JP2021075441A - Wurtzite type sulfide nanoparticle, and method of synthesizing the same - Google Patents

Wurtzite type sulfide nanoparticle, and method of synthesizing the same Download PDF

Info

Publication number
JP2021075441A
JP2021075441A JP2019205643A JP2019205643A JP2021075441A JP 2021075441 A JP2021075441 A JP 2021075441A JP 2019205643 A JP2019205643 A JP 2019205643A JP 2019205643 A JP2019205643 A JP 2019205643A JP 2021075441 A JP2021075441 A JP 2021075441A
Authority
JP
Japan
Prior art keywords
sulfide
nanoparticles
synthesizing
sulfide nanoparticles
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019205643A
Other languages
Japanese (ja)
Other versions
JP7475840B2 (en
Inventor
拓也 風間
Takuya Kazama
拓也 風間
渉 田村
Wataru Tamura
渉 田村
康之 三宅
Yasuyuki Miyake
康之 三宅
健治 森山
Kenji Moriyama
健治 森山
淳司 村松
Junji Muramatsu
淳司 村松
澄志 蟹江
Kiyoshi Kanie
澄志 蟹江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2019205643A priority Critical patent/JP7475840B2/en
Priority claimed from JP2019205643A external-priority patent/JP7475840B2/en
Publication of JP2021075441A publication Critical patent/JP2021075441A/en
Application granted granted Critical
Publication of JP7475840B2 publication Critical patent/JP7475840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of synthesizing a wurtzite type sulfide nanoparticle by chemical synthesis, and to synthesize a ZnOS nanoparticle having an even and high oxygen composition.SOLUTION: The sulfide nanoparticle having a wurtzite type crystal structure is synthesized by subjecting a II group element material containing at least zinc, and a sulfur material to heat decomposition in a solvent. At this time, as additive agents, there are added a first additive agent composed of at least one material of a polyol material, and an ethylene glycol stearate material, and a second additive agent for suppressing a particle size by coordinating on a surface of the nanoparticle during reaction to a reaction system.SELECTED DRAWING: Figure 3

Description

本発明は、ウルツ鉱型(WZ型)硫化物ナノ粒子とその合成方法に関し、特に10nm以下のWZ型硫化亜鉛ナノ粒子を高純度で製造する技術に関する。 The present invention relates to wurtzite type (WZ type) sulfide nanoparticles and a method for synthesizing the same, and more particularly to a technique for producing WZ type zinc sulfide nanoparticles of 10 nm or less with high purity.

II−VI族化合物半導体材料である硫化亜鉛や、及び硫化亜鉛に酸素を添加したZnOSのナノ粒子は、可視から紫外にエネルギーギャップを持つため、蛍光体、EL(エレクトロルミネッセンス)材料、太陽電池、ガス・化学・生体センサ等のオプトエレクトロニクス材料として有望な材料である。 Since zinc sulfide, which is a group II-VI compound semiconductor material, and ZnOS nanoparticles obtained by adding oxygen to zinc sulfide have an energy gap from visible to ultraviolet, phosphors, EL (electroluminescence) materials, solar cells, etc. It is a promising material as an optoelectronic material for gas, chemical, biosensors, etc.

一般に半導体ナノ粒子は、粒子サイズをボーア半径以下にすることで量子効果が発現し、エネルギーギャップを広げることができる。ZnSは、ボーア半径が2.5nmであり、粒子サイズを5nm以下にすることで、発光・受光材料として幅広い波長範囲を実現することができる。硫化亜鉛ナノ粒子の合成方法としては、化学合成による製造方法が確立されており、5nm以下の硫化亜鉛ナノ粒子の製造例が例えば特許文献1に報告されている。特許文献1に記載された技術では、合成時の添加剤として有機カルボン酸、有機窒素化合物或いは有機硫黄化合物等の界面活性剤を用いて、ナノ粒子表面に化学結合させることにより、粒子径をコントロールすることが開示されている。 In general, semiconductor nanoparticles can exhibit a quantum effect and widen the energy gap by making the particle size smaller than the Bohr radius. ZnS has a Bohr radius of 2.5 nm, and by setting the particle size to 5 nm or less, a wide wavelength range can be realized as a light emitting / receiving material. As a method for synthesizing zinc sulfide nanoparticles, a production method by chemical synthesis has been established, and an example of production of zinc sulfide nanoparticles having a diameter of 5 nm or less is reported in, for example, Patent Document 1. In the technique described in Patent Document 1, the particle size is controlled by chemically bonding to the surface of nanoparticles by using a surfactant such as an organic carboxylic acid, an organic nitrogen compound or an organic sulfur compound as an additive at the time of synthesis. It is disclosed to do.

ところでZnSは、安定な結晶構造として閃亜鉛鉱型と呼ばれる立方晶系の構造結晶と、準安定な結晶構造としてウルツ鉱型の六方晶系の結晶構造とが知られている。立方晶系の硫化亜鉛は、対称性が高いため結晶内の欠陥などが伝播されやすく熱や湿度などによる劣化が激しいのに対し、ウルツ鉱型の硫化亜鉛は閃亜鉛鉱型に比べ対称性が低いため、欠陥の伝播などが抑制され高い信頼性を持つ光学材料として期待されている。 By the way, ZnS is known to have a cubic crystal structure called a sphalerite type as a stable crystal structure and a hexagonal crystal structure of a wurtzite type as a semi-stable crystal structure. Cubic zinc sulfide has high symmetry, so defects in the crystal are easily propagated and deterioration is severe due to heat and humidity, whereas wurtzite type zinc sulfide has higher symmetry than sphalerite type. Since it is low, it is expected as an optical material with high reliability because the propagation of defects is suppressed.

ウルツ鉱型の硫化亜鉛は、閃亜鉛鉱型の硫化亜鉛を1020℃以上の温度で熱処理することで得られることが知られているが、従来のナノ粒子の合成方法(例えば特許文献1記載の合成方法)では、安定な結晶構造である閃亜鉛鉱型の硫化亜鉛が生成し、ウルツ鉱型の硫化亜鉛ナノ粒子を得ることはできない。 It is known that the wurtzite-type zinc sulfide can be obtained by heat-treating zinchalerite-type zinc sulfide at a temperature of 1020 ° C. or higher, but a conventional method for synthesizing nanoparticles (for example, Patent Document 1). In the synthesis method), zinchalerite-type zinc sulfide having a stable crystal structure is produced, and wurtzite-type zinc sulfide nanoparticles cannot be obtained.

一方、硫化亜鉛に酸素を混晶化したZnOS粒子は、酸素の添加量を変化させることで、幅広くエネルギーギャップを変化させることが期待されるが、ZnS粒子は非混和性が高いため添加元素を粒子内に均一に混合を添加することが困難である。具体的には、1000K以下の温度では、ZnSへの酸素の固溶限界は5%以下と予測されており、従来の合成方法で酸素の比率を高めた場合、ZnOの相とZnSの相に分離してしまい、均一で高い酸素組成を持つZnOSナノ粒子を得ることはできていない。 On the other hand, ZnOS particles obtained by mixing oxygen with zinc sulfide are expected to change the energy gap widely by changing the amount of oxygen added, but ZnS particles are highly immiscible, so the added element is added. It is difficult to add the mixture uniformly in the particles. Specifically, at a temperature of 1000 K or less, the solid solution limit of oxygen in ZnS is predicted to be 5% or less, and when the ratio of oxygen is increased by the conventional synthesis method, the ZnO phase and the ZnS phase are obtained. It has been separated, and ZnOS nanoparticles having a uniform and high oxygen composition have not been obtained.

特開2009−233845号公報JP-A-2009-233845

本発明の第一の課題は、化学合成によってウルツ鉱型の硫化物ナノ粒子を合成すること、第二の課題は、均一で高い酸素組成を持つZnOSナノ粒子を合成することである。 The first object of the present invention is to synthesize wurtzite-type sulfide nanoparticles by chemical synthesis, and the second object is to synthesize ZnOS nanoparticles having a uniform and high oxygen composition.

上記課題を解決するため、本発明者らは鋭意研究した結果、亜鉛材料及び硫黄材料との化学合成によって硫化亜鉛ナノ粒子を合成する際に、添加剤として2種類の添加剤を同時に用いることによって、ウルツ鉱型であって平均粒子径が10nm以下の硫化亜鉛ナノ粒子が得られること、さらに、亜鉛材料と硫黄材料との比率を調整することで、ウルツ鉱型の均一な結晶構造を持つZnOSナノ粒子が得られることを見出し、本発明に至ったものである。 In order to solve the above problems, the present inventors have conducted diligent research, and as a result, when synthesizing zinc sulfide nanoparticles by chemical synthesis with a zinc material and a sulfur material, by using two kinds of additives at the same time as additives. Zinc sulfide nanoparticles of the wurtzite type with an average particle size of 10 nm or less can be obtained, and by adjusting the ratio of the zinc material and the sulfur material, ZnOS having a uniform crystal structure of the wurtzite type They have found that nanoparticles can be obtained and have reached the present invention.

なお本明細書において、硫化物ナノ粒子は、II族元素の硫化物からなるナノ粒子とそれに他元素をドープした硫化物ナノ粒子とを含めていう。 In the present specification, the sulfide nanoparticles include nanoparticles composed of sulfides of Group II elements and sulfide nanoparticles doped with other elements.

即ち、本発明の第一の態様は、少なくとも亜鉛を含むII族元素材料と硫黄材料とを溶媒中で熱分解してウルツ鉱型結晶構造の硫化物ナノ粒子を合成する方法であって、反応系に、添加剤として、ポリオール系材料及びステアリン酸エチレングリコール系材料の少なくとも1種からなる第一の添加剤と、反応中に前記ナノ粒子の表面に配位し、粒子サイズを抑制する第二の添加剤とを添加することを特徴とする。 That is, the first aspect of the present invention is a method of synthesizing sulfide nanoparticles having a wurtzite type crystal structure by thermally decomposing at least a group II element material containing zinc and a sulfur material in a solvent. The system is composed of a first additive consisting of at least one of a polyol-based material and an ethylene glycol-based stearate material as an additive, and a second additive that coordinates with the surface of the nanoparticles during the reaction to suppress the particle size. It is characterized by adding the additive of.

また本発明の第二の態様は、下記一般式で表されるウルツ鉱型結晶構造の硫化物ナノ粒子であって、
(Zn)(S1−x
(但し、x>0)
平均粒子径が10nm以下である硫化物ナノ粒子である。
A second aspect of the present invention is sulfide nanoparticles having a wurtzite crystal structure represented by the following general formula.
(Zn) (S 1-x O x )
(However, x> 0)
Sulfide nanoparticles having an average particle size of 10 nm or less.

また下記一般式で表されるウルツ鉱型結晶構造の硫化物ナノ粒子であって、
Zn(S1−x
(但し、0.4>x≧0)
短径4nm以下、長径50nm以下、アスペクト比5以上25以下のワイヤー状の硫化物ナノ粒子である。
Further, it is a sulfide nanoparticle having a wurtzite crystal structure represented by the following general formula.
Zn (S 1-x O x )
(However, 0.4> x ≧ 0)
Wire-shaped sulfide nanoparticles having a minor axis of 4 nm or less, a major axis of 50 nm or less, and an aspect ratio of 5 or more and 25 or less.

本発明によれば、光学特性等の信頼性の高いウルツ鉱型の硫化物ナノ粒子を合成することができる。また本発明によれば、結晶中の硫黄を比較的高い比率で酸素に置換した硫化物ナノ粒子が提供される。これにより硫化亜鉛のエネルギーギャップのコントロールが可能となり、用途の幅を広げることができる。 According to the present invention, wurtzite-type sulfide nanoparticles having high reliability such as optical properties can be synthesized. Further, according to the present invention, sulfide nanoparticles in which sulfur in crystals is replaced with oxygen at a relatively high ratio are provided. This makes it possible to control the energy gap of zinc sulfide and expand the range of applications.

(A)は、実施例1の硫化亜鉛ナノ粒子のTEM像を示す図、(B)は比較例1の硫化亜鉛ナノ粒子のTEM像を示す図(A) is a diagram showing a TEM image of zinc sulfide nanoparticles of Example 1, and (B) is a diagram showing a TEM image of zinc sulfide nanoparticles of Comparative Example 1. 実施例1及び比較例1のXRDパターンを示す図The figure which shows the XRD pattern of Example 1 and Comparative Example 1. (A)は、実施例2の硫化亜鉛ナノ粒子のTEM像を示す図、(B)は実施例3の硫化亜鉛ナノ粒子のTEM像を示す図(A) is a diagram showing a TEM image of zinc sulfide nanoparticles of Example 2, and (B) is a diagram showing a TEM image of zinc sulfide nanoparticles of Example 3. 実施例1、2、3及び参考例のXRDパターンを示す図The figure which shows the XRD pattern of Examples 1, 2, 3 and the reference example.

以下、本発明の硫化物ナノ粒子の合成方法について説明する。
本発明の硫化物ナノ粒子の合成方法は、II族元素(Mと記載する)材料及び硫黄材料との化学合成によって硫化物ナノ粒子(MS、MOS)を合成する際に、添加剤として2種類の添加剤を同時に用いる。
Hereinafter, the method for synthesizing the sulfide nanoparticles of the present invention will be described.
In the method for synthesizing sulfide nanoparticles of the present invention, there are two types of additives when synthesizing sulfide nanoparticles (MS, MOS) by chemical synthesis with a group II element (described as M) material and a sulfur material. Additives are used at the same time.

II族元素(M)としては、亜鉛(Zn)、カドミウム(Cd)が挙げられ、これらの錯体を用いることが好ましい。例えば、亜鉛材料としては、酢酸亜鉛(Zn(AC))、ステアリン酸亜鉛(ST−Zn)、アセチルアセトナート亜鉛(Zn(ACAC))、塩化亜鉛(ZnCl)など亜鉛錯体を用いることができ、特にアセチルアセトナート亜鉛が好ましい。カドミウムについても同様にジステアリン酸カドミウムやアセチルアセトナートカドミウム、塩化カドミウムなどの錯体を用いることができる。以下の説明では、II族元素がZnである場合を例に説明する。 Examples of the group II element (M) include zinc (Zn) and cadmium (Cd), and it is preferable to use a complex of these. For example, as the zinc material, a zinc complex such as zinc acetate (Zn (AC) 2 ), zinc stearate (ST-Zn), zinc acetylacetonate (Zn (ACAC) 2 ), zinc chloride (ZnCl 2) is used. Acetylacetonate zinc is particularly preferable. Similarly, for cadmium, a complex such as cadmium distearate, acetylacetonate cadmium, or cadmium chloride can be used. In the following description, a case where the Group II element is Zn will be described as an example.

硫黄材料としては、ドデカンチオール、ヘキサデカンチオール等チオール系材料、1,1−ジメチルチオ尿素、1,3−ジメチルチオ尿素、1,1−ジエチルチオ尿素、1,3−ジエチルチオ尿素、1,1−ジブチルチオ尿素、1,3−ジブチルチオ尿素、チオアセトアミド、テトラメチルチオ尿素などのS含有有機化合物や、硫黄粉末を用いることができる。特に、1,1−ジブチルチオ尿素、或いは、1,3−ジブチルチオ尿素が好ましい。 Examples of the sulfur material include thiol-based materials such as dodecanethiol and hexadecanethiol, 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, and 1,1-dibutylthiourea. S-containing organic compounds such as 1,3-dibutylthiourea, thioacetamide, and tetramethylthiourea, and sulfur powder can be used. In particular, 1,1-dibutylthiourea or 1,3-dibutylthiourea is preferable.

II族元素材料(亜鉛材料)と硫黄材料との割合は、硫化物ナノ粒子の化学量論的割合とすることができるが、S/Zn比を制御することで、同時にナノ粒子の形状をワイヤー状から球状に制御することができる。具体的にはS/Zn比が1のときに、短辺が2〜4nm、長辺が5〜50nm、アスペクト比5〜25のワイヤー状粒子を製造することができ、S/Zn比が2のときに粒子径2〜5nm、アスペクト比5以下の球状粒子を製造することができる。ワイヤー状の粒子は、長辺方向を揃えることで、その形状に依存して偏光性を持たせることができ、従来の球状粒子とは異なる光学用途に応用することができる。 The ratio between the group II element material (zinc material) and the sulfur material can be the stoichiometric ratio of the sulfide nanoparticles, but by controlling the S / Zn ratio, the shape of the nanoparticles can be changed at the same time. It can be controlled from a shape to a sphere. Specifically, when the S / Zn ratio is 1, wire-like particles having a short side of 2 to 4 nm, a long side of 5 to 50 nm, and an aspect ratio of 5 to 25 can be produced, and the S / Zn ratio is 2. At this time, spherical particles having a particle size of 2 to 5 nm and an aspect ratio of 5 or less can be produced. By aligning the long side directions of the wire-shaped particles, it is possible to impart polarization property depending on the shape of the wire-shaped particles, and the wire-shaped particles can be applied to optical applications different from the conventional spherical particles.

一方、S/Zn比を1未満、即ちSの量をZnより少なくすることで、Sの一部が酸素に入れ替わった硫化物ナノ粒子を得ることができる。具体的には、S/Zn比をy(但し、1>y)とすることで、不足したS分だけOが取り込まれる。この場合、S/Znが0.4以下になると、ZnSの相とZnOの相とが混在した硫化物ナノ粒子が生成するため、S/Zn比は0.4より多いことが好ましく、0.6以上であることがより好ましい。S/Znを0.6以上とすることで、サイズ10nm以下のナノ粒子を得ることができる。 On the other hand, by making the S / Zn ratio less than 1, that is, the amount of S less than Zn, sulfide nanoparticles in which a part of S is replaced with oxygen can be obtained. Specifically, by setting the S / Zn ratio to y (however, 1> y), O is taken in by the insufficient S amount. In this case, when S / Zn is 0.4 or less, sulfide nanoparticles in which the ZnS phase and the ZnO phase are mixed are generated. Therefore, the S / Zn ratio is preferably more than 0.4. More preferably, it is 6 or more. By setting S / Zn to 0.6 or more, nanoparticles having a size of 10 nm or less can be obtained.

2種の添加剤の一つ、第一の添加剤としては、ヘキサデカンジオール、テトラエチレングリコール、プロピレングリコール、トリメチルグリコール、ジエチレングリコール、エチレングリコール、ステアリルグリコール等のポリオール系材料、及び、ステアリン酸エチレングリコール系材料の少なくとも1種を用いる。これらのうち、特にエチレングリコールが好ましい。第一の添加剤の量は、極めて少量でよく、溶媒に対し0.5容量%程度とする。また添加量が多いと、反応系に留まらず突沸などの原因になるため、好ましくは1容量%以下、より好ましくは0.8容量%以下とする。 One of the two types of additives, the first additive, is a polyol-based material such as hexadecanediol, tetraethylene glycol, propylene glycol, trimethyl glycol, diethylene glycol, ethylene glycol, stearyl glycol, and ethylene glycol stearate. Use at least one of the materials. Of these, ethylene glycol is particularly preferable. The amount of the first additive may be extremely small, and is about 0.5% by volume with respect to the solvent. Further, if the amount added is large, it causes not only the reaction system but also bumping and the like, so it is preferably 1% by volume or less, more preferably 0.8% by volume or less.

第二の添加剤としては、ZnS粒子のZnに配位する錯体であって嵩高いものが好ましく、例えば、トリオクチルホスフィン・スルフィド(以下、TOP:Sと記す)を用いることができる。TOP:Sは、トリオクチルホスフィンのリン原子(P)に硫黄(S)が配位結合によって結合した錯体であり、トリオクチルホスフィンと硫黄とから合成することができる。TOP:Sは硫黄を含む錯体であり、硫黄を含むナノ粒子の原料としては知られているが、本発明の反応においては、硫黄の供給源として機能するのではなく、第一の添加剤との併用によって、ウルツ型の結晶構造を維持しながら、粒子のサイズを抑制する機能を持つものと考えられる。 As the second additive, a complex that coordinates Zn with ZnS particles and is bulky is preferable, and for example, trioctylphosphine sulfide (hereinafter referred to as TOP: S) can be used. TOP: S is a complex in which sulfur (S) is bonded to the phosphorus atom (P) of trioctylphosphine by a coordination bond, and can be synthesized from trioctylphosphine and sulfur. TOP: S is a sulfur-containing complex and is known as a raw material for sulfur-containing nanoparticles, but in the reaction of the present invention, it does not function as a source of sulfur, but as a first additive. It is considered that the combined use of these substances has a function of suppressing the size of particles while maintaining the Wurtz-shaped crystal structure.

第二の添加剤の量は、亜鉛原料に対しモル比で0.1〜1.0、好ましくは0.2〜0.8、より好ましくは約0.4〜0.6とする。またトリオクチルホスフィンと硫黄で錯体を合成し、それを反応系に投入する場合、トリオクチルホスフィンを化学量論的な割合よりも多くすることが好ましい。これにより、余剰の硫黄が反応系に入り、意図しない酸素との置換が起こるのを防止できる。 The amount of the second additive is 0.1 to 1.0, preferably 0.2 to 0.8, and more preferably about 0.4 to 0.6 in terms of molar ratio with respect to the zinc raw material. Further, when a complex is synthesized with trioctylphosphine and sulfur and put into the reaction system, it is preferable to increase the amount of trioctylphosphine in a stoichiometric ratio. This prevents excess sulfur from entering the reaction system and causing unintended substitution with oxygen.

溶媒は、反応を比較的高温で行うため、沸点(b.p.)が反応温度より高い溶媒を用いる。具体的には、オレイルアミン(b.p.:350℃)やベンジルベンゾエート(b.p.:350℃)、1−オクタデセン(b.p.:179℃(15mmHg下))、オレイン酸(b.p.:360℃)、トリオクチルフォスフィンオキシド(b.p.:202℃(2mmHg下))、トリオクチルフォスフィン(b.p.:445℃)を用いることができる。特に高沸点のオレイルアミンが好適である。 As the solvent, since the reaction is carried out at a relatively high temperature, a solvent having a boiling point (bp) higher than the reaction temperature is used. Specifically, oleylamine (bp: 350 ° C.), benzylbenzoate (bp: 350 ° C.), 1-octadecene (bp: 179 ° C. (under 15 mmHg)), oleic acid (b. p .: 360 ° C.), trioctylphosphine oxide (bp .: 202 ° C. (below 2 mmHg)), trioctylphosphine (bp: 445 ° C.) can be used. In particular, oleylamine having a high boiling point is preferable.

反応は、溶媒中(液相)で加熱して行う。この際、減圧下で比較的低い温度で反応させるステップ(第一のステップ)と不活性雰囲気下で比較的高い温度で反応させるステップ(第二のステップ)とを含む複数段階の反応を行い、段階ごとに反応時間や雰囲気などの条件を異ならせることが好ましい。 The reaction is carried out by heating in a solvent (liquid phase). At this time, a multi-step reaction including a step of reacting at a relatively low temperature under reduced pressure (first step) and a step of reacting at a relatively high temperature under an inert atmosphere (second step) is performed. It is preferable to make the conditions such as reaction time and atmosphere different for each stage.

第一のステップの反応温度は、200℃以下とすることが好ましい。200℃以下とすることにより、閃亜鉛鉱型の結晶が生成するのを抑制することができる。 The reaction temperature in the first step is preferably 200 ° C. or lower. By setting the temperature to 200 ° C. or lower, it is possible to suppress the formation of sphalerite-type crystals.

第一のステップは、例えば、まずN等の不活性雰囲気で100℃以下の温度(例えば70℃程度)で1時間以下の短時間保持したのち昇温し、減圧雰囲気下で200℃以下の温度(例えば130℃)で反応を進行させる。減圧雰囲気下の圧力は大気圧(約100kPa)の1/100以下とする。但し溶媒の突沸を防止するために15Pa以上とする。減圧雰囲気、200℃以下で行う反応の反応時間は、1〜3時間程度とする。 The first step, for example, firstly the temperature was raised After brief holding less than 1 hour in an inert atmosphere at 100 ° C. below the temperature (for example, about 70 ° C.) such as N 2, of 200 ° C. or less under a reduced pressure atmosphere The reaction proceeds at temperature (eg 130 ° C.). The pressure under the reduced pressure atmosphere is 1/100 or less of the atmospheric pressure (about 100 kPa). However, it should be 15 Pa or more to prevent the solvent from suddenly boiling. The reaction time of the reaction carried out in a reduced pressure atmosphere and 200 ° C. or lower is about 1 to 3 hours.

第二のステップは、不活性雰囲気下で第一ステップの反応温度より高い温度、200℃以上で且つ溶媒の沸点以下の温度(例えば250℃)で1〜2時間保持する。第一のステップから第二のステップの昇温レートは、限定されるものではないが、例えば50℃/5minとする。第二のステップでは、第一のステップで生成した結晶の核を成長させる。第一のステップで六方晶系(WZ型)の結晶の核が生成していれば、その後、温度を上昇させても結晶系は保たれ、温度を上げることで残りの反応を速やかに進めることができる。第二のステップの後、さらに温度を上げて(ただし溶媒の沸点以下)、短時間保持してもよく、これにより速やかに反応を完了させることができる。 The second step is held under an inert atmosphere at a temperature higher than the reaction temperature of the first step, 200 ° C. or higher and below the boiling point of the solvent (for example, 250 ° C.) for 1 to 2 hours. The temperature rising rate from the first step to the second step is not limited, but is set to, for example, 50 ° C./5 min. In the second step, the nuclei of the crystals produced in the first step are grown. If the nucleus of a hexagonal (WZ type) crystal is generated in the first step, the crystal system is maintained even if the temperature is raised thereafter, and the remaining reaction is rapidly promoted by raising the temperature. Can be done. After the second step, the temperature may be further increased (but below the boiling point of the solvent) and held for a short period of time, which allows the reaction to be completed quickly.

反応終了後は、降温後、一般的な熱分解法によるナノ粒子の回収方法と同様の方法で、ナノ粒子を回収する。具体的には、降温後の反応液にヘキサン等の所定の溶媒を加えて拡散した後、貧溶媒を加えて粒子を凝集させて遠心分離する。この処理は、必要に応じて複数回繰り返してもよい。最後に粒子洗浄を行って、ナノ粒子の分散液を得る。 After completion of the reaction, the temperature is lowered, and the nanoparticles are recovered by the same method as the method for recovering nanoparticles by a general thermal decomposition method. Specifically, a predetermined solvent such as hexane is added to the reaction solution after the temperature is lowered to diffuse the mixture, and then a poor solvent is added to aggregate the particles and centrifuge them. This process may be repeated a plurality of times as needed. Finally, particle cleaning is performed to obtain a dispersion of nanoparticles.

本発明の硫化物ナノ粒子の製造方法によれば、反応系に2種類の添加剤を添加することにより、ナノ粒子の結晶系の制御と非混和性の緩和という複数の課題を一挙に解決することができ、これにより、従来の化学合成では生成することができなかったサイズ10nm以下のウルツ鉱型の硫化物ナノ粒子を提供することができる。また他元素の取り込みについては、硫化物の酸素濃度を40原子%程度まで高めることができる。 According to the method for producing sulfide nanoparticles of the present invention, by adding two kinds of additives to the reaction system, a plurality of problems of controlling the crystal system of nanoparticles and alleviating immiscibility can be solved at once. This makes it possible to provide wurtzite-type sulfide nanoparticles having a size of 10 nm or less, which could not be produced by conventional chemical synthesis. Regarding the uptake of other elements, the oxygen concentration of sulfide can be increased to about 40 atomic%.

本発明の硫化物ナノ粒子の製造方法により得られる代表的な硫化物ナノ粒子は、粒子サイズ10nm以下のウルツ鉱型結晶構造のZn(O1−x)(但し、0.4>x>0)ナノ粒子、及び、短径4nm以下、長径50nm以下、アスペクト比5以上25以下のワイヤー状のZn(O1−x)(但し、0.4>x≧0)ナノ粒子を含む。 Typical sulfide nanoparticles obtained by the method for producing sulfide nanoparticles of the present invention are Zn ( Ox S 1-x ) having a wurtzite type crystal structure having a particle size of 10 nm or less (however, 0.4> x). > 0) Nanoparticles and wire-shaped Zn (Ox S 1-x ) (however, 0.4> x ≧ 0) nanoparticles having a minor axis of 4 nm or less, a major axis of 50 nm or less, and an aspect ratio of 5 or more and 25 or less. Including.

以下、本発明の硫化物ナノ粒子の合成例を説明する。 Hereinafter, an example of synthesizing the sulfide nanoparticles of the present invention will be described.

<実施例1>
溶媒としてオレイルアミン10mL、亜鉛材料としてZn(ACAC) 2.0mmol、硫黄材料として1,3−ジブチルチオ尿素 2.0mmolを用い、第一の添加剤としてエチレングリコール(EG) 1.0mmol、第二の添加剤としてTOP−S(TOP 1.2mmol及び硫黄 0.6mmol)を用いた。なお亜鉛材料と硫黄材料(TOP−Sを除く)のS/Zn比は1である。
<Example 1>
Oleylamine 10mL as a solvent, a zinc material as Zn (ACAC) 2 2.0mmol, using 1,3-dibutylthiourea 2.0mmol as sulfur material, ethylene glycol (EG) 1.0 mmol as the first additive, the second TOP-S (TOP 1.2 mmol and sulfur 0.6 mmol) was used as an additive. The S / Zn ratio of the zinc material and the sulfur material (excluding TOP-S) is 1.

容器(100mL)に材料を充填後、窒素雰囲気下で70℃に30分保持したのち、昇温し減圧雰囲気下で130℃に2時間保持した。この時の圧力は、約100Pa(10Pa以上1000Pa以下)とした。その後、50℃/5分の昇温レートで昇温し、N雰囲気下で250℃に2時間保持した後、さらに昇温してN雰囲気下で300℃に保持して合成を行った。 After filling the container (100 mL) with the material, the material was kept at 70 ° C. for 30 minutes in a nitrogen atmosphere, then heated and held at 130 ° C. for 2 hours in a reduced pressure atmosphere. The pressure at this time was about 100 Pa (10 Pa or more and 1000 Pa or less). Thereafter, the temperature was raised at a heating rate of 50 ° C. / 5 minutes, after which was held for 2 hours at 250 ° C. under N 2, was synthesized held at 300 ° C. under a N 2 atmosphere and further raising the temperature ..

降温後の反応液にヘキサンを5ml加え撹拌した後に遠沈管に回収した。貧溶媒であるエタノールを加えて粒子を凝集させ、遠心分離機を用いて沈降させた。分離条件は12,000rpmで、60分とした。上澄み液を廃棄した後、ヘキサンを5mL加えて振とう機で30分撹拌して粒子を分散させた。もう一度エタノールを加え、同様の工程をもう1回繰り返して粒子洗浄を行い、ZnSナノ粒子の分散液を得た。 After lowering the temperature, 5 ml of hexane was added to the reaction solution, and the mixture was stirred and then collected in a centrifuge tube. The particles were aggregated by adding ethanol, which is a poor solvent, and precipitated using a centrifuge. The separation condition was 12,000 rpm for 60 minutes. After discarding the supernatant, 5 mL of hexane was added and stirred with a shaker for 30 minutes to disperse the particles. Ethanol was added again, and the same process was repeated once more to wash the particles to obtain a dispersion of ZnS nanoparticles.

<比較例1>
2種の添加剤を用いないこと以外は、実施例1と同様にして、硫化亜鉛ナノ粒子を合成した。
<Comparative example 1>
Zinc sulfide nanoparticles were synthesized in the same manner as in Example 1 except that two kinds of additives were not used.

実施例1及び比較例1で、それぞれ得られた粒子の透過型電子顕微鏡像(TEM像)を図1(A)、(B)に示す。図1(A)に示すように、粒子の形状はワイヤー状であり、短径が2〜3nm、長径が20〜50nmであることが確認された。一方、添加剤を用いない場合には、図1(B)に示すように、粒子サイズ4〜5nmの球状の粒子が得られた。 The transmission electron microscope images (TEM images) of the particles obtained in Example 1 and Comparative Example 1 are shown in FIGS. 1 (A) and 1 (B), respectively. As shown in FIG. 1 (A), it was confirmed that the shape of the particles was wire-like, the minor axis was 2 to 3 nm, and the major axis was 20 to 50 nm. On the other hand, when no additive was used, spherical particles having a particle size of 4 to 5 nm were obtained as shown in FIG. 1 (B).

また実施例1及び比較例1で得られた粒子のXRD回折パターンを図2に示す。図2に示すように、比較例1の粒子は、立方晶系の(111)、(220)及び(311)の3つのピークが見られ、閃亜鉛鉱型の硫化亜鉛であることが確認された。一方、実施例1の粒子は、六方晶系の(100)(002)(101)(102)(110)(103)(112)の6つのピークが見られ、ウルツ鉱型のZnSであることが確認された。 The XRD diffraction patterns of the particles obtained in Example 1 and Comparative Example 1 are shown in FIG. As shown in FIG. 2, the particles of Comparative Example 1 had three peaks of cubic (111), (220) and (311), and it was confirmed that they were sphalerite-type zinc sulfide. It was. On the other hand, the particles of Example 1 have six peaks of hexagonal (100) (002) (101) (102) (110) (103) (112) and are of the wurtzite type ZnS. Was confirmed.

<実施例2、3及び参考例>
硫黄材料である1,3−ジブチルチオ尿素の使用量を、1.6mmol(実施例2)、1.2mmol(実施例3)、及び0.8mmol(参考例)に、それぞれ変えて、それ以外は、実施例1と同様にして、硫化亜鉛ナノ粒子を合成した。
<Examples 2 and 3 and reference example>
The amount of 1,3-dibutylthiourea used as a sulfur material was changed to 1.6 mmol (Example 2), 1.2 mmol (Example 3), and 0.8 mmol (reference example), respectively, and the others were used. , Zinc sulfide nanoparticles were synthesized in the same manner as in Example 1.

実施例2及び実施例3のTEM像を図3に、実施例2、3及び参考例のXRDを図4に示す。TEM像から、実施例2、3のいずれにおいても、球状のナノ粒子が確認され、粒子サイズはそれぞれ2〜3nm(実施例2)、3〜4nm(実施例3)であった。またXRDパターンから、実施例3、4のナノ粒子は均一なウルツ鉱型のZnOS粒子であることが確認された。さらにXRD分析の結果、実施例1を硫黄材料濃度100%としたとき、硫黄材料濃度80%である実施例3はZnO0.10.9が生成され、硫黄材料濃度60%である実施例4はZnO0.20.8が生成され、いずれも原料の使用量に応じてZnOS粒子の硫黄が酸素に置き換わった粒子であることが確認された。一方、参考例(硫黄材料濃度40%)では、ウルツ鉱型のZnOSはほとんど生成されず、図4のXRDパターンからわかるように、立方晶系であるZnSのピークと六方晶ZnOのピークが観察された。 The TEM images of Examples 2 and 3 are shown in FIG. 3, and the XRDs of Examples 2, 3 and Reference Examples are shown in FIG. From the TEM images, spherical nanoparticles were confirmed in all of Examples 2 and 3, and the particle sizes were 2 to 3 nm (Example 2) and 3 to 4 nm (Example 3), respectively. Further, from the XRD pattern, it was confirmed that the nanoparticles of Examples 3 and 4 were uniform wurtzite-type ZnOS particles. Further, as a result of XRD analysis, when Example 1 has a sulfur material concentration of 100%, ZnO 0.1 S 0.9 is produced in Example 3 having a sulfur material concentration of 80%, and the sulfur material concentration is 60%. In Example 4, ZnO 0.2 S 0.8 was produced, and it was confirmed that the sulfur of the ZnOS particles was replaced with oxygen according to the amount of the raw material used. On the other hand, in the reference example (sulfur material concentration 40%), the wurtzite-type ZnOS was hardly generated, and as can be seen from the XRD pattern in FIG. 4, the peak of the cubic ZnS and the peak of the hexagonal ZnO were observed. Was done.

本発明によれば、光学材料、磁気材料、電気材料或いは蛍光体等として適用可能な新規なナノ粒子が提供される。 According to the present invention, novel nanoparticles that can be applied as an optical material, a magnetic material, an electric material, a phosphor, or the like are provided.

Claims (11)

少なくとも亜鉛を含むII族元素材料と硫黄材料とを溶媒中で熱分解してウルツ鉱型結晶構造の硫化物ナノ粒子を合成する方法であって、
反応系に、添加剤として、ポリオール系材料及びステアリン酸エチレングリコール系材料の少なくとも1種からなる第一の添加剤と、反応中に前記ナノ粒子の表面に配位し、粒子サイズを抑制する第二の添加剤とを添加することを特徴とする硫化物ナノ粒子の合成方法。
It is a method of synthesizing sulfide nanoparticles having a wurtzite crystal structure by thermally decomposing a group II element material containing at least zinc and a sulfur material in a solvent.
In the reaction system, as an additive, a first additive consisting of at least one of a polyol-based material and an ethylene glycol-based stearate material is coordinated with the surface of the nanoparticles during the reaction to suppress the particle size. A method for synthesizing sulfide nanoparticles, which comprises adding the second additive.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
減圧下で200℃よりより低い第一の温度で反応を行う第一のステップと、
大気圧下で前記第一の温度より高い第二の温度で、反応を継続し硫化物ナノ粒子を生成する第二のステップと、を含むことを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
The first step of reacting under reduced pressure at a first temperature below 200 ° C.
A method for synthesizing sulfide nanoparticles, which comprises a second step of continuing the reaction to generate sulfide nanoparticles at a second temperature higher than the first temperature under atmospheric pressure.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
前記第一の添加剤が、エチレングリコールであることを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
A method for synthesizing sulfide nanoparticles, wherein the first additive is ethylene glycol.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
前記第二の添加剤が、トリオクチルホスフィン・スルフィドであることを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
A method for synthesizing sulfide nanoparticles, wherein the second additive is trioctylphosphine sulfide.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
硫化亜鉛の化学量論的割合で、前記II族元素材料と前記硫黄材料(前記添加物に含まれる硫黄を除く)とを用い、ワイヤー形状のナノ粒子を生成することを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
Sulfide nanoparticles characterized by producing wire-shaped nanoparticles using the group II element material and the sulfur material (excluding sulfur contained in the additive) at a stoichiometric ratio of zinc sulfide. How to synthesize particles.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
前記II族元素材料に対する前記硫黄材料(前記添加物に含まれる硫黄を除く)の割合が、II族元素硫化物の化学量論的割合以上であって、球状のナノ粒子を生成することを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
The ratio of the sulfur material (excluding sulfur contained in the additive) to the group II element material is equal to or more than the chemical quantitative ratio of the group II element sulfide, and spherical nanoparticles are produced. Method for synthesizing sulfide nanoparticles.
請求項1に記載の硫化物ナノ粒子の合成方法であって、
前記II族元素材料に対する前記硫黄材料(前記添加物に含まれる硫黄を除く)の割合が、硫化亜鉛の化学量論的割合よりも少なく、硫化物における硫黄の一部が酸素に置換されたナノ粒子を製造することを特徴とする硫化物ナノ粒子の合成方法。
The method for synthesizing sulfide nanoparticles according to claim 1.
The ratio of the sulfur material (excluding sulfur contained in the additive) to the group II element material is less than the chemical quantitative ratio of zinc sulfide, and a part of sulfur in the sulfide is replaced with oxygen. A method for synthesizing sulfide nanoparticles, which comprises producing particles.
下記一般式で表されるウルツ鉱型結晶構造の硫化物ナノ粒子であって、
Zn(O1−x
(但し、x>0)
最大粒子径が10nm以下である硫化物ナノ粒子。
It is a sulfide nanoparticle having a wurtzite crystal structure represented by the following general formula.
Zn (O x S 1-x )
(However, x> 0)
Sulfide nanoparticles with a maximum particle size of 10 nm or less.
前記一般式において、x<0.4であることを特徴とする請求項8記載の硫化物ナノ粒子。 The sulfide nanoparticles according to claim 8, wherein x <0.4 in the general formula. 最大粒子径が5nm以下である請求項8又は9に記載の硫化物ナノ粒子。 The sulfide nanoparticles according to claim 8 or 9, wherein the maximum particle size is 5 nm or less. 下記一般式で表されるウルツ鉱型結晶構造の硫化物ナノ粒子であって、
Zn(O1−x
(但し、0.4>x≧0)
短径4nm以下、長径50nm以下、アスペクト比5以上25以下のワイヤー状の硫化物ナノ粒子。
It is a sulfide nanoparticle having a wurtzite crystal structure represented by the following general formula.
Zn (O x S 1-x )
(However, 0.4> x ≧ 0)
Wire-shaped sulfide nanoparticles with a minor axis of 4 nm or less, a major axis of 50 nm or less, and an aspect ratio of 5 or more and 25 or less.
JP2019205643A 2019-11-13 Method for the synthesis of wurtzite sulfide nanoparticles Active JP7475840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019205643A JP7475840B2 (en) 2019-11-13 Method for the synthesis of wurtzite sulfide nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205643A JP7475840B2 (en) 2019-11-13 Method for the synthesis of wurtzite sulfide nanoparticles

Publications (2)

Publication Number Publication Date
JP2021075441A true JP2021075441A (en) 2021-05-20
JP7475840B2 JP7475840B2 (en) 2024-04-30

Family

ID=

Similar Documents

Publication Publication Date Title
JP6114369B2 (en) Nanoparticles
TWI805548B (en) Quantum dot material and manufacturing method of quantum dot material
JP6567013B2 (en) Nanoparticles
US9343301B2 (en) Quantum dots made using phosphine
JP6955502B2 (en) Nanostructure composition with low cadmium content and its use
CN101365828B (en) Nano-particle
JP4994599B2 (en) InP fine particle production method and InP fine particle dispersion obtained by the method
JP6313860B2 (en) Synthesis of metal oxide nanoparticles from molecular cluster compounds
JP2023145429A (en) Semiconductor nanoparticle, method for producing the same, and light-emitting device
KR101563878B1 (en) Fabricating method of quantum dot
JP7307046B2 (en) Core-shell type semiconductor nanoparticles, method for producing the same, and light-emitting device
TW201831657A (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
KR20190055390A (en) MANUFACTURING METHOD OF InP/ZnS CORE/SHELL QUATUM DOTS
JPWO2018092639A1 (en) Core-shell particle, method of producing core-shell particle and film
JP7475840B2 (en) Method for the synthesis of wurtzite sulfide nanoparticles
JP2021075441A (en) Wurtzite type sulfide nanoparticle, and method of synthesizing the same
JP7475839B2 (en) Method for the synthesis of zinc-containing nanoparticles
KR102129758B1 (en) Method for storing organic-inorganic perovskite nanocrystal particles
JP2021075440A (en) Zinc-containing nanoparticle, and method of synthesizing the same
KR100963538B1 (en) Process for preparing nano-sized cadmium and cadmium chalcogenide colloid in organic solvents
WO2018135434A1 (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240417