface) of the tip portion may be concave or non-concave with respect to the material to be joined. The size of the electrodes does not matter. The outer diameter (B / original diameter / nominal diameter) of the body portion is, for example, φ10 to 20 mm and further φ15 to 19 mm.

電極は、その先端部内側にある内筒部に冷媒(冷却液/冷却水)が導入されるとよい。冷媒が強制的に循環されていと、電極の昇温抑制や電極を通じた被接合材の冷却が安定してなされる。 Refrigerant (coolant / cooling water) may be introduced into the inner cylinder of the electrode inside the tip of the electrode. When the refrigerant is forcibly circulated, the temperature rise of the electrode is suppressed and the material to be joined is cooled stably through the electrode.

電極(特に凸状電極)の先端部の基本形状は、JIS C9304(1999)に多数規定されている。例えば、平面形(F形)、ラジアス形(R形)、ドーム形(D形)、ドームラジアス形(DR形)、円錐台形(CF形)、円錐台ラジアス形(CR形)等がある。いずれの形状でもよいが、DR形またはF形の電極は、冷却能と強度のバランスがよい。 Many basic shapes of the tips of electrodes (particularly convex electrodes) are specified in JIS C9304 (1999). For example, there are a flat type (F type), a radius type (R type), a dome type (D type), a dome radius type (DR type), a truncated cone type (CF type), a truncated cone radius type (CR type), and the like. Any shape may be used, but the DR type or F type electrode has a good balance between cooling capacity and strength.

(2)材質
電極(少なくとも先端部)は、熱伝導性、導電性、強度等に優れる材質からなるとよい。例えば、導電率が75〜95%IACSさらには80〜90%IACSである銅合金からなる電極が用いられる。銅合金は、例えば、クロム銅、ジルコニウム銅、クロム・ジルコニウム銅、アルミナ分散銅、ベリリウム銅等である。
(2) Material The electrode (at least the tip) is preferably made of a material having excellent thermal conductivity, conductivity, strength and the like. For example, an electrode made of a copper alloy having a conductivity of 75 to 95% IACS and further 80 to 90% IACS is used. Copper alloys include, for example, chromium copper, zirconium copper, chromium-zirconium copper, alumina-dispersed copper, beryllium copper and the like.

電極間の電気抵抗値(重合体の電気抵抗値)が、被接合材の表面状態や各部の接触状態により変動し得ることと、それに対応したスポット溶接方法を例示することにより、以下で本発明を具体的に説明する。 By exemplifying the fact that the electric resistance value between electrodes (electrical resistance value of a polymer) can fluctuate depending on the surface state of the material to be bonded and the contact state of each part, and a spot welding method corresponding thereto, the present invention is described below. Will be specifically described.

《概要》
板材(被接合材1、2)を2枚積層した板組(重合体)を、一対の対向する電極(1、2)で挟持してスポット溶接を行う様子を図1に示した。スポット溶接前(第2工程前)の各接触界面における接触抵抗値と各板材自体の電気抵抗値は、適宜、図1に示した符号を用いて説明する。
"Overview"
FIG. 1 shows a state in which a plate assembly (polymer) in which two plate materials (materials 1 and 2 to be joined) are laminated is sandwiched between a pair of opposing electrodes (1 and 2) and spot welding is performed. The contact resistance value at each contact interface before spot welding (before the second step) and the electrical resistance value of each plate material itself will be described as appropriate using the reference numerals shown in FIG.

本実施例では、電極から板組への通電が、直流の電流制御によりなされるとする。設定電流値(I)に応じて印加される電圧(V)が調整され、そのとき実際に流れる電流値(I)が計測されている。電圧(V)と電流値(I)により、電極間にある板組の電気抵抗値(R)が算出される。本実施例では、電極から通電している間、Rをモニタリング(監視)した。 In this embodiment, it is assumed that the energization from the electrodes to the plate assembly is performed by direct current control. The applied voltage (V) is adjusted according to the set current value (I 0 ), and the current value (I) actually flowing at that time is measured. The electric resistance value (R) of the plate set between the electrodes is calculated from the voltage (V) and the current value (I). In this embodiment, R was monitored while the electrode was energized.

《被接合材と電気抵抗値》
(1)被接合材
板組の電気抵抗値の計測例として、被接合材となる2種のアルミニウム合金板(Al合金板)を用意した。一方のAl合金板は展伸材(JIS A6022相当)であり、他方のAl合金板はダイカスト材(JIS ADC10相当)である。いずれのAl合金板も厚さ2.5mm(板組の厚さ:約5mm)とした。
<< Materials to be joined and electrical resistance >>
(1) As an example of measuring the electric resistance value of the plate set to be joined, two types of aluminum alloy plates (Al alloy plates) to be joined were prepared. One Al alloy plate is a wrought material (equivalent to JIS A6022), and the other Al alloy plate is a die-cast material (equivalent to JIS ADC10). Each Al alloy plate had a thickness of 2.5 mm (thickness of the plate assembly: about 5 mm).

また、表面状態が異なる複数種のAl合金板を用意し、同状態のAl合金板同士を積層して板組とした。具体的にいうと、Al合金板(A6022相当)については、所定の厚さに圧延加工されたままのAl合金板(「標準」と表記)同士の板組(試料10)と、そのAl合金板を耐水研磨紙で両面研磨したAl合金板(「両面研磨」と表記)同士の板組(試料11)を用意した。 Further, a plurality of types of Al alloy plates having different surface conditions were prepared, and Al alloy plates in the same state were laminated to form a plate assembly. Specifically, for Al alloy plates (equivalent to A6022), a plate set (sample 10) of Al alloy plates (denoted as "standard") that have been rolled to a predetermined thickness and their Al alloy. A plate set (Sample 11) of Al alloy plates (denoted as "double-sided polishing") in which the plates were double-sided polished with water-resistant polishing paper was prepared.

Al合金板(ADC10相当)については、金型から取り出した鋳物(ダイカスト品)を苛性洗浄したAl合金板(「アルカリ洗浄」と表記)同士の板組(試料21)と、その鋳物を耐水研磨紙で両面研磨したAl合金板(「両面研磨」と表記)同士の板組(試料22)と、その鋳物の片面(電極に接触する板組の外表面)だけを研磨したAl合金板(「外外研磨」と表記)同士の板組(試料23)と、その鋳物の片面(被接合部となる板組の内表面)だけを研磨したAl合金板(「内内外研磨」と表記)同士の板組(試料24)を用意した。 For Al alloy plates (equivalent to ADC10), a plate assembly (sample 21) of Al alloy plates (denoted as "alkaline cleaning") obtained by cauterizing the casting (die-cast product) taken out from the mold and the casting are water-resistant polished. An Al alloy plate ("Sample 22") made of Al alloy plates polished on both sides with paper (denoted as "double-sided polishing") and an Al alloy plate ("" Plates (indicated as "outside and outside polishing") and Al alloy plates (indicated as "inside and outside polishing") in which only one side of the casting (inner surface of the plate to be joined) is polished. (Sample 24) was prepared.

(2)電気抵抗値
一対の電極で挟持した各試料の板組へ通電を行い、その電極間の電気抵抗値(R)を計測した結果を図2にまとめて示した。この通電(プレ通電に相当)は、電流値I:8kA、加圧力F:5kNとして行った。図2に示した横軸(時間)は、各板組へ電極を接触させた時点から計測した時間である。なお、電極による板組への加圧力は、図2に主に示されている時間帯において、略一定である。
(2) Electrical resistance value Fig. 2 shows the results of measuring the electrical resistance value (R) between the electrodes by energizing the plate assembly of each sample sandwiched between the pair of electrodes. This energization (corresponding to pre-energization) was performed with a current value of I: 8 kA and a pressing force of F: 5 kN. The horizontal axis (time) shown in FIG. 2 is the time measured from the time when the electrodes are brought into contact with each plate assembly. The pressing force applied to the plate set by the electrodes is substantially constant during the time zone mainly shown in FIG.

各Al合金板は短冊状(30mm×100mm)とした。電極には、一対のDR形(JIS C9304)の市販チップ(OBARA株式会社製)を用いた。チップ径:φ16mm、先端底部の厚さは12mmであった。チップの内側(内円筒部)には強制循環された冷却水(流量:4L/min)を供給して、チップを強制冷却した。電極はクロム銅(Cr:1質量%、Cu:残部)製であり、その電気伝導度は80%IACSであった。 Each Al alloy plate has a strip shape (30 mm × 100 mm). As the electrodes, a pair of DR type (JIS C9304) commercially available chips (manufactured by OBARA Corporation) were used. The tip diameter was φ16 mm, and the thickness of the tip bottom was 12 mm. Cooling water (flow rate: 4 L / min) that was forcibly circulated was supplied to the inside (inner cylindrical portion) of the chip to forcibly cool the chip. The electrodes were made of chromium copper (Cr: 1% by mass, Cu: balance) and had an electrical conductivity of 80% IACS.

(3)評価
図2から明らかなように、同材質でも、表面状態により板組の電気抵抗値は大きく異なることがわかる。具体的にいうと、Al合金板の両面が研磨されている試料はRが小さく安定していた。一方、Al合金板の片面だけが研磨されている試料はRが大きくなった。試料24のように、電極との接触界面が研磨されていないと、Rが変動し易いこともわかった。試料23のように、Al合金板同士の接触界面が研磨されていないと、時間経過によりRが減少傾向となることもわかった。これはAl合金板が加熱されて軟化する結果、両Al合金板間の接触状態が変化する(つまり、なじむ)ためと考えられる。なお、非研磨面の存在によりRが大きくなる理由は、Al合金板の表面が粗いか、その表面に厚い酸化膜が存在するためと考えられる。
(3) Evaluation As is clear from FIG. 2, it can be seen that even with the same material, the electrical resistance value of the plate assembly differs greatly depending on the surface condition. Specifically, the sample in which both sides of the Al alloy plate were polished had a small R and was stable. On the other hand, the sample in which only one side of the Al alloy plate was polished had a large R. It was also found that R is likely to fluctuate if the contact interface with the electrode is not polished as in sample 24. It was also found that if the contact interface between the Al alloy plates was not polished as in sample 23, R tended to decrease with the passage of time. It is considered that this is because the contact state between the two Al alloy plates changes (that is, becomes familiar) as a result of the Al alloy plates being heated and softened. It is considered that the reason why R becomes large due to the presence of the non-polished surface is that the surface of the Al alloy plate is rough or a thick oxide film is present on the surface.

Rが大きかった試料23に本通電(I:30kA、F:5kN、t:100ms)を行ったときの様子を図3Aに示した。またRが小さかった試料11に本通電(I:35kA、F:5kN、t:100ms)を行った板組の断面を図3Bに示した。 FIG. 3A shows a state when the main energization (I: 30 kA, F: 5 kN, t: 100 ms) was applied to the sample 23 having a large R. Further, FIG. 3B shows a cross section of the plate set in which the sample 11 having a small R was subjected to the main energization (I: 35 kA, F: 5 kN, t: 100 ms).

図3Aから明らかなように、Rの大きい板組へ通電量すると、被接合部が急速に加熱されて、爆飛を生じ易いことがわかる。逆に、図3Bから明らかなように、Rの小さい板組へ通電量すると、被接合部における発熱が不十分となり、ナゲットが形成または成長せず、溶接不良となり易いことがわかる。従って、図3Cに示すように、安定したスポット溶接を実現するためには、Rに応じた適切な電流値で通電を行うことが望ましい。 As is clear from FIG. 3A, when the amount of electricity applied to the plate set having a large R is applied, the jointed portion is rapidly heated, and it can be seen that explosion is likely to occur. On the contrary, as is clear from FIG. 3B, when the amount of electricity applied to the plate set having a small R is insufficient, the heat generation at the jointed portion becomes insufficient, the nugget is not formed or grown, and welding failure is likely to occur. Therefore, as shown in FIG. 3C, in order to realize stable spot welding, it is desirable to energize with an appropriate current value corresponding to R.

《加圧力と電気抵抗値》
試料10の板組を用いて、電極による加圧力(F)を変化させつつ、通電(I:35kA、t:100ms)を行った。これにより得られた各加圧力(F)と電極間抵抗値(R)との関係を図4に示した。
《Pressure and electrical resistance》
Using the plate set of sample 10, energization (I: 35 kA, t: 100 ms) was performed while changing the pressing force (F) by the electrodes. The relationship between each pressing force (F) obtained by this and the resistance value between electrodes (R) is shown in FIG.

図4から明らかなように、Fが増加するとRが減少することが確認された。但し、加圧力の電極間抵抗値への影響はあまり大きくはなかった。 As is clear from FIG. 4, it was confirmed that R decreased as F increased. However, the effect of the pressing force on the resistance value between the electrodes was not so large.

《スポット溶接》
スポット溶接に係るタイムチャートの一例を図5に示した。またスポット溶接に係るフローチャートの一例を図6Aおよび図6B(両者を合わせて「図6」という。)に示した。
《Spot welding》
An example of a time chart related to spot welding is shown in FIG. Further, an example of the flowchart relating to spot welding is shown in FIGS. 6A and 6B (both are collectively referred to as “FIG. 6”).

本実施例に係るスポット溶接は、大別して工程I(第1工程)と工程II(第2工程)からなる。工程Iでは、主に、被接合材の表面状態や接触状態等を反映した電極間(重合体)の電気抵抗値(R)を計測(監視)するための通電を行う。工程IIでは、主に、その電気抵抗値に基づいて設定された通電パターンに沿った通電を行う。具体的には次の通りである。 Spot welding according to this embodiment is roughly classified into step I (first step) and step II (second step). In step I, energization is mainly performed to measure (monitor) the electric resistance value (R) between the electrodes (polymer) that reflects the surface state, contact state, and the like of the material to be joined. In step II, energization is mainly performed according to an energization pattern set based on the electric resistance value. Specifically, it is as follows.

(1)工程I
工程Iは、加圧過程S11、プレ通電過程S12(軟化過程)、インターバル過程S13(冷却過程)を順に行う。加圧過程S11では、Rの時間変化率(ΔR)が微小な所定値(ε)未満となるまで、電極による重合体への加圧力を一定割合で増加させる。|ΔR|<εとなると、そのときの加圧力(F1)を維持する(ステップS111〜S113)。また、そのときのRを計測してR1とする(ステップS114)。R1が好適な範囲内なら、工程II(ステップS21)へジャンプしてもよい。
(1) Step I
In step I, the pressurizing process S11, the pre-energization process S12 (softening process), and the interval process S13 (cooling process) are performed in this order. In the pressurizing process S11, the pressing force on the polymer by the electrode is increased at a constant rate until the time change rate (ΔR) of R becomes less than a minute predetermined value (ε). When | ΔR | <ε, the pressing force (F1) at that time is maintained (steps S111 to S113). Further, R at that time is measured and set to R1 (step S114). If R1 is within a suitable range, the process may jump to step II (step S21).

プレ通電過程S12では、サーチ通電(ステップS112)よりも電流値の大きいプレ通電を行う(ステップS121)。これを|ΔR|<εとなるまで継続する(ステップS122)。プレ通電過程S12により被接合材は加熱されて軟化し、各部の接触性が向上する。つまり、各接触界面近傍になじみが生じる。 In the pre-energization process S12, pre-energization having a larger current value than the search energization (step S112) is performed (step S121). This is continued until | ΔR | <ε (step S122). By the pre-energization process S12, the material to be joined is heated and softened, and the contact property of each part is improved. That is, familiarity occurs in the vicinity of each contact interface.

インターバル過程S13では、プレ通電(ステップS121)よりも電流値が小さいサーチ通電を、|ΔR|<εとなるまで継続する(ステップS131、S132)。|ΔR|<εとなると、そのときのRを計測してR2とする(ステップS133)。インターバル過程S13により、プレ通電過程S12で加熱された被接合材は電極を通じて冷却され、適切な条件下のRが計測される。R2が好適な範囲内なら、工程II(ステップS21)へ移行し、R2に基づいて設定された通電パターンに沿った通電を行うとよい。 In the interval process S13, the search energization having a current value smaller than that of the pre-energization (step S121) is continued until | ΔR | <ε (steps S131 and S132). When | ΔR | <ε, R at that time is measured and set to R2 (step S133). By the interval process S13, the material to be bonded heated in the pre-energization process S12 is cooled through the electrodes, and R under appropriate conditions is measured. If R2 is within a suitable range, the process proceeds to step II (step S21), and energization is performed according to the energization pattern set based on R2.

R2が好適な範囲外なら、さらに、加圧力調整工程S14を行ってもよい。この場合、加圧過程S11と同様に、所望のRが計測されるまで、加圧力を増加または減少させる(ステップS141〜S143)。なお、ステップS143(「R調整」)には、|ΔR|<εとなったときに計測したRが所望範囲内か否かを判断すると共に、Rが所望範囲内のとき、そのRをR3とすることも含まれる。そして、Rが所望範囲内となったときの加圧力(F2)により、従前の加圧力を更新する(ステップS144)。こうして調整されたF2とR3により以降の工程IIを実行する。 If R2 is out of the preferable range, the pressing force adjusting step S14 may be further performed. In this case, as in the pressurizing process S11, the pressing force is increased or decreased until the desired R is measured (steps S141 to S143). In step S143 (“R adjustment”), it is determined whether or not the R measured when | ΔR | <ε is within the desired range, and when R is within the desired range, the R is set to R3. Is also included. Then, the conventional pressing force is updated by the pressing force (F2) when R is within the desired range (step S144). Subsequent steps II are performed by the thus adjusted F2 and R3.

(2)工程II
工程IIは、アップスロープ過程S21(上昇過程)、本通電過程S22、ダウンスロープ過程S23(下降過程)、冷却過程S24を順に行う。
(2) Step II
In step II, the upslope process S21 (upward process), the main energization process S22, the downslope process S23 (downward process), and the cooling process S24 are performed in this order.

アップスロープ過程S21では、工程Iで計測されたRに基づいて決定された通電パターンに沿って、所定の設定値まで電流値を、所定の変化率で上昇させる。 In the upslope process S21, the current value is increased to a predetermined set value at a predetermined rate of change along the energization pattern determined based on the R measured in the step I.

本通電過程S22では、通電パターンで規定された設定電流値に沿った通電を、被接合部へ所望の熱量が投入されるまで継続する(ステップS221、S222)。 In the main energization process S22, energization according to the set current value defined by the energization pattern is continued until a desired amount of heat is applied to the bonded portion (steps S221 and S222).

ダウンスロープ過程S23では、所定の通電パターンに沿って、電流値を所定の変化率で降下させる。これにより、被接合部に形成された溶融池は徐冷されつつ凝固し、凝固割れが抑止される。また、その凝固部の温度も所定割合で降下し、熱間割れも抑止される。 In the downslope process S23, the current value is lowered at a predetermined rate of change along a predetermined energization pattern. As a result, the molten pool formed in the jointed portion solidifies while being slowly cooled, and solidification cracking is suppressed. In addition, the temperature of the solidified portion also drops at a predetermined rate, and hot cracking is suppressed.

冷却過程S24では、電極を重合体に圧接させたまま、通電を停止(除電)する。これにより重合体の温度は常温付近まで低下し、溶接物が完成する。 In the cooling process S24, energization is stopped (static elimination) while the electrodes are in pressure contact with the polymer. As a result, the temperature of the polymer drops to around room temperature, and the welded product is completed.

以上のようなスポット溶接により、過剰な通電を削減しつつ、溶接物の品質安定化が効率的に図られる。 By spot welding as described above, the quality of the welded material can be efficiently stabilized while reducing excessive energization.

Claims (7)

複数の被接合材を重ね合わせた重合体へ該重合体の外表面に接触した一対の対向する電極から通電するスポット溶接方法であって、
該被接合材を溶融させない通電を行って該重合体の電気抵抗の指標値を得る第1工程と、
該指標値に基づいて設定される通電パターンに沿って、該重合体の内側で該被接合材同士を溶接する通電を行う第2工程と、
を備えるスポット溶接方法。
A spot welding method in which a polymer in which a plurality of materials to be bonded are superposed is energized from a pair of opposing electrodes in contact with the outer surface of the polymer.
The first step of obtaining an index value of the electric resistance of the polymer by applying electricity without melting the material to be bonded, and
A second step of energizing the materials to be welded to each other inside the polymer according to an energization pattern set based on the index value, and
Spot welding method including.
前記第1工程は、前記被接合材を通電加熱して軟化させる軟化過程を含む請求項1に記載のスポット溶接方法。 The spot welding method according to claim 1, wherein the first step includes a softening step of energizing and heating the material to be joined to soften the material to be joined. 前記第1工程は、前記軟化過程後の被接合材を冷却する冷却過程を含む請求項2に記載のスポット溶接方法。 The spot welding method according to claim 2, wherein the first step includes a cooling step of cooling the material to be joined after the softening step. 前記第2工程は、通電量が増加する上昇過程と、該上昇過程に継ぐ本通電過程と、該本通電過程に継いで通電量が減少する下降過程とを備え、
前記通電パターンは、該上昇過程における通電量の増加率および/または該本通電過程における電流値が、前記指標値に基づいて調整される請求項1〜3のいずれかに記載のスポット溶接方法。
The second step includes an ascending process in which the amount of energization increases, a main energizing process succeeding the ascending process, and a descending process in which the energizing amount decreases following the main energizing process.
The spot welding method according to any one of claims 1 to 3, wherein the energization pattern is an increase rate of an energization amount in the ascending process and / or a current value in the main energization process is adjusted based on the index value.
前記第2工程前に、前記電極による前記重合体の加圧力を調整する加圧力調整工程を備える請求項1〜4のいずれかに記載のスポット溶接方法。 The spot welding method according to any one of claims 1 to 4, further comprising a pressure adjusting step of adjusting the pressing force of the polymer by the electrode before the second step. 複数の被接合材を重ね合わせた重合体の外表面に接触する一対の対向する電極への通電量を少なくとも制御して、請求項1〜5のいずれかに記載のスポット溶接方法を実行するスポット溶接制御装置。 A spot for performing the spot welding method according to any one of claims 1 to 5, at least controlling the amount of electricity applied to a pair of opposing electrodes in contact with the outer surface of a polymer in which a plurality of materials to be joined are superposed. Welding control device. 請求項6に記載のスポット溶接制御装置により実行されるスポット溶接制御プログラム。 A spot welding control program executed by the spot welding control device according to claim 6.
JP2019210067A 2019-11-21 2019-11-21 Spot welding method, spot welding control device and control program Pending JP2021079417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210067A JP2021079417A (en) 2019-11-21 2019-11-21 Spot welding method, spot welding control device and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210067A JP2021079417A (en) 2019-11-21 2019-11-21 Spot welding method, spot welding control device and control program

Publications (1)

Publication Number Publication Date
JP2021079417A true JP2021079417A (en) 2021-05-27

Family

ID=75963692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210067A Pending JP2021079417A (en) 2019-11-21 2019-11-21 Spot welding method, spot welding control device and control program

Country Status (1)

Country Link
JP (1) JP2021079417A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112982A (en) * 1980-12-29 1982-07-14 Miyachi Denshi Kk Method for controlling resistance welding
JPH0732160A (en) * 1993-07-22 1995-02-03 Nissan Motor Co Ltd Spot welding equipment
JPH0999379A (en) * 1995-10-02 1997-04-15 Nas Toa Co Ltd Welding current controller of resistance welding machine
JP2002028790A (en) * 2000-07-12 2002-01-29 Fujitsu Ten Ltd Resistance welding equipment
JP2002096178A (en) * 2000-09-21 2002-04-02 Toyota Auto Body Co Ltd Spot welding device
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2015116579A (en) * 2013-12-17 2015-06-25 Art−Hikari株式会社 Resistance welding method, resistance welding apparatus and control apparatus of the same
JP2019118921A (en) * 2017-12-28 2019-07-22 ダイハツ工業株式会社 Welding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112982A (en) * 1980-12-29 1982-07-14 Miyachi Denshi Kk Method for controlling resistance welding
JPH0732160A (en) * 1993-07-22 1995-02-03 Nissan Motor Co Ltd Spot welding equipment
JPH0999379A (en) * 1995-10-02 1997-04-15 Nas Toa Co Ltd Welding current controller of resistance welding machine
JP2002028790A (en) * 2000-07-12 2002-01-29 Fujitsu Ten Ltd Resistance welding equipment
JP2002096178A (en) * 2000-09-21 2002-04-02 Toyota Auto Body Co Ltd Spot welding device
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2015116579A (en) * 2013-12-17 2015-06-25 Art−Hikari株式会社 Resistance welding method, resistance welding apparatus and control apparatus of the same
JP2019118921A (en) * 2017-12-28 2019-07-22 ダイハツ工業株式会社 Welding device

Similar Documents

Publication Publication Date Title
KR101562484B1 (en) Indirect spot welding method
US7216793B2 (en) Friction stir welding travel axis load control method and apparatus
KR101974298B1 (en) Resistance spot welding method
US7038160B2 (en) Method for producing permanent integral connections of oxide-dispersed (ODS) metallic materials or components of oxide-dispersed (ODS) metallic materials by welding
JP5052586B2 (en) Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
WO2015049998A1 (en) Resistance spot welding method
CN104511687A (en) Resistance spot welding steel and aluminum workpiece with hot welding electrode at aluminum workpiece
JPS58159986A (en) Press type resistance welding method for work consisting of aluminum material and device and electrode for said method
WO2011016193A1 (en) Resistance welding method, resistance welder, and method and device for evaluating resistance welding
JPWO2015099192A1 (en) Resistance spot welding method
JP2019155389A (en) Resistance spot welding method and resistance spot welding device
KR20190014073A (en) Resistance spot welding method
KR20200037352A (en) Resistance spot welding method and manufacturing method of welding member
Kulkarni et al. Effect of backing plate material diffusivity on microstructure, mechanical properties of friction stir welded joints: a review
KR102303694B1 (en) Resistance spot welding method and weld member production method
US20070220743A1 (en) Electric current bonding apparatus and electric current bonding method
JP2004098107A (en) Aluminum material resistance spot welding method
JP2021079417A (en) Spot welding method, spot welding control device and control program
JP5217108B2 (en) Resistance spot welding spatter generation prediction method, welding method, and welding member
CN115026398B (en) Dynamic preheating welding method for aluminum alloy spot welding
KR102466382B1 (en) Resistance point welding apparatus for high strength steel
KR20140016268A (en) Method of producing a welded article of dispersion strengthened platinum based alloy with two steps welding
JP2021112773A (en) Resistance spot welding method, method for manufacturing welding member, and welding apparatus
KR101500042B1 (en) Welding structure
JP2006212649A (en) Method for spot-welding aluminum-plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018