JP2021076760A - レンズ装置、撮像装置、通信方法、および、プログラム - Google Patents

レンズ装置、撮像装置、通信方法、および、プログラム Download PDF

Info

Publication number
JP2021076760A
JP2021076760A JP2019204495A JP2019204495A JP2021076760A JP 2021076760 A JP2021076760 A JP 2021076760A JP 2019204495 A JP2019204495 A JP 2019204495A JP 2019204495 A JP2019204495 A JP 2019204495A JP 2021076760 A JP2021076760 A JP 2021076760A
Authority
JP
Japan
Prior art keywords
aperture
aperture information
lens
information
transmittance distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019204495A
Other languages
English (en)
Other versions
JP7395326B2 (ja
Inventor
優 稲垣
Masaru Inagaki
優 稲垣
信貴 水野
Nobutaka Mizuno
信貴 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019204495A priority Critical patent/JP7395326B2/ja
Publication of JP2021076760A publication Critical patent/JP2021076760A/ja
Application granted granted Critical
Publication of JP7395326B2 publication Critical patent/JP7395326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】記憶容量および演算時間を増やすことなく、デフォーカス換算係数を算出可能なレンズ装置を提供する。【解決手段】撮像装置(120)に着脱可能なレンズ装置(100)であって、光軸に関して回転対称な透過率分布層(105)を有する撮像光学系と、撮像光学系の開口情報を記憶する記憶手段(118)と、開口情報を撮像装置に送信する通信手段(117)とを有し、開口情報は、透過率分布層を有する撮像光学系の基線長に関する第1開口情報を含む。【選択図】図1

Description

本発明は、位相差方式の焦点検出を行うレンズ装置および撮像装置に関する。
従来、撮像素子から出力される画素信号に基づいて位相差方式の焦点検出を行う撮像装置が知られている。また、透過率分布を有する光学素子を備えたレンズ装置が提案されている。このような光学素子は、ボケ像のエッジを滑らかにするために設けられ、通常の撮像光学系では得られないボケ描写を実現し、写真の表現領域を広げることができる。
特許文献1には、光学素子の透過率分布と、光束の入射角範囲と、撮像素子の受光感度分布とに基づいて、位相差とデフォーカス量との比に関するパラメータ(変換係数)を算出する撮像装置が開示されている。これらの情報を用いることで、透過率分布を有する光学素子を備えた撮像装置において、デフォーカス量の算出に用いられる変換係数(デフォーカス換算係数)を算出することができる。
特許第6171106号公報
しかしながら、光学素子の透過率分布と、光束の入射角範囲と、撮像素子の受光感度分布とを撮像装置に記憶し、焦点検出のたびにこれらの情報に基づいてデフォーカス換算係数を算出するには、記憶容量および演算時間を増やす必要がある。
そこで本発明は、記憶容量および演算時間を増やすことなく、デフォーカス換算係数を算出可能なレンズ装置、撮像装置、通信方法、および、プログラムを提供することを目的とする。
本発明の一側面としてのレンズ装置は、撮像装置に着脱可能なレンズ装置であって、光軸に関して回転対称な透過率分布層を有する撮像光学系と、前記撮像光学系の開口情報を記憶する記憶手段と、前記開口情報を前記撮像装置に送信する通信手段とを有し、前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含む。
本発明の他の側面としての撮像装置は、レンズ装置が着脱可能な撮像装置であって、撮像素子と、前記レンズ装置から、光軸に関して回転対称な透過率分布層を有する撮像光学系の開口情報を受信する通信手段と、前記開口情報に基づいてデフォーカス換算係数を算出する算出手段とを有し、前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含む。
本発明の他の側面としての通信方法は、光軸に関して回転対称な透過率分布層を有する撮像光学系を備えたレンズ装置と撮像装置との通信方法であって、レンズ装置の記憶手段から前記撮像光学系の開口情報を取得するステップと、前記開口情報を前記撮像装置に送信するステップとを有し、前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含む。
本発明の他の側面としてのプログラムは、前記通信方法をコンピュータに実行させる。
本発明の他の目的及び特徴は、以下の実施例において説明される。
本発明によれば、記憶容量および演算時間を増やすことなく、デフォーカス換算係数を算出可能なレンズ装置、撮像装置、通信方法、および、プログラムを提供することができる。
実施例1、2における撮像装置のブロック図である。 各実施例における撮像素子の画素配列の概略図である。 各実施例における撮像素子の画素の概略平面図と概略断面図である。 各実施例における撮像素子の画素と瞳分割の概略説明図である。 各実施例における撮像素子と瞳分割の概略説明図である。 各実施例におけるデフォーカス量と像ずれ量の概略関係図である。 各実施例における透過率分布層がない場合の基線長の概略説明図である。 各実施例における透過率分布層がない場合の基線長の概略説明図である。 各実施例における透過率分布層の概略説明図である。 各実施例における透過率分布層がある場合の基線長の概略説明図である。 各実施例における透過率分布層がある場合の基線長の概略説明図である。 各実施例における第1開口情報の概略説明図である。 各実施例における第1開口情報の概略説明図である。 実施例1における開口情報取得のフローチャートである。 実施例2におけるデフォーカス換算係数算出のフローチャートである。 実施例3における撮像装置のブロック図である。 実施例3における開口情報取得のフローチャートである。 実施例3における第3開口情報および第4開口情報の概略説明図である。 実施例3における第3開口情報および第4開口情報の概略説明図である。 実施例3における第3開口情報および第4開口情報の概略説明図である。
以下、本発明の実施例について、図面を参照しながら詳細に説明する。
(撮像装置の構成)
まず、図1を参照して、本発明の実施例1における撮像装置の構成について説明する。図1は、本実施例における撮像装置(レンズ交換可能な一眼レフタイプのデジタルカメラ)10のブロック図である。撮像装置10は、レンズユニット(交換レンズ、レンズ装置)100とカメラ本体(撮像装置本体)120とを有するカメラシステム(撮像システム)である。レンズユニット100は、図1中の点線で示されるマウントMを介して、カメラ本体120と着脱可能に取り付けられる。ただし本実施例は、これに限定されるものではなく、レンズユニット(撮像光学系)とカメラ本体とが一体的に構成された撮像装置(デジタルカメラ)にも適用可能である。また本実施例は、デジタルカメラに限定されるものではなく、ビデオカメラなど他の撮像装置にも適用可能である。
レンズユニット100は、光学系としての第1レンズ群101、絞り102、第2レンズ群103、フォーカスレンズ群(以下、単に「フォーカスレンズ」という)104、および、透過率分布層105と、駆動/制御系とを有する。このようにレンズユニット100は、フォーカスレンズ104を含み、被写体像(光学像)を形成する撮影レンズ(撮像光学系)である。
第1レンズ群101は、レンズユニット100の先端に配置され、光軸方向OAに進退可能に保持される。絞り102は、その開口径を調節することで撮影時の光量調節を行い、また静止画撮影時においては露光秒時調節用シャッタとして機能する。絞り102および第2レンズ群103は、一体的に光軸方向OAに移動可能であり、第1レンズ群101の進退動作との連動によりズーム機能を実現する。フォーカスレンズ104は、光軸方向OAに移動可能であり、その位置に応じてレンズユニット100が合焦する被写体距離(合焦距離)が変化する。フォーカスレンズ104の光軸方向OAにおける位置を制御することにより、レンズユニット100の合焦距離を調節する焦点調節(フォーカス制御)が可能である。透過率分布層105は、光軸を中心とした回転対称な透過率分布を有する光学素子である。本実施例において、透過率分布層105は、光軸中心の透過率が一番高く、光軸中心から離れるにしたがって透過率が低い構成であるとして説明する。
駆動/制御系は、ズームアクチュエータ111、絞りアクチュエータ112、フォーカスアクチュエータ113、ズーム駆動回路114、絞り駆動回路115、フォーカス駆動回路116、レンズMPU117、および、レンズメモリ118を有する。ズーム駆動回路114は、ズームアクチュエータ111を用いて第1レンズ群101や第3レンズ群103を光軸方向OAに駆動し、レンズユニット100の光学系の画角を制御する(ズーム操作を行う)。絞り駆動回路115は、絞りアクチュエータ112を用いて絞り102を駆動し、絞り102の開口径や開閉動作を制御する。フォーカス駆動回路116は、フォーカスアクチュエータ113を用いてフォーカスレンズ104を光軸方向OAに駆動し、レンズユニット100の光学系の合焦距離を制御する(フォーカス制御を行う)。また、フォーカス駆動回路116は、フォーカスアクチュエータ113を用いてフォーカスレンズ104の現在位置(レンズ位置)を検出する位置検出部としての機能を有する。
レンズMPU(プロセッサ)117は、レンズユニット100に係る全ての演算、制御を行い、ズーム駆動回路114、絞り駆動回路115、および、フォーカス駆動回路116を制御する。またレンズMPU117は、マウントMを通じてカメラMPU125と接続され、コマンドやデータを通信する通信手段である。例えば、レンズMPU117は、フォーカスレンズ104の位置を検出し、カメラMPU125からの要求に対してレンズ位置情報を通知する。レンズ位置情報は、フォーカスレンズ104の光軸方向OAにおける位置、撮像光学系が移動していない状態の射出瞳の光軸方向OAにおける位置および直径、および、射出瞳の光束を制限するレンズ枠の光軸方向OAにおける位置および直径などの情報を含む。またレンズMPU117は、カメラMPU125からの要求に応じて、ズーム駆動回路114、絞り駆動回路115、および、フォーカス駆動回路116を制御する。レンズメモリ(記憶手段)118は、自動焦点調節(AF制御)に必要な光学情報を記憶している。カメラMPU125は、例えば内蔵の不揮発性メモリやレンズメモリ118に記憶されているプログラムを実行することにより、レンズユニット100の動作を制御する。
カメラ本体120は、光学的ローパスフィルタ121、撮像素子122、および、駆動/制御系を有する。光学的ローパスフィルタ121および撮像素子122は、レンズユニット100を介して形成された被写体像(光学像)を光電変換し、画像データを出力する撮像部(撮像手段)として機能する。本実施例において、撮像素子122は、撮像光学系を介して形成された被写体像を光電変換し、画像データとして、撮像信号および焦点検出信号をそれぞれ出力する。また本実施例において、第1レンズ群101、絞り102、第2レンズ群103、フォーカスレンズ104、および、光学的ローパスフィルタ121は、撮像光学系を構成する。
光学的ローパスフィルタ121は、撮影画像の偽色やモアレを軽減する。撮像素子122は、CMOSイメージセンサおよびその周辺回路で構成され、横方向m画素、縦方向n画素(m、nは2以上の整数)が配置されている。本実施例の撮像素子122は焦点検出素子の役割も果たし、瞳分割機能を有し、画像データ(画像信号)を用いた位相差検出方式の焦点検出(位相差AF)が可能な瞳分割画素を有する。画像処理回路124は、撮像素子122から出力される画像データに基づいて、位相差AF用のデータと、表示、記録、およびコントラストAF(TVAF)用の画像データとを生成する。
駆動/制御系は、撮像素子駆動回路123、画像処理回路124、カメラMPU125、表示器126、操作スイッチ群(操作SW)127、メモリ128、位相差AF部(撮像面位相差焦点検出部)129、及びTVAF部(TVAF焦点検出部)130を有する。撮像素子駆動回路123は、撮像素子122の動作を制御するとともに、撮像素子122から出力された画像信号(画像データ)をA/D変換し、カメラMPU125に送信する。画像処理回路124は、撮像素子122から出力された画像信号に対して、γ変換、ホワイトバランス調整処理、色補間処理、圧縮符号化処理など、デジタルカメラで行われる一般的な画像処理を行う。また画像処理回路124は、位相差AF用の信号を生成する。
カメラMPU(プロセッサ、制御装置)125は、カメラ本体120に係る全ての演算および制御を行う。すなわちカメラMPU125は、撮像素子駆動回路123、画像処理回路124、表示器126、操作スイッチ群127、メモリ128、位相差AF部129、および、TVAF部130を制御する。またカメラMPU125は、マウントMの信号線を介してレンズMPU117と接続され、レンズMPU117とコマンドやデータを通信する通信手段である。カメラMPU125は、レンズMPU117に対して、レンズ位置の取得や所定の駆動量でのレンズ駆動要求を発行し、また、レンズMPU117からレンズユニット100に固有の光学情報の取得要求などを発行する。
カメラMPU125には、カメラ本体120の動作を制御するプログラムを格納したROM125a、変数を記憶するRAM(カメラメモリ)125b、および、各種のパラメータを記憶するEEPROM125cが内蔵されている。またカメラMPU125は、ROM125aに格納されているプログラムに基づいて、焦点検出処理を実行する。焦点検出処理においては、撮像光学系の互いに異なる瞳領域(瞳部分領域)を通過した光束により形成される光学像を光電変換した対の像信号を用いて、公知の相関演算処理が実行される。
表示器126は液晶ディスプレイ(LCD)などから構成され、撮像装置10の撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像などを表示する。操作スイッチ群127は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチなどで構成される。メモリ(記憶手段)128は、着脱可能なフラッシュメモリであり、撮影済み画像を記録する。
位相差AF部129は、撮像素子122および画像処理回路124から得られる焦点検出用画像データの像信号に基づいて、位相差検出方式による焦点検出処理を行う。より具体的には、画像処理回路124は、撮像光学系の一対の瞳領域を通過する光束で形成される一対の像データを焦点検出用データとして生成し、位相差AF部129は、一対の像データのずれ量に基づいて焦点ずれ量を検出する。このように、本実施例の位相差AF部129は、専用のAFセンサを用いず、撮像素子122の出力に基づく位相差AF(撮像面位相差AF)を行う。本実施例において、位相差AF部129は、取得手段129aおよび算出手段129bを有する。取得手段129aは、カメラMPU125から、レンズユニット100から受信した開口情報を取得する。算出手段129bは、開口情報に基づいてデフォーカス換算係数を算出する。なお、位相差AF部129の少なくとも一部の手段(取得手段129aまたは算出手段129bの一部)を、カメラMPU125に設けてもよい。
TVAF部130は、画像処理回路124により生成されるTVAF用評価値(画像データのコントラスト情報)に基づいて、コントラスト検出方式の焦点検出処理を行う。コントラスト検出方式の焦点検出処理の際には、フォーカスレンズ104を移動して評価値(焦点評価値)がピークとなるフォーカスレンズ位置が合焦位置として検出される。
このように、本実施例の撮像装置10は、撮像面位相差AFとTVAFとを組み合わせて実行可能であり、状況に応じて、これらを選択的に使用し、または、組み合わせて使用することができる。位相差AF部129およびTVAF部130は、各々の焦点検出結果を用いてフォーカスレンズ104の位置を制御するフォーカス制御手段として機能する。
(撮像素子)
次に、図2および図3を参照して、本実施例における撮像素子122の画素配列について説明する。図2は、撮像素子122の画素(撮像画素および焦点検出画素)の配列の概略図である。図2において、本実施例の撮像素子(2次元CMOSセンサ子)122の画素(撮像画素)配列を4列×4行の範囲で、焦点検出画素配列を8列×4行の範囲で示す。本実施例において、図2に示される2列×2行の画素群200は、R(赤)の分光感度を有する画素200Rが左上に、G(緑)の分光感度を有する画素200Gが右上と左下に、B(青)の分光感度を有する画素200Bが右下に配置されている。さらに、各画素は2列×1行に配列された第1焦点検出画素(第1画素)201と第2焦点検出画素(第2画素)202により構成されている。
図2に示される4列×4行の画素(8列×4行の焦点検出画素)を面上に多数配置し、撮像画像(焦点検出信号)の取得を可能としている。本実施例では、画素の周期Pが4μm、画素数Nが横5575列×縦3725行=約2075万画素、焦点検出画素の列方向周期PAFが2μm、焦点検出画素数NAFが横11150列×縦3725行=約4150万画素の撮像素子として説明を行う。
図3は、撮像素子122の画素の概略平面図と概略断面図である。図3(a)は図2に示される撮像素子122の1つの画素200Gを、撮像素子122の受光面側(+z側)から見た平面図、図3(b)は図3(a)中のa−a断面を−y側から見た断面図を示す。
図3に示されるように、本実施例の画素200Gでは、各画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、x方向にNH分割(2分割)、y方向にNV分割(1分割)された光電変換部301と光電変換部302が形成される。光電変換部301と光電変換部302が、それぞれ、第1焦点検出画素201と第2焦点検出画素202に対応する。
光電変換部301と光電変換部302は、p型層とn型層の間にイントリンシック層を挟んだpin構造フォトダイオードとしても良いし、必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとしても良い。各画素には、マイクロレンズ305と、光電変換部301および光電変換部302との間に、カラーフィルタ306が形成される。また、必要に応じて、副画素毎にカラーフィルタ306の分光透過率を変えても良いし、カラーフィルタ306を省略しても良い。
図3に示される画素200Gに入射した光は、マイクロレンズ305により集光され、カラーフィルタ306で分光された後、光電変換部301と光電変換部302で受光される。光電変換部301と光電変換部302では、受光量に応じて電子とホールが対生成し、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積され、一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子外部へ排出される。 光電変換部301と光電変換部302のn型層(不図示)に蓄積された電子は、転送ゲートを介して、静電容量部(FD)に転送され、電圧信号に変換される。
次に、図4を参照して、図3に示される本実施例の撮像素子122の画素構造と瞳分割との対応関係について説明する。図4は、撮像素子122の画素と瞳分割の概略説明図であり、図3(a)に示される本実施例の画素構造のa−a断面を+y側から見た断面図と撮像素子122の瞳面(瞳距離Ds)を示す。図4では、撮像素子122の瞳面の座標軸と対応を取るため、断面図のx軸とy軸を図3に対して反転させている。
図4において、第1焦点検出画素201の第1瞳部分領域501は、重心が−x方向に偏心している光電変換部301の受光面と、マイクロレンズ305によって概ね共役関係になっており、第1焦点検出画素201で受光可能な瞳領域を表している。第1焦点検出画素201の第1瞳部分領域501は、瞳面上で+X側に重心が偏心している。図4において、第2焦点検出画素202の第2瞳部分領域502は、重心が+x方向に偏心している光電変換部302の受光面と、マイクロレンズ305によって概ね共役関係になっており、第2焦点検出画素202で受光可能な瞳領域を表している。第2焦点検出画素202の第2瞳部分領域502は、瞳面上で−X側に重心が偏心している。また図4において、瞳領域500は、光電変換部301と光電変換部302(第1焦点検出画素201と第2焦点検出画素202)を全て合わせた際の画素200G全体で受光可能な瞳領域である。
撮像面位相差AFでは、撮像素子122のマイクロレンズ305を利用して瞳分割するため回折の影響を受ける。図4において、撮像素子122の瞳面までの瞳距離が数10mmであるのに対し、マイクロレンズ305の直径は数μmである。このため、マイクロレンズ305の絞り値が数万となり、数10mmレベルの回折ボケが生じる。よって、光電変換部の受光面の像は、明瞭な瞳領域や瞳部分領域とはならずに、受光感度特性(受光率の入射角分布)となる。
次に、図5を参照して、撮像素子122と瞳分割との対応関係について説明する。図5は、撮像素子122と瞳分割との概略図である。第1瞳部分領域501と第2瞳部分領域502の異なる瞳部分領域を通過した光束は、撮像素子122の各画素に、それぞれ互いに異なる角度で入射し、2×1分割された第1焦点検出画素201と第2焦点検出画素202で受光される。本実施例は、瞳領域が水平方向に2つに瞳分割されている例である。必要に応じて、垂直方向に瞳分割を行っても良い。また、水平方向および垂直方向の両方に瞳分割を行っても良い。
本実施例の撮像素子122は、第1焦点検出画素201および第2焦点検出画素202を有する撮像画素が複数配列されている。第1焦点検出画素201は、撮像光学系の第1瞳部分領域501を通過する光束を受光する。第2焦点検出画素202は、第1瞳部分領域501と異なる撮像光学系の第2瞳部分領域502を通過する光束を受光する。また撮像画素は、撮像光学系の第1瞳部分領域501と第2瞳部分領域502とを合わせた瞳領域500を通過する光束を受光する。
本実施例の撮像素子122では、それぞれの撮像画素が第1焦点検出画素201および第2焦点検出画素202から構成されている。必要に応じて、撮像画素と第1焦点検出画素201、第2焦点検出画素202を個別の画素構成とし、撮像画素配列の一部に、第1焦点検出画素2001および第2焦点検出画素202を部分的に配置する構成としても良い。
本実施例では、撮像素子122の各画素の第1焦点検出画素201の受光信号を集めて第1焦点信号を生成し、各画素の第2焦点検出画素202の受光信号を集めて第2焦点信号を生成して焦点検出を行う。また、撮像素子122の画素ごとに、第1焦点検出画素201からの信号(第1焦点検出信号)と第2焦点検出画素202からの信号(第2焦点検出信号)とを加算することで、有効画素数Nの解像度の撮像信号(撮像画像)を生成する。なお各信号の生成方法は、本実施例での実施形態に限定されるものではなく、例えば第2焦点信号は、撮像信号と第1焦点信号との差分から生成しても良い。
(デフォーカス量と像ずれ量の関係)
次に、図6を参照して、撮像素子122により取得される第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量との関係について説明する。図6は、第1焦点検出信号と第2焦点検出信号のデフォーカス量と、第1焦点検出信号と第2焦点検出信号との間の像ずれ量との概略関係図である。撮像面800に撮像素子122が配置され、図4および図5と同様に、撮像素子122の瞳面が、第1瞳部分領域501と第2瞳部分領域502に2分割される。
デフォーカス量dは、被写体の結像位置から撮像面までの距離を大きさ|d|とし、被写体の結像位置が撮像面より被写体側にある前ピン状態を負符号(d<0)として定義される。また、被写体の結像位置が撮像面より被写体の反対側にある後ピン状態を、正符号(d>0)として定義される。被写体の結像位置が撮像面(合焦位置)にある合焦状態において、d=0である。図6において、被写体801は合焦状態(d=0)の例を示しており、被写体802は前ピン状態(d<0)の例を示している。前ピン状態(d<0)と後ピン状態(d>0)とを合わせて、デフォーカス状態(|d|>0)とする。
前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501(第2瞳部分領域502)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅Γ1(Γ2)に広がり、撮像面800でボケた像となる。ボケた像は、撮像素子122に配列された各画素を構成する第1焦点検出画素201(第2焦点検出画素202)により受光され、第1焦点検出信号(第2焦点検出信号)が生成される。よって、第1焦点検出信号(第2焦点検出信号)は、撮像面800上の重心位置G1(G2)に、被写体802が幅Γ1(Γ2)にボケた被写体像として記録される。被写体像のボケ幅Γ1(Γ2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加する。同様に、第1焦点検出信号と第2焦点検出信号との間の被写体像の像ずれ量p(=光束の重心位置の差G1−G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加する。後ピン状態(d>0)でも、第1焦点検出信号と第2焦点検出信号との間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。
したがって、本実施例では、第1焦点検出信号と第2焦点検出信号、または、第1焦点検出信号と第2焦点検出信号とを加算した撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号との間の像ずれ量の大きさが増加する。撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号との間の像ずれ量の大きさが増加する。このような関係性から、基線長に基づいて算出された変換係数(デフォーカス換算係数)により、像ずれ量を検出デフォーカス量に変換して焦点検出を行う。
(基線長)
次に、図7(a)および図7(b)を参照して、基線長について説明する。基線長は、第1焦点検出画素201と第2焦点検出画素202の受光感度特性の重心差に基づいて算出される。図7(a)、(b)は透過率分布層がない場合の基線長の概略説明図であり、図7(a)は中央像高、図7(b)は周辺像高のそれぞれにおける開口、受光感度特性、および、基線長を示す。
中央像高では、図7(a)に示されるように、開口情報の1つである絞り102により受光可能な光束が規定されている。このため、第1焦点検出画素201の受光感度特性である第1受光感度特性701と、第2焦点検出画素202の受光感度特性である第2受光感度特性702のうち、受光可能な領域は絞り102の内側領域となる。したがって、第1受光感度特性701と第2受光感度特性702との重心差、すなわち基線長はBL711となる。
一方、周辺像高では、図7(b)に示されるように、x<0側の光束を規定する開口情報の1つである下線枠401と、x>0側の光束を規定する開口情報の1つである上線枠402により、受光可能な光束が規定されている。このため、第1受光感度特性と第2受光感度特性のうち受光可能な領域は下線枠401と上線枠402とで囲まれた領域となり、第1受光感度特性701と第2受光感度特性702との重心差、すなわち基線長はBL712となる。
このように基線長は、受光感度特性と、受光可能領域を規定する開口情報とに基づいて決定され、正確な基線長を算出するにはこれらの情報が必要となる。
(透過率分布)
次に、図8を参照して、透過率分布層105について説明する。図8は、図8は、透過率分布層105の概略説明図である。透過率分布層105による瞳距離Dsにおける透過率分布810は、光軸中心をピークとして光軸から離れるにしたがって低くなる。このような透過率分布を配することで、ボケ像のエッジを滑らかにすることができ、通常の光学系では得られないボケ描写を実現し、写真の表現領域を広げることが可能となる。
しかし、透過率分布が一様でなくなることにより、基線長は、第1焦点検出画素201または第2焦点検出画素202の受光感度特性と、透過率分布層105の透過率分布とが掛け合わされた状態で決定される。このため基線長は、透過率分布を考慮して算出する必要がある。そこで本実施例では、透過率分布による基線長の変化に対応した開口情報を保持することで透過率分布の影響を考慮し、透過率分布層を有していないレンズと同様の振る舞いで基線長を算出することを可能する。
(基線長と透過率分布)
次に、図9(a)および図9(b)を参照して、透過率分布層105がある場合の基線長について説明する。図9(a)、(b)は透過率分布層105がある場合の基線長の概略説明図であり、図9(a)は中央像高、図9(b)は周辺像高のそれぞれにおける開口、受光感度特性、および、基線長を示す。
第3受光感度特性901および第4受光感度特性902は、第1受光感度特性701および第2受光感度特性702のそれぞれと透過率分布810とが掛け合わされた状態の受光感度特性である。第3受光感度特性901および第4受光感度特性902は、透過率分布810の特性に従って、第1受光感度特性701および第2受光感度特性702のそれぞれよりも、光軸から離れるにつれて受光感度が低くなっている。このため、透過率分布層105がある場合の基線長BL911は、透過率分布層105がない場合の基線長BL711よりも短くなる。周辺像高の基線長BL912も、透過率分布層105がない場合の基線長BL712によりも短くなる。ただし、開口部の形状および透過率分布が中心像高の場合と異なるため、周辺像高での変化率は中心像高と異なる。
(透過率分布を考慮した基線長を示す開口情報)
透過率分布層105を有しない撮像光学系と同様の振る舞いで基線長を算出するには、透過率分布による基線長の変化に対応した、透過率分布の影響を考慮した開口情報を保持する必要がある。
次に、図10(a)および図10(b)を参照して、透過率分布の影響を考慮した基線長を示す開口情報(第1開口情報)について説明する。図10は第1開口情報の概略説明図であり、図10(a)は中央像高、図10(b)は周辺像高における透過率分布を考慮した基線長を示す開口情報を示す。
図10(a)に示されるように、基線長絞り枠1000は、中央像高の透過率分布を考慮した基線長を示す基線長絞り枠(中央像高の第1開口情報)である。基線長絞り枠1000は、透過率分布層105がない状態の第1受光感度特性701、第2受光感度特性702に対する基線長が、透過率分布層105がある場合の基線長BL911と等しくなるように、絞り102の径を変化させたものである。基線長絞り枠1000は、透過率分布により基線長が短くなったことを考慮して、絞り102よりも小さい径となっている。基線長絞り枠1000を第1開口情報として保持し使用することで、透過率分布層105を有しない撮像光学系と同様の振る舞いで基線長を算出することが可能となる。
図10(b)に示されるように、x<0側の基線長下線枠1001およびx>0側の基線長上線枠1002は、周辺像高の透過率分布を考慮した基線長を示す。これらは、透過率分布層105がない状態の第1受光感度特性701、第2受光感度特性702に対する基線長が、透過率分布層105がある場合の基線長BL912と等しくなるように、下線枠401と上線枠402の中心位置を変化させたものである。中心位置の変化方法は、透過率分布中心(透過率分布ピーク位置)と基線長下線枠1001までの距離と、透過率分布中心と基線長上線枠1002までの距離が等しくなるように変化させている。透過率分布中心までの距離を等しくした場合、基線長下線枠1001または基線長上線枠1002の一方が下線枠401、上線枠402よりも外側に位置する場合、外側とならない方の中心位置のみを変化させる。
本実施例では、下線枠401と上線枠402の中心位置を変化させて基線長下線枠1001および基線長上線枠1002を算出するが、中心位置の代わりに径を変化させて算出してもよい。基線長下線枠1001および基線長上線枠1002は、透過率分布により基線長が短くなったことを考慮して、下線枠401および上線枠402よりも内側に位置している。基線長下線枠1001および基線長上線枠1002を第1開口情報として保持し使用することで、透過率分布層を有していないレンズと同様の振る舞いで基線長を算出することが可能となる。
(処理フロー)
次に、図11を参照して、本実施例における開口情報取得について説明する。図11は、本実施例における開口情報取得(通信方法)のフローチャートである。図11の各ステップは、主に、レンズMPU117により実行される。
まず、ステップS1101において、レンズMPU117は、レンズユニット100の現在のズームステートを取得する。続いてステップS1102において、レンズMPU117は、レンズユニット100の現在のフォーカスステートを取得する。続いてステップS1103において、レンズMPU117は、マウントMを介した通信により、カメラMPU125により指定された像高情報を取得する。続いてステップS1104において、レンズMPU117は、現在の設定絞り値を取得する。
続いてステップS1105において、レンズMPU117は、第1開口情報が取得可能か否かを判定する。レンズメモリ118は、メモリ容量の削減のため、所定の絞り値以下の範囲でのみ第1開口情報を記憶している。透過率分布810は、光軸から離れるほど透過率が低くなり、光軸中心との透過率差が大きいため、光軸から離れた領域を多く含むほど基線長への影響が大きくなる。逆に、光軸中心近傍の領域のみの場合には、光軸中心との透過率差が小さいため、基線長への影響が小さい。このため、絞り値が大きい場合には絞り径が小さくなり光軸中心近傍の領域のみとなるため、透過率分布の基線長への影響は小さくなる。
以上のことから、絞り値が大きい場合、基線長へ与える影響は小さくなる。このため、メモリ容量の削減のため、第1開口情報を保持する絞り値の範囲を所定絞り値よりも小さい範囲に限定している。そこで本実施例では、ステップS1105にてレンズメモリ118が第1開口情報を保持している場合(現在の絞り値が所定絞り値よりも小さい場合)、レンズMPU117は第1開口情報を取得可能であると判定し、ステップS1106に進む。一方、ステップS1105にてレンズメモリ118が第1開口情報を保持していない場合(現在の絞り値が所定絞り値よりも大きい場合)、ステップS1106をスキップし、レンズMPU117は第1開口情報を取得せずにステップS1107に進む。なお本実施例では、メモリ容量の削減のため、レンズメモリ118に第1開口情報を保持する範囲を限定しているが、設定可能な絞り値の全ての範囲で第1開口情報を保持し、必ずステップS1106へ進み、第1開口情報を取得してもよい。
ステップS1106において、レンズMPU117は、レンズメモリ118から、ステップS1101〜S1104にて取得したズームステート、フォーカスステート、像高、および、設定絞り値に応じた第1開口情報を取得する。レンズメモリ118は、ズーム範囲を複数に分割したズームステート毎、フォーカス範囲を複数に分割したフォーカスステート毎、像高範囲を複数に分割した像高毎、および、所定絞り値範囲を複数に分割した絞り値毎に第1開口情報を記憶している。このため、現在のズームステート、フォーカスステート、絞り値、および、カメラMPU125により指定された像高における第1開口情報を、近傍ステートの第1開口情報から線形補間することにより算出して取得する。本実施例では、現在のズームステート、フォーカスステート、絞り値、および、カメラMPU125により指定された像高の第1開口情報を、線形補間にて算出することで取得するが、最近傍ステートの第1開口情報を取得してもよい。
続いてステップS1107において、レンズMPU117は、第2開口情報を取得する。第2開口情報は、光量を示す開口情報であり、透過率分布810による減光を考慮して算出された開口情報である。図10を参照して説明したように、第1開口情報は、透過率分布の影響を考慮した基線長を示す開口情報である。光量を示す開口情報(第2開口情報)も同様に、透過率分布によって減光したことを考慮して、絞り102、下線枠401、および、上線枠402を変化させた開口情報である。本実施例では、周辺像高で下線枠と上線枠に分けて第2開口情報を算出してレンズメモリ118に保持しているが、光量が等しい1つの枠とみなして、1つの枠情報のみを第2開口情報として保持していてもよい。また本実施例では、第2開口情報を、光量を示す開口情報として説明したが、透過率分布810による深度への影響を考慮した、深度を示す開口情報であってもよい。また第2開口情報は、絞り値(絞り径)に関する情報であってもよい。その場合、ステップS1104にて取得した設定絞り値の情報を第2開口情報とし、ステップS1107での処理をスキップしてもよい。
続いてステップS1108において、レンズMPU117は、開口情報をカメラMPU125へ送信し、本フローを終了する。すなわちレンズMPU117は、ステップS1105にて第1開口情報を取得可能と判定した場合、第1開口情報および第2開口情報をカメラMPU125へ送信する。一方、レンズMPU117は、ステップS1105にて第1開口情報を取得できないと判定した場合、第2開口情報をカメラMPU125へ送信する。
本実施例では、レンズMPU117は、像高に応じた第1開口情報を取得してカメラMPU125へ送信するが、これに限定されるものではない。例えば、レンズMPU117は、全像高の第1開口情報をまとめてカメラMPU125に送信し、カメラMPU125が像高に応じた第1開口情報を取得してもよい。この点は、ズームステート、フォーカスステート、または、設定絞り値に関しても同様である。
また本実施例では、絞り値の範囲を複数に分割して保持し、線形補間することにより算出するが、絞り値の関数として第1開口情報を保持し、取得した絞り値に応じた関数にて算出してもよい。この点は、ズームステート、フォーカスステート、または、像高に関しても同様である。
また本実施例では、特定の第1受光感度特性および第2受光感度特性に基づいて算出された第1開口情報のみを保持するが、これに限定されるものではない。例えば、特性の異なる複数パターンの第1受光感度特性および第2受光感度特性に基づいて算出された第1開口情報を保持し、撮像素子122の特性に基づいて第1開口情報を取得してもよい。
次に、本発明の実施例2について説明する。本実施例は、開口情報の取得を行う場所、および、取得後の開口情報の使用に関して実施例1と異なる。なお、本実施例における他の構成および動作は、実施例1と同様であるため、それらの説明は省略する。
実施例1では、レンズMPU117がレンズユニット100のレンズメモリ118に記憶された第1開口情報および第2開口情報を取得してカメラMPU125へ送信する。一方、本実施例では、カメラMPU125がカメラ本体120のメモリ128に記憶された第1開口情報および第2開口情報を取得し、第1開口情報を用いてデフォーカス換算係数を算出する。
(処理フロー)
以下、図12を参照して、本実施例におけるデフォーカス換算係数算出について説明する。図12は、本実施例におけるデフォーカス換算係数算出(通信方法)のフローチャートである。なお、図12の各ステップは、主に、カメラMPU125により実行される。
まず、ステップS1201において、カメラMPU125は、マウントMを介した通信によりレンズMPU117から、レンズユニット100の現在のズームステートを取得する。続いてステップS1202において、カメラMPU125は、マウントMを介した通信によりレンズMPU117から、レンズユニット100の現在のフォーカスステートを取得する。続いてステップS1203において、カメラMPU125は、デフォーカス算出を行う像高情報を取得する。続いてステップS1204において、カメラMPU125は、マウントMを介した通信によりレンズMPU117から、現在の設定絞り値を取得する。
続いてステップS1205において、カメラMPU125は、マウントMを介した通信によりレンズMPU117から、レンズユニット100のレンズ識別番号(レンズIDなどのレンズ情報)を取得する。メモリ128は、レンズ識別番号毎(レンズユニット毎)に第1開口情報および第2開口情報が記憶している。すなわちメモリ128は、透過率分布層105を有するレンズユニットに関して、実施例1と同様に算出された第1開口情報および第2開口情報を保持している。一方、透過率分布層105を有しないレンズユニットに関しては、第1開口情報と第2開口情報とが同一であるため、メモリ128は、第1開口情報を保持せず、第2開口情報のみを保持している。
続いてステップS1206において、カメラMPU125(取得手段129a)は、ステップS1201〜S1205にて取得したズームステート、フォーカスステート、像高、設定絞り値、および、レンズ識別番号に応じた第1開口情報を取得する。透過率分布層105を有していないレンズユニットのレンズ識別番号を取得した場合、カメラMPU125は、第2開口情報を第1開口情報として取得する。メモリ128は、レンズ識別番号毎に、ズーム範囲を複数に分割したズームステート毎、フォーカス範囲を複数に分割したフォーカスステート毎、像高範囲を複数に分割した像高毎、所定絞り値範囲を複数に分割した絞り値毎に第1開口情報を記憶している。このためカメラMPU125は、レンズ識別番号、現在のズームステート、フォーカスステート、設定絞り値、および、デフォーカス算出の像高における第1開口情報を、近傍ステートの第1開口情報から線形補間することにより算出して取得する。
続いてステップS1207において、カメラMPU125は、メモリ128から、ステップS1204にて取得した設定絞り値に応じた係数(以下の式(1)で表される基線長BLを算出するための関数の係数m000〜m220)を取得する。ここで取得される係数は、ステップS1203にて取得した像高情報h、ステップS1206にて取得した第1開口情報の上線枠と絞り中心までの距離b1、下線枠と絞り中心までの距離b2に対する2次の関数の係数である。なお本実施例では、像高情報h、距離b1、b2に関する2次の関数における係数を取得するが、2次の関数に限定されるものではなく、1次の関数や3以上の関数であってもよい。また、変化の小さい変数に対する次数を小さくし、大きい変数の次数を大きくして、変数ごとに次数を異ならせてもよい。
続いてステップS1208において、カメラMPU125(算出手段129b)は、像ずれ量をデフォーカス量に変換するためのデフォーカス換算係数Kを算出する。すなわちカメラMPU125は、ステップS1203にて取得した像高情報、ステップS1206にて取得した第1開口情報、および、ステップS1207にて取得した係数に基づいて、以下の式(1)、(2)を用いてデフォーカス換算係数Kを算出する。
Figure 2021076760
Figure 2021076760
ステップS1208を終えると、カメラMPU125は、デフォーカス換算係数算出の処理を終了する。そしてカメラMPU125は、撮像素子122からの対の像信号に対する相関演算により算出された像ずれ量に、図12のフローチャートに従って算出されたデフォーカス換算係数Kを掛けて、デフォーカス量を算出する。そしてカメラMPU125およびレンズMPU117は、算出したデフォーカス量に基づいてフォーカス制御(AF制御)を行う。
次に、本発明の実施例3について説明する。本実施例は、レンズユニット100とカメラ本体120との間に着脱可能なユニット(コンバータレンズユニット)が装着されている点で、実施例1と異なる。本実施例では、予め記憶された着脱可能なユニットが装着された状態の基線長を示す第3開口情報を取得し、着脱可能なユニットの光学情報と第2開口情報から第4開口情報を算出して開口情報を取得する場合について説明する。なお本実施例における他の構成および動作は、実施例1と同様であるため、それらの説明は省略する。
まず、図13を参照して、本実施例における撮像装置の構成について説明する。図13は、本実施例における撮像装置10aのブロック図である。撮像装置10aは、レンズユニット(交換レンズ、レンズ装置)100と、カメラ本体(撮像装置本体)120と、レンズユニット100とカメラ本体120との間に着脱可能なユニット(コンバータレンズユニット600)を有するカメラシステムである。コンバータレンズユニット600は、マウントMを介してカメラ本体120と着脱可能に取り付けられ、マウントM2を介してレンズユニット100と着脱可能に取り付けられる。なお、図1と同様の構成には同じ参照番号を付し、説明を省略する。また本実施例において、レンズユニット100とカメラ本体120との間に着脱可能なユニットはコンバータレンズユニット600であるが、これに限定されるものではない。
図13において、コンバータレンズユニット600は、コンバータレンズ601およびコンバータメモリ602を有し、被写体の光学像を形成するレンズユニット100の焦点距離を変更する撮影レンズである。なお、以下の説明では、コンバータレンズ601と区別するため、レンズユニット100を「マスターレンズ100」と呼ぶ。コンバータレンズユニット600が装着されると、第1レンズ群101、第2レンズ群103、および、コンバータレンズ601により、ズーム機能を実現する。コンバータメモリ602は、自動焦点調整に必要な光学情報(開口情報)を予め記憶している。レンズMPU117は、コンバータメモリ602に記憶された光学情報(開口情報)を取得可能に構成される。
(処理フロー)
次に、図14を参照して、本実施例における開口情報取得について説明する。図14は、本実施例における開口情報取得(通信方法)のフローチャートである。図14の各ステップは、主に、レンズMPU117により実行される。
まず、ステップS1401において、レンズMPU117は、レンズユニット100の現在のズームステートを取得する。続いてステップS1402において、レンズMPU117は、レンズユニット100の現在のフォーカスステートを取得する。続いてステップS1403において、レンズMPU117は、マウントM、M2を介した通信により、カメラMPU125により指定された像高情報を取得する。続いてステップS1404において、レンズMPU117は、現在の設定絞り値を取得する。続いてステップS1405において、レンズMPU117は、第2開口情報を取得する。本実施例において、第2開口情報は、絞り値(絞り径)に関する情報である。
続いてステップS1406において、レンズMPU117は、コンバータレンズユニット(着脱可能ユニット)600が装着されているか否かを判定する。ステップS1406にてコンバータレンズユニット600が装着されていると判定された場合、ステップS1407に進む。
ステップS1407において、レンズMPU117は、コンバータレンズユニット600から、コンバータレンズユニット600の光学情報を取得する。本実施例において、光学情報は、コンバータレンズユニット600の焦点距離倍率である。
続いてステップS1408において、レンズMPU117は、取得したズームステート、フォーカスステート、像高、および、設定絞り値に応じた第3開口情報を取得する。レンズメモリ118は、ズーム範囲を複数に分割したズームステート毎、フォーカス範囲を複数に分割したフォーカスステート毎、像高範囲を複数に分割した像高毎、および、所定絞り値範囲を複数に分割した絞り値毎に第3開口情報を記憶している。このためレンズMPU117は、現在のズームステート、フォーカスステート、設定絞り値、および、カメラMPU125により指定された像高における第3開口情報を、近傍ステートの第3開口情報から線形補間することにより算出し取得する。本実施例では、現在のズームステート、フォーカスステート、絞り値、および、カメラMPU125により指定された像高の第3開口情報を、線形補間にて算出することで取得するが、最近傍ステートの第3開口情報を取得してもよい。
続いてステップS1409において、レンズMPU117は、取得した第2開口情報と、コンバータレンズユニット600の光学情報とに基づいて、第4開口情報を算出する。第4開口情報は、コンバータレンズユニット600が装着された状態での、絞り値(絞り径)に関する情報である。コンバータレンズユニット600が装着された状態での絞り値は、コンバータレンズユニット600の焦点距離倍率に比例する。このため、取得した第2開口情報と、コンバータレンズユニット600の光学情報とに基づいて、第4開口情報を算出することが可能である。本実施例では、コンバータレンズ601の光学情報として焦点距離倍率を用いて第4開口情報を算出するが、焦点距離倍率ではない光学情報を用いて算出を行ってもよい。
ここで、図15を参照して、第3開口情報および第4開口情報について説明する。図15は、第3開口情報および第4開口情報の概略説明図である。図15(a)は、コンバータレンズユニット600が装着された状態の透過率分布層105の概略説明図である。コンバータレンズユニット600が装着されたことで、透過率分布層105は、コンバータレンズユニット600が装着されていない図8の場合よりも、受光面から離れて位置する。このため、透過率分布層105による瞳距離Dsにおける透過率分布811は、図8の透過率分布810を縮小したように分布する。
図15(b)は、コンバータレンズユニット600が装着された状態の基線長および第4開口情報の概略説明図である。第5受光感度特性1501および第6受光感度特性1502は、第1受光感度特性701および第2受光感度特性702のそれぞれと透過率分布811とが掛け合わされた状態の受光感度特性を示している。基線長BL1511は、透過率分布811の特性に従って、コンバータレンズユニット600が装着された状態での第5受光感度特性1501および第6受光感度特性1502に対する基線長である。基線長BL1511は、コンバータレンズユニット600が装着されていない状態での第3受光感度特性901および第4受光感度特性902に対する基線長BL911よりも短くなる。
また、コンバータレンズユニット600が装着された状態での絞り102は、コンバータレンズユニット600が装着されていない図9(a)の状態よりも、受光面から離れて位置する。このため、瞳距離Dsにおける絞り102の径は、コンバータレンズユニット600が装着されていない図9(a)の瞳距離Dsにおける絞り102の径よりも小さくなる。
図15(c)は、コンバータレンズユニット600が装着された状態での透過率分布層105を考慮した基線長を示す開口情報(第3開口情報)の概略説明図を示す。コンバータレンズユニット600が装着された状態の透過率分布を考慮した基線長を示す基線長絞り枠1510(第3開口情報)は、絞り102の径を変化させたものである。すなわち基線長絞り枠1510は、透過率分布層105がない状態での第1受光感度特性701および第2受光感度特性702に対する基線長が、透過率分布層105がある場合の基線長BL1511と等しくなるように、絞り102の径を変化させたものである。基線長絞り枠1510は、透過率分布により基線長が短くなったことを考慮して、絞り102よりも小さい径となっている。基線長絞り枠1510を第3開口情報として保持し使用することで、透過率分布層105を有していないレンズユニット100と同様の振る舞いで基線長を算出することが可能となる。
続いて、図14のステップS1410において、レンズMPU117は、マウントM、M2を介した通信により、第3開口情報および第4開口情報をカメラMPU125へ送信する。ステップS1410を終えると、レンズMPU117は、開口情報取得の処理を終了する。
次に、ステップS1406の判定にてコンバータレンズユニット600が装着されていない場合について説明する。ステップS1406の判定にてコンバータレンズユニット600が装着されていない場合、ステップS1411へ進む。
ステップS1411において、レンズMPU117は、取得したズームステート、フォーカスステート、像高、および、設定絞り値に応じた第1開口情報を取得する。レンズメモリ118は、ズーム範囲を複数に分割したズームステート毎、フォーカス範囲を複数に分割したフォーカスステート毎、像高範囲を複数に分割した像高毎、所定絞り値範囲を複数に分割した絞り値毎に第1開口情報を記憶している。このためレンズMPU117は、現在のズームステート、フォーカスステート、絞り値、カメラMPU125により指定された像高における第1開口情報を、近傍ステートの第1開口情報から線形補間することにより算出し取得する。本実施例では、現在のズームステート、フォーカスステート、絞り値、および、カメラMPU125により指定された像高の第1開口情報を線形補間で算出して取得するが、レンズMPU117は、最近傍ステートの第1開口情報を取得してもよい。
続いてステップS1412において、レンズMPU117は、マウントM、M2を介した通信により、第1開口情報および第2開口情報をカメラMPU125へ送信する。ステップS1412を終えると、開口情報取得の処理を終了する。
本実施例において、レンズMPU117は、取得した像高に応じた第1開口情報および第3開口情報取得して、カメラMPU125へ送信する。ただし本実施例は、これに限定されるものではなく、全ての像高の第1開口情報および第3開口情報をまとめてカメラMPU125に送信して、カメラMPU125にて、像高に応じた第1開口情報および第3開口情報を取得してもよい。この点は、ズームステート、フォーカスステート、または、設定絞り値に関しても同様である。
本実施例では、絞り値範囲を複数に分割して保持し、線形補間することにより算出したが、絞り値の関数として第1開口情報および第3開口情報を保持し、取得した絞り値に応じて関数にて算出してもよい。この点は、ズームステート、フォーカスステート、または、像高に関しても同様である。
本実施例では、特定の第1受光感度特性および第2受光感度特性に基づいて算出された第1開口情報および第3開口情報のみをレンズメモリ118に保持するが、これに限定されるものではない。レンズメモリ118は、特性の異なる複数パターンの第1受光感度特性および第2受光感度特性に基づいて算出された第1開口情報および第3開口情報を保持し、レンズMPU117は、撮像素子122の特性に応じて第1開口情報を取得してもよい。
(その他の実施例)
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上のように、各実施例において、レンズ装置(レンズユニット100)は、撮像装置(カメラ本体120)に着脱可能であり、撮像光学系、記憶手段(レンズメモリ118)、および、通信手段(レンズMPU117)を有する。撮像光学系は、光軸に関して回転対称な透過率分布層105を有する。記憶手段は、撮像光学系の開口情報を記憶する。通信手段は、開口情報を撮像装置に送信する。また開口情報は、透過率分布層を有する撮像光学系の基線長に関する第1開口情報を含む。
好ましくは、通信手段は、記憶手段に記憶された第1開口情報のうち、撮像光学系のズームステート、フォーカスステート、または、絞り値の少なくとも一つに応じた第1開口情報を撮像装置に送信する。また好ましくは、開口情報は、絞り値、光量、または、深度の少なくとも一つに関する第2開口情報を含む。また好ましくは、基線長は、撮像素子122の第1画素(第1焦点検出画素201)と第2画素(第2焦点検出画素202)の受光感度特性と、透過率分布層の透過率分布と、に基づいて決定される。
好ましくは、第1開口情報は、撮像光学系の絞りの外縁または撮像光学系の開口の外縁の少なくとも一つと、透過率分布層の透過率分布と、に基づいて決定される。より好ましくは、第1開口情報に基づく開口面積は、絞りの外縁で囲まれる面積および開口の外縁で囲まれる面積のそれぞれよりも小さい。また好ましくは、開口情報に基づく開口面積と、絞りの外縁で囲まれる面積または開口の外縁で囲まれる面積との差は、絞りの外縁の径が小さいほど小さくなる。また好ましくは、通信手段は、絞りの外縁の径が所定の径よりも小さい場合、第1開口情報を撮像装置に送信しない。また好ましくは、記憶手段は、絞りの外縁の径が所定の径よりも小さい場合、第1開口情報を記憶しない。また好ましくは、記憶手段は、撮像素子122の種類に応じた開口情報を記憶し、通信手段は、撮像素子の種類に応じた開口情報をカメラ本体に送信する。また好ましくは、通信手段は、開口情報を撮像装置の信号取得フレームごとに送信する。
好ましくは、レンズ装置と撮像装置との間にユニット(コンバータレンズユニット600)が着脱可能であり、開口情報は、ユニットがレンズ装置に装着されたときの基線長に関する第3開口情報を含む。より好ましくは、レンズ装置は、ユニットの光学情報と第2開口情報とに基づいて、第4開口情報を算出する算出手段(レンズMPU117)を有する。通信手段は、第3開口情報および第4開口情報を撮像装置に送信する。
また各実施例において、撮像装置は、レンズ装置が着脱可能であり、撮像素子、通信手段(カメラMPU125)、および、算出手段129bを有する。通信手段は、レンズ装置から、光軸に関して回転対称な透過率分布層を有する撮像光学系の開口情報を受信する。算出手段は、開口情報に基づいてデフォーカス換算係数を算出する。開口情報は、透過率分布層を有する撮像光学系の基線長に関する第1開口情報を含む。
各実施例によれば、透過率分布層を有する撮像光学系の透過率分布を考慮して算出された開口情報を保持、通信することで、正確なデフォーカス量を算出することができる。このため各実施形態によれば、記憶容量および演算時間を増やすことなく、デフォーカス換算係数を算出可能なレンズ装置、撮像装置、通信方法、および、プログラムを提供することができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
100 レンズユニット(レンズ装置)
105 透過率分布層
117 レンズMPU(通信手段)
118 レンズメモリ(記憶手段)

Claims (17)

  1. 撮像装置に着脱可能なレンズ装置であって、
    光軸に関して回転対称な透過率分布層を有する撮像光学系と、
    前記撮像光学系の開口情報を記憶する記憶手段と、
    前記開口情報を前記撮像装置に送信する通信手段と、を有し、
    前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含むことを特徴とするレンズ装置。
  2. 前記通信手段は、前記記憶手段に記憶された前記第1開口情報のうち、前記撮像光学系のズームステート、フォーカスステート、または、絞り値の少なくとも一つに応じた第1開口情報を前記撮像装置に送信することを特徴とする請求項1に記載のレンズ装置。
  3. 前記開口情報は、絞り値、光量、または、深度の少なくとも一つに関する第2開口情報を含むことを特徴とする請求項1または2に記載のレンズ装置。
  4. 前記基線長は、撮像素子の第1画素と第2画素の受光感度特性と、前記透過率分布層の透過率分布と、に基づいて決定されることを特徴とする請求項1乃至3のいずれか一項に記載のレンズ装置。
  5. 前記第1開口情報は、前記撮像光学系の絞りの外縁または前記撮像光学系の開口の外縁の少なくとも一つと、前記透過率分布層の透過率分布と、に基づいて決定されることを特徴とする請求項1乃至4のいずれか一項に記載のレンズ装置。
  6. 前記第1開口情報に基づく開口面積は、前記絞りの外縁で囲まれる面積および前記開口の外縁で囲まれる面積のそれぞれよりも小さいことを特徴とする請求項5に記載のレンズ装置。
  7. 前記開口情報に基づく開口面積と、前記絞りの外縁で囲まれる面積または前記開口の外縁で囲まれる面積との差は、前記絞りの外縁の径が小さいほど小さくなることを特徴とする請求項5または6に記載のレンズ装置。
  8. 前記通信手段は、前記絞りの外縁の径が所定の径よりも小さい場合、前記第1開口情報を前記撮像装置に送信しないことを特徴とする請求項5乃至7のいずれか一項に記載のレンズ装置。
  9. 前記記憶手段は、前記絞りの外縁の径が所定の径よりも小さい場合、前記第1開口情報を記憶しないことを特徴とする請求項5乃至8のいずれか1項に記載のレンズ装置。
  10. 前記記憶手段は、撮像素子の種類に応じた前記開口情報を記憶し、
    前記通信手段は、前記撮像素子の種類に応じた前記開口情報を前記撮像装置に送信することを特徴とする請求項1乃至9のいずれか一項に記載のレンズ装置。
  11. 前記通信手段は、前記開口情報を前記撮像装置の信号取得フレームごとに送信することを特徴とする請求項1乃至10のいずれか一項に記載のレンズ装置。
  12. 前記レンズ装置と前記撮像装置との間にユニットが着脱可能であり、
    前記開口情報は、前記ユニットが前記レンズ装置に装着されたときの基線長に関する第3開口情報を含むことを特徴とする請求項3に記載のレンズ装置。
  13. 前記ユニットは、コンバータレンズユニットであることを特徴とする請求項12に記載のレンズ装置。
  14. 前記ユニットの光学情報と前記第2開口情報とに基づいて、第4開口情報を算出する算出手段を更に有し、
    前記通信手段は、前記第3開口情報および前記第4開口情報を前記撮像装置に送信することを特徴とする請求項12または13に記載のレンズ装置。
  15. レンズ装置が着脱可能な撮像装置であって、
    撮像素子と、
    前記レンズ装置から、光軸に関して回転対称な透過率分布層を有する撮像光学系の開口情報を受信する通信手段と、
    前記開口情報に基づいてデフォーカス換算係数を算出する算出手段と、を有し、
    前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含むことを特徴とする撮像装置。
  16. 光軸に関して回転対称な透過率分布層を有する撮像光学系を備えたレンズ装置と撮像装置との通信方法であって、
    レンズ装置の記憶手段から前記撮像光学系の開口情報を取得するステップと、
    前記開口情報を前記撮像装置に送信するステップと、を有し、
    前記開口情報は、前記透過率分布層を有する前記撮像光学系の基線長に関する第1開口情報を含むことを特徴とする通信方法。
  17. 請求項16に記載の通信方法をコンピュータに実行させることを特徴とするプログラム。
JP2019204495A 2019-11-12 2019-11-12 レンズ装置、撮像装置、通信方法、および、プログラム Active JP7395326B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204495A JP7395326B2 (ja) 2019-11-12 2019-11-12 レンズ装置、撮像装置、通信方法、および、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204495A JP7395326B2 (ja) 2019-11-12 2019-11-12 レンズ装置、撮像装置、通信方法、および、プログラム

Publications (2)

Publication Number Publication Date
JP2021076760A true JP2021076760A (ja) 2021-05-20
JP7395326B2 JP7395326B2 (ja) 2023-12-11

Family

ID=75899019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204495A Active JP7395326B2 (ja) 2019-11-12 2019-11-12 レンズ装置、撮像装置、通信方法、および、プログラム

Country Status (1)

Country Link
JP (1) JP7395326B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062459A (ja) * 2003-08-12 2005-03-10 Olympus Corp レンズ交換式カメラ及びカメラシステム
JP2005062732A (ja) * 2003-08-20 2005-03-10 Canon Inc 撮影装置およびアポダイゼイションフィルタ
JP2010226708A (ja) * 2009-02-25 2010-10-07 Ricoh Co Ltd 撮像装置及び同装置を用いた初期値設定方法
WO2016038936A1 (ja) * 2014-09-11 2016-03-17 富士フイルム株式会社 撮像装置及び合焦制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062459A (ja) * 2003-08-12 2005-03-10 Olympus Corp レンズ交換式カメラ及びカメラシステム
JP2005062732A (ja) * 2003-08-20 2005-03-10 Canon Inc 撮影装置およびアポダイゼイションフィルタ
JP2010226708A (ja) * 2009-02-25 2010-10-07 Ricoh Co Ltd 撮像装置及び同装置を用いた初期値設定方法
WO2016038936A1 (ja) * 2014-09-11 2016-03-17 富士フイルム株式会社 撮像装置及び合焦制御方法

Also Published As

Publication number Publication date
JP7395326B2 (ja) 2023-12-11

Similar Documents

Publication Publication Date Title
JP5473977B2 (ja) 撮像装置およびカメラシステム
US8488956B2 (en) Focus adjusting apparatus and focus adjusting method
US9083879B2 (en) Focus detection apparatus, control method thereof, and image pickup apparatus
US20140071322A1 (en) Image pickup apparatus with image pickup device and control method for image pickup apparatus
CN107431755B (zh) 图像处理设备、摄像设备、图像处理方法和存储介质
WO2012093551A1 (en) Image capture apparatus
JP6381266B2 (ja) 撮像装置、制御装置、制御方法、プログラム、および、記憶媒体
JP2017107204A (ja) 情報処理装置及び情報処理方法
JP6642628B2 (ja) 撮像素子および撮像装置
JP6486041B2 (ja) 撮像装置およびその制御方法
JP6854619B2 (ja) 焦点検出装置及び方法、撮像装置、レンズユニット及び撮像システム
JP2017032646A (ja) 撮像装置及びその制御方法
JP7395326B2 (ja) レンズ装置、撮像装置、通信方法、および、プログラム
JP2017032978A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2020171050A (ja) 画像処理装置、撮像装置、画像処理方法、および、記憶媒体
JP6701023B2 (ja) 撮像装置、画像処理方法、画像処理システム、及び画像処理プログラム
JP6671868B2 (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP5748826B2 (ja) 撮像装置およびカメラシステム
JP2016057402A (ja) 撮像装置及びその制御方法
JP7324160B2 (ja) 撮影制御装置、撮像装置、撮影制御方法、及びプログラム
JP7005209B2 (ja) 撮像装置、及びその制御方法
JP6349624B2 (ja) 撮像素子および焦点検出装置
JP2017219786A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP5407567B2 (ja) 撮像装置および撮像素子ユニット
JP6628617B2 (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R151 Written notification of patent or utility model registration

Ref document number: 7395326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151