JP2021078476A - Microalgal proliferation-promoting agents and methods of making - Google Patents

Microalgal proliferation-promoting agents and methods of making Download PDF

Info

Publication number
JP2021078476A
JP2021078476A JP2019211634A JP2019211634A JP2021078476A JP 2021078476 A JP2021078476 A JP 2021078476A JP 2019211634 A JP2019211634 A JP 2019211634A JP 2019211634 A JP2019211634 A JP 2019211634A JP 2021078476 A JP2021078476 A JP 2021078476A
Authority
JP
Japan
Prior art keywords
microalgae
growth promoter
producing
bacterium
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211634A
Other languages
Japanese (ja)
Other versions
JP7401072B2 (en
Inventor
宮坂 均
Hitoshi Miyasaka
均 宮坂
蘭子 岩井
Ranko Iwai
蘭子 岩井
晶子 小宮山
Akiko Komiyama
晶子 小宮山
後藤 康之
Yasuyuki Goto
康之 後藤
滋彦 酒井
Shigehiko Sakai
滋彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Kimigafuchi Gakuen
Original Assignee
Kyushu Electric Power Co Inc
Kimigafuchi Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Kimigafuchi Gakuen filed Critical Kyushu Electric Power Co Inc
Priority to JP2019211634A priority Critical patent/JP7401072B2/en
Publication of JP2021078476A publication Critical patent/JP2021078476A/en
Application granted granted Critical
Publication of JP7401072B2 publication Critical patent/JP7401072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide microalgal proliferation-promoting agents of which production is easy and low cost, as well as methods for producing the microalgal proliferation-promoting agents.SOLUTION: Disclosed is an agent for promoting the proliferation of microalgae, which comprises pulverized cells of a photosynthetic bacterium as an effective ingredient. Also disclosed is a method for producing the microalgal proliferation-promoting agent, which comprises: pulverizing cells of a photosynthetic bacterium such as a purple non-sulfur bacterium Rhodobacter spheroids; and collecting a fraction of insoluble matter from the pulverized cells by centrifugation. Addition of the obtained microalgal proliferation-promoting agent to a culture fluid containing microalgae promotes the microalgal proliferation.SELECTED DRAWING: Figure 1

Description

本発明は、微細藻類増殖促進剤及びその製造方法に関する。 The present invention relates to a microalgae growth promoter and a method for producing the same.

近年、微細藻類を食品又は飼料として利用したり、微細藻類が産生する物質を医薬品、化粧品や燃料として利用したりすることに関心が集まっている。こうした微細藻類の利用を商業的に実現するためには、微細藻類を大量培養することが不可欠であり、そのために微細藻類を効率的に増殖させる技術が求められている。 In recent years, there has been increasing interest in using microalgae as food or feed, and using substances produced by microalgae as pharmaceuticals, cosmetics, and fuels. In order to commercialize the use of such microalgae, it is indispensable to cultivate the microalgae in large quantities, and for that purpose, a technique for efficiently growing the microalgae is required.

例えば、特許文献1には、かん水(淡水に比べて塩分濃度の高い地下水)に含まれる特定の物性を有するフルボ酸含有組成物を微細藻類の培地に加えることによって、該微細藻類の増殖を効果的に促進できることが記載されている。また、特許文献2には、テトラピロール化合物を含むピロール化合物を微細藻類の培地に加えることによって、該微細藻類の増殖を促進する手法が記載されている。 For example, in Patent Document 1, by adding a fulvic acid-containing composition having specific physical characteristics contained in brackish water (groundwater having a higher salinity than fresh water) to a medium of microalgae, the growth of the microalgae is effective. It is stated that it can be promoted. Further, Patent Document 2 describes a method for promoting the growth of microalgae by adding a pyrrole compound containing a tetrapyrrole compound to a medium for microalgae.

特開2015-78155号公報JP-A-2015-78155 特開2019-50731号公報JP-A-2019-50731

しかしながら、特許文献1に記載の発明で用いられるフルボ酸含有組成物を製造するためには、まず、腐植物質(生物の死後、生体有機物が微生物学的又は熱化学的作用を受けて崩壊して生じた、化学構造が特定されない有機物の総称)を豊富に含み特定の特性を有するかん水を用意した上で、該かん水の液性を酸性とし、得られた酸性水を多孔性吸着剤が充填されたカラムによって精製した後、少なくとも2種類のMF膜及び/又はUF膜で分画する必要があり、大きな手間とコストが掛かるという問題があった。また、特許文献2に記載の発明を商業ベースで実現するためには、同文献に記載の特殊な大腸菌(遺伝子ypjD (b2611)が変異により発現できなくなった大腸菌)を入手して該大腸菌に前記テトラピロール化合物をバイオ生産させる必要があり、容易に実現できるものではなかった。 However, in order to produce the fluboic acid-containing composition used in the invention described in Patent Document 1, first, the rot plantous substance (after the death of the organism, the bioorganic substance is decomposed by microbiological or thermochemical action. After preparing irrigation water containing abundantly generated organic substances whose chemical structure is not specified) and having specific characteristics, the irrigation water is made acidic, and the obtained acidic water is filled with a porous adsorbent. After purification by the column, it is necessary to fractionate with at least two types of MF membranes and / or UF membranes, which causes a problem that a large amount of labor and cost are required. Further, in order to realize the invention described in Patent Document 2 on a commercial basis, special Escherichia coli described in the same document (Escherichia coli in which the gene ypjD (b2611) cannot be expressed due to mutation) is obtained and described in the Escherichia coli. It was necessary to bioproduce the tetrapyrrole compound, which was not easily realized.

本発明は上記の点に鑑みてなされたものでありその目的とするところは、低コスト且つ容易に製造可能な微細藻類増殖促進剤、及び該微細藻類増殖促進剤の製造方法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a microalgae growth promoter that can be easily produced at low cost and a method for producing the microalgae growth promoter. is there.

上記課題を解決するために成された本発明に係る微細藻類増殖促進剤は、光合成細菌の菌体破砕物を有効成分として含有するものである。 The microalgae growth-promoting agent according to the present invention, which has been made to solve the above problems, contains a crushed cell of a photosynthetic bacterium as an active ingredient.

また、上記課題を解決するために成された本発明に係る微細藻類増殖促進剤は、光合成細菌の不溶性画分を有効成分として含有するものであってもよい。 Further, the microalgae growth promoter according to the present invention made to solve the above problems may contain an insoluble fraction of a photosynthetic bacterium as an active ingredient.

また、上記課題を解決するために成された本発明に係る微細藻類増殖促進剤は、光合成細菌の可溶性画分を有効成分として含有するものであってもよい。 In addition, the microalgae growth promoter according to the present invention made to solve the above problems may contain a soluble fraction of a photosynthetic bacterium as an active ingredient.

また、上記課題を解決するためになされた本発明に係る微細藻類増殖促進剤は、リポポリサッカライドを有効成分として含有するものであってもよい。 Further, the microalgae growth promoter according to the present invention made to solve the above problems may contain lipopolysaccharide as an active ingredient.

上記課題を解決するために成された本発明に係る微細藻類増殖促進剤の製造方法は、
光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程を有している。
The method for producing a microalgae growth promoter according to the present invention, which has been made to solve the above problems, is
It has a step of producing a crushed bacterial cell by crushing the bacterial cell of a photosynthetic bacterium.

本発明に係る微細藻類増殖促進剤の製造方法は、更に、
遠心分離によって前記菌体破砕物から不溶性画分を取り出す工程、
を有するものであってもよい。
Further, the method for producing a microalgae growth promoter according to the present invention further
A step of extracting an insoluble fraction from the disrupted cell product by centrifugation,
It may have.

本発明に係る微細藻類増殖促進剤の製造方法は、更に、
遠心分離によって前記菌体破砕物から可溶性画分を取り出す工程、
を有するものであってもよい。
Further, the method for producing a microalgae growth promoter according to the present invention further
Step of extracting the soluble fraction from the crushed cells by centrifugation,
It may have.

また、本発明に係る微細藻類増殖促進剤の製造方法は、更に、
前記不溶性画分からリポポリサッカライドを抽出する工程、
を有するものであってもよい。
Further, the method for producing the microalgae growth promoter according to the present invention further describes.
The step of extracting lipopolysaccharide from the insoluble fraction,
It may have.

なお、本発明に係る微細藻類増殖促進剤、及び微細藻類増殖促進剤の製造方法において、前記光合成細菌は紅色非硫黄細菌であることが望ましく、その中でも、特にロドバクター属の光合成細菌であることが望ましい。また、前記ロドバクター属の光合成細菌は、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)であることが望ましい。 In the method for producing the microalgae growth-promoting agent and the microalgae growth-promoting agent according to the present invention, it is desirable that the photosynthetic bacterium is a purple non-sulfur bacterium, and among them, it is particularly a photosynthetic bacterium of the genus Rhodobacter. desirable. Further, it is desirable that the photosynthetic bacterium of the genus Rhodobacter is Rhodobacter sphaeroides.

上記本発明によれば、低コスト且つ容易に製造可能な微細藻類増殖促進剤、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a microalgae growth promoter that can be easily produced at low cost and a method for producing the same.

実施例1における上清液及びペレット液の調製方法の概略を示す模式図。The schematic diagram which shows the outline of the preparation method of the supernatant liquid and the pellet liquid in Example 1. FIG. 前記上清液を種々の濃度で投与して培養したユーグレナにおける、上清濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the supernatant concentration and the growth rate of algae in Euglena which was cultured by administering the supernatant solution at various concentrations. 前記ペレット液を種々の濃度で投与して培養したユーグレナにおける、ペレット濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the pellet concentration and the growth rate of algae in Euglena which was cultured by administering the pellet solution at various concentrations. 前記上清液を種々の濃度で投与して培養したクラミドモナスにおける、上清濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the supernatant concentration and the growth rate of algae in Chlamydomonas cultured by administering the supernatant solution at various concentrations. 前記ペレット液を種々の濃度で投与して培養したクラミドモナスにおける、ペレット濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the pellet concentration and the growth rate of algae in Chlamydomonas cultured by administering the pellet solution at various concentrations. 塩酸処理したペレットを用いて調製したペレット液を種々の濃度で投与して培養したユーグレナにおける、ペレット濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the pellet concentration and the growth rate of algae in Euglena which was cultured by administering the pellet solution prepared using the pellet treated with hydrochloric acid at various concentrations. 光合成細菌由来のリポポリサッカライド(LPS)を種々の濃度で投与して培養したユーグレナにおける、リポポリサッカライド濃度と藻体の増殖率との関係を示すグラフ。The graph which shows the relationship between the lipopolysaccharide concentration and the growth rate of algae in Euglena cultured by administering lipopolysaccharide (LPS) derived from a photosynthetic bacterium at various concentrations.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、光合成細菌の破砕物を遠心分離して得られた上清(可溶性画分)とペレット(不溶性画分)の両方に微細藻類の増殖を促進する効果があることを見出した。更に、本発明者は、前記可溶性画分と前記不溶性画分とで微細藻類の増殖促進効果が認められる濃度が異なること、前記不溶性画分を可溶化した上で微細藻類に投与することで微細藻類の増殖促進効果を高められること、及び前記不溶性画分に含まれるリポポリサッカライドが微細藻類の増殖促進因子として機能していることを見出した。本発明に係る微細藻類増殖促進剤及びその製造方法は、上記知見に基づいて想到されたものである。 As a result of diligent studies to solve the above problems, the present inventor has finely divided both the supernatant (soluble fraction) and pellets (insoluble fraction) obtained by centrifuging the disrupted product of photosynthetic bacteria. It was found that it has the effect of promoting the growth of algae. Furthermore, the present inventor has different concentrations in which the effect of promoting the growth of microalgae is observed between the soluble fraction and the insoluble fraction, and the insoluble fraction is solubilized and then administered to the microalgae to make fine particles. It was found that the effect of promoting the growth of algae can be enhanced, and that lipopolysaccharide contained in the insoluble fraction functions as a factor for promoting the growth of microalgae. The microalgae growth promoter and the method for producing the same according to the present invention were conceived based on the above findings.

すなわち、本発明に係る微細藻類増殖促進剤の第1の態様のものは、光合成細菌の菌体破砕物を有効成分として含有するものである。 That is, the first aspect of the microalgae growth promoter according to the present invention contains a crushed cell of a photosynthetic bacterium as an active ingredient.

光合成細菌は、安価に市販されており、なお且つ培養も容易であることから、本発明に係る微細藻類増殖促進剤及びその製造方法は、低コスト且つ容易に実施することができる。 Since photosynthetic bacteria are commercially available at low cost and easy to culture, the microalgae growth promoter and the method for producing the same according to the present invention can be easily carried out at low cost.

また、上記の通り、前記菌体破砕物を遠心分離して得られる上清(可溶性画分)とペレット(不溶性画分)の両方に微細藻類の増殖を促進する効果があり、且つ両者が効果を発揮する濃度には違いがあることから、本発明に係る微細藻類の増殖促進剤は、前記可溶性画分又は前記不溶性画分のいずれかを一方、又は両方を、各々の投与に適した濃度で含有するものとしてもよい。 Further, as described above, both the supernatant (soluble fraction) and the pellet (insoluble fraction) obtained by centrifuging the crushed cells have the effect of promoting the growth of microalgae, and both are effective. Since there is a difference in the concentration at which the above-mentioned substances are exhibited, the microalgae growth-promoting agent according to the present invention has a concentration suitable for administration of either one or both of the soluble fraction and the insoluble fraction. It may be contained in.

すなわち、本発明に係る微細藻類増殖促進剤の第2の態様のものは、光合成細菌の不溶性画分を有効成分として含有するものである。 That is, the second aspect of the microalgae growth promoter according to the present invention contains an insoluble fraction of a photosynthetic bacterium as an active ingredient.

また、本発明に係る微細藻類増殖促進剤の第3の態様のものは、光合成細菌の可溶性画分を有効成分として含有するものである。 In addition, the third aspect of the microalgae growth promoter according to the present invention contains a soluble fraction of a photosynthetic bacterium as an active ingredient.

ここで、前記菌体破砕物は、光合成細菌の菌体を、例えば、超音波破砕機、ホモジナイザー(フレンチプレス)、ビーズ式細胞破砕装置、又は酵素等を用いて破砕することによって取得することができ、前記不溶性画分及び可溶性画分は、それぞれ、得られた粉砕物を遠心分離することによって取得することができる。 Here, the cell crushed product can be obtained by crushing the cells of a photosynthetic bacterium using, for example, an ultrasonic crusher, a homogenizer (French press), a bead-type cell crusher, an enzyme, or the like. The insoluble fraction and the soluble fraction can be obtained by centrifuging the obtained pulverized product, respectively.

すなわち、本発明に係る微細藻類増殖促進剤の製造方法の第1の態様のものは、光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程を含んでいる。 That is, the first aspect of the method for producing a microalga growth promoter according to the present invention includes a step of producing a crushed cell product by crushing the cell cells of a photosynthetic bacterium.

また、本発明に係る微細藻類増殖促進剤の製造方法の第2の態様のものは、光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程と、遠心分離によって前記菌体破砕物から不溶性画分を取り出す工程とを含んでいる。 In addition, the second aspect of the method for producing a microalga growth promoter according to the present invention includes a step of producing a cell crushed product by crushing a bacterial cell of a photosynthetic bacterium, and the cell crushing by centrifugation. It includes a step of extracting an insoluble fraction from a substance.

前記本発明に係る微細藻類増殖促進剤の製造方法の第2の態様のものは、更に、前記不溶性画分に対する可溶化処理を行う工程を有することが望ましい。 It is desirable that the second aspect of the method for producing a microalgae growth promoter according to the present invention further has a step of solubilizing the insoluble fraction.

なお、前記可溶化処理の方法としては、例えば塩酸、硫酸、若しくは硝酸等の強酸による処理、乳酸、リン酸、若しくは酢酸等の弱酸による処理、水酸化ナトリウム若しくは水酸化カリウム等の強塩基による処理、水酸化カルシム若しくはアンモニア等の弱塩基による処理、又はエタノール若しくはアセトン等の有機溶媒による処理などを挙げることができるがこれらに限定されるものではない。このような可溶化処理を行うことにより、前記不溶性画分に含まれる有効成分を溶出・活性化させて、その効果(微細藻類の増殖を促進する効果)を高めることができる。 The solubilization method includes, for example, treatment with a strong acid such as hydrochloric acid, sulfuric acid or nitric acid, treatment with a weak acid such as lactic acid, phosphoric acid or acetic acid, and treatment with a strong base such as sodium hydroxide or potassium hydroxide. , Treatment with a weak base such as calcium hydroxide or ammonia, or treatment with an organic solvent such as ethanol or acetone, but is not limited thereto. By performing such a solubilization treatment, the active ingredient contained in the insoluble fraction can be eluted and activated, and the effect (effect of promoting the growth of microalgae) can be enhanced.

また、本発明に係る微細藻類増殖促進剤の製造方法の第3の態様のものは、光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程と、遠心分離によって前記菌体破砕物から可溶性画分を取り出す工程とを含んでいる。 In addition, the third aspect of the method for producing a microalgae growth promoter according to the present invention includes a step of producing a cell crushed product by crushing a bacterial cell of a photosynthetic bacterium, and the cell crushing by centrifugation. It includes a step of extracting a soluble fraction from a product.

また、本発明に係る微細藻類増殖促進剤の第4の態様のものは、リポポリサッカライドを有効成分としている。 In addition, the fourth aspect of the microalga growth promoter according to the present invention contains lipopolysaccharide as an active ingredient.

前記リポポリサッカライドとしては、いかなるものを用いてもよいが、光合成細菌の不溶性画分から抽出したものを用いることが望ましい。 Any lipopolysaccharide may be used, but it is desirable to use one extracted from an insoluble fraction of a photosynthetic bacterium.

すなわち、本発明に係る微細藻類増殖促進剤の製造方法の第4の態様は、光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程と、遠心分離によって前記菌体破砕物から不溶性画分を取り出す工程と、前記不溶性画分からリポポリサッカライドを抽出する工程とを含んでいる。 That is, the fourth aspect of the method for producing a microalga growth promoter according to the present invention is a step of producing a cell crushed product by crushing a bacterial cell of a photosynthetic bacterium, and a step of producing a bacterial cell crushed product by centrifugation, and from the bacterial cell crushed product by centrifugation. It includes a step of extracting an insoluble fraction and a step of extracting lipopolysaccharide from the insoluble fraction.

なお、前記各態様に係る微細藻類増殖促進剤、又は微細藻類増殖促進剤の製造方法において、前記光合成細菌の種類は特に限定されるものではないが、紅色非硫黄細菌であることが望ましく、その中でも、特にロドバクター属の光合成細菌であることが望ましい。前記ロドバクター属の光合成細菌としては、例えば、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)を好適に用いることができる。なお、ロドバクター・スフェロイデスとしては、「PSB凍結菌体」、「オーレスPSB」、「光オーレス」、「NEWパナオーレス」、又は「オーレスみどり」の名称で市販されている菌体(販売元:株式会社松本微生物研究所)を好適に用いることができる。 The type of the photosynthetic bacterium is not particularly limited in the method for producing the microalgae growth-promoting agent or the microalgae growth-promoting agent according to each of the above aspects, but it is desirable that the photosynthetic bacterium is a purple non-sulfur bacterium. Above all, it is particularly desirable that it is a photosynthetic bacterium of the genus Rhodobacter. As the photosynthetic bacterium of the genus Rhodobacter, for example, Rhodobacter sphaeroides can be preferably used. In addition, as Rhodobacter spharoides, the bacterial cells marketed under the names of "PSB frozen bacterial cells", "Aures PSB", "Hikari Aures", "NEW Panaores", or "Ores Midori" (Distributor: Co., Ltd.) Matsumoto Microbial Research Institute) can be preferably used.

前記各態様に係る微細藻類増殖促進剤は、液剤、粉末剤、顆粒剤、又は錠剤等いかなる剤形のものとしてもよい。例えば、微細藻類への投与の容易性を重視する場合には本剤を液状のもの(すなわち液剤)とすることが望ましく、運搬及び保存の容易性を重視する場合には本剤を固体状のもの(すなわち粉末剤、顆粒剤、又は錠剤)とすることが望ましい。本発明に係る微細藻類増殖促進剤を液剤とする場合、該液剤は、前記光合成細菌の菌体破砕物、不溶性画分、可溶性画分、又はリポポリサッカライドを、水、又は水系の分散媒若しくは溶媒(以下、水等と称する)に懸濁、溶解、又は分散させることによって所定の濃度に調整することで製造することができる。また、本発明に係る微細藻類増殖促進剤を粉末剤とする場合、該粉末剤は、前記光合成細菌の菌体破砕物、不溶性画分、可溶性画分、又はリポポリサッカライドを乾燥させることによって製造される。また、本発明に係る微細藻類増殖促進剤を顆粒剤又は錠剤とする場合、該顆粒剤又は錠剤は、乾燥状態の前記菌体破砕物、不溶性画分、可溶性画分、又はリポポリサッカライドに所定の賦形剤、結合剤、崩壊剤などの添加剤を加えて成形することによって製造される。 The microalgae growth promoter according to each of the above aspects may be in any dosage form such as a liquid agent, a powder agent, a granule agent, or a tablet. For example, when the ease of administration to microalgae is important, it is desirable to make this drug a liquid (that is, a liquid), and when the ease of transportation and storage is important, this drug is in a solid state. It is desirable to use a product (that is, a powder, a granule, or a tablet). When the microalgae growth-promoting agent according to the present invention is used as a liquid preparation, the liquid preparation is prepared by using a disrupted substance, an insoluble fraction, a soluble fraction, or a lipopolysaccharide of the photosynthetic bacterium in water or an aqueous dispersion medium or an aqueous dispersion medium. It can be produced by adjusting the concentration to a predetermined value by suspending, dissolving, or dispersing in a solvent (hereinafter referred to as water or the like). When the microalgae growth promoter according to the present invention is used as a powder, the powder is produced by drying the cell disrupted product, insoluble fraction, soluble fraction, or lipopolysaccharide of the photosynthetic bacteria. Will be done. When the microalgae growth-promoting agent according to the present invention is a granule or tablet, the granule or tablet is designated as the dried cell crushed product, insoluble fraction, soluble fraction, or lipopolysaccharide. It is manufactured by adding additives such as excipients, binders and disintegrants of the above.

前記粉末剤、顆粒剤、又は錠剤は、使用時にユーザ(微細藻類への投与を行う作業者)が水等に溶解して適切な濃度とした上で、微細藻類への投与(具体的には、微細藻類を含む培養液中への投与)を行うことが望ましい。また、前記液剤は、使用時にユーザが水等で適切な濃度に希釈した上で微細藻類に投与するものとしてもよく、予め適切な濃度となるように製造され、希釈せずに(原液のままで)微細藻類に投与されるものとしてもよい。 The powder, granules, or tablets are administered to microalgae (specifically, after being dissolved in water or the like by a user (worker who administers to microalgae) to an appropriate concentration at the time of use. , Administration into a culture solution containing microalgae) is desirable. Further, the liquid preparation may be administered to microalgae after being diluted to an appropriate concentration by the user with water or the like at the time of use, and is manufactured so as to have an appropriate concentration in advance and is not diluted (as is, as the undiluted solution). It may be administered to microalgae.

前記各態様に係る微細藻類増殖促進剤は、種々の微細藻類の増殖促進に用いることができる。なお、「微細藻類」とは、典型的には単細胞真核生物又は真正細菌であって酸素発生型光合成を行うものであるが、本発明ではこれに加えて、単細胞真核生物のうちの二次共生藻であって光合成を行わないものも含むものとする。本発明に係る微細藻類増殖促進剤の適用対象とする微細藻類としては、例えば、ユーグレナ類の藻類(ユーグレナ藻等)、クラミドモナス属の藻類、クロレラ属の藻類、ボツリオコッカス属の藻類、スイゼンジノリ属のラン藻類(スイゼンジノリ等)、又はユレモ属のラン藻類(スピルリナ等)等が挙げられるが、これらに限定されるものではない。 The microalgae growth promoter according to each of the above aspects can be used to promote the growth of various microalgae. The "microalgae" are typically unicellular eukaryotes or eubacteria that perform oxygen-generating photosynthesis, but in the present invention, in addition to this, two of the unicellular eukaryotes It also includes sub-unicellular algae that do not photosynthesize. Examples of the microalgae to which the microalgae growth promoter according to the present invention is applied include Euglenidae algae (Euglenidae, etc.), Cramidomonas algae, Chlorella algae, Boturiococcus algae, and Suizenjinori. Examples include, but are not limited to, orchid algae (such as Suizenjinori) and orchid algae of the genus Euglenida (such as spirulina).

光合成細菌の菌体破砕物から得られたペレット(不溶性画分)と上清(可溶性画分)とをそれぞれ含有するペレット液及び上清液を、微細藻類であるユーグレナを含む培養液に投与し、それらがユーグレナの増殖に与える影響を調べた。なお、前記光合成細菌としては、市販のロドバクター・スフェロイデス(Rhodobacter sphaeroides、販売元:松本微生物株式会社、販売名:PSB凍結菌体)を使用し、前記ユーグレナとしては、国立環境研究所微生物系統保存施設(NIESコレクション)に保存されているユーグレナ・グラシリス(Euglena gracilis)NIES-48株を使用した。 Pellet solution and supernatant solution containing pellets (insoluble fraction) and supernatant (soluble fraction) obtained from crushed cells of photosynthetic bacteria are administered to a culture solution containing Euglena, which is a microalgae. , The effects of them on the proliferation of Euglena were investigated. As the photosynthetic bacterium, commercially available Rhodobacter sphaeroides (sold by Matsumoto Microbial Co., Ltd., trade name: PSB frozen bacterium) was used, and the Euglena was a microbial line preservation facility of the National Institute for Environmental Studies. Euglena gracilis NIES-48 strain stored in (NIES collection) was used.

前記ペレット液及び上清液の調製方法の概略を図1に示す。まず、光合成細菌の培養液(濁度OD660=20、約60 mg fresh weight/mL)を超音波破砕機で、出力:60 W、30秒間ON/OFFを4回繰り返して破砕し、得られた破砕液を遠心分離(15560×g、10 min、25℃)することによってペレットと上清に分離した。得られたペレット及び上清を、それぞれ以下の濃度となるように1リットルの水道水に添加することによりペレット液又は上清液を調製した。なお、該濃度はいずれも破砕前の菌体数(cfu: colony forming unit)から計算した。
上清濃度:0(上清添加なし)、101、102、103、104、105、106、107、108(いずれもcfu/mL相当)
ペレット濃度:0(ペレット添加なし)、105、106、107、108、109(いずれもcfu/mL相当)
The outline of the method for preparing the pellet solution and the supernatant solution is shown in FIG. First, the culture solution of photosynthetic bacteria (turbidity OD 660 = 20, about 60 mg fresh weight / mL) was crushed with an ultrasonic crusher at an output of 60 W, ON / OFF repeatedly for 30 seconds four times, and obtained. The crushed solution was separated into pellets and a supernatant by centrifugation (15560 × g, 10 min, 25 ° C.). The obtained pellets and supernatant were added to 1 liter of tap water so as to have the following concentrations, respectively, to prepare a pellet solution or a supernatant solution. The concentrations were all calculated from the number of colony forming units (cfu) before crushing.
Supernatant concentration: 0 (without addition of supernatant), 10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 (all equivalent to cfu / mL)
Pellet concentration: 0 (without pellet addition), 10 5 , 10 6 , 10 7 , 10 8 , 10 9 (all equivalent to cfu / mL)

前記ユーグレナをCM培地(Cramer-Myers medium, pH 3.5, PADILLA, G. M. and JAMES, T. W. (1960) Exp. Cell Res. 20, 401-415.)中で培養して得られた培養液(濁度OD680=0.05)を、12穴プレートの各ウェルに1800uLずつ収容し、そこに前記いずれかの濃度の上清液又はペレット液を200uL添加して12日間培養(25℃、24時間明条件)を行った。なお、前記上清液又は前記ペレット液は、前記ユーグレナの培養液への添加によって10倍希釈されたため、上清の最終濃度(培養液中における濃度)は、0、100、101、102、103、104、105、106、107(いずれもcfu/mL相当)となり、ペレットの最終濃度(培養液中における濃度)は、0、104、105、106、107、108(いずれもcfu/mL相当)となった。 Culture solution (turbidity OD) obtained by culturing the Euglena in CM medium (Cramer-Myers medium, pH 3.5, PADILLA, GM and JAMES, TW (1960) Exp. Cell Res. 20, 401-415.). 680 = 0.05) was placed in each well of a 12-well plate in an amount of 1800 uL, and 200 uL of the supernatant or pellet solution having any of the above concentrations was added thereto and cultured for 12 days (25 ° C., 24-hour light condition). went. Since the supernatant or the pellet was diluted 10-fold by adding the Euglena to the culture, the final concentration of the supernatant (concentration in the culture) was 0 , 100, 10 1 , 10 2, 10 3, 10 4, 10 5, 10 6, 10 7 (both cfu / mL equivalent), and the final concentration of the pellets (concentration in culture medium) is 0,10 4, 10 5, 10 6, They were 10 7 and 10 8 (both equivalent to cfu / mL).

上記試験の結果を図2及び図3に示す。図2は前記上清液を投与して培養したユーグレナの増殖率を示すグラフであり、図3は前記ペレット液を投与して培養したユーグレナの増殖率を示すグラフである。なお、増殖率は、培養開始時と培養終了時における培養サンプル(すなわち前記各ウェル内の液体)の濁度(OD680)を、それぞれ分光光度計によって測定し、培養終了時における濁度の値を、培養開始時における濁度の値で除することによって算出した(以下、全ての実施例において同じ)。 The results of the above tests are shown in FIGS. 2 and 3. FIG. 2 is a graph showing the growth rate of Euglena cultured by administering the supernatant, and FIG. 3 is a graph showing the growth rate of Euglena cultured by administering the pellet solution. The growth rate is determined by measuring the turbidity (OD 680 ) of the culture sample (that is, the liquid in each well) at the start and end of the culture with a spectrophotometer, and the value of the turbidity at the end of the culture. Was calculated by dividing by the value of turbidity at the start of culturing (hereinafter, the same applies to all examples).

図2から明らかなように、上清液を投与したものでは、上清濃度103〜107(cfu/mL)でユーグレナの増殖促進効果が見られた。一方、図3から明らかなように、ペレット液を投与したものでは、ペレット濃度108(cfu/mL)で有意なユーグレナの増殖促進効果が見られた。以上から、光合成細菌破砕液の上清とペレットでは、微細藻類の増殖促進効果を示す濃度が異なっている(上清は低濃度、ペレットは高濃度)ことが分かった。 As apparent from FIG. 2, is obtained by administering the supernatant, growth promoting effect of Euglena was seen in the supernatant concentration 10 3 ~10 7 (cfu / mL ). On the other hand, as is clear from FIG. 3, when the pellet solution was administered, a significant Euglena growth promoting effect was observed at a pellet concentration of 10 8 (cfu / mL). From the above, it was found that the supernatant of the photosynthetic bacterium crushed solution and the pellet had different concentrations showing the growth promoting effect of microalgae (the supernatant had a low concentration and the pellet had a high concentration).

前記上清液及び前記ペレット液を、微細藻類であるクラミドモナスを含む培養液に投与し、それらがクラミドモナスの増殖に与える影響を調べた。前記クラミドモナスとしては、Chlamydomonas Resource Center (Duke University, USA)に保存されているクラミドモナス・ラインハーディ(Chlamydomonas reinhardtii)CC-124株を使用した。 The supernatant and the pellet were administered to a culture medium containing the microalga Chlamydomonas, and their effects on the growth of Chlamydomonas were investigated. As the Chlamydomonas, the Chlamydomonas reinhardtii CC-124 strain stored in the Chlamydomonas Resource Center (Duke University, USA) was used.

前記クラミドモナスをTris-Minimal 培地(pH 7.0, Gorman, D.S., and R.P. Levine (1965) Proc. Natl. Acad. Sci. USA 54, 1665-1669)中で培養して得られた培養液(濁度OD680=0.05)を、12穴プレートの各ウェルに1800uLずつ収容し、そこに実施例1と同様にして調製した上清液又はペレット液を200uL添加して5日間培養(25℃、24時間明条件)を行った。なお、上清の最終濃度(培養液中における濃度)は、0、101、102、103、104、105、106、107(いずれもcfu/mL相当)とし、ペレットの最終濃度(培養液中における濃度)は、0、101、102、103、104、105、106、107、108(いずれもcfu/mL相当)とした。 Culture medium (turbidity OD) obtained by culturing the Chlamydomonas in Tris-Minimal medium (pH 7.0, Gorman, DS, and RP Levine (1965) Proc. Natl. Acad. Sci. USA 54, 1665-1669). 680 = 0.05) was placed in each well of a 12-well plate in an amount of 1800 uL, and 200 uL of the supernatant or pellet solution prepared in the same manner as in Example 1 was added thereto and cultured for 5 days (25 ° C, 24 hours). Condition) was performed. The final concentration of the supernatant (concentration in the culture solution) was 0, 10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 (all equivalent to cfu / mL) of the pellets. the final concentration (concentration in culture medium) was set to 0,10 1, 10 2, 10 3, 10 4, 10 5, 10 6, 10 7, 10 8 (both cfu / mL equivalent).

上記試験の結果を図4及び図5に示す。図4は前記上清液を投与して培養したクラミドモナスの増殖率を示すグラフであり、図5は前記ペレット液を投与して培養したクラミドモナスの増殖率を示すグラフである。図4から明らかなように、上清液を投与したものでは、上清濃度101〜107(cfu/mL)でクラミドモナスに対する有意な増殖促進効果が見られた。一方、図5から明らかなように、ペレット液を投与したものでは、ペレット濃度101〜108(cfu/mL)でクラミドモナスに対する有意な増殖促進効果が見られ、最も効果的な濃度は105(cfu/mL)であった。このことから、上清液及びペレット液が効果を示す濃度域は微細藻類の種類によって異なること、及びクラミドモナスでは、ユーグレナよりも前記上清液及び前記ペレット液に対する感受性が高い(すなわち、より低濃度で増殖促進効果が得られる)ことが分かった。 The results of the above tests are shown in FIGS. 4 and 5. FIG. 4 is a graph showing the growth rate of Chlamydomonas cultured by administering the supernatant, and FIG. 5 is a graph showing the growth rate of Chlamydomonas cultured by administering the pellet solution. As apparent from FIG. 4, is obtained by administering the supernatant, significant growth-promoting effect on Chlamydomonas were seen in the supernatant concentration 10 1 ~10 7 (cfu / mL ). On the other hand, as is clear from FIG. 5, when the pellet solution was administered, a significant growth promoting effect on Chlamydomonas was observed at pellet concentrations of 10 1 to 10 8 (cfu / mL), and the most effective concentration was 10 5 It was (cfu / mL). From this, the concentration range in which the supernatant and the pellet solution are effective differs depending on the type of microalgae, and Chlamydomonas is more sensitive (that is, lower concentration) to the supernatant and the pellet solution than Euglena. It was found that the growth promoting effect can be obtained.

上記の実施例1において、上清に比べてペレットによるユーグレナの増殖促進効果が小さかった理由としては、ペレット中の有効成分がペレット液中に溶け込んでいないことが考えられた。そこで、塩酸処理によってペレットの細胞壁成分を可溶化することで増殖促進効果を高めることができるか否かを検討した。 In Example 1 above, the reason why the effect of promoting Euglena growth by the pellets was smaller than that of the supernatant was considered to be that the active ingredient in the pellets was not dissolved in the pellet solution. Therefore, it was examined whether or not the growth promoting effect can be enhanced by solubilizing the cell wall component of the pellet by hydrochloric acid treatment.

まず、実施例1と同様の方法で取得したペレットを、0.1 M HClによって100℃、30分処理し、処理後のペレットを以下の濃度となるように1リットルの水道水に添加することによってペレット液を調製した。
ペレット濃度:0(ペレット添加なし)、105、109(いずれもcfu/mL相当)
First, the pellets obtained in the same manner as in Example 1 are treated with 0.1 M HCl at 100 ° C. for 30 minutes, and the treated pellets are added to 1 liter of tap water to have the following concentrations. The liquid was prepared.
Pellet concentration: 0 (without pellet addition), 10 5 , 10 9 (all equivalent to cfu / mL)

上記のペレット液を、実施例1と同様にユーグレナ(Euglena gracilis、NIES-48株)の培養液に添加して12日間培養を行った(ペレットの最終濃度:104、108 (cfu/mL相当))。その結果、図6に示すように、108 cfu/mLで顕著な増殖促進効果が認められただけでなく、104 cfu/mLでもユーグレナの増殖を促進する効果が認められた。 The above pellet solution was added to the culture solution of Euglena (Euglena gracilis, NIES-48 strain) in the same manner as in Example 1 and cultured for 12 days (final concentration of pellets: 10 4 , 10 8 (cfu / mL). Equivalent)). As a result, as shown in FIG. 6, not only a remarkable growth promoting effect was observed at 10 8 cfu / mL, but also a growth promoting effect of Euglena was observed at 10 4 cfu / mL.

光合成細菌の不溶性画分(菌体破砕物の遠心分離ペレット)に含まれる成分のうち、グラム陰性菌の外膜の成分であるリポポリサッカライド(Lipopolysaccharide: LPS)は、植物において活性酸素種の生成を促進することが知られている。更に、活性酸素種は高濃度では植物にとって毒となるが低濃度では逆に植物の成長を促進することが知られている。そのため、本発明者は、前記不溶性画分に含まれる微細藻類増殖促進物質をLPSと予測し、光合成細菌由来のLPSを種々の濃度でユーグレナ(Euglena gracilis、NIES-48株)に投与してその増殖への影響を調べた。 Among the components contained in the insoluble fraction of photosynthetic bacteria (centrifugated pellets of crushed cells), lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-negative bacteria, produces reactive oxygen species in plants. Is known to promote. Furthermore, it is known that reactive oxygen species are toxic to plants at high concentrations, but conversely promote plant growth at low concentrations. Therefore, the present inventor predicts that the microalga growth-promoting substance contained in the insoluble fraction is LPS, and administers LPS derived from photosynthetic bacteria to Euglena (Euglena gracilis, NIES-48 strain) at various concentrations. The effect on proliferation was investigated.

前記LPSとしては、市販標準品(Rhodobacter sphaeroides由来のもの)を使用し、該LPSを以下の濃度となるように10mLの水道水に添加することによってLPS溶液を調製した。
LPS濃度:0(LPS添加なし)、10-17、10-16、10-15、10-14、10-13、10-12、10-11、10-10、10-9、10-8、10-7、10-6、10-5、10-4(いずれもg/mL)
As the LPS, a commercially available standard product (derived from Rhodobacter sphaeroides) was used, and an LPS solution was prepared by adding the LPS to 10 mL of tap water so as to have the following concentration.
LPS concentration: 0 (without LPS added), 10 -17 , 10 -16 , 10 -15 , 10 -14 , 10 -13 , 10 -12 , 10 -11 , 10 -10 , 10 -9 , 10 -8 , 10 -7 , 10 -6 , 10 -5 , 10 -4 (all g / mL)

前記ユーグレナの培養液(濁度OD680=0.05)を、12穴プレートの各ウェルに1800uLずつ収容し、そこに前記いずれかの濃度のLPS溶液を200uL添加して、25℃、24時間明条件で12日間培養を行った(LPSの最終濃度(培養液中における濃度) [g/mL]:10-18、10-17、10-16、10-15、10-14、10-13、10-12、10-11、10-10、10-9、10-8、10-7、10-6、10-5)。 The Euglena culture solution (turbidity OD 680 = 0.05) was placed in each well of a 12-well plate in an amount of 1800 uL, and 200 uL of an LPS solution having one of the above concentrations was added thereto. (LPS final concentration (concentration in culture solution) [g / mL]: 10 -18 , 10 -17 , 10 -16 , 10 -15 , 10 -14 , 10 -13 , 10 -12 , 10 -11 , 10 -10 , 10 -9 , 10 -8 , 10 -7 , 10 -6 , 10 -5 ).

上記試験の結果を図7に示す。同図から明らかなように、光合成細菌由来のLPSでは10-7g/mL(0.1ug/mL)〜10-5g/mL(10ug/mL)の濃度でユーグレナの増殖促進効果が認められた。 The results of the above test are shown in FIG. As is clear from the figure, LPS derived from photosynthetic bacteria showed a growth promoting effect of Euglena at a concentration of 10 -7 g / mL (0.1 ug / mL) to 10 -5 g / mL (10 ug / mL). ..

Claims (15)

光合成細菌の菌体破砕物を有効成分として含有する微細藻類増殖促進剤。 A microalgae growth promoter containing crushed cells of photosynthetic bacteria as an active ingredient. 光合成細菌の不溶性画分を有効成分として含有する微細藻類増殖促進剤。 A microalgae growth promoter containing an insoluble fraction of photosynthetic bacteria as an active ingredient. 光合成細菌の可溶性画分を有効成分として含有する微細藻類増殖促進剤。 A microalgae growth promoter containing a soluble fraction of photosynthetic bacteria as an active ingredient. 前記光合成細菌が紅色非硫黄細菌であることを特徴とする請求項1〜3のいずれかに記載の微細藻類増殖促進剤。 The microalgae growth promoter according to any one of claims 1 to 3, wherein the photosynthetic bacterium is a purple non-sulfur bacterium. 前記紅色非硫黄細菌がロドバクター属の細菌であることを特徴とする請求項4に記載の微細藻類増殖促進剤。 The microalgae growth promoter according to claim 4, wherein the purple non-sulfur bacterium is a bacterium belonging to the genus Rhodobacter. 前記ロドバクター属の細菌がロドバクター・スフェロイデスであることを特徴とする請求項5に記載の微細藻類増殖促進剤。 The microalgae growth promoter according to claim 5, wherein the bacterium of the genus Rhodobacter is Rhodobacter spharoides. リポポリサッカライドを有効成分として含有する微細藻類増殖促進剤。 A microalgae growth promoter containing lipopolysaccharide as an active ingredient. 光合成細菌の菌体を破砕することによって菌体破砕物を生成する工程を有することを特徴とする微細藻類増殖促進剤の製造方法。 A method for producing a microalgae growth promoter, which comprises a step of producing a crushed cell product by crushing the cell of a photosynthetic bacterium. 更に、
遠心分離によって前記菌体破砕物から不溶性画分を取り出す工程、
を有することを特徴とする請求項8に記載の微細藻類増殖促進剤の製造方法。
In addition
A step of extracting an insoluble fraction from the disrupted cell product by centrifugation,
The method for producing a microalgae growth promoter according to claim 8, wherein the agent is characterized by having.
更に、
前記不溶性画分を可溶化処理する工程、
を有することを特徴とする請求項9に記載の微細藻類増殖促進剤の製造方法。
In addition
Step of solubilizing the insoluble fraction,
9. The method for producing a microalgae growth promoter according to claim 9.
更に、
遠心分離によって前記菌体破砕物から可溶性画分を取り出す工程、
を有することを特徴とする請求項8に記載の微細藻類増殖促進剤の製造方法。
In addition
Step of extracting the soluble fraction from the crushed cells by centrifugation,
The method for producing a microalgae growth promoter according to claim 8, wherein the agent is characterized by having.
更に、
前記不溶性画分からリポポリサッカライドを抽出する工程、
を有することを特徴とする請求項9に記載の微細藻類増殖促進剤の製造方法。
In addition
The step of extracting lipopolysaccharide from the insoluble fraction,
9. The method for producing a microalgae growth promoter according to claim 9.
前記光合成細菌が紅色非硫黄細菌であることを特徴とする請求項8〜12のいずれかに記載の微細藻類増殖促進剤の製造方法。 The method for producing a microalga growth promoter according to any one of claims 8 to 12, wherein the photosynthetic bacterium is a purple non-sulfur bacterium. 前記紅色非硫黄細菌がロドバクター属の細菌であることを特徴とする請求項13に記載の微細藻類増殖促進剤の製造方法。 The method for producing a microalga growth promoter according to claim 13, wherein the purple non-sulfur bacterium is a bacterium belonging to the genus Rhodobacter. 前記ロドバクター属の細菌がロドバクター・スフェロイデスであることを特徴とする請求項14に記載の微細藻類増殖促進剤の製造方法。 The method for producing a microalga growth promoter according to claim 14, wherein the bacterium of the genus Rhodobacter is Rhodobacter spharoides.
JP2019211634A 2019-11-22 2019-11-22 Microalgae growth promoter and its manufacturing method Active JP7401072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211634A JP7401072B2 (en) 2019-11-22 2019-11-22 Microalgae growth promoter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211634A JP7401072B2 (en) 2019-11-22 2019-11-22 Microalgae growth promoter and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021078476A true JP2021078476A (en) 2021-05-27
JP7401072B2 JP7401072B2 (en) 2023-12-19

Family

ID=75965564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211634A Active JP7401072B2 (en) 2019-11-22 2019-11-22 Microalgae growth promoter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7401072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931063A (en) * 2022-06-15 2022-08-23 云南西草资源开发有限公司 Method for improving ergothioneine content in tremella aurantialba

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916628B1 (en) * 1966-04-06 1974-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916628B1 (en) * 1966-04-06 1974-04-23

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
日本農芸化学会大会要旨集, JPN6023016762, 5 March 2019 (2019-03-05), ISSN: 0005044528 *
生物工学会誌, vol. 94, JPN6023016763, 2016, pages 146 - 156, ISSN: 0005044529 *
農業生産技術管理学会誌, vol. 14, JPN6023016761, 2008, pages 198 - 203, ISSN: 0005044530 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931063A (en) * 2022-06-15 2022-08-23 云南西草资源开发有限公司 Method for improving ergothioneine content in tremella aurantialba

Also Published As

Publication number Publication date
JP7401072B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
Sharma et al. Sustainability and cyanobacteria (blue-green algae): facts and challenges
EP3004326B1 (en) Bacterial fermentation methods and compositions
Sato et al. Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution
França et al. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato
CN111187731A (en) Biological bottom-improving algae-culturing water quality improving microbial inoculum and preparation method thereof
CN106929443B (en) Vibrio LX6-2 and application thereof in preparation of biological seaweed fertilizer
Nair et al. Bioactive potency of cyanobacteria Oscillatoria spp
WO2019080387A1 (en) Stabilizer for heavy metals in sediment in aquaculture pond, preparation method therefor and application thereof
JP7401072B2 (en) Microalgae growth promoter and its manufacturing method
CN106811417B (en) Culture medium for Alexandrium mimutum and culture method thereof
EP2455448A1 (en) Pharmaceutical composition for inhibiting infection and replication of influenza A and B virus, and the manufacture thereof
CN103773690A (en) Open-type culture method of microalgae
Tiwari et al. Antibacterial activity of bloom forming cyanobacteria against clinically isolated human pathogenic microbes
CN103103127B (en) Culture method for microalgae
Tiwari et al. Antifungal activity of Anabaena variabilis against plant pathogens
CN108588143B (en) Method for efficiently producing extracellular polysaccharide of long thread moss
CN103283785B (en) Compound microbial source pesticide for effectively preventing and treating diseases of oil-tea trees and application method
Goud et al. Chitosan from Crustacean shell waste in heavy metal removal from industrial effluents
NL2027994B1 (en) Process for remediation of heavy metal-containing soil by using pig manure and trichoderma viride jx993849
KR20160009719A (en) The sulfur water treatment and its usage for Water purification and removing green algea using Detoxificated sulfur
CN114703066B (en) Scenedesmus as well as extraction method and application of active ingredients of Scenedesmus
Liu et al. Changes of growth and nutrient-relating enzymatic activities of Sargassum thunbergii when exposed to different nutrient conditions
CN106665610A (en) Application of toosendanin to preparation of stylonychia insecticide
RU2735430C1 (en) Variovorax paradoxus av10 bacteria strain - plant growth stimulator in arid agroecological conditions
CN105779256A (en) Brain-strengthening peanut and honey vinegar and preparing method thereof

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7401072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150