JP2021076364A - Cooling device and cooling system - Google Patents

Cooling device and cooling system Download PDF

Info

Publication number
JP2021076364A
JP2021076364A JP2020157406A JP2020157406A JP2021076364A JP 2021076364 A JP2021076364 A JP 2021076364A JP 2020157406 A JP2020157406 A JP 2020157406A JP 2020157406 A JP2020157406 A JP 2020157406A JP 2021076364 A JP2021076364 A JP 2021076364A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
liquid
circulation pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020157406A
Other languages
Japanese (ja)
Inventor
耕作 西田
Kosaku Nishida
耕作 西田
郁朗 赤田
Ikuro Akada
郁朗 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Publication of JP2021076364A publication Critical patent/JP2021076364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To realize means which eases restrictions imposed by securing an effective suction head and inhibits cavitation occurring in a liquid pump at low costs.SOLUTION: A cooling device includes: a liquid receiver; a liquid pump for sending a liquid refrigerant in the liquid receiver to a cooling load; a refrigerant pipe provided between the liquid receiver and the liquid pump; and a liquid refrigerant circulation pipe in which an inlet and an outlet are connected to the liquid receiver; and a peltier element having a heat absorption surface provided at the refrigerant pipe side and a heat radiation surface provided at the circulation pipe side.SELECTED DRAWING: Figure 1

Description

本開示は、冷却装置及び該冷却装置を備える冷却システムに関する。 The present disclosure relates to a cooling device and a cooling system including the cooling device.

冷蔵倉庫などを冷却する冷却システムとして、例えば、アンモニアなどの一次冷媒が循環する一次冷媒回路と、二酸化炭素などを二次冷媒として用いた二次冷媒回路とを備え、一次冷媒によって冷却された二次冷媒液を液レシーバに溜め、液レシーバ内の二次冷媒液を液ポンプで冷蔵倉庫に設けられたエアクーラなどの冷却負荷に供給する自然冷媒冷却システムが知られている。この冷却システムでは、液ポンプや液ポンプの吸込側配管の内部で圧力が低下してキャビテーションが発生すると、冷却負荷に二次冷媒液を送ることができなくなるため、液レシーバを液ポンプより高い位置に配置し、必要吸込ヘッド(NPSHR:Required Net Positive Suction Head)以上の有効吸込ヘッド(NPSHA:Available Net Positive Suction Head)を確保する必要がある。この場合、装置全体の高さ寸法が大きくなり、設計や装置の配置に制約が生じる。また、デフロスト運転終了後の冷却運転時など液レシーバ内の冷媒圧力が急に減圧する場合には、液ポンプの吸込側でキャビテーションが発生する場合がある。 As a cooling system for cooling a refrigerated warehouse or the like, for example, a primary refrigerant circuit in which a primary refrigerant such as ammonia circulates and a secondary refrigerant circuit using carbon dioxide or the like as a secondary refrigerant are provided, and the secondary is cooled by the primary refrigerant. A natural refrigerant cooling system is known in which a secondary refrigerant liquid is stored in a liquid receiver and the secondary refrigerant liquid in the liquid receiver is supplied to a cooling load such as an air cooler provided in a refrigerating warehouse by a liquid pump. In this cooling system, if the pressure drops inside the suction side piping of the liquid pump or liquid pump and cavitation occurs, the secondary refrigerant liquid cannot be sent to the cooling load, so the liquid receiver is positioned higher than the liquid pump. It is necessary to secure a net positive suction head (NPSHA) equal to or higher than the required suction head (NPSHR: Liquid Net Pumpation Head). In this case, the height dimension of the entire device becomes large, and there are restrictions on the design and the arrangement of the device. Further, when the refrigerant pressure in the liquid receiver is suddenly reduced, such as during the cooling operation after the defrost operation is completed, cavitation may occur on the suction side of the liquid pump.

上記問題を解消するため、特許文献1及び2には、液レシーバの内部に冷却コイルを設けたり、あるいは液ポンプの吸込側配管に熱交換器を設け、該冷却コイルや該熱交換器に冷却媒体を供給する冷凍機を設け、液レシーバ内又は液ポンプの吸込側配管を流れる液冷媒を過冷却することで、液ポンプでキャビテーションが起るのを防止する手段が開示されている。 In order to solve the above problems, Patent Documents 1 and 2 provide a cooling coil inside the liquid receiver or a heat exchanger on the suction side pipe of the liquid pump to cool the cooling coil and the heat exchanger. A means for preventing cavitation in the liquid pump by providing a refrigerator for supplying the medium and overcooling the liquid refrigerant flowing in the liquid receiver or the suction side pipe of the liquid pump is disclosed.

特開2007−155315号公報JP-A-2007-155315 特許第6321568号公報Japanese Patent No. 6321568

特許文献1及び2に開示された手段は、液冷媒を冷却するため液冷媒より低温の冷却媒体を生成するための冷凍機、液冷媒と該冷却媒体とを熱交換する熱交換器、及び該冷却媒体を該熱交換器に供給する配管類等が新たに必要となる。そのため、余分な設置スペースが必要であることや、設備費が高コストとなる問題がある。 The means disclosed in Patent Documents 1 and 2 are a refrigerator for generating a cooling medium having a temperature lower than that of the liquid refrigerant for cooling the liquid refrigerant, a heat exchanger for heat exchange between the liquid refrigerant and the cooling medium, and the same. New pipes and the like for supplying the cooling medium to the heat exchanger are required. Therefore, there is a problem that an extra installation space is required and the equipment cost is high.

本開示は、上述する問題点に鑑みてなされたもので、有効吸込ヘッドを確保することにによる制約を緩和し、かつ低コストで液ポンプや液ポンプの吸込側配管に発生するキャビテーションを抑制する手段を実現することを目的とする。 This disclosure has been made in view of the above-mentioned problems, and alleviates the restrictions caused by securing net positive suction head, and suppresses cavitation generated in the liquid pump and the suction side piping of the liquid pump at low cost. The purpose is to realize the means.

上記目的を達成するため、本開示に係る冷却装置の一態様は、液レシーバと、前記液レシーバ内の液冷媒を冷却負荷に送るための液ポンプと、前記液レシーバと前記液ポンプとの間に設けられた冷媒管と、入口及び出口が前記液レシーバに接続された前記液冷媒の循環管と、前記冷媒管側に設けられた吸熱面および前記循環管側に設けられた放熱面を有するペルチェ素子と、を備える。 In order to achieve the above object, one aspect of the cooling device according to the present disclosure is between a liquid receiver, a liquid pump for sending the liquid refrigerant in the liquid receiver to a cooling load, and the liquid receiver and the liquid pump. It has a refrigerant pipe provided in the above, a circulation pipe of the liquid refrigerant whose inlet and outlet are connected to the liquid receiver, a heat absorbing surface provided on the refrigerant pipe side, and a heat radiating surface provided on the circulation pipe side. It is equipped with a refrigerant element.

本開示に係る冷却システムの一態様は、一次冷媒が循環する一次冷媒回路と、前記一次冷媒回路に設けられた蒸発器を含む冷凍サイクル構成機器と、前記蒸発器で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷に供給するための二次冷媒回路と、前記二次冷媒回路に設けられた上記構成の冷却装置と、を備え、前記液冷媒は前記二次冷媒として前記液レシーバに貯留され、かつ、前記冷媒管は前記液レシーバと前記液ポンプとの間で前記二次冷媒回路の一部を構成する。 One aspect of the cooling system according to the present disclosure is a primary refrigerant circuit in which the primary refrigerant circulates, a refrigeration cycle component device including an evaporator provided in the primary refrigerant circuit, and the evaporator cooled by the primary refrigerant. A secondary refrigerant circuit for supplying the secondary refrigerant to the cooling load and a cooling device having the above configuration provided in the secondary refrigerant circuit are provided, and the liquid refrigerant is used as the secondary refrigerant in the liquid receiver. The refrigerant pipe is stored and forms a part of the secondary refrigerant circuit between the liquid receiver and the liquid pump.

本開示に係る冷却装置及び冷却システムによれば、ペルチェ素子を用いて液冷媒を過冷却することで、液冷媒が気化する圧力を下げることができる。これによって、液ポンプや吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和でき、冷却装置のコンパクト化と安定運転が可能になる。また、特許文献1及び2のように、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペースの増加及び装置コストの増加を抑制できる。さらに、ペルチェ素子は吸熱面と放熱面との温度差が小さいほど、吸熱特性が向上するが、吸熱側の液冷媒と放熱側の液冷媒とは同じ液レシーバから供給され、両液冷媒の温度差は小さいので、良好な吸熱特性が得られる。また、放熱側の液冷媒は熱吸収時に相変化し、温度変化を伴わないため、良好な吸熱特性を維持できる。 According to the cooling device and the cooling system according to the present disclosure, the pressure at which the liquid refrigerant vaporizes can be reduced by supercooling the liquid refrigerant using the Pelche element. As a result, it is possible to suppress the occurrence of cavitation inside the liquid pump and the suction side piping, so that the restrictions for securing the net positive suction head can be relaxed, and the cooling device can be made compact and stable operation becomes possible. Further, unlike Patent Documents 1 and 2, since it is not necessary to newly install a refrigerator, a heat exchanger, etc., it is possible to suppress an increase in the installation space of the device and an increase in the device cost. Further, the smaller the temperature difference between the endothermic surface and the heat radiating surface of the Pelche element, the better the endothermic characteristics. However, the endothermic side liquid refrigerant and the heat radiating side liquid refrigerant are supplied from the same liquid receiver, and the temperatures of both liquid refrigerants are supplied. Since the difference is small, good endothermic properties can be obtained. Further, since the liquid refrigerant on the heat dissipation side undergoes a phase change during heat absorption and does not involve a temperature change, good endothermic characteristics can be maintained.

一実施形態に係る冷凍システムの系統図である。It is a system diagram of the refrigeration system which concerns on one Embodiment. 一実施形態に係る冷却装置の一部を示す正面図である。It is a front view which shows a part of the cooling apparatus which concerns on one Embodiment. 図2中のA−A線に沿う一部断裁側面図である。It is a partial cutting side view along the line AA in FIG. 一実施形態に係る冷却装置のモリエル線図である。It is a Moriel diagram of the cooling device which concerns on one Embodiment. 一実施形態に係る多孔質材料の拡大図である。It is an enlarged view of the porous material which concerns on one Embodiment. 一実施形態に係る多孔質材料を示す図である。It is a figure which shows the porous material which concerns on one Embodiment. 一実施形態に係る冷却装置の一部を示す正面図である。It is a front view which shows a part of the cooling apparatus which concerns on one Embodiment. 図7中のB−B線に沿う一部断裁側面図である。It is a partial cutting side view along the line BB in FIG. 多孔質材料による熱伝達係数の向上を示すグラフである。It is a graph which shows the improvement of the heat transfer coefficient by a porous material. 多孔質材料による熱伝達係数の向上を示すグラフである。It is a graph which shows the improvement of the heat transfer coefficient by a porous material.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, and are merely explanatory examples.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.

図1は、一実施形態に係る冷凍システム10の系統図である。冷凍システム10は、一次冷媒が循環する一次冷媒回路12と、二次冷媒が循環する二次冷媒回路14と、を含む。一次冷媒回路12には蒸発器16を含む冷凍サイクル構成機器が設けられ、一次冷媒が冷凍サイクル構成機器を循環することで冷凍サイクルが構成される。二次冷媒回路14を循環する二次冷媒は蒸発器16で一次冷媒によって冷却され凝縮する。蒸発器16で凝縮した二次冷媒液は冷却負荷18に供給され、冷却負荷18の冷熱源として用いられる。例えば、一次冷媒としてアンモニアなどの自然冷媒が使用され、二次冷媒として二酸化炭素などの自然冷媒が使用される。 FIG. 1 is a system diagram of a freezing system 10 according to an embodiment. The refrigeration system 10 includes a primary refrigerant circuit 12 in which the primary refrigerant circulates, and a secondary refrigerant circuit 14 in which the secondary refrigerant circulates. The primary refrigerant circuit 12 is provided with a refrigeration cycle component including an evaporator 16, and the refrigeration cycle is configured by circulating the primary refrigerant through the refrigeration cycle component. The secondary refrigerant circulating in the secondary refrigerant circuit 14 is cooled by the primary refrigerant in the evaporator 16 and condensed. The secondary refrigerant liquid condensed by the evaporator 16 is supplied to the cooling load 18 and used as a cooling heat source for the cooling load 18. For example, a natural refrigerant such as ammonia is used as the primary refrigerant, and a natural refrigerant such as carbon dioxide is used as the secondary refrigerant.

一実施形態では、冷凍サイクル構成機器として、一次冷媒回路12に圧縮機20、凝縮器22及び膨張弁24等が設けられる。圧縮機20で圧縮された一次冷媒は凝縮器22で冷却されて凝縮し、凝縮した一次冷媒液は膨張弁24を経て減圧され、一次冷媒回路12の蒸発器として機能する蒸発器16に送られる。蒸発器16で一次冷媒液は二次冷媒から吸熱して気化し、気化した一次冷媒は圧縮機20で再度圧縮される。 In one embodiment, the primary refrigerant circuit 12 is provided with a compressor 20, a condenser 22, an expansion valve 24, and the like as refrigerating cycle components. The primary refrigerant compressed by the compressor 20 is cooled by the condenser 22 and condensed, and the condensed primary refrigerant liquid is decompressed through the expansion valve 24 and sent to the evaporator 16 which functions as an evaporator of the primary refrigerant circuit 12. .. The primary refrigerant liquid is endothermic and vaporized from the secondary refrigerant in the evaporator 16, and the vaporized primary refrigerant is compressed again by the compressor 20.

図1に示すように、一実施形態に係る冷却装置30は、液冷媒を溜めるための液レシーバ32を備え、液レシーバ32と液ポンプ34との間に冷媒管36が設けられ、液レシーバ32に溜まった液冷媒は、冷媒管36を介して液ポンプ34によって冷却負荷18に送られる。さらに、冷却装置30は、入口及び出口が液レシーバ32に接続された液冷媒の循環管38を備えると共に、冷媒管36を流れる液冷媒と循環管38を流れる液冷媒との間で熱伝達を行わせるためのペルチェ素子40が設けられている。冷媒管36は、液レシーバ32と液ポンプ34との間において、一端が液レシーバ32の底面に接続され、液ポンプ34に向かって下降する配管で構成される。一実施形態では、図1に示すように、鉛直方向に配置される。ペルチェ素子40はこの下降する配管に設けられる。一実施形態では、図1に示すように、循環管38は、上端が液レシーバ32に接続され液レシーバ32の底面から下方へ下降し、下端部から上方に折り返して液レシーバ32の底面に接続するように構成される。 As shown in FIG. 1, the cooling device 30 according to the embodiment includes a liquid receiver 32 for storing the liquid refrigerant, a refrigerant pipe 36 is provided between the liquid receiver 32 and the liquid pump 34, and the liquid receiver 32 is provided. The liquid refrigerant accumulated in is sent to the cooling load 18 by the liquid pump 34 via the refrigerant pipe 36. Further, the cooling device 30 includes a liquid refrigerant circulation pipe 38 whose inlet and outlet are connected to the liquid receiver 32, and transfers heat between the liquid refrigerant flowing through the refrigerant pipe 36 and the liquid refrigerant flowing through the circulation pipe 38. A Peltier element 40 is provided for this purpose. The refrigerant pipe 36 is composed of a pipe between the liquid receiver 32 and the liquid pump 34, one end of which is connected to the bottom surface of the liquid receiver 32 and descends toward the liquid pump 34. In one embodiment, as shown in FIG. 1, they are arranged in the vertical direction. The Peltier element 40 is provided in this descending pipe. In one embodiment, as shown in FIG. 1, the upper end of the circulation pipe 38 is connected to the liquid receiver 32, descends downward from the bottom surface of the liquid receiver 32, folds upward from the lower end portion, and connects to the bottom surface of the liquid receiver 32. It is configured to do.

図2は、ペルチェ素子40及びその周辺を示す拡大正面図であり、図3は、図2中のA−A線に沿う一部断裁断面図である。ペルチェ素子40は、冷媒管36側に設けられた吸熱面40aと、循環管38側に設けられた放熱面40bとを有する。冷媒管36及び循環管38には液レシーバ32内の飽和液冷媒Lrが供給されるが、導線42を介してペルチェ素子40に電流を流すと、吸熱面40a及び放熱面40b間に温度差が形成され、冷媒管36を流れる飽和液冷媒Lrから循環管38を流れる飽和液冷媒Lrに熱移動が起る。これによって、冷媒管36を流れる飽和液冷媒Lrは過冷却され、循環管38を流れる飽和液冷媒Lrは熱を受けて少なくとも一部が気相に変化する。冷媒管36を流れる液冷媒が過冷却されることで、液冷媒が気化する圧力を下げることができる。これによって、冷媒管36に設けられた液ポンプ34の吸込側における必要吸込ヘッド(NPSHR)より有効吸入ヘッド(NPSHA)を大きくできるため、有効吸込ヘッドを確保するための制約を緩和できる。これによって、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションが起るのを抑制できる。従って、冷却装置30のコンパクト化と安定運転が可能になる。また、有効吸込ヘッドを確保するために、冷凍機や熱交換器等を新たに設ける必要がなく、循環管38及びペルチェ素子40等を追設するだけで済むため、装置の設置スペースの増加及び装置コストの増加も抑制できる。 FIG. 2 is an enlarged front view showing the Peltier element 40 and its periphery, and FIG. 3 is a partially cut sectional view taken along the line AA in FIG. The Peltier element 40 has an endothermic surface 40a provided on the refrigerant pipe 36 side and a heat radiating surface 40b provided on the circulation pipe 38 side. The saturated liquid refrigerant Lr in the liquid receiver 32 is supplied to the refrigerant pipe 36 and the circulation pipe 38, but when a current is passed through the Peltier element 40 via the lead wire 42, a temperature difference is generated between the heat absorbing surface 40a and the heat radiating surface 40b. Heat transfer occurs from the saturated liquid refrigerant Lr flowing through the refrigerant pipe 36 to the saturated liquid refrigerant Lr flowing through the circulation pipe 38. As a result, the saturated liquid refrigerant Lr flowing through the refrigerant pipe 36 is supercooled, and at least a part of the saturated liquid refrigerant Lr flowing through the circulation pipe 38 is changed to the gas phase by receiving heat. By supercooling the liquid refrigerant flowing through the refrigerant pipe 36, the pressure at which the liquid refrigerant vaporizes can be reduced. As a result, the net positive suction head (NPSHA) can be made larger than the required suction head (NPSHR) on the suction side of the liquid pump 34 provided in the refrigerant pipe 36, so that the restriction for securing the effective suction head can be relaxed. As a result, it is possible to suppress the occurrence of cavitation inside the liquid pump 34 and the suction side piping of the liquid pump 34. Therefore, the cooling device 30 can be made compact and can be operated stably. Further, in order to secure the effective suction head, it is not necessary to newly install a refrigerator, a heat exchanger, etc., and it is only necessary to additionally install a circulation pipe 38, a Peltier element 40, etc., which increases the installation space of the device and increases the installation space of the device. The increase in equipment cost can also be suppressed.

また、ペルチェ素子40は吸熱面40aと放熱面40bとの温度差が小さいほど、少ない電力で多くの吸熱量が得られ、吸熱特性が向上する。冷媒管36に流下する飽和液冷媒Lrと循環管38に流下する飽和液冷媒Lrとは同じ液レシーバ32から供給されるため、両飽和液冷媒Lrの温度差は小さい。従って、ペルチェ素子40は良好な吸熱特性が得られる。また、循環管38を流れる飽和液冷媒Lrは、熱吸収時に液冷媒の一部が蒸発して気相に変化するだけで液冷媒の温度変化を伴わないため、良好な吸熱特性を持続できる。 Further, as the temperature difference between the endothermic surface 40a and the heat radiating surface 40b of the Peltier element 40 is smaller, a larger amount of heat absorption can be obtained with less electric power, and the endothermic characteristics are improved. Since the saturated liquid refrigerant Lr flowing down the refrigerant pipe 36 and the saturated liquid refrigerant Lr flowing down the circulation pipe 38 are supplied from the same liquid receiver 32, the temperature difference between the two saturated liquid refrigerants Lr is small. Therefore, the Peltier element 40 can obtain good endothermic characteristics. Further, the saturated liquid refrigerant Lr flowing through the circulation pipe 38 can maintain good endothermic characteristics because only a part of the liquid refrigerant evaporates during heat absorption and changes to the gas phase without changing the temperature of the liquid refrigerant.

図4は、モリエル線図の一部を示す。同図中、点Pcは臨界点を示し、点Pcより左側のラインXは飽和液線を示し、点Pcより右側のラインYは飽和蒸気線を示す。また、点aは液レシーバ32内の飽和液冷媒の状態量(例えば、−40℃、1.0MPa)を示し、点cは液ポンプ34内の最小静圧部の状態量を示す。液レシーバ32から冷媒管36に供給された液冷媒は、ペルチェ素子40によって点aより過冷却されて点bに示す状態量となる。一実施形態では、過冷却された点bの温度に相当する飽和液線X上の位置は点dである。この場合、点dにおける圧力Psは飽和液線X上の点cの圧力以下に降下している。従って、点aから点c(液ポンプ34内の最小静圧)までの必要吸込ヘッド(NPSHR)に対して、点aから点dまでの有効吸込ヘッド(NPSHA。例えば、0.8m)を確保できる状態量となるため、この液冷媒が液ポンプ34に流入するとき、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションが起るのを抑制できる。 FIG. 4 shows a part of the Moriel diagram. In the figure, the point Pc indicates a critical point, the line X on the left side of the point Pc indicates a saturated liquid line, and the line Y on the right side of the point Pc indicates a saturated vapor line. Further, the point a indicates the state amount of the saturated liquid refrigerant in the liquid receiver 32 (for example, −40 ° C., 1.0 MPa), and the point c indicates the state amount of the minimum static pressure portion in the liquid pump 34. The liquid refrigerant supplied from the liquid receiver 32 to the refrigerant pipe 36 is supercooled from the point a by the Peltier element 40 to reach the state amount shown at the point b. In one embodiment, the position on the saturated liquid line X corresponding to the temperature of the supercooled point b is the point d. In this case, the pressure Ps at the point d drops below the pressure at the point c on the saturated liquid line X. Therefore, the net positive suction head (NPSHA, for example, 0.8 m) from the point a to the point d is secured with respect to the required suction head (NPSHR) from the point a to the point c (the minimum static pressure in the liquid pump 34). Since the amount is in a positive state, when the liquid refrigerant flows into the liquid pump 34, it is possible to suppress the occurrence of cavitation inside the liquid pump 34 and the suction side piping of the liquid pump 34.

一実施形態では、図1に示すように、循環管38は、液レシーバ32から下方に向かって延びる下降管部38aと、折り返し部38cを介して下降管部38aに接続され、上方の液レシーバ32に向かって延在する上昇管部38bと、を有する。ペルチェ素子40の放熱面40bは上昇管部38b側に設けられる。上昇管部38bにおいて、放熱面40bから熱を受けた飽和液冷媒Lrは一部が気化し、気化したガス冷媒は浮力により上昇する。そのため、下降管部38aを自重により下降する飽和液冷媒Lrとの間で密度差が生じ、液レシーバ32→下降管部38a→折り返し部38c→上昇管部38b→液レシーバ32という自然循環の流れが形成される。従って、循環管38の内部で冷媒を循環させるための動力が不要になる。 In one embodiment, as shown in FIG. 1, the circulation pipe 38 is connected to the descending pipe portion 38a via a descending pipe portion 38a extending downward from the liquid receiver 32 and a folded-back portion 38c, and the upper liquid receiver is connected. It has an ascending tube portion 38b extending toward 32. The heat radiating surface 40b of the Peltier element 40 is provided on the rising pipe portion 38b side. In the riser pipe portion 38b, a part of the saturated liquid refrigerant Lr that has received heat from the heat radiating surface 40b is vaporized, and the vaporized gas refrigerant rises due to buoyancy. Therefore, a density difference occurs between the descending pipe portion 38a and the saturated liquid refrigerant Lr that descends due to its own weight, and the flow of natural circulation of liquid receiver 32 → descending pipe portion 38a → folded portion 38c → rising pipe portion 38b → liquid receiver 32. Is formed. Therefore, the power for circulating the refrigerant inside the circulation pipe 38 becomes unnecessary.

また、図1は、冷凍システム10に冷却装置30を組み込んだ場合の実施形態を示しており、図1に示す実施形態では、液レシーバ32に貯留される液冷媒は二次冷媒であり、冷媒管36は二次冷媒回路14の一部を構成する。 Further, FIG. 1 shows an embodiment when the cooling device 30 is incorporated in the refrigeration system 10. In the embodiment shown in FIG. 1, the liquid refrigerant stored in the liquid receiver 32 is a secondary refrigerant, and is a refrigerant. The pipe 36 constitutes a part of the secondary refrigerant circuit 14.

一実施形態では、冷却負荷18は、食料品などを保冷状態に保つ冷却庫44(例えば、冷蔵庫、冷凍庫等)に設けられ、冷却庫44内を冷却するためのエアクーラで構成され、二次冷媒回路14は該エアクーラに導設されている。従って、この実施形態では、冷却庫44に設けられたエアクーラに二次冷媒を供給する場合に、液ポンプ34や液ポンプ34の吸込側配管におけるキャビテーションの発生を抑制できるため、該エアクーラに二次冷媒を安定供給できる。 In one embodiment, the cooling load 18 is provided in a refrigerator 44 (for example, a refrigerator, a freezer, etc.) that keeps food or the like in a cold state, and is composed of an air cooler for cooling the inside of the refrigerator 44, and is a secondary refrigerant. The circuit 14 is guided to the air cooler. Therefore, in this embodiment, when the secondary refrigerant is supplied to the air cooler provided in the refrigerator 44, the occurrence of cavitation in the liquid pump 34 and the suction side piping of the liquid pump 34 can be suppressed, so that the secondary refrigerant is supplied to the air cooler. A stable supply of refrigerant can be achieved.

一実施形態では、図2及び図3に示すように、冷媒管36又は循環管38の少なくとも一方の配管内に伝熱促進部材46が設けられる。伝熱促進部材46は、吸熱面40a又は放熱面40bの法線Nの方向から視たとき、吸熱面40a又は放熱面40bとオーバラップする領域に設けられる。伝熱促進部材46を備えることで、冷媒管36又は循環管38を流れる飽和液冷媒Lrとの熱伝達を促進できるため、吸熱面40a側から放熱面40b側への熱伝達を促進でき、冷媒管36を流れる飽和液冷媒Lrのペルチェ素子40による冷却効果を向上できる。 In one embodiment, as shown in FIGS. 2 and 3, a heat transfer promoting member 46 is provided in at least one of the refrigerant pipe 36 and the circulation pipe 38. The heat transfer promoting member 46 is provided in a region that overlaps the heat absorbing surface 40a or the heat radiating surface 40b when viewed from the direction of the normal line N of the heat absorbing surface 40a or the heat radiating surface 40b. By providing the heat transfer promoting member 46, heat transfer with the saturated liquid refrigerant Lr flowing through the refrigerant pipe 36 or the circulation pipe 38 can be promoted, so that heat transfer from the heat absorbing surface 40a side to the heat radiating surface 40b side can be promoted, and the refrigerant can be promoted. The cooling effect of the saturated liquid refrigerant Lr flowing through the pipe 36 by the Peltier element 40 can be improved.

図2及び図3に示す例示的な実施形態では、冷媒管36及び循環管38の両方に伝熱促進部材46が設けられる。また、吸熱面40aと放熱面40bとは、冷媒管36及び循環管38の管軸方向において全領域で互いにオーバラップし、このオーバラップした冷媒管36及び循環管38の全領域に伝熱促進部材46が設けられる。これによって、オーバラップした全領域で伝熱が促進されるため、ペルチェ素子40による飽和液冷媒Lrの冷却効果を向上できる。 In the exemplary embodiment shown in FIGS. 2 and 3, the heat transfer promoting member 46 is provided on both the refrigerant pipe 36 and the circulation pipe 38. Further, the endothermic surface 40a and the heat radiating surface 40b overlap each other in the entire region in the pipe axis direction of the refrigerant pipe 36 and the circulation pipe 38, and heat transfer is promoted to the entire region of the overlapping refrigerant pipe 36 and the circulation pipe 38. A member 46 is provided. As a result, heat transfer is promoted in the entire overlapping region, so that the cooling effect of the saturated liquid refrigerant Lr by the Peltier element 40 can be improved.

伝熱促進部材46の配置によって冷媒管36を流れる液冷媒の圧力損失が大きくなると、圧力損失した分だけ有効吸込ヘッドを余分に確保する必要があるため、圧力損失をなるべく抑える必要がある。また、伝熱促進部材46の伝熱面積を増加させることで熱伝達を促進できるため、伝熱促進部材46は表面積が大きい材料が好ましい。 When the pressure loss of the liquid refrigerant flowing through the refrigerant pipe 36 becomes large due to the arrangement of the heat transfer promoting member 46, it is necessary to secure an extra effective suction head by the amount of the pressure loss, so that the pressure loss needs to be suppressed as much as possible. Further, since heat transfer can be promoted by increasing the heat transfer area of the heat transfer promoting member 46, the heat transfer promoting member 46 is preferably made of a material having a large surface area.

一実施形態では、図5及び図6に示すように、伝熱促進部材46は、大きな表面積を有する多孔質材料で構成されている。これによって、多孔質材料を介した配管と液冷媒との熱伝達が促進される。また、多孔質材料の乱流促進効果によって液冷媒が乱流となることで、液冷媒の圧力損失を抑えながら配管と液冷媒との熱伝達を高めることができる。図5に示す多孔質材料46(46a)は、直径約2.4mmのセル内に、孔径が約0.8mmの空隙47が形成されている。 In one embodiment, as shown in FIGS. 5 and 6, the heat transfer promoting member 46 is made of a porous material having a large surface area. This promotes heat transfer between the piping and the liquid refrigerant through the porous material. Further, since the liquid refrigerant becomes a turbulent flow due to the turbulent flow promoting effect of the porous material, it is possible to enhance the heat transfer between the piping and the liquid refrigerant while suppressing the pressure loss of the liquid refrigerant. In the porous material 46 (46a) shown in FIG. 5, a void 47 having a pore diameter of about 0.8 mm is formed in a cell having a diameter of about 2.4 mm.

図6に示す多孔質材料46(46b)は、線状部材の集合体で構成されている。伝熱促進部材46がこのような線状部材の集合体で構成されるため、表面積を大きくでき、冷媒管36又は循環管38を流れる液冷媒の圧力損失を抑えながら、冷媒管36と循環管38を流れる液冷媒の熱伝達を促進し、液冷媒の冷却効果を高めることができる。 The porous material 46 (46b) shown in FIG. 6 is composed of an aggregate of linear members. Since the heat transfer promoting member 46 is composed of an aggregate of such linear members, the surface area can be increased, and the refrigerant pipe 36 and the circulation pipe can be suppressed while suppressing the pressure loss of the liquid refrigerant flowing through the refrigerant pipe 36 or the circulation pipe 38. The heat transfer of the liquid refrigerant flowing through 38 can be promoted, and the cooling effect of the liquid refrigerant can be enhanced.

一実施形態では、伝熱促進部材46は、例えば、銅やアルミ等のように、熱伝導性の良い金属材料で構成された多孔質材料で構成される。これによって、伝熱促進部材46の伝熱効果をさらに高め、冷媒管36を流れる液冷媒の冷却効果をさらに高めることができる。 In one embodiment, the heat transfer promoting member 46 is made of a porous material made of a metal material having good thermal conductivity, such as copper or aluminum. As a result, the heat transfer effect of the heat transfer promoting member 46 can be further enhanced, and the cooling effect of the liquid refrigerant flowing through the refrigerant pipe 36 can be further enhanced.

一実施形態では、ペルチェ素子40は、冷媒管36を流れる飽和液冷媒Lrを液ポンプ34の必要吸込ヘッドに相当する過冷却温度以上に冷却可能な冷却性能を有するように構成されている。これによって、ペルチェ素子40によって冷媒管を流れる飽和液冷媒Lrを液ポンプ34の必要吸込ヘッド以上に沸点圧力を降下できるため、冷媒管36に必要吸込ヘッドを形成しなくても、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を確実に抑制できる。 In one embodiment, the Peltier element 40 is configured to have a cooling performance capable of cooling the saturated liquid refrigerant Lr flowing through the refrigerant pipe 36 to a supercooling temperature corresponding to the required suction head of the liquid pump 34 or higher. As a result, the saturated liquid refrigerant Lr flowing through the refrigerant pipe can be lowered to a boiling point pressure higher than the required suction head of the liquid pump 34 by the Perche element 40, so that the liquid pump 34 and the liquid pump 34 do not need to form the required suction head in the refrigerant pipe 36. Occurrence of cavitation can be reliably suppressed inside the suction side pipe of the liquid pump 34.

一実施形態では、図1に示すように、液レシーバ32内の気相部の圧力を検出する圧力センサ48と、液ポンプ34の入口側の液冷媒の温度を検出する温度センサ49と、圧力センサ48及び温度センサ49の検出値に基づいてペルチェ素子40の作動を制御する制御部50と、を備える。この実施形態によれば、制御部50が圧力センサ48の検出値に基づいてペルチェ素子40の作動を制御し、かつ制御部50は温度センサ49の検出値に基づいてペルチェ素子をフィードバック制御することで、液ポンプ34の入口付近における液冷媒の過冷却度が必要吸込ヘッド以上となるように正確に制御できる。
図1に示す実施形態では、制御部50は、電源部41を制御し、導線42を介してペルチェ素子40に流す電流値を制御する。
In one embodiment, as shown in FIG. 1, a pressure sensor 48 for detecting the pressure of the gas phase portion in the liquid receiver 32, a temperature sensor 49 for detecting the temperature of the liquid refrigerant on the inlet side of the liquid pump 34, and a pressure. A control unit 50 that controls the operation of the Pelche element 40 based on the detected values of the sensor 48 and the temperature sensor 49 is provided. According to this embodiment, the control unit 50 controls the operation of the Peltier element 40 based on the detected value of the pressure sensor 48, and the control unit 50 feedback-controls the Peltier element based on the detected value of the temperature sensor 49. Therefore, the degree of supercooling of the liquid refrigerant near the inlet of the liquid pump 34 can be accurately controlled to be equal to or higher than the required suction head.
In the embodiment shown in FIG. 1, the control unit 50 controls the power supply unit 41 and controls the current value to be passed through the Peltier element 40 via the conducting wire 42.

以下、制御部50による具体的な制御の一例を説明する。まず、点bの温度Tbを温度センサ49で検出する。次に、液レシーバ32内の圧力Paを圧力センサ48で検出する。圧力Paと点bの温度Tbとから、既知の下記式を用いて、点bのエンタルピhbを算出する。
hb=f(Pa、Tb)
さらに、飽和液線X上でエンタルピhbとなる点dの圧力Psを既知の下記式を用いて算出する。
hd=f(Ps) hd=hb
有効吸込ヘッド(NPSHA)ΔPは、ΔP=Pa−Psから求めることができる。実際に用いられる液冷媒の有効吸込ヘッド(NPSHA)Hは下記式で求められる。
H=ΔP/ρd・g
ここで、ρdは点dにおける液冷媒の密度であり、gは重力である。
ρdは、圧力Psから既知式ρd=f(Ps)で求めることができる。用いられる液冷媒のヘッドHが必要吸込ヘッド(NPSHR)より大きくなるように、ペルチェ素子40に供給する電流値を制御する。これによって、冷却負荷18の冷熱量が変動して液レシーバ42内の温度及び圧力が変動しても、液ポンプ34及びその吸込側配管の内部でキャビテーションを確実に抑制できる。
Hereinafter, an example of specific control by the control unit 50 will be described. First, the temperature Tb at the point b is detected by the temperature sensor 49. Next, the pressure Pa in the liquid receiver 32 is detected by the pressure sensor 48. From the pressure Pa and the temperature Tb at the point b, the enthalpy hb at the point b is calculated using the following known formula.
hb = f (Pa, Tb)
Further, the pressure Ps at the point d that becomes the enthalpy hb on the saturated liquid line X is calculated using the following known formula.
hd = f (Ps) hd = hb
The net positive suction head (NPSHA) ΔP can be obtained from ΔP = Pa−Ps. The net positive suction head (NPSHA) H of the liquid refrigerant actually used is calculated by the following formula.
H = ΔP / ρd ・ g
Here, ρd is the density of the liquid refrigerant at the point d, and g is gravity.
ρd can be obtained from the pressure Ps by the known formula ρd = f (Ps). The current value supplied to the Peltier element 40 is controlled so that the head H of the liquid refrigerant used is larger than the required suction head (NPSHR). As a result, even if the amount of cooling heat of the cooling load 18 fluctuates and the temperature and pressure in the liquid receiver 42 fluctuate, cavitation can be reliably suppressed inside the liquid pump 34 and its suction side piping.

一実施形態では、図1に示すように、冷媒管36と循環管38とは、少なくともペルチェ素子40が設置される設置領域内において、互いに平行に配置されている。そして、ペルチェ素子40は、冷媒管36と循環管38との間において、冷媒管36及び循環管38の管軸方向に沿って延在する。このように、冷媒管36、循環管38及びペルチェ素子40が同一方向に沿って延在するので、吸熱面40aと放熱面40bとの間のペルチェ素子40の配置スペースを縮小でき、ペルチェ素子40に配置が容易になる。また、広い吸熱面40a及び放熱面40bを容易に確保できるため、ペルチェ素子40の効率を向上でき、冷媒管36を流れる液冷媒の冷却効果を高めることができる。 In one embodiment, as shown in FIG. 1, the refrigerant pipe 36 and the circulation pipe 38 are arranged parallel to each other at least in the installation area where the Peltier element 40 is installed. Then, the Peltier element 40 extends between the refrigerant pipe 36 and the circulation pipe 38 along the pipe axis direction of the refrigerant pipe 36 and the circulation pipe 38. Since the refrigerant pipe 36, the circulation pipe 38, and the Peltier element 40 extend along the same direction in this way, the arrangement space of the Peltier element 40 between the endothermic surface 40a and the heat radiating surface 40b can be reduced, and the Peltier element 40 can be reduced. Easy to place. Further, since the wide endothermic surface 40a and the heat radiating surface 40b can be easily secured, the efficiency of the Peltier element 40 can be improved, and the cooling effect of the liquid refrigerant flowing through the refrigerant pipe 36 can be enhanced.

図2及び図3に示す実施形態では、ペルチェ素子40の本体を板状に形成している。このように、ペルチェ素子40を板状に形成することで、冷媒管36と循環管38との間のスペースが狭くても、ペルチェ素子40の配置が容易になる。 In the embodiment shown in FIGS. 2 and 3, the main body of the Peltier element 40 is formed in a plate shape. By forming the Peltier element 40 in a plate shape in this way, the Peltier element 40 can be easily arranged even if the space between the refrigerant pipe 36 and the circulation pipe 38 is narrow.

一実施形態では、図2、3及び図7、8に示すように、ペルチェ素子40を挟むように、第1ブロック52(52a、52b)及び第2ブロック62(62a、62b)が設けられている。第1ブロック52は、冷媒管36が貫通する第1貫通孔54及び吸熱面40aに当接する第1伝熱面56を有し、冷媒管36の周囲に設けられている。第2ブロック62は、循環管38が貫通する第2貫通孔64及び放熱面40bに当接する第2伝熱面66を有し、循環管38の周囲に設けられている。このような第1ブロック52及び第2ブロック62を備えるため、吸熱面40a及び放熱面40bの形成が容易になる。 In one embodiment, as shown in FIGS. 2, 3 and 7, 8, the first block 52 (52a, 52b) and the second block 62 (62a, 62b) are provided so as to sandwich the Peltier element 40. There is. The first block 52 has a first through hole 54 through which the refrigerant pipe 36 penetrates and a first heat transfer surface 56 that abuts on the endothermic surface 40a, and is provided around the refrigerant pipe 36. The second block 62 has a second through hole 64 through which the circulation pipe 38 penetrates and a second heat transfer surface 66 in contact with the heat radiation surface 40b, and is provided around the circulation pipe 38. Since the first block 52 and the second block 62 are provided, the heat absorbing surface 40a and the heat radiating surface 40b can be easily formed.

図2、3及び図7、8に示す例示的な実施形態では、第2ブロック62は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。 In the exemplary embodiment shown in FIGS. 2, 3 and 7, 8, the second block 62 is provided around the riser pipe portion 38b of the circulation pipe 38. As a result, as described above, a natural circulating flow of the saturated liquid refrigerant Lr can be formed in the circulation pipe 38.

一実施形態では、図2及び図3に示すように、吸熱面40a及び放熱面40bは、冷媒管36及び循環管38の管軸方向に沿って互いに平行に配置され、第1ブロック52(52a)又は第2ブロック62(62a)の少なくとも一方は、吸熱面40a又は放熱面40bに沿う第1分割面55a又は第2分割面65aに沿って分割された2つ以上の分割片53a、53b又は63a、63bで構成される。分割片53a及び53bの各々は、第1貫通孔54を形成する凹部を有し、分割片53a及び53bの少なくとも1つは、吸熱面40aを有する。また、分割片63a及び63bの各々は、第2貫通孔64を形成する凹部を有し、分割片63a及び63bの少なくとも1つは、放熱面40bを有する。このように、第1ブロック52(52a)又は第2ブロック62(62a)が、2つ以上の分割片で構成されるため、第1ブロック52(52a)又は第2ブロック62(62a)の冷媒管36又は循環管38への装着が容易になる。 In one embodiment, as shown in FIGS. 2 and 3, the endothermic surface 40a and the heat radiating surface 40b are arranged parallel to each other along the pipe axis direction of the refrigerant pipe 36 and the circulation pipe 38, and the first block 52 (52a). ) Or at least one of the second blocks 62 (62a) is two or more divided pieces 53a, 53b or divided along the first divided surface 55a or the second divided surface 65a along the endothermic surface 40a or the heat radiating surface 40b. It is composed of 63a and 63b. Each of the split pieces 53a and 53b has a recess forming the first through hole 54, and at least one of the split pieces 53a and 53b has an endothermic surface 40a. Further, each of the divided pieces 63a and 63b has a recess forming the second through hole 64, and at least one of the divided pieces 63a and 63b has a heat radiating surface 40b. As described above, since the first block 52 (52a) or the second block 62 (62a) is composed of two or more divided pieces, the refrigerant of the first block 52 (52a) or the second block 62 (62a) It becomes easy to attach to the pipe 36 or the circulation pipe 38.

図2及び図3に示す例示的な実施形態では、第2ブロック62(62a)は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。 In the exemplary embodiment shown in FIGS. 2 and 3, the second block 62 (62a) is provided around the riser tube portion 38b of the circulation tube 38. As a result, as described above, a natural circulating flow of the saturated liquid refrigerant Lr can be formed in the circulation pipe 38.

図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)は、吸熱面40aに沿う面を第1分割面55aとし、第1分割面55aに沿って分割された2つの分割片53a及び53bで構成される。また、第2ブロック62(62a)は、放熱面40bに沿う面を第2分割面65aとし、第2分割面65aに沿って分割された2つの分割片63a及び63bで構成される。 In the exemplary embodiment shown in FIGS. 2 and 3, in the first block 52 (52a), the surface along the endothermic surface 40a is the first dividing surface 55a, and the first block 52 (52a) is divided along the first dividing surface 55a. It is composed of divided pieces 53a and 53b. Further, the second block 62 (62a) is composed of two divided pieces 63a and 63b divided along the second divided surface 65a, with the surface along the heat radiating surface 40b as the second divided surface 65a.

図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)及び第2ブロック62(62a)は直方体の形状に形成される。これによって、第1伝熱面56及び第2伝熱面66の面積を大きく取ることができる。また、第1ブロック52(52a)は第1分割面55aに沿って半割りに分割された2つの分割片53a及び53bで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で冷媒管36を挟み込むように分割片53a及び53bを配置することで、第1ブロック52(52a)を冷媒管36の周囲に容易に配置できる。同様に、第2ブロック62(62a)は第2分割面65aに沿って半割りに分割された2つの分割片63a及び63bで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で循環管38の上昇管部38bを挟み込むように分割片63a及び63bを配置することで、第2ブロック62(62a)を循環管38の上昇管部38bの周囲に容易に配置できる。 In the exemplary embodiment shown in FIGS. 2 and 3, the first block 52 (52a) and the second block 62 (62a) are formed in the shape of a rectangular parallelepiped. As a result, the area of the first heat transfer surface 56 and the second heat transfer surface 66 can be increased. Further, the first block 52 (52a) is composed of two divided pieces 53a and 53b divided in half along the first dividing surface 55a, and each has a semicircular recess. By arranging the divided pieces 53a and 53b so as to sandwich the refrigerant pipe 36 in the recess, the first block 52 (52a) can be easily arranged around the refrigerant pipe 36. Similarly, the second block 62 (62a) is composed of two divided pieces 63a and 63b divided in half along the second dividing surface 65a, and each has a recess having a semicircular cross section. By arranging the divided pieces 63a and 63b so as to sandwich the rising pipe portion 38b of the circulation pipe 38 in the recess, the second block 62 (62a) can be easily arranged around the rising pipe portion 38b of the circulation pipe 38.

図2及び図3に示す例示的な実施形態では、分割片53aと53b、及び分割片63aと63bとは、夫々第1分割面55a又は第2分割面65aにおいて互いの面が当接された状態で、法線Nの方向に沿って延在するように配置されたボルト70で結合される。 In the exemplary embodiment shown in FIGS. 2 and 3, the divided pieces 53a and 53b and the divided pieces 63a and 63b are in contact with each other on the first divided surface 55a or the second divided surface 65a, respectively. In the state, they are joined by bolts 70 arranged so as to extend along the direction of the normal N.

一実施形態では、図7及び図8に示すように、吸熱面40a及び放熱面40bは、冷媒管36及び循環管38の管軸方向に沿って互いに平行に配置され、第1ブロック52(52b)又は第2ブロック62(62b)の少なくとも一方は、冷媒管36及び循環管38の管軸を含み吸熱面40a及び放熱面40bに交差する面に沿う第1分割面55b又は第2分割面65bによって分割された2つ以上の分割片53c、53d又は63c、63dで構成される。分割片53c及び53dの各々は、第1貫通孔54を形成する凹部を有し、分割片53c及び53dの少なくとも1つは、吸熱面40aを有する。また、分割片63c及び63dの各々は、第2貫通孔64を形成する凹部を有し、分割片63c及び63dの少なくとも1つは、放熱面40bを有する。 In one embodiment, as shown in FIGS. 7 and 8, the endothermic surface 40a and the heat radiating surface 40b are arranged parallel to each other along the pipe axis direction of the refrigerant pipe 36 and the circulation pipe 38, and the first block 52 (52b). ) Or the second block 62 (62b) includes the pipe shafts of the refrigerant pipe 36 and the circulation pipe 38, and is along the surface intersecting the endothermic surface 40a and the heat radiating surface 40b. It is composed of two or more divided pieces 53c, 53d or 63c, 63d divided by. Each of the split pieces 53c and 53d has a recess forming the first through hole 54, and at least one of the split pieces 53c and 53d has an endothermic surface 40a. Further, each of the divided pieces 63c and 63d has a recess forming the second through hole 64, and at least one of the divided pieces 63c and 63d has a heat radiating surface 40b.

このように、第1ブロック52(52b)又は第2ブロック62(62b)が、2つ以上の分割片で構成されるため、第1ブロック52(52b)又は第2ブロック62(62b)の冷媒管36又は循環管38への装着が容易になる。また、2つ以上の分割片は、冷媒管36及び循環管38の管軸を含み吸熱面40a及び放熱面40bに交差する面に沿って分割され、これらの分割面が吸熱面40a及び放熱面40bと交差する方向に沿って生じる熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、伝熱性能を向上できる。 As described above, since the first block 52 (52b) or the second block 62 (62b) is composed of two or more divided pieces, the refrigerant of the first block 52 (52b) or the second block 62 (62b) It becomes easy to attach to the pipe 36 or the circulation pipe 38. Further, the two or more divided pieces are divided along the surfaces intersecting the endothermic surface 40a and the heat radiating surface 40b including the pipe shafts of the refrigerant pipe 36 and the circulation pipe 38, and these divided surfaces are the endothermic surface 40a and the heat radiating surface. Since it is arranged in a direction that does not block the heat transfer generated along the direction intersecting with 40b and does not become a heat transfer resistance, the heat transfer performance can be improved.

図7及び図8に示す例示的な実施形態では、第2ブロック62(62b)は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。 In the exemplary embodiment shown in FIGS. 7 and 8, the second block 62 (62b) is provided around the riser tube portion 38b of the circulation tube 38. As a result, as described above, a natural circulating flow of the saturated liquid refrigerant Lr can be formed in the circulation pipe 38.

図7及び図8に示す例示的な実施形態では、第1ブロック52(52b)及び第2ブロック62(62b)は、冷媒管36及び循環管38の管軸を含みかつ法線Nを含む面を第1分割面55b又は第2分割面65bとし、第1分割面55b又は第2分割面65bに沿って分割された2つの分割片53c、53d及び63c、63dで構成される。これによって、第1分割面55b又は第2分割面65bは、吸熱面40a及び放熱面40bと直交する方向に沿って生じる熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、伝熱性能を向上できる。 In the exemplary embodiment shown in FIGS. 7 and 8, the first block 52 (52b) and the second block 62 (62b) are surfaces that include the shafts of the refrigerant pipe 36 and the circulation pipe 38 and include the normal N. Is a first division surface 55b or a second division surface 65b, and is composed of two division pieces 53c, 53d and 63c, 63d divided along the first division surface 55b or the second division surface 65b. As a result, the first dividing surface 55b or the second dividing surface 65b is arranged in a direction that does not block the heat transfer generated along the direction orthogonal to the endothermic surface 40a and the heat radiating surface 40b, and does not become a heat transfer resistance. Performance can be improved.

図7及び図8に示す例示的な実施形態では、第1ブロック52(52b)及び第2ブロック62(62b)は直方体の形状に形成される。これによって、第1伝熱面56及び第2伝熱面66の面積を大きく取ることができる。また、第1ブロック52(52b)は第1分割面55bに沿って半割りに分割された2つの分割片53c及び53dで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で冷媒管36を挟み込むように分割片53c及び53dを配置することで、第1ブロック52(52b)を冷媒管36の周囲に容易に配置できる。同様に、第2ブロック62(62b)は第2分割面65bに沿って半割りに分割された2つの分割片63c及び63dで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で循環管38の上昇管部38bを挟み込むように分割片63c及び63dを配置することで、第2ブロック62(62b)を循環管38の上昇管部38bの周囲に容易に配置できる。 In the exemplary embodiment shown in FIGS. 7 and 8, the first block 52 (52b) and the second block 62 (62b) are formed in the shape of a rectangular parallelepiped. As a result, the area of the first heat transfer surface 56 and the second heat transfer surface 66 can be increased. Further, the first block 52 (52b) is composed of two divided pieces 53c and 53d divided in half along the first dividing surface 55b, and each has a semicircular recess. By arranging the divided pieces 53c and 53d so as to sandwich the refrigerant pipe 36 in the recess, the first block 52 (52b) can be easily arranged around the refrigerant pipe 36. Similarly, the second block 62 (62b) is composed of two divided pieces 63c and 63d divided in half along the second dividing surface 65b, each of which is formed with a recess having a semicircular cross section. By arranging the divided pieces 63c and 63d so as to sandwich the rising pipe portion 38b of the circulation pipe 38 in the recess, the second block 62 (62b) can be easily arranged around the rising pipe portion 38b of the circulation pipe 38.

図7及び図8に示す例示的な実施形態では、分割片53cと53d、及び分割片63cと63dとは、夫々第1分割面55b又は第2分割面65bにおいて互いの面が当接された状態で、管軸方向及び法線Nの方向に直交する方向に沿って延在するように配置されたボルト71で結合される。 In the exemplary embodiment shown in FIGS. 7 and 8, the divided pieces 53c and 53d and the divided pieces 63c and 63d are in contact with each other on the first divided surface 55b or the second divided surface 65b, respectively. In the state, they are connected by bolts 71 arranged so as to extend along the direction orthogonal to the pipe axis direction and the direction of the normal N.

なお、さらに別な実施形態として、図2及び図3に示す第1ブロック52(52a)と、図7及び図8に示す第2ブロック62(62b)とを組み合わせて用いることができる。また、図2及び図3に示す第2ブロック62(62a)と、図7及び図8に示す第1ブロック52(52b)とを組み合わせて用いることができる。 As yet another embodiment, the first block 52 (52a) shown in FIGS. 2 and 3 and the second block 62 (62b) shown in FIGS. 7 and 8 can be used in combination. Further, the second block 62 (62a) shown in FIGS. 2 and 3 and the first block 52 (52b) shown in FIGS. 7 and 8 can be used in combination.

さらに、図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)の吸熱面40a側で第1ブロック52(52a)の縦横2辺より大きな2辺を有する結合板58aが第1ブロック52(52a)に一体に形成されている。また、第2ブロック62(62a)の放熱面40b側で第2ブロック62(62a)の縦横2辺より大きな2辺を有する結合板68aが第2ブロック62(62a)に一体に形成されている。図7及び図8に示す例示的な実施形態では、冷媒管36の管軸方向と直交する方向に沿う一辺が第1ブロック52(52b)の辺より大きな辺を有する結合板58bが第1ブロック52(52b)と一体に設けられ、循環管38の上昇管部38bの管軸方向と直交する方向に沿う一辺が第2ブロック62(62b)の辺より大きな辺を有する結合板68bが第2ブロック62(62b)と一体に設けられている。このように、結合板58a、58b及び68a、68bを備えるため、広い吸熱面40a、放熱面40b及び第1伝熱面56、第2伝熱面66の形成が可能になる。 Further, in the exemplary embodiment shown in FIGS. 2 and 3, the connecting plate 58a having two sides larger than the two vertical and horizontal sides of the first block 52 (52a) on the endothermic surface 40a side of the first block 52 (52a) is formed. It is integrally formed with the first block 52 (52a). Further, a connecting plate 68a having two sides larger than the two vertical and horizontal sides of the second block 62 (62a) is integrally formed with the second block 62 (62a) on the heat radiating surface 40b side of the second block 62 (62a). .. In the exemplary embodiment shown in FIGS. 7 and 8, the coupling plate 58b having a side whose side along the direction orthogonal to the pipe axis direction of the refrigerant pipe 36 is larger than the side of the first block 52 (52b) is the first block. The second coupling plate 68b is provided integrally with the 52 (52b) and has a side having a side larger than the side of the second block 62 (62b) along a direction orthogonal to the pipe axis direction of the rising pipe portion 38b of the circulation pipe 38. It is provided integrally with the block 62 (62b). Since the coupling plates 58a, 58b and 68a, 68b are provided in this way, it is possible to form a wide heat absorbing surface 40a, a heat radiating surface 40b, a first heat transfer surface 56, and a second heat transfer surface 66.

図2、図3及び図7、8に示す例示的な実施形態では、結合板58a、58b及び68a、68bにボルト孔を形成し、結合板58a、58b及び68a、58bをボルト72及びナット74で結合することで、ペルチェ素子40の両側面に結合板58a、58b及び68a、68bを容易に固定できる。 In the exemplary embodiments shown in FIGS. 2, 3 and 7 and 8, bolt holes are formed in the coupling plates 58a, 58b and 68a, 68b, and the coupling plates 58a, 58b and 68a, 58b are bolted 72 and nuts 74. By coupling with, the coupling plates 58a, 58b and 68a, 68b can be easily fixed to both side surfaces of the Peltier element 40.

一実施形態では、図7及び図8に示すように、伝熱促進部材46は、冷媒管36及び循環管38の両方に設けられている。そして、冷媒管36又は循環管38の管軸方向において、伝熱促進部材46が設けられた循環管38の第1領域Lは、伝熱促進部材46が設けられた冷媒管36の第2領域Lより広範囲である。冷媒管36で発生する飽和液冷媒Lrの圧力損失は、ペルチェ素子40による過冷却で低減した沸点圧力の低減分を相殺してしまい、液ポンプ34でキャビテーションが発生しやすくなる。そこで、第2領域L<第1領域Lとすることで、冷媒管36を流れる飽和液冷媒Lrの圧力損失を小さくすることができる。一方、循環管38を流れる冷媒は放熱面40bで加熱されて沸騰領域にあり、また、上昇流であるため流速も遅い。従って、圧力損失は大きくならない。そのため、第2領域Lを管軸方向に沿って広げることで伝熱を促進できる。 In one embodiment, as shown in FIGS. 7 and 8, the heat transfer promoting member 46 is provided in both the refrigerant pipe 36 and the circulation pipe 38. Then, in the tube axis direction of the refrigerant pipe 36 or the circulation pipe 38, the first region L 1 of the circulation pipe 38 is heat transfer enhancing members 46 are provided, the refrigerant pipe 36 is heat transfer enhancing members 46 provided 2 it is a broad than the area L 2. The pressure loss of the saturated liquid refrigerant Lr generated in the refrigerant pipe 36 cancels out the reduction in the boiling point pressure reduced by the overcooling by the Perche element 40, and cavitation is likely to occur in the liquid pump 34. Therefore, by setting the second region L 2 <the first region L 1 , the pressure loss of the saturated liquid refrigerant Lr flowing through the refrigerant pipe 36 can be reduced. On the other hand, the refrigerant flowing through the circulation pipe 38 is heated by the heat radiating surface 40b and is in the boiling region, and the flow velocity is slow because it is an upward flow. Therefore, the pressure loss does not increase. Therefore, heat transfer can be promoted by expanding the second region L 2 along the pipe axis direction.

図7に示す例示的な実施形態では、吸熱面40aと放熱面40bとは、管軸方向の全領域で互いにオーバラップし、冷媒管36に充填された伝熱促進部材46の第2領域Lは該オーバラップ領域より狭い範囲であり、循環管38の上昇管部38bに充填された伝熱促進部材46の第1領域Lは該オーバラップ領域より広範囲である。これによって、冷媒管36において圧力損失を低減できると共に、循環管38において熱伝達を促進できる。 In the exemplary embodiment shown in FIG. 7, the endothermic surface 40a and the heat radiating surface 40b overlap each other in the entire region in the pipe axis direction, and the second region L of the heat transfer promoting member 46 filled in the refrigerant pipe 36. 2 is a narrower range than the overlap region, the first region L 1 of the circulation pipe 38 rising pipe section 38b is filled in the heat transfer promoting member 46 is wide than the overlap area. As a result, the pressure loss can be reduced in the refrigerant pipe 36, and heat transfer can be promoted in the circulation pipe 38.

一実施形態では、冷媒管36と第1貫通孔54を形成する第1ブロック52の壁面との間、吸熱面40aと第1伝熱面56との間、循環管38と第2貫通孔64を形成する第2ブロック62の壁面との間、及び放熱面40bと第2伝熱面66との間の少なくとも1か所に、伝熱性グリスが充填されている。これによって、吸熱面40a及び放熱面40bを介した冷媒管36から循環管38への熱伝達をさらに促進できる。 In one embodiment, between the refrigerant pipe 36 and the wall surface of the first block 52 forming the first through hole 54, between the endothermic surface 40a and the first heat transfer surface 56, the circulation pipe 38 and the second through hole 64. At least one place between the wall surface of the second block 62 and between the heat radiating surface 40b and the second heat transfer surface 66 is filled with heat transfer grease. As a result, heat transfer from the refrigerant pipe 36 to the circulation pipe 38 via the endothermic surface 40a and the heat radiating surface 40b can be further promoted.

図2及び図3に示す実施形態において、第1分割面55a又は第2分割面65aに伝熱性グリスを充填することができる。これによって、分割片53a、53b間及び分割片63a、63b間の伝熱を促進できる。また、図7及び図8に示す実施形態において、第1分割面55b又は第2分割面65bに伝熱性グリスを充填することができる。これによって、分割片53c、53d間及び分割片63c、63d間の伝熱を促進できる。
なお、図7及び図8に示す実施形態では、第1分割面55b及び第2分割面65bが法線Nに沿う方向に形成されているので、第1分割面55b及び第2分割面65bが吸熱面40aから冷媒管36側へ向かう熱伝達及び放熱面40bから循環管38側へ向かう熱伝達を妨げないため、伝熱性能を向上できるという利点がある。
In the embodiment shown in FIGS. 2 and 3, the first divided surface 55a or the second divided surface 65a can be filled with heat-transmitting grease. Thereby, heat transfer between the divided pieces 53a and 53b and between the divided pieces 63a and 63b can be promoted. Further, in the embodiment shown in FIGS. 7 and 8, the first divided surface 55b or the second divided surface 65b can be filled with heat-transmitting grease. Thereby, heat transfer between the divided pieces 53c and 53d and between the divided pieces 63c and 63d can be promoted.
In the embodiment shown in FIGS. 7 and 8, since the first dividing surface 55b and the second dividing surface 65b are formed in the direction along the normal line N, the first dividing surface 55b and the second dividing surface 65b are formed. Since the heat transfer from the endothermic surface 40a to the refrigerant pipe 36 side and the heat transfer from the heat dissipation surface 40b to the circulation pipe 38 side are not hindered, there is an advantage that the heat transfer performance can be improved.

図9及び図10は、図2及び図3に示す冷却装置30において、冷媒管36及び循環管38に温度−20℃の液冷媒(二酸化炭素液)を流して熱伝達係数を求めた実験データを示す。図9及び図10中、黒丸は、図6に示すアルミ製の多孔質材料を冷媒管36及び循環管38に充填した場合であり、白丸は、冷媒管36及び循環管38に該多孔質材料を充填していない場合を示す。図9の横軸は液冷媒の流量を表す指標となるレイノルズ数Reを示し、図10の横軸は熱流束を示す。図9から、多孔質材料を充填したときに得られた熱伝達係数は、多孔質材料を充填しないときの熱伝達係数の4倍程度増加することがわかった。また、図10から、多孔質材料を充填したときに得られた熱伝達係数は、多孔質材料を充填しないときの熱伝達係数の1.5倍程度増加することがわかった。 9 and 10 show experimental data in which the heat transfer coefficient was obtained by flowing a liquid refrigerant (carbon dioxide liquid) having a temperature of −20 ° C. through the refrigerant pipe 36 and the circulation pipe 38 in the cooling device 30 shown in FIGS. 2 and 3. Is shown. In FIGS. 9 and 10, black circles are cases where the aluminum porous material shown in FIG. 6 is filled in the refrigerant pipe 36 and the circulation pipe 38, and white circles are cases where the refrigerant pipe 36 and the circulation pipe 38 are filled with the porous material. Is not filled. The horizontal axis of FIG. 9 shows the Reynolds number Re, which is an index showing the flow rate of the liquid refrigerant, and the horizontal axis of FIG. 10 shows the heat flux. From FIG. 9, it was found that the heat transfer coefficient obtained when the porous material was filled increased by about four times the heat transfer coefficient when the porous material was not filled. Further, from FIG. 10, it was found that the heat transfer coefficient obtained when the porous material was filled increased by about 1.5 times the heat transfer coefficient when the porous material was not filled.

一実施形態では、制御部50は、冷凍システム10の負荷が増加したとき、ペルチェ素子40に流す電流値を減少させ、冷凍システム10の負荷が減少したとき、ペルチェ素子40に流す電流値を増加させるように構成されている。即ち、冷凍システム10の負荷が増加したとき、液レシーバ32内の圧力も増加するので、必要有効吸込ヘッドは減少する。従って、ペルチェ素子40に流す電流値を減少させ、液冷媒の過冷却度を減少させても、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を抑制できる。逆に、冷凍システム10の負荷が減少したとき、液レシーバ32内の圧力も減少するので、逆に必要有効吸込ヘッドは増加する。従って、ペルチェ素子40に流す電流値を増加させ液冷媒の過冷却度を増加させることで、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を抑制できる。 In one embodiment, the control unit 50 reduces the current value flowing through the Peltier element 40 when the load of the refrigeration system 10 increases, and increases the current value flowing through the Peltier element 40 when the load of the refrigeration system 10 decreases. It is configured to let you. That is, when the load of the refrigeration system 10 increases, the pressure in the liquid receiver 32 also increases, so that the required effective suction head decreases. Therefore, even if the value of the current flowing through the Peltier element 40 is reduced and the degree of supercooling of the liquid refrigerant is reduced, the occurrence of cavitation can be suppressed inside the liquid pump 34 and the suction side piping of the liquid pump 34. On the contrary, when the load of the refrigeration system 10 is reduced, the pressure in the liquid receiver 32 is also reduced, so that the required effective suction head is increased. Therefore, by increasing the value of the current flowing through the Peltier element 40 and increasing the degree of supercooling of the liquid refrigerant, it is possible to suppress the occurrence of cavitation inside the liquid pump 34 and the suction side piping of the liquid pump 34.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

1)一つの態様に係る冷却装置(30)は、液レシーバ(32)と、前記液レシーバ(32)内の液冷媒を冷却負荷に送るための液ポンプ(34)と、前記液レシーバ(32)と前記液ポンプ(34)との間に設けられた冷媒管(36)と、入口及び出口が前記液レシーバ(32)に接続された前記液冷媒の循環管(38)と、前記冷媒管(36)側に設けられた吸熱面(40a)及び前記循環管(38)側に設けられた放熱面(40b)を有するペルチェ素子(40)と、を備える。 1) The cooling device (30) according to one embodiment includes a liquid receiver (32), a liquid pump (34) for sending the liquid refrigerant in the liquid receiver (32) to a cooling load, and the liquid receiver (32). ) And the liquid pump (34), the liquid refrigerant circulation pipe (38) whose inlet and outlet are connected to the liquid receiver (32), and the refrigerant pipe. A Perche element (40) having a heat absorbing surface (40a) provided on the (36) side and a heat radiating surface (40b) provided on the circulation pipe (38) side is provided.

このような構成によれば、上記ペルチェ素子によって上記冷媒管を流れる液冷媒から循環管を流れる液冷媒への熱移動が起り、液ポンプの吸込側で液冷媒が過冷却するので、液冷媒が気化する圧力を下げることができる。これによって、液ポンプや吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和でき、冷却装置のコンパクト化と安定運転が可能になる。また、特許文献1及び2のように、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペースの増加及び装置コストの増加を抑制できる。さらに、ペルチェ素子は吸熱面と放熱面との温度差が小さいほど、吸熱特性が向上するが、吸熱側の液冷媒と放熱側の液冷媒とは同じ液レシーバから供給され、両液冷媒の温度差は小さいので、良好な吸熱特性が得られる。また、放熱側の液冷媒は熱吸収時に相変化し、温度変化を伴わないため、良好な吸熱特性を維持できる。 According to such a configuration, the Pelche element causes heat transfer from the liquid refrigerant flowing through the refrigerant pipe to the liquid refrigerant flowing through the circulation pipe, and the liquid refrigerant is overcooled on the suction side of the liquid pump, so that the liquid refrigerant becomes The vaporizing pressure can be reduced. As a result, it is possible to suppress the occurrence of cavitation inside the liquid pump and the suction side piping, so that the restrictions for securing the net positive suction head can be relaxed, and the cooling device can be made compact and stable operation becomes possible. Further, unlike Patent Documents 1 and 2, since it is not necessary to newly install a refrigerator, a heat exchanger, etc., it is possible to suppress an increase in the installation space of the device and an increase in the device cost. Further, the smaller the temperature difference between the endothermic surface and the heat radiating surface of the Pelche element, the better the endothermic characteristics. However, the endothermic side liquid refrigerant and the heat radiating side liquid refrigerant are supplied from the same liquid receiver, and the temperatures of both liquid refrigerants are supplied. Since the difference is small, good endothermic properties can be obtained. Further, since the liquid refrigerant on the heat dissipation side undergoes a phase change during heat absorption and does not involve a temperature change, good endothermic characteristics can be maintained.

2)別な態様に係る冷却装置は、1)に記載の冷却装置であって、前記冷媒管(36)又は前記循環管(38)の少なくとも一方の配管内において、前記ペルチェ素子(40)の前記吸熱面(40a)又は前記放熱面(40b)の法線(N)の方向から視たとき、前記配管(36、38)のうち前記吸熱面(40a)又は前記放熱面(40b)とオーバラップする領域に設けられる伝熱促進部材(46)を備える。 2) The cooling device according to another aspect is the cooling device according to 1), in which the Peltier element (40) is formed in at least one of the refrigerant pipe (36) and the circulation pipe (38). When viewed from the direction of the normal line (N) of the heat absorbing surface (40a) or the heat radiating surface (40b), it overlaps with the heat absorbing surface (40a) or the heat radiating surface (40b) of the pipes (36, 38). A heat transfer promoting member (46) provided in the area to be wrapped is provided.

このような構成によれば、冷媒管又は循環管の内部に設けられた伝熱促進部材によって、冷媒管又は循環管とこれらの配管を流れる液冷媒との熱伝達を促進できるため、吸熱面側から放熱面側への熱伝達を促進でき、これによって、冷媒管を流れる液冷媒の冷却効果を高めることができる。 According to such a configuration, the heat transfer promoting member provided inside the refrigerant pipe or the circulation pipe can promote the heat transfer between the refrigerant pipe or the circulation pipe and the liquid refrigerant flowing through these pipes, so that the heat absorption surface side can be promoted. It is possible to promote heat transfer from the water to the heat radiation surface side, thereby enhancing the cooling effect of the liquid refrigerant flowing through the refrigerant pipe.

3)さらに別な態様に係る冷却装置は、2)に記載の冷却装置であって、前記伝熱促進部材(46)は、多孔質材料(46(46a、46b))で構成されている。 3) The cooling device according to still another aspect is the cooling device according to 2), and the heat transfer promoting member (46) is made of a porous material (46 (46a, 46b)).

このような構成によれば、表面積が大きい多孔質材料によって、多孔質材料を介した配管壁面と液冷媒との熱伝達が促進される。また、多孔質材料の乱流促進効果によって、液冷媒が乱流となることで、液冷媒の圧力損失を抑えながら配管と液冷媒との熱伝達を高めることができる。 According to such a configuration, the porous material having a large surface area promotes heat transfer between the pipe wall surface and the liquid refrigerant through the porous material. Further, the turbulent flow promoting effect of the porous material causes the liquid refrigerant to become turbulent, so that the heat transfer between the piping and the liquid refrigerant can be enhanced while suppressing the pressure loss of the liquid refrigerant.

4)さらに別な態様に係る冷却装置は、2)又は3)に記載の冷却装置であって、前記伝熱促進部材(46)は、前記冷媒管(36)及び前記循環管(38)の内部に設けられ、前記冷媒管(36)又は前記循環管(38)の管軸方向において、前記伝熱促進部材(46)が設けられた前記循環管(38)の第1領域(L)は、前記伝熱促進部材(46)が設けられた前記冷媒管(36)の第2領域(L)より広範囲である。 4) The cooling device according to still another aspect is the cooling device according to 2) or 3), and the heat transfer promoting member (46) is the cooling device of the refrigerant pipe (36) and the circulation pipe (38). A first region (L 1 ) of the circulation pipe (38) provided inside and provided with the heat transfer promoting member (46) in the pipe axial direction of the refrigerant pipe (36) or the circulation pipe (38). Is wider than the second region (L 2 ) of the refrigerant pipe (36) provided with the heat transfer promoting member (46).

冷媒管で発生する飽和液冷媒の圧力損失は、ペルチェ素子による過冷却で低減した沸点圧力(液冷媒が気化する圧力)の低減分を相殺してしまい、液ポンプの吸込み側でキャビテーションが発生しやすくなる。上記構成によれば、伝熱促進部材が充填された冷媒管の第1領域を狭い範囲とすることで、冷媒管を流れる飽和液冷媒の圧力損失を小さくすることができる。一方、循環管を流れる冷媒は加熱されて沸騰領域にありかつ上昇流であるため流速も遅い。従って、圧力損失は大きくならないため、第2領域を広げることで伝熱を促進できる。 The pressure loss of the saturated liquid refrigerant generated in the refrigerant pipe cancels out the reduction in boiling pressure (pressure at which the liquid refrigerant evaporates) reduced by overcooling by the Pelche element, and cavitation occurs on the suction side of the liquid pump. It will be easier. According to the above configuration, the pressure loss of the saturated liquid refrigerant flowing through the refrigerant pipe can be reduced by setting the first region of the refrigerant pipe filled with the heat transfer promoting member to a narrow range. On the other hand, the refrigerant flowing through the circulation pipe is heated and is in the boiling region and is an upward flow, so the flow velocity is also slow. Therefore, since the pressure loss does not increase, heat transfer can be promoted by expanding the second region.

5)さらに別な態様に係る冷却装置は、1)乃至4)の何れかに記載の冷却装置であって、前記循環管(38)は、前記液レシーバ(32)から下方に向かって延びる下降管部(38a)と、折り返し部(38c)を介して該下降管部(38a)に接続されて前記液レシーバ(32)へと上方に向かって延びる上昇管部(38b)と、を含み、前記ペルチェ素子(40)の前記放熱面(40b)は前記上昇管部(38b)側に設けられる。 5) The cooling device according to still another aspect is the cooling device according to any one of 1) to 4), and the circulation pipe (38) descends downward from the liquid receiver (32). A pipe portion (38a) and an ascending pipe portion (38b) connected to the descending pipe portion (38a) via a folded portion (38c) and extending upward to the liquid receiver (32) are included. The heat radiating surface (40b) of the Peltier element (40) is provided on the rising pipe portion (38b) side.

このような構成によれば、上記上昇管部において、上記放熱面から熱を受けた飽和液冷媒は一部が気化し、気化したガス冷媒は浮力により上昇する。そのため、下降管部を自重により下降し、上昇管部を上昇する冷媒の自然循環が起る。従って、循環管の内部で冷媒を循環させるための動力が不要になる。 According to such a configuration, in the riser pipe portion, a part of the saturated liquid refrigerant that receives heat from the heat radiating surface is vaporized, and the vaporized gas refrigerant rises due to buoyancy. Therefore, the descending pipe portion is lowered by its own weight, and the natural circulation of the refrigerant that rises in the rising pipe portion occurs. Therefore, the power for circulating the refrigerant inside the circulation pipe becomes unnecessary.

6)さらに別な態様に係る冷却装置は、1)乃至5)の何れかに記載の冷却装置であって、前記ペルチェ素子(40)は、前記冷媒管(36)を流れる前記液冷媒(Lr)を前記液ポンプ(34)の必要吸込ヘッド(NPSHR)に相当する過冷却温度以上に冷却可能に構成されている。 6) The cooling device according to still another aspect is the cooling device according to any one of 1) to 5), wherein the Perche element (40) is the liquid refrigerant (Lr) flowing through the refrigerant pipe (36). ) Is configured to be able to be cooled to a supercooling temperature corresponding to the required suction head (NPSHR) of the liquid pump (34).

このような構成によれば、ペルチェ素子によって冷媒管を流れる液冷媒を液ポンプの必要吸込ヘッド以上に沸点圧力を降下できるため、冷媒管に必要吸込ヘッドを形成しなくても、液ポンプや液ポンプの吸込側配管の内部におけるキャビテーションの発生を抑制できる。 According to such a configuration, the liquid refrigerant flowing through the refrigerant pipe can be lowered to a boiling point pressure higher than the required suction head of the liquid pump by the Perche element, so that the liquid pump or the liquid can be used without forming the necessary suction head in the refrigerant pipe. It is possible to suppress the occurrence of cavitation inside the suction side pipe of the pump.

7)さらに別な態様に係る冷却装置は、1)乃至6)の何れかに記載の冷却装置であって、前記液レシーバ(32)内の圧力を検出する圧力センサ(48)と、前記液ポンプ(34)の入口側の前記液冷媒の温度を検出する温度センサ(49)と、前記圧力センサ(48)及び前記温度センサ(49)の検出値に基づいて前記ペルチェ素子(40)を制御する制御部(50)と、を備える。 7) The cooling device according to still another aspect is the cooling device according to any one of 1) to 6), the pressure sensor (48) for detecting the pressure in the liquid receiver (32), and the liquid. The Perche element (40) is controlled based on the temperature sensor (49) that detects the temperature of the liquid refrigerant on the inlet side of the pump (34) and the detection values of the pressure sensor (48) and the temperature sensor (49). A control unit (50) is provided.

このような構成によれば、上記制御部が、上記圧力センサの検出値に基づいてペルチェ素子の作動を制御し、かつ上記温度センサの検出値に基づいてペルチェ素子をフィードバック制御する。これによって、冷却負荷が変動して液レシーバ内の圧力又は温度が変動しても、液ポンプや液ポンプの吸込側配管の内部におけるキャビテーションの発生を確実に抑制できる。 According to such a configuration, the control unit controls the operation of the Peltier element based on the detection value of the pressure sensor, and feedback controls the Peltier element based on the detection value of the temperature sensor. As a result, even if the cooling load fluctuates and the pressure or temperature in the liquid receiver fluctuates, the occurrence of cavitation inside the liquid pump or the suction side piping of the liquid pump can be reliably suppressed.

8)さらに別な態様に係る冷却装置は、1)乃至7)の何れかに記載の冷却装置であって、前記冷媒管(36)と前記循環管(38)とは、少なくとも、前記ペルチェ素子(40)が設置される設置領域内において、互いに平行に配置され、前記ペルチェ素子(40)は、前記冷媒管(36)および前記循環管(38)の間において、前記冷媒管(36)および前記循環管(38)の管軸方向に沿って延在する。 8) The cooling device according to still another aspect is the cooling device according to any one of 1) to 7), and the refrigerant pipe (36) and the circulation pipe (38) are at least the Peltier element. In the installation area where (40) is installed, the Peltier element (40) is arranged parallel to each other, and the Peltier element (40) is placed between the refrigerant pipe (36) and the circulation pipe (38). It extends along the pipe axis direction of the circulation pipe (38).

このような構成によれば、冷媒管、循環管及びペルチェ素子が同一方向に沿って延在するので、冷媒管と循環管との間のペルチェ素子の配置スペースを縮小でき、ペルチェ素子の配置が容易になる。また、広い吸熱面及び放熱面を容易に確保できるため、ペルチェ素子の効率を向上できる。 According to such a configuration, since the refrigerant pipe, the circulation pipe and the Peltier element extend along the same direction, the space for arranging the Peltier element between the refrigerant pipe and the circulation pipe can be reduced, and the Peltier element can be arranged. It will be easier. Further, since a wide heat absorbing surface and heat radiating surface can be easily secured, the efficiency of the Peltier element can be improved.

9)さらに別な態様に係る冷却装置は、1)乃至8)の何れかに記載の冷却装置であって、前記冷媒管が貫通する第1貫通孔(54)および前記吸熱面(40a)に当接する第1伝熱面(56)を有し、前記冷媒管(36)の周囲に設けられた第1ブロック(52)と、前記循環管(38)が貫通する第2貫通孔(64)および前記放熱面(40b)に当接する第2伝熱面(66)を有し、前記ペルチェ素子(40)を挟んで前記第1ブロックに対向する位置で前記循環管の周囲に設けられた第2ブロック(62)と、を備える。 9) The cooling device according to still another aspect is the cooling device according to any one of 1) to 8), in the first through hole (54) through which the refrigerant pipe penetrates and the heat absorbing surface (40a). A first block (52) having a first heat transfer surface (56) that comes into contact with the refrigerant pipe (36) and a second through hole (64) through which the circulation pipe (38) penetrates. A second heat transfer surface (66) that abuts on the heat radiation surface (40b) and is provided around the circulation tube at a position facing the first block with the Peltier element (40) interposed therebetween. It includes two blocks (62).

このような構成によれば、上記構成の第1ブロック及び上記第2ブロックを備えるため、ペルチェ素子の配置と吸熱面及び放熱面の形成とが容易になる。 According to such a configuration, since the first block and the second block of the above configuration are provided, the arrangement of the Peltier element and the formation of the endothermic surface and the heat radiating surface become easy.

10)さらに別な態様に係る冷却装置は、9)に記載の冷却装置であって、前記吸熱面(40a)及び前記放熱面(40b)は、前記冷媒管(36)及び前記循環管(38)の管軸方向に沿って互いに平行に配置され、前記第1ブロック(52)又は前記第2ブロック(62)の少なくとも一方は、前記吸熱面(40a)又は前記放熱面(40b)に沿って分割された2つ以上の分割片(53a、53b、63a、63b)で構成され、前記分割片の各々は、前記第1貫通孔(54)又は前記第2貫通孔(64)を形成する凹部を有し、前記分割片の少なくとも1つは、前記吸熱面(40a)又は前記放熱面(40b)を有する。 10) The cooling device according to still another aspect is the cooling device according to 9), and the endothermic surface (40a) and the heat radiating surface (40b) are the refrigerant pipe (36) and the circulation pipe (38). ) Are arranged parallel to each other along the pipe axis direction, and at least one of the first block (52) or the second block (62) is along the endothermic surface (40a) or the heat radiating surface (40b). It is composed of two or more divided pieces (53a, 53b, 63a, 63b), and each of the divided pieces is a recess forming the first through hole (54) or the second through hole (64). At least one of the divided pieces has the endothermic surface (40a) or the heat radiating surface (40b).

このような構成によれば、第1ブロック又は第2ブロックが、2つ以上の分割片で構成されるため、第1ブロック又は第2ブロックの冷媒管又は循環管への装着が容易になる。 According to such a configuration, since the first block or the second block is composed of two or more divided pieces, the first block or the second block can be easily attached to the refrigerant pipe or the circulation pipe.

11)さらに別な態様に係る冷却装置は、9)に記載の冷却装置であって、前記吸熱面(40a)及び前記放熱面(40b)は、前記冷媒管(36)及び前記循環管(38)の管軸方向に沿って互いに平行に配置され、前記第1ブロック(52)又は前記第2ブロック(62)の少なくとも一方は、前記冷媒管(36)および前記循環管(38)の管軸を含み前記吸熱面(40a)及び前記放熱面(40b)に交差する面に沿って分割された2つ以上の分割片(53c、53d、63c、63d)で構成され、前記分割片の各々は、前記第1貫通孔(54)又は前記第2貫通孔(64)を形成する凹部を有し、前記分割片の少なくとも1つは、前記吸熱面(40a)又は前記放熱面(40b)を有する。 11) The cooling device according to still another aspect is the cooling device according to 9), and the endothermic surface (40a) and the heat radiating surface (40b) are the refrigerant pipe (36) and the circulation pipe (38). ) Are arranged parallel to each other along the pipe axis direction, and at least one of the first block (52) or the second block (62) is a pipe shaft of the refrigerant pipe (36) and the circulation pipe (38). It is composed of two or more divided pieces (53c, 53d, 63c, 63d) divided along a surface intersecting the endothermic surface (40a) and the heat radiating surface (40b), and each of the divided pieces The first through hole (54) or the second through hole (64) is formed, and at least one of the divided pieces has the endothermic surface (40a) or the heat radiation surface (40b). ..

このような構成によれば、第1ブロック又は第2ブロックが、2つ以上の分割片で構成されるため、第1ブロック又は第2ブロックの冷媒管又は循環管への装着が容易になる。また、2つ以上の分割片は、冷媒管及び循環管の管軸を含み吸熱面及び放熱面に交差する面に沿って分割され、分割面が熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、吸熱面から冷媒管に向かう伝熱性能及び放熱面から循環管に向かう伝熱性能を向上できる。 According to such a configuration, since the first block or the second block is composed of two or more divided pieces, the first block or the second block can be easily attached to the refrigerant pipe or the circulation pipe. Further, the two or more divided pieces are divided along a surface that includes the tube shafts of the refrigerant pipe and the circulation pipe and intersects the endothermic surface and the heat radiating surface, and the divided surfaces are arranged in a direction that does not block heat transfer to transfer heat. Since it does not become a resistance, it is possible to improve the heat transfer performance from the endothermic surface to the refrigerant pipe and the heat transfer performance from the heat dissipation surface to the circulation pipe.

12)さらに別な態様に係る冷却装置は、9)乃至11)の何れかに記載の冷却装置であって、前記冷媒管(36)と前記第1貫通孔(54)を形成する前記第1ブロック(52)の壁面との間、前記吸熱面(40a)と前記第1伝熱面(56)との間、前記循環管(38)と前記第2貫通孔(64)を形成する前記第2ブロック(62)の壁面との間、および、前記放熱面(40b)と前記第2伝熱面(66)との間の少なくとも1か所に、伝熱性グリスが充填されている。 12) The cooling device according to still another aspect is the cooling device according to any one of 9) to 11), wherein the first through hole (54) is formed with the refrigerant pipe (36). The first to form the circulation tube (38) and the second through hole (64) between the wall surface of the block (52), the heat absorbing surface (40a) and the first heat transfer surface (56). At least one place between the wall surface of the two blocks (62) and between the heat radiation surface (40b) and the second heat transfer surface (66) is filled with heat transfer grease.

このような構成によれば、上記箇所に伝熱性グリスが充填されるため、吸熱面及び放熱面を介した冷媒管から循環管への熱伝達をさらに促進できる。 According to such a configuration, since the heat transferable grease is filled in the above-mentioned portion, heat transfer from the refrigerant pipe to the circulation pipe through the heat absorbing surface and the heat radiating surface can be further promoted.

13)本開示に係る冷却システム(10)は、一次冷媒が循環する一次冷媒回路(12)と、前記一次冷媒回路(12)に設けられた蒸発器(16)を含む冷凍サイクル構成機器と、前記蒸発器(16)で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷(18)に供給するための二次冷媒回路(14)と、前記二次冷媒回路(14)に設けられた上述の冷却装置(30)と、を備え、前記液冷媒は前記二次冷媒として前記液レシーバ(32)に貯留され、かつ、前記冷媒管(36)は前記液レシーバ(32)と前記液ポンプ(34)との間で前記二次冷媒回路(14)の一部を構成する。 13) The cooling system (10) according to the present disclosure includes a primary refrigerant circuit (12) in which the primary refrigerant circulates, a refrigeration cycle component device including an evaporator (16) provided in the primary refrigerant circuit (12), and a refrigeration cycle component device. The secondary refrigerant circuit (14) for supplying the secondary refrigerant cooled by the primary refrigerant in the evaporator (16) to the cooling load (18) and the secondary refrigerant circuit (14) are provided. The above-mentioned cooling device (30) is provided, the liquid refrigerant is stored in the liquid receiver (32) as the secondary refrigerant, and the refrigerant pipe (36) is the liquid receiver (32) and the liquid pump. It constitutes a part of the secondary refrigerant circuit (14) with (34).

このような構成によれば、ペルチェ素子によって液ポンプの吸込側で液冷媒が過冷却するので、沸点圧力を下げることができ、これによって、液ポンプや液ポンプの吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和できる。従って、冷却装置のコンパクト化と安定運転が可能になる。また、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペース及び装置コストの増加を抑制できる。 According to such a configuration, the Perche element overcools the liquid refrigerant on the suction side of the liquid pump, so that the boiling pressure can be lowered, which causes cavitation inside the liquid pump and the suction side piping of the liquid pump. Since it can be suppressed from occurring, the restriction for securing the net positive suction head can be relaxed. Therefore, the cooling device can be made compact and stable operation becomes possible. Further, since it is not necessary to newly install a refrigerator, a heat exchanger, or the like, it is possible to suppress an increase in the installation space of the device and the cost of the device.

14)別な態様に係る冷却システムは、13)に記載の冷却システムであって、前記冷却負荷(18)は冷却庫に設けられたエアクーラであり、前記二次冷媒回路(14)は前記エアクーラに導設されている。 14) The cooling system according to another aspect is the cooling system according to 13), the cooling load (18) is an air cooler provided in a refrigerator, and the secondary refrigerant circuit (14) is the air cooler. It is guided to.

このような構成によれば、冷却庫に設けられたエアクーラに二次冷媒を供給する場合に、液ポンプや液ポンプの吸込側配管の内部でキャビテーションの発生を抑制できるため、該エアクーラに二次冷媒を安定供給できる。 According to such a configuration, when the secondary refrigerant is supplied to the air cooler provided in the refrigerator, the occurrence of cavitation can be suppressed inside the liquid pump and the suction side piping of the liquid pump, so that the secondary refrigerant is supplied to the air cooler. A stable supply of refrigerant can be achieved.

15)さらに別な態様に係る冷却システムは、13)又は14)に記載の冷却システムであって、前記液レシーバ(32)内の圧力を検出する圧力センサ(48)と、前記液ポンプ(34)の入口側の前記液冷媒の温度を検出する温度センサ(49)と、前記圧力センサ(48)及び前記温度センサ(49)の検出値に基づいて前記ペルチェ素子(40)を制御する制御部(50)と、を備え、前記制御部(50)は、前記冷却システムの負荷が増加したとき、前記ペルチェ素子(40)に流す電流値を減少させ、前記冷却システムの負荷が減少したとき、前記ペルチェ素子(40)に流す電流値を増加させるように構成されている。 15) The cooling system according to still another aspect is the cooling system according to 13) or 14), wherein the pressure sensor (48) for detecting the pressure in the liquid receiver (32) and the liquid pump (34). ), A temperature sensor (49) that detects the temperature of the liquid refrigerant on the inlet side, and a control unit that controls the Pelche element (40) based on the detection values of the pressure sensor (48) and the temperature sensor (49). (50), the control unit (50) reduces the current value flowing through the Pelche element (40) when the load of the cooling system increases, and when the load of the cooling system decreases. It is configured to increase the value of the current flowing through the Pelche element (40).

このような構成によれば、冷却システムの負荷が変動しても、負荷変動に応じてペルチェ素子に流す電流値を変えることで、液ポンプや液ポンプの吸込側配管の内部でキャビテーションの発生を確実に抑制できる。 According to such a configuration, even if the load of the cooling system fluctuates, cavitation occurs inside the liquid pump or the suction side piping of the liquid pump by changing the current value flowing through the Peltier element according to the load fluctuation. It can be surely suppressed.

10 冷凍システム
12 一次冷媒回路
14 二次冷媒回路
16 蒸発器
22 凝縮器
18 冷却負荷
20 圧縮機
24 膨張弁
30 冷却装置
32 液レシーバ
34 液ポンプ
36 冷媒管
38 循環管
38a 下降管部
38b 上昇管部
38c 折り返し部
40 ペルチェ素子
40a 吸熱面
40b 放熱面
41 電源部
42 導線
44 冷却庫
46 伝熱促進部材
46(46a、46b) 多孔質材料
47 空隙
48 圧力センサ
49 温度センサ
50 制御部
52(52a、52b) 第1ブロック
53a、53b、53c、53d、63a、63b、63c、63d 分割片
54 第1貫通孔
55a、55b 第1分割面
56 第1伝熱面
58a、58b、68a、68b 結合板
62(62a、62b) 第2ブロック
64 第2貫通孔
65a、65b 第2分割面
66 第2伝熱面
70、71、72 ボルト
74 ナット
X 飽和液線
Y 飽和蒸気線
第1領域
第2領域
Lr 飽和液冷媒
N 法線
NPSHR 必要吸込ヘッド
NPSHA 有効吸込ヘッド
Pc 臨界点
10 Refrigeration system 12 Primary refrigerant circuit 14 Secondary lubricant circuit 16 Evaporator 22 Condenser 18 Cooling load 20 Compressor 24 Expansion valve 30 Cooling device 32 Liquid receiver 34 Liquid pump 36 Coolant pipe 38 Circulation pipe 38a Down pipe 38b Raising pipe 38c Folded part 40 Perche element 40a Heat absorption surface 40b Heat dissipation surface 41 Power supply unit 42 Conductor 44 Cooler 46 Heat transfer promotion member 46 (46a, 46b) Porous material 47 Void 48 Pressure sensor 49 Temperature sensor 50 Control unit 52 (52a, 52b) ) First block 53a, 53b, 53c, 53d, 63a, 63b, 63c, 63d Division piece 54 First through hole 55a, 55b First division surface 56 First heat transfer surface 58a, 58b, 68a, 68b Bonding plate 62 ( 62a, 62b) Second block 64 Second through hole 65a, 65b Second division surface 66 Second heat transfer surface 70, 71, 72 Bolt 74 Nut X Saturated liquid line Y Saturated steam line L 1 First area L 2 Second Region Lr Saturated Liquid Refrigerator N Normal Line NPSHR Required Suction Head NPSHA Net Positive Suction Head Pc Critical Point

Claims (15)

液レシーバと、
前記液レシーバ内の液冷媒を冷却負荷に送るための液ポンプと、
前記液レシーバと前記液ポンプとの間に設けられた冷媒管と、
入口及び出口が前記液レシーバに接続された前記液冷媒の循環管と、
前記冷媒管側に設けられた吸熱面および前記循環管側に設けられた放熱面を有するペルチェ素子と、
を備える冷却装置。
With a liquid receiver
A liquid pump for sending the liquid refrigerant in the liquid receiver to the cooling load,
A refrigerant pipe provided between the liquid receiver and the liquid pump,
A circulation pipe of the liquid refrigerant whose inlet and outlet are connected to the liquid receiver, and
A Peltier element having an endothermic surface provided on the refrigerant pipe side and a heat radiating surface provided on the circulation pipe side.
A cooling device equipped with.
前記冷媒管又は前記循環管の少なくとも一方の配管内において、前記ペルチェ素子の前記吸熱面又は前記放熱面の法線方向から視たとき、前記配管のうち前記吸熱面又は前記放熱面とオーバラップする領域に設けられる伝熱促進部材を備える請求項1に記載の冷却装置。 In at least one of the refrigerant pipe and the circulation pipe, when viewed from the normal direction of the endothermic surface or the heat radiating surface of the Peltier element, it overlaps with the endothermic surface or the heat radiating surface of the pipe. The cooling device according to claim 1, further comprising a heat transfer promoting member provided in the region. 前記伝熱促進部材は、多孔質材料で構成されている請求項2に記載の冷却装置。 The cooling device according to claim 2, wherein the heat transfer promoting member is made of a porous material. 前記伝熱促進部材は、前記冷媒管及び前記循環管の内部に設けられ、
前記冷媒管又は前記循環管の管軸方向において、前記伝熱促進部材が設けられた前記循環管の第1領域は、前記伝熱促進部材が設けられた前記冷媒管の第2領域より広範囲である請求項2又は3に記載の冷却装置。
The heat transfer promoting member is provided inside the refrigerant pipe and the circulation pipe.
In the axial direction of the refrigerant pipe or the circulation pipe, the first region of the circulation pipe provided with the heat transfer promoting member is wider than the second region of the refrigerant pipe provided with the heat transfer promoting member. The cooling device according to claim 2 or 3.
前記循環管は、前記液レシーバから下方に向かって延びる下降管部と、折り返し部を介して該下降管部に接続されて前記液レシーバへと上方に向かって延びる上昇管部と、を含み、
前記ペルチェ素子の前記放熱面は前記上昇管部側に設けられる請求項1乃至4の何れか一項に記載された冷却装置。
The circulation pipe includes a descending pipe portion extending downward from the liquid receiver and an ascending pipe portion connected to the descending pipe portion via a folded portion and extending upward to the liquid receiver.
The cooling device according to any one of claims 1 to 4, wherein the heat radiating surface of the Peltier element is provided on the rising pipe portion side.
前記ペルチェ素子は、前記冷媒管を流れる前記液冷媒を前記液ポンプの必要有効吸込ヘッドに相当する過冷却温度以上に冷却可能に構成されている請求項1乃至5の何れか一項に記載の冷却装置。 The Peltier element according to any one of claims 1 to 5, wherein the Peltier element is configured to be capable of cooling the liquid refrigerant flowing through the refrigerant pipe to a supercooling temperature corresponding to the required effective suction head of the liquid pump. Cooling system. 前記液レシーバ内の圧力を検出する圧力センサと、
前記液ポンプの入口側の前記液冷媒の温度を検出する温度センサと、
前記圧力センサ及び前記温度センサの検出値に基づいて前記ペルチェ素子を制御する制御部と、
を備える請求項1乃至6の何れか一項に記載の冷却装置。
A pressure sensor that detects the pressure in the liquid receiver and
A temperature sensor that detects the temperature of the liquid refrigerant on the inlet side of the liquid pump, and
A control unit that controls the Peltier element based on the detected values of the pressure sensor and the temperature sensor.
The cooling device according to any one of claims 1 to 6.
前記冷媒管と前記循環管とは、少なくとも、前記ペルチェ素子が設置される設置領域内において、互いに平行に配置され、
前記ペルチェ素子は、前記冷媒管および前記循環管の間において、前記冷媒管および前記循環管の管軸方向に沿って延在する請求項1乃至7の何れか一項に記載の冷却装置。
The refrigerant pipe and the circulation pipe are arranged in parallel with each other at least in the installation area where the Peltier element is installed.
The cooling device according to any one of claims 1 to 7, wherein the Peltier element extends between the refrigerant pipe and the circulation pipe along the pipe axis direction of the refrigerant pipe and the circulation pipe.
前記冷媒管が貫通する第1貫通孔および前記吸熱面に当接する第1伝熱面を有し、前記冷媒管の周囲に設けられた第1ブロックと、
前記循環管が貫通する第2貫通孔および前記放熱面に当接する第2伝熱面を有し、前記ペルチェ素子を挟んで前記第1ブロックに対向する位置で前記循環管の周囲に設けられた第2ブロックと、を備える請求項1乃至8の何れか一項に記載の冷却装置。
A first block having a first through hole through which the refrigerant pipe penetrates and a first heat transfer surface in contact with the endothermic surface, and a first block provided around the refrigerant pipe.
It has a second through hole through which the circulation pipe penetrates and a second heat transfer surface that abuts on the heat radiation surface, and is provided around the circulation pipe at a position facing the first block with the Peltier element interposed therebetween. The cooling device according to any one of claims 1 to 8, further comprising a second block.
前記吸熱面及び前記放熱面は、前記冷媒管及び前記循環管の管軸方向に沿って互いに平行に配置され、
前記第1ブロック又は前記第2ブロックの少なくとも一方は、前記吸熱面又は前記放熱面に沿って分割された2つ以上の分割片で構成され、
前記分割片の各々は、前記第1貫通孔又は前記第2貫通孔を形成する凹部を有し、
前記分割片の少なくとも1つは、前記吸熱面又は前記放熱面を有する請求項9に記載の冷却装置。
The endothermic surface and the heat radiating surface are arranged parallel to each other along the pipe axis direction of the refrigerant pipe and the circulation pipe.
At least one of the first block or the second block is composed of two or more divided pieces divided along the endothermic surface or the heat radiating surface.
Each of the divided pieces has a recess forming the first through hole or the second through hole.
The cooling device according to claim 9, wherein at least one of the divided pieces has the endothermic surface or the heat radiating surface.
前記吸熱面及び前記放熱面は、前記冷媒管及び前記循環管の管軸方向に沿って互いに平行に配置され、
前記第1ブロック又は前記第2ブロックの少なくとも一方は、前記冷媒管および前記循環管の管軸を含み前記吸熱面及び前記放熱面に交差する面に沿って分割された2つ以上の分割片で構成され、
前記分割片の各々は、前記第1貫通孔又は前記第2貫通孔を形成する凹部を有し、
前記分割片の少なくとも1つは、前記吸熱面又は前記放熱面を有する請求項9に記載の冷却装置。
The endothermic surface and the heat radiating surface are arranged parallel to each other along the pipe axis direction of the refrigerant pipe and the circulation pipe.
At least one of the first block or the second block is two or more divided pieces divided along a surface intersecting the endothermic surface and the heat radiating surface, including the pipe shafts of the refrigerant pipe and the circulation pipe. Configured,
Each of the divided pieces has a recess forming the first through hole or the second through hole.
The cooling device according to claim 9, wherein at least one of the divided pieces has the endothermic surface or the heat radiating surface.
前記冷媒管と前記第1貫通孔を形成する前記第1ブロックの壁面との間、前記吸熱面と前記第1伝熱面との間、前記循環管と前記第2貫通孔を形成する前記第2ブロックの壁面との間、および、前記放熱面と前記第2伝熱面との間の少なくとも1か所に、伝熱性グリスが充填されている請求項9乃至11の何れか一項に記載の冷却装置。 The first through hole is formed between the refrigerant pipe and the wall surface of the first block forming the first through hole, between the endothermic surface and the first heat transfer surface, and the circulation pipe and the second through hole. The invention according to any one of claims 9 to 11, wherein at least one place between the wall surface of the two blocks and the heat radiation surface and the second heat transfer surface is filled with heat transfer grease. Cooling device. 一次冷媒が循環する一次冷媒回路と、
前記一次冷媒回路に設けられた蒸発器を含む冷凍サイクル構成機器と、
前記蒸発器で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷に供給するための二次冷媒回路と、
前記二次冷媒回路に設けられた請求項1乃至12の何れか一項に記載の冷却装置と、
を備え、
前記液冷媒は前記二次冷媒として前記液レシーバに貯留され、かつ、前記冷媒管は前記液レシーバと前記液ポンプとの間で前記二次冷媒回路の一部を構成する冷却システム。
The primary refrigerant circuit in which the primary refrigerant circulates,
Refrigerating cycle components including an evaporator provided in the primary refrigerant circuit, and
A secondary refrigerant circuit for supplying the secondary refrigerant cooled by the primary refrigerant in the evaporator to the cooling load.
The cooling device according to any one of claims 1 to 12 provided in the secondary refrigerant circuit.
With
A cooling system in which the liquid refrigerant is stored in the liquid receiver as the secondary refrigerant, and the refrigerant pipe forms a part of the secondary refrigerant circuit between the liquid receiver and the liquid pump.
前記冷却負荷は冷却庫に設けられたエアクーラであり、前記二次冷媒回路は前記エアクーラに導設されている請求項13に記載の冷却システム。 The cooling system according to claim 13, wherein the cooling load is an air cooler provided in a refrigerator, and the secondary refrigerant circuit is guided to the air cooler. 前記液レシーバ内の圧力を検出する圧力センサと、
前記液ポンプの入口側の前記液冷媒の温度を検出する温度センサと、
前記圧力センサ及び前記温度センサの検出値に基づいて前記ペルチェ素子を制御する制御部と、
を備え、
前記制御部は、前記冷却システムの負荷が増加したとき、前記ペルチェ素子に流す電流値を減少させ、前記冷却システムの負荷が減少したとき、前記ペルチェ素子に流す電流値を増加させるように構成された請求項13又は14に記載の冷却システム。
A pressure sensor that detects the pressure in the liquid receiver and
A temperature sensor that detects the temperature of the liquid refrigerant on the inlet side of the liquid pump, and
A control unit that controls the Peltier element based on the detected values of the pressure sensor and the temperature sensor.
With
The control unit is configured to decrease the current value flowing through the Peltier element when the load of the cooling system increases, and increase the current value flowing through the Peltier element when the load of the cooling system decreases. The cooling system according to claim 13 or 14.
JP2020157406A 2019-11-13 2020-09-18 Cooling device and cooling system Pending JP2021076364A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205668 2019-11-13
JP2019205668 2019-11-13

Publications (1)

Publication Number Publication Date
JP2021076364A true JP2021076364A (en) 2021-05-20

Family

ID=75897288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020157406A Pending JP2021076364A (en) 2019-11-13 2020-09-18 Cooling device and cooling system

Country Status (1)

Country Link
JP (1) JP2021076364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022029889A1 (en) * 2020-08-04 2022-02-10
JP7081731B1 (en) * 2021-08-19 2022-06-07 日本電気株式会社 Cooling device and control method of cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022029889A1 (en) * 2020-08-04 2022-02-10
JP7081731B1 (en) * 2021-08-19 2022-06-07 日本電気株式会社 Cooling device and control method of cooling device
WO2023021660A1 (en) 2021-08-19 2023-02-23 日本電気株式会社 Cooling device and method for conrolling cooling device
JP2023029214A (en) * 2021-08-19 2023-03-03 日本電気株式会社 Cooling device and control method of cooling device

Similar Documents

Publication Publication Date Title
US10302343B2 (en) Defrost system for refrigeration apparatus, and cooling unit
JP5275929B2 (en) Cooling system
JP6992411B2 (en) Equipment cooling device
JP2021076364A (en) Cooling device and cooling system
EP3039366B1 (en) Thermal energy storage assembly with phase change materials
JP6593544B2 (en) Equipment temperature controller
WO2005008160A1 (en) Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP2019196839A (en) Device temperature regulation device
WO2018055944A1 (en) Equipment temperature control device
JP4377634B2 (en) Operation method of cooling system
JP2012241910A (en) Dry type evaporator, and method for improving cop of existing dry type evaporator
JP2019196841A (en) Device temperature regulation system
WO2018008299A1 (en) Cold-storage heat exchanger
EP3141857B1 (en) Radiator and supercritical pressure refrigeration cycle using the same
JP2013053813A (en) Cooling apparatus
JP4609316B2 (en) refrigerator
JP5402176B2 (en) refrigerator
EP1312875A1 (en) Stirling cooling device, cooling chamber, and refrigerator
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP3751613B2 (en) Heat exchange system and Stirling refrigerator
WO2018070182A1 (en) Appliance temperature regulating apparatus
CN218096770U (en) Refrigerator with deep cooling function
CN218096773U (en) Refrigerator with multiple temperature zones
CN219640767U (en) Radiator and heat radiation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404