JP2021075266A - Travel control device, method and program - Google Patents

Travel control device, method and program Download PDF

Info

Publication number
JP2021075266A
JP2021075266A JP2020149077A JP2020149077A JP2021075266A JP 2021075266 A JP2021075266 A JP 2021075266A JP 2020149077 A JP2020149077 A JP 2020149077A JP 2020149077 A JP2020149077 A JP 2020149077A JP 2021075266 A JP2021075266 A JP 2021075266A
Authority
JP
Japan
Prior art keywords
travel control
control device
vehicle
speed
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020149077A
Other languages
Japanese (ja)
Inventor
戸倉 隆明
Takaaki Tokura
隆明 戸倉
河野 克己
Katsumi Kono
克己 河野
安田 武司
Takeshi Yasuda
武司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JP2021075266A publication Critical patent/JP2021075266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/645Type of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Abstract

To provide a travel control device which quantitatively predicts a recovery amount of regenerative energy and uses the same in travel control.SOLUTION: A travel control device is mounted on a vehicle provided with an electric motor and an internal combustion engine as power sources. The travel control device comprises: a creation section which creates a velocity profile where velocities of the vehicle at respective times are predicted; an estimation section which approximates the velocity profile with a predetermined approximation model and estimates a prediction amount of regenerative energy, energy recoverable through regenerative braking of the electric motor, on the basis of an approximation result; and a determination section which determines the power source to be used for traveling on the basis of the predicted amount of the regenerative energy.SELECTED DRAWING: Figure 2

Description

本発明は、車両に搭載される走行制御装置等に関する。 The present invention relates to a traveling control device or the like mounted on a vehicle.

電動機と内燃エンジンとを備えたハイブリッド車両においては、電動機と内燃エンジンとを効率的に使い分けた走行制御により燃費の向上を図ることができる。 In a hybrid vehicle equipped with an electric motor and an internal combustion engine, it is possible to improve fuel efficiency by efficiently using the electric motor and the internal combustion engine for running control.

特許文献1は、車両の位置と踏切やカーブ等の要停止地点あるいは要減速地点の地図情報とに基づいて、回生ブレーキ操作の開始が必要なブレーキ開始点を、ユーザに案内する車両用運転支援装置を開示している。この車両用運転支援装置においては、回生エネルギーの効率的な回収ができる減速度で回生ブレーキを作動させることをユーザに促して、回生エネルギーの回収量を多くすることができる。 Patent Document 1 provides driving support for vehicles that guides the user to a braking start point at which regenerative braking operation needs to be started, based on the position of the vehicle and map information of a stop point or deceleration point required such as a railroad crossing or a curve. The device is disclosed. In this vehicle driving support device, it is possible to increase the amount of regenerative energy recovered by urging the user to operate the regenerative brake at a deceleration that enables efficient recovery of regenerative energy.

特許第4702086号公報Japanese Patent No. 4702086

特許文献1の技術においては、回生エネルギーの回収が見込める地点を予想することができるが、回生エネルギーの回収量を定量的に予想できない。回生エネルギーの回収量を定量的に早期に予想できれば、好適な走行制御に利用できる可能性がある。 In the technique of Patent Document 1, it is possible to predict the point where the recovery of the regenerative energy can be expected, but the amount of the recovery of the regenerative energy cannot be predicted quantitatively. If the amount of regenerative energy recovered can be quantitatively predicted at an early stage, it may be used for suitable driving control.

本発明は、上記課題を鑑みてなされたものであり、回生エネルギーの回収量を定量的に予想して走行制御に用いる走行制御装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a travel control device used for travel control by quantitatively predicting the amount of regenerated energy recovered.

上記課題を解決するために、本発明の一局面は、動力源として電動機および内燃エンジンを備える車両に搭載される走行制御装置であって、各時刻における車両の速度を予想した速度プロファイルを作成する作成部と、速度プロファイルを所定の近似モデルで近似し、近似結果に基づいて、電動機の回生制動によって回収可能なエネルギーである回生エネルギーの予想量を推定する推定部と、回生エネルギーの予想量に基づいて、走行に用いる動力源を決定する決定部とを備える、走行制御装置である。 In order to solve the above problems, one aspect of the present invention is a travel control device mounted on a vehicle equipped with an electric motor and an internal combustion engine as a power source, and creates a speed profile that predicts the speed of the vehicle at each time. The creation unit and the estimation unit that approximates the speed profile with a predetermined approximate model and estimates the estimated amount of regenerative energy, which is the energy that can be recovered by the regenerative braking of the motor, based on the approximation result, and the estimated amount of regenerative energy. Based on this, it is a travel control device including a determination unit that determines a power source used for travel.

本発明によれば、車両の速度を予想した速度プロファイルを作成するので、これに基づいて回生エネルギーの回収量を定量的に予想でき、予想した回収量を走行制御に利用する走行制御装置を提供することができる。 According to the present invention, since a speed profile that predicts the speed of the vehicle is created, the recovery amount of regenerative energy can be quantitatively predicted based on the speed profile, and a travel control device that uses the predicted recovery amount for travel control is provided. can do.

本発明の一実施形態に係る走行制御装置とその周辺部の機能ブロックを示す図The figure which shows the traveling control device which concerns on one Embodiment of this invention, and the functional block of the peripheral part thereof. 本発明の一実施形態に係る走行制御処理のフローチャートを示す図The figure which shows the flowchart of the traveling control processing which concerns on one Embodiment of this invention. 本発明の一実施形態に係る速度プロファイルの例を示す図The figure which shows the example of the speed profile which concerns on one Embodiment of this invention. ガウス関数のグラフを示す図Diagram showing a graph of the Gaussian function 本発明の一実施形態に係る速度プロファイルの例の一部とこれをガウス関数で近似したグラフを示す図The figure which shows a part of the example of the velocity profile which concerns on one Embodiment of this invention, and the graph which approximated this by a Gaussian function. 本発明の一実施形態に係る速度プロファイルの例とこれをガウス関数の近似したグラフを示す図The figure which shows the example of the velocity profile which concerns on one Embodiment of this invention, and the graph which approximated this Gaussian function. 本発明の一実施形態に係る必要パワーのうち運動エネルギーの変化に連動する量および走行抵抗によって消散する量の例のグラフを示す図The figure which shows the graph of the example of the amount which is interlocked with the change of kinetic energy, and the amount which is dissipated by running resistance among the required power which concerns on one Embodiment of this invention. 本発明の一実施形態に係る必要パワーの例のグラフを示す図The figure which shows the graph of the example of the required power which concerns on one Embodiment of this invention. 本発明の一実施形態に係る必要パワーの積分値の例のグラフを示す図The figure which shows the graph of the example of the integrated value of the required power which concerns on one Embodiment of this invention.

(実施形態)
以下、本発明の実施形態について、図面を参照しながら説明する。本実施形態に係る走行制御装置は、車両の速度を予想した速度プロファイルを用いて、回生エネルギーの回収量を早期に定量的に予想して、燃費向上に向けた好適な走行制御を行う。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The travel control device according to the present embodiment quantitatively predicts the amount of regenerated energy recovered at an early stage by using a speed profile that predicts the speed of the vehicle, and performs suitable travel control for improving fuel efficiency.

<構成>
図1に、本実施形態に係る走行制御装置10およびその周辺部の機能ブロックを示す。走行制御装置10は、車両に搭載される。車両には、他に、内燃エンジンECU20、内燃エンジン21、変速機22、電動機ECU30、電動機31、電池ECU40、電池41、マネージャECU50、運転支援ECU60、自動運転ECU65、記憶部70、通信部80、走行制御ECU90、EPSECU100、EPS装置101、ブレーキECU110、ブレーキ装置111が含まれる。
<Structure>
FIG. 1 shows the travel control device 10 according to the present embodiment and the functional blocks of the peripheral portion thereof. The travel control device 10 is mounted on the vehicle. Other vehicles include an internal combustion engine ECU 20, an internal combustion engine 21, a transmission 22, an electric motor ECU 30, an electric motor 31, a battery ECU 40, a battery 41, a manager ECU 50, a driving support ECU 60, an automatic driving ECU 65, a storage unit 70, and a communication unit 80. The travel control ECU 90, the EPS ECU 100, the EPS device 101, the brake ECU 110, and the brake device 111 are included.

車両には他にも、アクセルペダルセンサ、ブレーキペダルセンサ、カメラや障害物センサ、車速センサ、ヨーレートセンサ、GPSセンサ等の各種センサ、ナビゲーションシステム等、多様な機器が含まれうるが、図示を省略する。 Vehicles may also include various devices such as accelerator pedal sensors, brake pedal sensors, cameras and obstacle sensors, vehicle speed sensors, yaw rate sensors, GPS sensors, and navigation systems, but the illustrations are omitted. To do.

内燃エンジン21および電動機31は、車両を駆動する動力源となるアクチュエータである。電動機31は、また、回生制動によって、発電を行う発電機および制動力を発生させる制動装置でもある。 The internal combustion engine 21 and the electric motor 31 are actuators that serve as a power source for driving the vehicle. The electric motor 31 is also a generator that generates electric power and a braking device that generates braking force by regenerative braking.

内燃エンジンECU20は、内燃エンジン21と、入力と出力との間で回転数を変化させる変速機22とを制御して、駆動トルクを発生させたり、エンジンブレーキによる制動トルクを発生させたりする制御を行うECU(Electric Control Unit)である。 The internal combustion engine ECU 20 controls the internal combustion engine 21 and the transmission 22 that changes the rotation speed between the input and the output to generate a driving torque or a braking torque by the engine brake. It is an ECU (Electric Control Unit) to perform.

電動機ECU30は、電動機31を制御して駆動トルクを発生させたり、回生ブレーキによる制動トルクを発生させたりする制御を行うECUである。 The electric motor ECU 30 is an ECU that controls the electric motor 31 to generate a driving torque and a braking torque by a regenerative brake.

電池41は、放電によって電動機31やその他の各機器に電力を供給したり、電動機31の回生制動によって得られた電力(回収したエネルギー)を充電したりする。電池ECU40は、電池41の電力の充放電を制御するECUである。 The battery 41 supplies electric power to the electric motor 31 and other devices by electric discharge, and charges the electric power (recovered energy) obtained by regenerative braking of the electric motor 31. The battery ECU 40 is an ECU that controls the charging and discharging of electric power of the battery 41.

走行制御ECU90は、後述する走行モードに応じて内燃エンジンECU20、電動機ECU30を制御するECUである。 The travel control ECU 90 is an ECU that controls the internal combustion engine ECU 20 and the motor ECU 30 according to the travel mode described later.

EPS(電動パワーステアリング)装置101は、車輪の舵角を変化させ車両の進行方向を変化させる操舵を行うアクチュエータである。EPSECU100は、EPS装置101を制御するECUである。 The EPS (electric power steering) device 101 is an actuator that performs steering by changing the steering angle of the wheels to change the traveling direction of the vehicle. The EPS ECU 100 is an ECU that controls the EPS device 101.

ブレーキ装置111(フットブレーキ装置)は、車輪とともに回転する部材に対する摩擦力によって制動力を発生させるアクチュエータである。ブレーキECU110はブレーキ装置111を制御するECUである。 The brake device 111 (foot brake device) is an actuator that generates a braking force by a frictional force against a member that rotates with the wheels. The brake ECU 110 is an ECU that controls the brake device 111.

運転支援ECU60は、衝突回避、前車追従、車線維持等の運転支援の機能を実行するECUである。運転支援ECU60は、各種センサ等から取得する情報に基づいて、加減速や舵角等、車両の運動を制御する指示を出力する。運転支援ECU60の機能や数は限定されない。 The driving support ECU 60 is an ECU that executes driving support functions such as collision avoidance, following a vehicle in front, and maintaining a lane. The driving support ECU 60 outputs instructions for controlling the movement of the vehicle, such as acceleration / deceleration and steering angle, based on information acquired from various sensors and the like. The function and number of the driving support ECU 60 are not limited.

自動運転ECU65は、各種センサ等から取得する情報に基づいて、自動運転の機能を実行するために、加減速や舵角等、車両の運動を制御する指示を出力する。 The automatic driving ECU 65 outputs instructions for controlling the movement of the vehicle, such as acceleration / deceleration and steering angle, in order to execute the automatic driving function based on the information acquired from various sensors and the like.

マネージャECU50は、運転支援ECU60や、自動運転ECU65等からの指示に基づいて、走行制御ECU90やEPSECU100、ブレーキECU110等(これらを以降まとめてアクチュエータECUと呼ぶ)に指示を行う。例えば、加速の指示は走行制御ECU90に対して行い、操舵の指示はEPSECU100に対して行い、減速の指示は走行制御ECU90およびブレーキECU110に対して行う。 The manager ECU 50 gives instructions to the travel control ECU 90, the EPS ECU 100, the brake ECU 110, etc. (hereinafter collectively referred to as an actuator ECU) based on the instructions from the operation support ECU 60, the automatic operation ECU 65, and the like. For example, the acceleration instruction is given to the traveling control ECU 90, the steering instruction is given to the EPS ECU 100, and the deceleration instruction is given to the traveling control ECU 90 and the brake ECU 110.

マネージャECU50は、複数の運転支援ECU60等から指示を受け取った場合、いずれの指示に従って車両を制御するかを決定する、調停と呼ばれる処理を所定の規則に基づいて行い、調停結果に基づいてアクチュエータECUに指示を行う。ユーザのステアリングホイール、ブレーキペダル、アクセルペダル等への操作内容は、マネージャECU50によって取得されマネージャECU50による調停処理の対象とされてもよいし、アクチュエータECUによって取得され、アクチュエータECUが、ユーザの手動運転操作とマネージャECU50からの指示とを個別に調停してもよい。 When the manager ECU 50 receives instructions from a plurality of driving support ECUs 60 and the like, the manager ECU 50 performs a process called arbitration, which determines which instruction to control the vehicle, based on a predetermined rule, and the actuator ECU 50 is based on the arbitration result. Give instructions to. The operation content of the user's steering wheel, brake pedal, accelerator pedal, etc. may be acquired by the manager ECU 50 and subject to arbitration processing by the manager ECU 50, or acquired by the actuator ECU, and the actuator ECU is manually operated by the user. The operation and the instruction from the manager ECU 50 may be arbitrated individually.

記憶部70は、ユーザの1つ以上の走行履歴を記憶する。走行履歴は、過去に車両を運転したときの、運転期間内の各時点における車両の速度を含む情報である。記憶部70は、例えば車両がパワーオン状態である間に、車両が備える車速センサ等から取得した車両の速度を定期的に記憶することで走行履歴を生成する。記憶部70は、例えばカーナビゲーションシステムの一部として設けられてもよい。 The storage unit 70 stores one or more travel histories of the user. The traveling history is information including the speed of the vehicle at each time point in the driving period when the vehicle has been driven in the past. The storage unit 70 generates a traveling history by periodically storing the speed of the vehicle acquired from a vehicle speed sensor or the like provided in the vehicle while the vehicle is in the power-on state, for example. The storage unit 70 may be provided, for example, as part of a car navigation system.

通信部80は、車外のサーバーや他の車両等と無線通信可能であり、他の車両の走行結果に基づいて得られたユーザ以外の走行履歴を受信することができる。 The communication unit 80 can wirelessly communicate with a server outside the vehicle, another vehicle, or the like, and can receive a travel history other than the user obtained based on the travel results of the other vehicle.

走行制御装置10は、作成部11、推定部12、決定部13を含むECUである。作成部11は、走行履歴に基づいて、速度プロファイルを作成する。推定部12は、速度プロファイルに基づいて、回生制動によって回収可能なエネルギーである回生エネルギーの予想量を推定する。決定部13は、回生エネルギーの予想量に基づいて、電動機31および内燃エンジン21のうち走行に用いるものを決定する。 The travel control device 10 is an ECU including a creation unit 11, an estimation unit 12, and a determination unit 13. The creation unit 11 creates a speed profile based on the travel history. The estimation unit 12 estimates the estimated amount of regenerative energy, which is the energy that can be recovered by regenerative braking, based on the velocity profile. The determination unit 13 determines which of the electric motor 31 and the internal combustion engine 21 to be used for traveling based on the expected amount of regenerative energy.

以上の各ECUは、典型的にはメモリとプロセッサとを備えたコンピューターである。各ECUのプロセッサは、例えば、非一時的なメモリに記憶されたプログラムを読み出して実行することで機能を実現する。これらのECUは通信線によって互いに接続されており、互いに適宜通信することによって協調的に動作することができる。 Each of the above ECUs is typically a computer provided with a memory and a processor. The processor of each ECU realizes a function by reading and executing a program stored in a non-temporary memory, for example. These ECUs are connected to each other by a communication line, and can operate cooperatively by appropriately communicating with each other.

なお、以上説明した、車両搭載の機器の構成および走行制御装置10の構成は一例であって、適宜、追加、置換、変更、省略が可能である。また、各機器の機能は適宜1つの機器に統合したり複数の機器に分散したりして実装することが可能である。 The configuration of the vehicle-mounted device and the configuration of the travel control device 10 described above are examples, and can be added, replaced, changed, or omitted as appropriate. Further, the functions of each device can be appropriately integrated into one device or distributed to a plurality of devices for implementation.

例えば、走行制御装置10は、独立したECUとして設けてもよいが、マネージャECU50あるいは走行制御ECU90等の一部として設けてもよいし、走行制御装置10の機能を、マネージャECU50あるいは走行制御ECU90等に分散して設けてもよい。 For example, the travel control device 10 may be provided as an independent ECU, may be provided as a part of the manager ECU 50 or the travel control ECU 90, or the like, and the function of the travel control device 10 may be provided as the manager ECU 50, the travel control ECU 90, or the like. It may be distributed in the above.

また、例えば、走行制御装置10、運転支援ECU60、自動運転ECU65、マネージャECU50、走行制御ECU90等を1つのECUとして設けてもよい。また、例えば、自動運転ECU65は、設けなくてもよい。 Further, for example, the travel control device 10, the operation support ECU 60, the automatic operation ECU 65, the manager ECU 50, the travel control ECU 90, and the like may be provided as one ECU. Further, for example, the automatic operation ECU 65 may not be provided.

<処理>
以下に、本実施形態に係る処理の詳細を説明する。図2は、走行制御装置10が実行する処理のフローチャートである。本処理は、例えば、ユーザが車両をパワーオン状態にしてトリップを開始するときに開始され、パワーオフ状態にしてトリップを終了するまでの間、実行される。
<Processing>
The details of the processing according to the present embodiment will be described below. FIG. 2 is a flowchart of processing executed by the travel control device 10. This process is started, for example, when the user powers on the vehicle and starts a trip, and is executed until the user turns the vehicle into a power-off state and ends the trip.

(ステップS101):作成部11は、速度プロファイルを作成する。速度プロファイルは、今回のトリップにおいて予想される各時点での車両の速度を表す情報である。 (Step S101): The creation unit 11 creates a speed profile. The speed profile is information that represents the speed of the vehicle at each point in time expected during this trip.

図3に速度プロファイルの例を示す。図3には、横軸にトリップ開始からの経過時間を取り、縦軸に車両の速度を取って、一例として、日本国において定められた燃料消費率試験(JC08モード)で用いられる速度変化パターンに基づく速度プロファイルを示す。速度プロファイルのグラフには一般に複数のピークが含まれ、1トリップ中に加速と減速とが繰り返されることを表している。 FIG. 3 shows an example of a speed profile. In FIG. 3, the horizontal axis represents the elapsed time from the start of the trip, and the vertical axis represents the speed of the vehicle. As an example, the speed change pattern used in the fuel consumption rate test (JC08 mode) established in Japan. The speed profile based on is shown. The velocity profile graph generally contains a plurality of peaks, indicating that acceleration and deceleration are repeated during one trip.

作成部11は、例えば、記憶部70に記憶されている走行履歴に基づいて、速度プロファイルを作成することができる。簡単な例では、ユーザの走行パターンが、通勤のために平日の同じ時間帯に同じ経路を走行するパターンのみの場合、走行履歴に含まれる速度の経時変化のパターンは略同じとなると考えられる。このような場合、作成部11は、過去の走行履歴のいずれかに基づいて速度プロファイルを作成すればよい。 The creation unit 11 can create a speed profile based on, for example, the travel history stored in the storage unit 70. In a simple example, if the user's driving pattern is only a pattern of traveling on the same route at the same time zone on weekdays for commuting, it is considered that the pattern of the time-dependent change in speed included in the traveling history is substantially the same. In such a case, the creation unit 11 may create a speed profile based on any of the past travel histories.

また、記憶部70が、走行履歴に走行した曜日や時間帯等の属性を対応づけて分類して記憶しておき、作成部11が、今回のトリップの曜日や時間帯等の属性との一致数の多い走行履歴に基づいて速度プロファイルを作成してもよい。これにより、走行パターンが1つでないユーザの場合でも、属性ごとの走行パターンの共通性があれば、一定の精度で走行パターンを特定して精度よく速度プロファイルを作成することができる。 Further, the storage unit 70 associates the travel history with attributes such as the day of the week and the time zone of travel, classifies and stores them, and the creation unit 11 matches the attributes such as the day of the week and the time zone of this trip. A speed profile may be created based on a large number of travel histories. As a result, even if the user does not have one running pattern, if the running patterns are common to each attribute, the running pattern can be specified with a certain accuracy and the speed profile can be created with high accuracy.

また、記憶部70が、車両が備えるナビゲーションシステム等から走行経路を取得して走行履歴に含ませて記憶しておき、作成部11が、今回のトリップの走行経路との類似度が高い走行履歴に基づいて速度プロファイルを作成してもよい。この方法は、ユーザが、今回のトリップにおいてナビゲーションシステム等に走行経路設定を行うこと等により、作成部11が設定された走行経路を取得できた場合に実行可能であるが、速度プロファイルの精度を向上できる。 Further, the storage unit 70 acquires a travel route from a navigation system or the like provided in the vehicle, includes it in the travel history, and stores it, and the creation unit 11 stores the travel history having a high degree of similarity to the travel route of this trip. You may create a speed profile based on. This method can be executed when the user can acquire the travel route set by the creation unit 11 by setting the travel route in the navigation system or the like in this trip, but the accuracy of the speed profile can be improved. Can be improved.

また、今回のトリップに走行経路が設定されている場合であれば、作成部11は、通信部80を介して、サーバーに走行経路に沿った制限速度や渋滞予想等の道路交通情報を問い合わせ、これに基づいて速度プロファイルを作成してもよいし、走行経路に沿った道路交通情報に基づいて速度プロファイルを作成することができるサーバーに、通信部80を介して速度プロファイルの作成を要求して、作成された速度プロファイルを取得してもよい。 If a travel route is set for this trip, the creation unit 11 inquires the server of road traffic information such as the speed limit and congestion forecast along the travel route via the communication unit 80. A speed profile may be created based on this, or a server capable of creating a speed profile based on road traffic information along a travel route is requested to create a speed profile via the communication unit 80. , You may get the created speed profile.

作成部11は、通信部80を介してユーザ以外の走行履歴を取得し、これに基づいて、速度プロファイルを作成してもよい。サーバーは、例えば、曜日、時間帯、走行経路等と対応付けられた走行履歴を多数の車両から収集して分類して記憶しており、作成部11は、サーバーに問い合わせて、今回のトリップと分類の一致度の高い走行履歴を取得しこれに基づいて、速度プロファイルとすればよい。 The creation unit 11 may acquire a travel history other than the user via the communication unit 80 and create a speed profile based on the travel history. The server collects, classifies, and stores the travel history associated with, for example, the day of the week, the time zone, the travel route, etc. from a large number of vehicles, and the creation unit 11 inquires of the server to perform this trip. A running history with a high degree of matching of classification may be acquired, and a speed profile may be obtained based on this.

また、サーバーは、複数の人をグループ分けし、グループごとにその人の走行履歴を記憶しており、作成部11は、ユーザと同じグループから選択した走行履歴に基づいて速度プロファイルを作成してもよい。例えば、自宅および職場が、それぞれ同一の地域にある人を同じグループとすれば、通勤のために走行する場合の速度プロファイルの精度を向上できる。 In addition, the server divides a plurality of people into groups and stores the travel history of each person, and the creation unit 11 creates a speed profile based on the travel history selected from the same group as the user. May be good. For example, if people in the same area at home and at work are grouped in the same group, the accuracy of the speed profile when traveling for commuting can be improved.

あるいは、作成部11は、通信部80を介して、サーバーの代わりに1つ以上の他の車両からその車両が記憶している走行履歴を取得し、これに基づいて、上述と同様に速度プロファイルを作成してもよい。 Alternatively, the creation unit 11 acquires the travel history stored by the vehicle from one or more other vehicles instead of the server via the communication unit 80, and based on this, the speed profile as described above. May be created.

なお、上述の各方法において、速度プロファイルの候補となる走行履歴が複数ある場合は、例えば、作成部11は、いずれか任意の1つを速度プロファイルとしてもよく、これらを平均化したものを速度プロファイルとしてもよい。速度プロファイルの作成方法は限定されず、上述の各方法を適宜組み合わせてもよい。また、ユーザの走行履歴およびユーザ以外の走行履歴のいずれかのみを用いて速度プロファイルを作成してもよく、両方を用いて速度プロファイルを作成してもよい。 In each of the above methods, when there are a plurality of running histories that are candidates for the speed profile, for example, the creation unit 11 may use any one of them as the speed profile, and the average of these may be used as the speed. It may be a profile. The method for creating the speed profile is not limited, and the above methods may be combined as appropriate. Further, the speed profile may be created using only one of the driving history of the user and the traveling history other than the user, or the speed profile may be created using both of them.

(ステップS102):推定部12は、速度プロファイルを所定の近似モデルで近似する。本実施形態では、近似にガウス関数の和を用いる。図4に(式1)で表される、時間tを変数とするガウス関数のグラフ(t≧0)を示す。ここでμはピークの位置(時刻)、vmaxはピークの値、σは分布の広がりを規定するパラメータである。 (Step S102): The estimation unit 12 approximates the velocity profile with a predetermined approximation model. In this embodiment, the sum of Gaussian functions is used for approximation. FIG. 4 shows a graph (t ≧ 0) of a Gaussian function represented by (Equation 1) with time t as a variable. Here, μ is the peak position (time), v max is the peak value, and σ is a parameter that defines the spread of the distribution.

Figure 2021075266
Figure 2021075266

(式1)において、パラメータμ、vmax、σを好適に定めて、図3に示した速度プロファイルの0≦t≦100(秒)の部分における速度変化を近似したグラフを図5に示す。図5には速度プロファイルを点線で示し、近似グラフを実線で示す。 FIG. 5 shows a graph in which the parameters μ, v max , and σ are suitably defined in (Equation 1), and the speed change in the 0 ≦ t ≦ 100 (seconds) portion of the speed profile shown in FIG. 3 is approximated. In FIG. 5, the velocity profile is shown by a dotted line, and the approximate graph is shown by a solid line.

速度プロファイルからパラメータμ、vmax、σを算出する方法は限定されないが、最小二乗法等を用いると計算量が多くなる。ここで、計算量を低減できる好適な算出方法の一例を説明する。図5に示すように、速度プロファイルが表す速度が0より大きくなる発進時刻をT0とし、その後速度が0に戻る停止時刻をT1としたとき、この方法では時刻T0から時刻T1までの区間の速度プロファイルを、この区間がμ±3σの範囲となるガウス関数で近似する。すなわち、この方法では、区間の期間の長さをT’とすると、パラメータσは(式2)によって算出することができる。 The method of calculating the parameters μ, v max , and σ from the velocity profile is not limited, but the amount of calculation increases when the least squares method or the like is used. Here, an example of a suitable calculation method capable of reducing the amount of calculation will be described. As shown in FIG. 5, when the start time at which the speed represented by the speed profile becomes greater than 0 is T0 and the stop time at which the speed returns to 0 is T1, this method is the speed in the section from time T0 to time T1. The profile is approximated by a Gaussian function in which this interval is in the range μ ± 3σ. That is, in this method, assuming that the length of the period of the interval is T', the parameter σ can be calculated by (Equation 2).

Figure 2021075266
Figure 2021075266

また、この区間における平均速度vavについては、この近似のもと、(式3)が成り立つ。 Further, for the average velocity vav in this section, (Equation 3) holds based on this approximation.

Figure 2021075266
Figure 2021075266

したがって、パラメータvmaxは、(式4)によって算出することができる。なお、(式4)において、Dは、この区間における走行距離である。 Therefore, the parameter v max can be calculated by (Equation 4). In (Equation 4), D is the mileage in this section.

Figure 2021075266
Figure 2021075266

また、パラメータμは、(式5)によって算出することができる。 Further, the parameter μ can be calculated by (Equation 5).

Figure 2021075266
Figure 2021075266

このように、速度プロファイルの速度が正である1区間の速度をガウス関数で近似する場合、パラメータμ、vmax、σは、その区間における、走行開始時刻と、車両の平均速度vav、走行距離Dまたは走行所要時間T’とによって算出することができる。パラメータの算出にあたり、実績値に基づく平均速度vavおよび走行所要時間T’を用いてもよいし、実績値に基づく走行距離Dおよび走行所要時間T’を用いてもよいし、実績値に基づく走行距離Dおよび平均速度vavを用いてもよい。本算出方法によれば、ガウス関数のパラメータは、簡単な演算により、少ない計算量で算出することができ、処理負荷を抑制できる。 In this way, when the speed of one section where the speed of the speed profile is positive is approximated by the Gaussian function, the parameters μ, v max , and σ are the running start time, the average speed vav of the vehicle, and running in that section. It can be calculated by the distance D or the travel time T'. In calculating the parameters, the average speed vav and the required travel time T'based on the actual value may be used, the mileage D and the required travel time T'based on the actual value may be used, or the actual value is used. The mileage D and the average speed vav may be used. According to this calculation method, the parameters of the Gaussian function can be calculated with a small amount of calculation by a simple calculation, and the processing load can be suppressed.

本実施形態では、速度プロファイルの全体を、相異なるピーク位置μを有し、上述のような各区間にそれぞれ対応するガウス関数の和で近似する。各ガウス関数は、相異なるピーク値vmaxi、分布の広がりσを持ちうる。用いるガウス関数の数をNとすると、μ、vmaxi、σ(i=1、2、…、N)をパラメータとして、近似式は(式6)のように表すことができる。 In the present embodiment, the entire speed profile, having different peak positions mu i, is approximated by the sum of the corresponding Gaussian function in each section as described above. Each Gaussian function can have different peak values v maxi and distribution spread σ i . Assuming that the number of Gaussian functions used is N , the approximate expression can be expressed as (Equation 6) with μ i , v maxi , and σ i (i = 1, 2, ..., N) as parameters.

Figure 2021075266
Figure 2021075266

ここで、パラメータμ、vmaxi、σ(i=1、2、…、N)は、上述の算出方法を用いて算出することができる。あるいは、これらのパラメータは、他の公知のフィッティング手法を利用して導出することもできる。例えば、速度プロファイルの速度値V(t)と近似値v(t)との差の絶対値を、速度プロファイルの全期間(0≦t≦T)にわたって積分した積分値Sが最小となるようにパラメータを定めることもできる。積分値Sは、(式7)で表される。 Here, the parameters μ i , v maxi , and σ i (i = 1, 2, ..., N) can be calculated by using the above-mentioned calculation method. Alternatively, these parameters can be derived using other known fitting techniques. For example, the integral value S obtained by integrating the absolute value of the difference between the velocity value V (t) of the velocity profile and the approximate value v (t) over the entire period (0 ≦ t ≦ T) of the velocity profile is minimized. You can also set parameters. The integrated value S is represented by (Equation 7).

Figure 2021075266
Figure 2021075266

この方法によって、(式6)のパラメータμ、vmaxi、σ(i=1、2、…、N)を導出し、図3に示した速度プロファイルの全期間にわたる速度変化を、近似したグラフを図6に示す。図6には速度プロファイルを点線で示し、近似グラフを実線で示す。この例ではN=10とした。 By this method, the parameters μ i , v maxi , σ i (i = 1, 2, ..., N) of (Equation 6) were derived, and the velocity change of the velocity profile shown in FIG. 3 was approximated over the entire period. The graph is shown in FIG. In FIG. 6, the velocity profile is shown by a dotted line, and the approximate graph is shown by a solid line. In this example, N = 10.

図6に示す通り、1トリップにおける速度変化を特徴づける良好な近似が得られることが分かる。Nの値は限定されず、速度プロファイルのトリップ期間の長さや、速度変化におけるピークの数に応じて定めればよいが、例えば、1200秒程度のトリップの場合、N=10程度で十分よい近似が得られ、N=20でさらによい近似が得られる。なお、トリップ期間が比較的短い場合や、ピークの数が比較的少ない場合はN=1としてもよい。 As shown in FIG. 6, it can be seen that a good approximation is obtained that characterizes the velocity change in one trip. The value of N is not limited and may be determined according to the length of the trip period of the speed profile and the number of peaks in the speed change. For example, in the case of a trip of about 1200 seconds, N = 10 is a sufficiently good approximation. Is obtained, and a better approximation is obtained at N = 20. When the trip period is relatively short or the number of peaks is relatively small, N = 1 may be set.

(ステップS103):推定部12は、近似モデルを用いて、電動機31の回生制動によって得られるエネルギーである回生エネルギーの予想量を推定する。推定方法を以下に説明する。 (Step S103): The estimation unit 12 estimates the expected amount of regenerative energy, which is the energy obtained by the regenerative braking of the electric motor 31, using the approximate model. The estimation method will be described below.

まず、推定部12は、速度v(t)を維持するために車両に与えるべき仕事率である必要パワーP(t)を導出する。P(t)は(式8)のように表される。 First, the estimation unit 12 derives the required power P (t), which is the power to be given to the vehicle in order to maintain the speed v (t). P (t) is expressed as (Equation 8).

Figure 2021075266
Figure 2021075266

ここで、mは車両の重量である。m・dv(t)/dtは、車両の運動量の変化率を表し、a・(v(t))+b・v(t)+cは、走行抵抗を表す。必要パワーP(t)は、これらに車両の速度v(t)を乗じたものの合計である。すなわち、必要パワーP(t)は、車両の運動エネルギーの変化に寄与する仕事率と、走行抵抗によって消散する仕事率との合計であり、時間tにおいて速度v(t)を実現するために必要とされる仕事率である。走行抵抗は、(式8)に示すように速度の2乗に比例する成分と、1乗に比例する成分と、定数成分との和で表すことで好適に近似することができる。 Here, m is the weight of the vehicle. m · dv (t) / dt represents the rate of change in the momentum of the vehicle, and a · (v (t)) 2 + b · v (t) + c represents the running resistance. The required power P (t) is the sum of these multiplied by the vehicle speed v (t). That is, the required power P (t) is the sum of the power that contributes to the change in the kinetic energy of the vehicle and the power that is dissipated by the running resistance, and is necessary to realize the speed v (t) at time t. It is the power that is said to be. As shown in (Equation 8), the running resistance can be suitably approximated by expressing the sum of the component proportional to the square of the speed, the component proportional to the square, and the constant component.

図7に、横軸に時間を取り、縦軸にパワー(仕事率)を取り、図3に示した速度プロファイルの0≦t≦100(秒)の部分における必要パワーP(t)のうち、運動エネルギーの変化に寄与する量(式8の右辺第1項)の例を実線で示し、走行抵抗によって消散する量(式8の右辺第2項)の例を点線で示す。 In FIG. 7, time is taken on the horizontal axis and power (power) is taken on the vertical axis. Of the required power P (t) in the 0 ≦ t ≦ 100 (seconds) portion of the speed profile shown in FIG. An example of the amount that contributes to the change in kinetic energy (the first term on the right side of the equation 8) is shown by a solid line, and an example of the amount that is dissipated by the running resistance (the second term on the right side of the equation 8) is shown by a dotted line.

また、図8に、横軸に時間を取り、縦軸にパワー(仕事率)を取り、必要パワーP(t)の総量のグラフを示す。 Further, FIG. 8 shows a graph of the total amount of required power P (t), with time on the horizontal axis and power (power) on the vertical axis.

次に、推定部12は、必要パワーP(t)に基づいて、回生エネルギーの回収が可能と予想される期間と予想される回収量の推定を行う。図8に示すグラフにおいて、必要パワーP(t)の値が負となる期間(t1<t<t2)が、回生エネルギーの回収が可能と予想される期間である。また、(式9)に示す、この期間における必要パワーの大きさの積分値、すなわち、図8にハッチングによって示す領域の面積が、回収される回生エネルギーの予想量の推定値Eである。 Next, the estimation unit 12 estimates the period during which the regenerative energy can be recovered and the expected recovery amount based on the required power P (t). In the graph shown in FIG. 8, the period (t1 <t <t2) in which the value of the required power P (t) is negative is the period in which the regenerative energy is expected to be recovered. Further, the integrated value of the magnitude of the required power during this period shown in (Equation 9), that is, the area of the region shown by hatching in FIG. 8 is an estimated value E of the expected amount of regenerative energy to be recovered.

Figure 2021075266
Figure 2021075266

図9に、横軸に時間を取り、縦軸にエネルギーを取り、図8に示した必要パワーの時間0からtまでの積分値I(t)のグラフを示す。I(t)は(式10)によって表される。 FIG. 9 shows a graph of the integrated value I (t) of the required power shown in FIG. 8 from time 0 to t, with time on the horizontal axis and energy on the vertical axis. I (t) is represented by (Equation 10).

Figure 2021075266
Figure 2021075266

図9において、ピークにおけるエネルギー値から、ピーク以降にグラフが平坦となったときのエネルギー値との差が回収される回生エネルギーの予想量の推定値Eに等しい。 In FIG. 9, the difference between the energy value at the peak and the energy value when the graph becomes flat after the peak is equal to the estimated value E of the expected amount of regenerative energy to be recovered.

速度プロファイルの全期間にわたって、このように必要パワーが負となる1つ以上の期間を抽出し、期間ごとに必要パワーの大きさの積分値を求めることで、トリップの開始時に、回生エネルギーが回収できる1つ以上の期間と期間ごとに予想される回収量とを推定することができる。 By extracting one or more periods in which the required power is negative over the entire period of the velocity profile and obtaining the integral value of the required power magnitude for each period, the regenerative energy is recovered at the start of the trip. It is possible to estimate one or more possible periods and the expected recovery amount for each period.

車両の重量m、係数a、b、cは、いずれも基本的には車両の特性によって定められる定数であり、適切な値を設定すれば、良好な推定精度が得られる、しかし、必要パワーに影響を与えうる1つ以上の変動要因を取得できる場合は、取得した変動要因に基づいて、重量m、係数a、b、cの少なくとも1つに、以下のような補正をすれば、より推定精度を向上できる。 The weight m of the vehicle, the coefficients a, b, and c are all constants basically determined by the characteristics of the vehicle, and if appropriate values are set, good estimation accuracy can be obtained, but the required power can be obtained. If one or more variable factors that can affect the effect can be obtained, the weight m, the coefficients a, b, and c can be further estimated by making the following corrections based on the obtained variable factors. The accuracy can be improved.

例えば、推定部12は、車両が備える重量センサ等やユーザからの入力によって乗員や荷物等の積載重量を取得できる場合は、車両の重量mに車両自体の重量に積載重量を加えて重量mを補正してもよい。 For example, when the estimation unit 12 can acquire the load weight of the occupants, luggage, etc. by input from the weight sensor or the like provided in the vehicle or the user, the weight m is obtained by adding the load weight to the weight of the vehicle itself to the weight m of the vehicle. It may be corrected.

また、推定部12は、路面の種別、路面の勾配、天候等の走行抵抗の変動要因が取得できる場合は、係数a、b、cを、これらによって補正してもよい。 Further, when the estimation unit 12 can acquire the fluctuation factors of the running resistance such as the type of the road surface, the slope of the road surface, and the weather, the coefficients a, b, and c may be corrected by these factors.

例えば、今回のトリップに走行経路が設定されている場合、路面の種別、路面の勾配を特定して、これらの情報を用いて係数を補正することができる。路面の種別、路面の勾配の情報は、予め記憶部70に地図情報に対応付けて記憶させておいてもよいし、通信部80が外部のサーバー等から取得してもよい。また、天候を用いて係数を補正することができる。天候は、車両が備える各種センサによって取得してもよいし、通信部80が外部のサーバー等から取得してもよい。 For example, when a traveling route is set for this trip, the type of the road surface and the slope of the road surface can be specified, and the coefficient can be corrected by using this information. Information on the type of road surface and the slope of the road surface may be stored in advance in the storage unit 70 in association with the map information, or may be acquired by the communication unit 80 from an external server or the like. In addition, the coefficient can be corrected using the weather. The weather may be acquired by various sensors provided in the vehicle, or may be acquired by the communication unit 80 from an external server or the like.

例えば、路面が砂利道のように比較的すべりやすい場合には比較的すべりにくい舗装道路である場合に比べて走行抵抗が大きくなるよう補正する。 For example, when the road surface is relatively slippery such as a gravel road, the running resistance is corrected to be larger than when the road surface is a paved road which is relatively difficult to slip.

また、路面の勾配が登坂路であることを示す場合は、平坦路である場合に比べて走行抵抗が大きくなるように補正し、降坂路であることを示す場合は、平坦路である場合に比べて走行抵抗が小さくなるように補正する。なお、(式8)において、車両の位置エネルギーの増減による必要パワーP(t)への影響は、この、路面の勾配に基づく走行抵抗の補正によって反映される。 In addition, when the slope of the road surface indicates that it is an uphill road, it is corrected so that the running resistance becomes larger than when it is a flat road, and when it indicates that it is a downhill road, it is a flat road. Correct so that the running resistance is smaller than that. In (Equation 8), the influence of the increase / decrease in the potential energy of the vehicle on the required power P (t) is reflected by the correction of the traveling resistance based on the slope of the road surface.

また、天候が雨や雪の場合は、晴れの場合より走行抵抗が大きくなるよう補正する。また、今回のトリップに走行経路が設定されている場合、車両の進行方向が推定できるので、天候として風量と風向とに基づいて、走行抵抗を補正してもよい。例えば、風量が0でない場合は、風量と風向とに応じて、風量0の場合に比べて、向かい風であれば走行抵抗が大きくなるよう補正し、追い風であれば小さくなるよう補正する。 In addition, when the weather is rain or snow, the running resistance is corrected to be larger than when it is sunny. Further, when the traveling route is set for this trip, the traveling direction of the vehicle can be estimated, so that the traveling resistance may be corrected based on the air volume and the wind direction as the weather. For example, when the air volume is not 0, the traveling resistance is corrected to be larger if it is a head wind and smaller if it is a tail wind, depending on the air volume and the wind direction.

このような走行抵抗の補正を行う場合、具体的には、係数a、b、cの値を変更することになる。この場合、係数a、b、cは、車両の位置に応じて変化することになるが、(式6)の近似式を介して、a、b、cをそれぞれ、時間tの関数に帰着させることができる。なお、変動要因が走行抵抗に与える影響の速度依存特性を考慮すれば、係数a、b、cのうち、いずれをどの程度補正するかを適宜決定することができる。 When correcting such running resistance, specifically, the values of the coefficients a, b, and c are changed. In this case, the coefficients a, b, and c will change depending on the position of the vehicle, but a, b, and c are each reduced to a function of time t via the approximate expression of (Equation 6). be able to. In consideration of the speed-dependent characteristic of the influence of the fluctuation factor on the running resistance, it is possible to appropriately determine which of the coefficients a, b, and c should be corrected and to what extent.

また、推定部12は、以上のような補正の代わりに、あるいは、以上のような補正に加えて、上述の変動要因に応じて、推定値Eの値に補正を行ってもよい。すなわち、変動要因によって積載重量が大きくなるほど、あるいは、走行抵抗が大きくなるほど補正後の推定値Eの値が小さくなるよう、期間ごとに補正係数α(例えば0≦α≦1)を定めて、(式11)のように補正を行ってもよい。 Further, the estimation unit 12 may make a correction to the value of the estimated value E in place of the above-mentioned correction, or in addition to the above-mentioned correction, according to the above-mentioned fluctuation factors. That is, the correction coefficient α (for example, 0 ≦ α ≦ 1) is set for each period so that the value of the corrected estimated value E becomes smaller as the load weight becomes larger or the running resistance becomes larger due to fluctuation factors. The correction may be performed as in the formula 11).

Figure 2021075266
Figure 2021075266

この補正係数αには、回生制動の効率が高いほど補正後の推定値Eが大きくなるよう回生制動の効率を反映してもよい。回生制動の効率は、例えば、速度v(t)に応じて想定される電動機31の回転数および回転数に対応する効率マップに基づいて導出することができる。 The correction coefficient α may reflect the efficiency of regenerative braking so that the higher the efficiency of regenerative braking, the larger the estimated value E after correction. The efficiency of regenerative braking can be derived, for example, based on the rotation speed of the motor 31 assumed according to the speed v (t) and the efficiency map corresponding to the rotation speed.

なお、以上の処理のための具体的な数値計算方法は限定されず、公知の計算アルゴリズムを適宜用いることができる。本実施形態ではガウス関数を用いた近似により、速度プロファイルの特徴を比較的少ないパラメータで表現できるので計算量を抑制できる。また、複数の数値に対するガウス関数やその導関数の関数値や、複数の数値範囲におけるガウス関数の定積分値を、数値表として予め用意しておき、数値表を適宜参照して計算に利用すれば、計算量をさらに低減することができる。 The specific numerical calculation method for the above processing is not limited, and a known calculation algorithm can be appropriately used. In the present embodiment, the characteristics of the velocity profile can be expressed with relatively few parameters by the approximation using the Gaussian function, so that the amount of calculation can be suppressed. In addition, prepare the function values of the Gauss function and its derivatives for multiple numerical values and the constant integral value of the Gauss function in multiple numerical ranges in advance as a numerical table, and use it for calculation by referring to the numerical table as appropriate. For example, the amount of calculation can be further reduced.

(ステップS104):決定部13は、電動機31を用いた走行を行う条件が成立したか否かを判定する。本実施形態では、一例として、決定部13は、電動機31と内燃エンジン21とのうち、電動機31のみを用いて走行する電動機モードと内燃エンジン21のみを用いて走行する内燃エンジンモードとの間で走行モードを切り替える制御を行う。 (Step S104): The determination unit 13 determines whether or not the condition for traveling using the electric motor 31 is satisfied. In the present embodiment, as an example, the determination unit 13 is between the electric motor 31 and the internal combustion engine 21 between the electric motor mode in which only the electric motor 31 is used and the internal combustion engine mode in which only the internal combustion engine 21 is used. Controls to switch the driving mode.

ここでは、決定部13は、車両が備える各種センサや、運転支援ECU60、マネージャECU50等から各種情報を適宜取得して、一例として以下のように判定を行う。 Here, the determination unit 13 appropriately acquires various information from various sensors provided in the vehicle, the driving support ECU 60, the manager ECU 50, and the like, and makes a determination as follows as an example.

(1)車両を減速する意図が成立したときは以下の(1−1)〜(1−3)の条件が成立しているか判定を行う。なお、車両が減速する意図が成立するとは、例えば、車両の走行中に、ユーザによるブレーキペダル操作が行われたこと、および、ユーザによるアクセルペダル操作が解除されたことの少なくとも一方が成立すること、あるいは、運転支援ECU60の運転支援機能や自動運転ECU65の自動運転機能が動作中に、これらのECUから減速や停止を表す指示があったことである。 (1) When the intention to decelerate the vehicle is satisfied, it is determined whether the following conditions (1-1) to (1-3) are satisfied. It should be noted that the intention of decelerating the vehicle is satisfied, for example, at least one of the fact that the user has operated the brake pedal and the user has released the accelerator pedal operation while the vehicle is running. Alternatively, while the driving support function of the driving support ECU 60 or the automatic driving function of the automatic driving ECU 65 is operating, an instruction indicating deceleration or stop is given from these ECUs.

(1−1)車両の速度が第1速度閾値以上である。
現在の車両の実際の速度が比較的低速であれば、回生制動時に電動機31の十分な回転数が得られず効率的な回生エネルギーの回収が期待できない。そこで、車両の速度が一定程度の回生効率が期待できる速度として定められた第1速度閾値以上であるか否かを判定する。
(1-1) The speed of the vehicle is equal to or higher than the first speed threshold.
If the actual speed of the current vehicle is relatively low, sufficient rotation speed of the motor 31 cannot be obtained during regenerative braking, and efficient recovery of regenerative energy cannot be expected. Therefore, it is determined whether or not the speed of the vehicle is equal to or higher than the first speed threshold value defined as the speed at which a certain degree of regeneration efficiency can be expected.

(1−2)必要パワーが第1パワー閾値以下である。
現在の必要パワーが比較的大きい場合、内燃エンジン21では必要パワーを出力できても、一般には電動機31は内燃エンジン21より最大出力が小さいため、電動機31では必要パワーを出力できない場合がある。そこで、必要パワーが、電動機31で出力できるパワーとして定められた第1パワー閾値以下であるか否かを判定する。
(1-2) The required power is equal to or less than the first power threshold.
When the current required power is relatively large, even if the internal combustion engine 21 can output the required power, the motor 31 may not be able to output the required power because the maximum output is generally smaller than that of the internal combustion engine 21. Therefore, it is determined whether or not the required power is equal to or less than the first power threshold value defined as the power that can be output by the motor 31.

(1−3)電池41の蓄電率が第1蓄電率閾値以下である。
現在の電池41の蓄電率が高い場合、さらに充電可能な電力量が少なく、回生エネルギーをすべて貯蔵することができないおそれがある。そこで、電池41の蓄電率が、十分な電力量を充電可能な蓄電率として定められた第1蓄電率閾値以下であるか否かを判定する。なお判定には、蓄電率の代わりに蓄電量を用いてもよい。
(1-3) The storage rate of the battery 41 is equal to or lower than the first storage rate threshold.
When the current storage rate of the battery 41 is high, the amount of electric power that can be charged is further small, and there is a possibility that all the regenerative energy cannot be stored. Therefore, it is determined whether or not the storage rate of the battery 41 is equal to or less than the first storage rate threshold value defined as the storage rate capable of charging a sufficient amount of electric power. The amount of electricity stored may be used instead of the electricity storage rate for the determination.

(1−1)〜(1−3)の判定結果がすべて肯定である場合、ステップS105に進み、それ以外の場合はステップS106に進む。 If all the determination results of (1-1) to (1-3) are affirmative, the process proceeds to step S105, and in other cases, the process proceeds to step S106.

(2)上述の(1)以外のとき、すなわち、車両を減速する意図が成立したとき以外は、以下の(2−1)〜(2−4)の条件が成立しているか判定を行う。 (2) Except for cases other than the above-mentioned (1), that is, when the intention to decelerate the vehicle is satisfied, it is determined whether the following conditions (2-1) to (2-4) are satisfied.

(2−1)車両の速度が第2速度閾値未満である。
現在の車両の実際の速度が比較的高速であれば、一般に内燃エンジン21のほうが電動機31より効率がよい。そこで、車両の速度が電動機31のほうが効率がよいと期待できる速度として定められた第2速度閾値未満であるか否かを判定する。なお、第2速度閾値は第1速度閾値より大きい速度である。
(2-1) The speed of the vehicle is less than the second speed threshold.
If the actual speed of the current vehicle is relatively high, the internal combustion engine 21 is generally more efficient than the motor 31. Therefore, it is determined whether or not the speed of the vehicle is less than the second speed threshold value defined as the speed at which the motor 31 can be expected to be more efficient. The second speed threshold is a speed higher than the first speed threshold.

(2−2)必要パワーが第1パワー閾値以下である。
上述の(1−2)と同様の理由で、必要パワーが、電動機31で出力できるパワーとして定められた第1パワー閾値以下であるか否かを判定する。
(2-2) The required power is equal to or less than the first power threshold.
For the same reason as in (1-2) above, it is determined whether or not the required power is equal to or less than the first power threshold value defined as the power that can be output by the motor 31.

(2−3)現在車両に蓄えられている電動機用のエネルギーと、次に回生エネルギーが回収できる期間における回収エネルギーの予想量との合計が、第1エネルギー閾値以上である。
現在車両が電池41において蓄えており電動機31に供給することができる蓄電量と、次に回生エネルギーが回収できる期間において回収できる電力量の予想量との合計量が比較的少ない場合は、電動機31を用いて走行すると電池41の蓄電量が低下し、車両の各機能に支障をきたすおそれがある。そこで、合計量が、十分な量として定められた第1エネルギー閾値以上であるか否かを判定する。
(2-3) The total of the energy for the motor currently stored in the vehicle and the expected amount of recovered energy in the period in which the regenerative energy can be recovered is equal to or higher than the first energy threshold value.
If the total amount of stored electricity that the vehicle currently stores in the battery 41 and can be supplied to the motor 31 and the expected amount of power that can be recovered in the next period when the regenerative energy can be recovered is relatively small, the motor 31 When traveling with the battery 41, the amount of electricity stored in the battery 41 decreases, which may interfere with each function of the vehicle. Therefore, it is determined whether or not the total amount is equal to or greater than the first energy threshold value defined as a sufficient amount.

(2−4)現在、内燃エンジン21を用いて走行中であり、内燃エンジン21の動作を開始してから第1時間閾値以上経過した。
内燃エンジン21の動作が開始した直後に動作を止めると、ユーザに、内燃エンジン21の不具合や車両挙動の不安定さの感覚を与え、違和感や不安感の原因となるおそれがある。そこで、内燃エンジン21の動作を開始してから、内燃エンジン21の動作を止めても違和感等を生じない十分な経過時間として定められた第1時間閾値以上経過したか否かを判定する。
(2-4) Currently, the vehicle is running using the internal combustion engine 21, and the first time threshold value or more has elapsed since the operation of the internal combustion engine 21 was started.
If the operation of the internal combustion engine 21 is stopped immediately after the operation is started, the user may feel that the internal combustion engine 21 is malfunctioning or the vehicle behavior is unstable, which may cause discomfort or anxiety. Therefore, it is determined whether or not the first time threshold value or more, which is set as a sufficient elapsed time that does not cause discomfort even if the operation of the internal combustion engine 21 is stopped after the operation of the internal combustion engine 21 is started, has elapsed.

(2−1)〜(2−4)の判定結果がすべて肯定である場合、ステップS105に進み、それ以外の場合はステップS106に進む。 If all the determination results of (2-1) to (2-4) are affirmative, the process proceeds to step S105, and in other cases, the process proceeds to step S106.

(ステップS105):決定部13は、走行モードを電動機モードに決定する。本実施形態では、決定部13は、走行モードを電動機モードとすることを走行制御ECU90に通知する。走行制御ECU90は、電動機ECU30に電動機31による走行を制御させる。 (Step S105): The determination unit 13 determines the traveling mode to the motor mode. In the present embodiment, the determination unit 13 notifies the travel control ECU 90 that the travel mode is set to the motor mode. The travel control ECU 90 causes the motor ECU 30 to control travel by the motor 31.

電動機モードでは、回生制動が行われ車両の運動エネルギーを電力として回収する。ユーザがブレーキペダルを大きく踏み込んだり、運転支援ECU60が衝突回避等のため優先度の高い急減速の指示を行ったりして、一定以上の減速度が要求されている場合は、十分な制動力を発生させるためマネージャECU50、ブレーキECU110により、ブレーキ装置111による制動力を発生させる制御が行われる。 In the motor mode, regenerative braking is performed and the kinetic energy of the vehicle is recovered as electric power. If the user depresses the brake pedal a lot, or the driving support ECU 60 gives a high-priority sudden deceleration instruction to avoid a collision, etc., and a certain level of deceleration is required, sufficient braking force is applied. In order to generate the brakes, the manager ECU 50 and the brake ECU 110 control the brake device 111 to generate the braking force.

(ステップS106):決定部13は、走行モードを内燃エンジンモードに決定する。本実施形態では、決定部13は、走行モードを内燃エンジンモードとすることを走行制御ECU90に通知する。走行制御ECU90は、内燃エンジンECU20に内燃エンジン21による走行を制御させる。 (Step S106): The determination unit 13 determines the traveling mode to the internal combustion engine mode. In the present embodiment, the determination unit 13 notifies the travel control ECU 90 that the travel mode is the internal combustion engine mode. The travel control ECU 90 causes the internal combustion engine ECU 20 to control travel by the internal combustion engine 21.

(ステップS107):作成部11は、回生エネルギーの予想量を更新する条件が成立したか否かを判定する。更新する条件は、例えば、現在までの実際の走行における速度の経時変化と、ステップS101で作成した速度プロファイルとの一致度が、予め適宜定められた許容値より低いことである。一致度は、適宜公知の手法を用いて導出することができる。例えば、速度プロファイルの速度値と実際の速度値との差の絶対値の過去一定期間の積分値に基づいて一致度を導出することができる。一致度が許容値より低い場合、回生エネルギーが回収できる期間や予想量等の精度も低いと考えられる。更新する条件が成立した場合、ステップS108に進み、そうでない場合は、ステップS104に進む。 (Step S107): The creating unit 11 determines whether or not the condition for updating the expected amount of regenerative energy is satisfied. The condition to be updated is, for example, that the degree of agreement between the time-dependent change in speed in actual running up to the present and the speed profile created in step S101 is lower than a predetermined allowable value. The degree of agreement can be derived by using a known method as appropriate. For example, the degree of agreement can be derived based on the integral value of the absolute value of the difference between the velocity value of the velocity profile and the actual velocity value over a certain period of time. If the degree of agreement is lower than the permissible value, it is considered that the accuracy of the period during which the regenerative energy can be recovered and the expected amount are also low. If the condition for updating is satisfied, the process proceeds to step S108, and if not, the process proceeds to step S104.

(ステップS108):推定部12は、回生エネルギーが回収できる期間や予想量の推定を再度行うことでこれらを更新する。更新方法は特に限定されないが、例えば推定部12は、現在までの実際の走行における速度の経時変化との一致度が高くなるよう、速度プロファイルの時間スケールを圧縮または伸張する変形を行い、変形後の速度プロファイルに基づいてステップS102、S103と同様の処理を行うことで、更新を行うことができる。 (Step S108): The estimation unit 12 updates these by re-estimating the period during which the regenerative energy can be recovered and the expected amount. The updating method is not particularly limited, but for example, the estimation unit 12 performs deformation by compressing or expanding the time scale of the speed profile so as to have a high degree of agreement with the time-dependent change of the speed in the actual running up to the present, and after the deformation. The update can be performed by performing the same processing as in steps S102 and S103 based on the speed profile of.

あるいは、作成部11が、ステップS101と同様の処理を行い、現在の速度プロファイルを作成するのに用いた走行履歴以外の走行履歴を選択し、これに基づいて、あらたに速度プロファイルを作成し、推定部12は、新たに作成された速度プロファイルに基づいてステップS102、S103と同様の処理を行うことで、更新を行ってもよい。例えば車両が停止したときに、その時点、その場所から新たなトリップが開始されるとみなしてステップS101と同様にして走行履歴を選択すればよい。 Alternatively, the creation unit 11 performs the same processing as in step S101, selects a travel history other than the travel history used to create the current speed profile, and newly creates a speed profile based on this. The estimation unit 12 may update by performing the same processing as in steps S102 and S103 based on the newly created speed profile. For example, when the vehicle stops, it is considered that a new trip is started from that place at that time, and the travel history may be selected in the same manner as in step S101.

また、このような更新において、上述の変動要因の値が変化している可能性があるので、最新の値を用いて補正を行ってもよい。このような更新を行うことで、回生エネルギーが回収できる期間や予想量の推定精度を向上することができる。本ステップの処理の後、ステップS104に進む。 Further, since the value of the above-mentioned variable factor may have changed in such an update, the latest value may be used for correction. By performing such an update, it is possible to improve the estimation accuracy of the period during which the regenerative energy can be recovered and the estimated amount. After the processing of this step, the process proceeds to step S104.

以上の処理においては、走行モードとして電動機31のみを用いて走行する電動機モードと内燃エンジン21のみを用いて走行する内燃エンジンモードの2つを設定した。上述の条件(2−3)のように、回生エネルギーの回収量が多いと予想できる場合は、少ないと予想される場合に比べて、電動機31を用いて走行する機会を増やして、燃費を向上することができる。このことに着目すれば、電動機モードと内燃エンジンモードと電動機31および内燃エンジン21をともに用いて走行するハイブリッドモードとの3つの走行モードのうち任意の2つの走行モード間での切り替え制御や、3つの走行モード間での切り替え制御における燃費向上にも、回生エネルギーの予想回収量を活用することができる。 In the above processing, two driving modes are set: an electric motor mode in which the vehicle travels using only the motor 31 and an internal combustion engine mode in which the vehicle travels using only the internal combustion engine 21. When the amount of regenerative energy recovered can be expected to be large as in the above condition (2-3), the opportunity to drive using the electric motor 31 is increased and the fuel efficiency is improved as compared with the case where the amount of regenerative energy is expected to be small. can do. Focusing on this, switching control between any two driving modes among the three driving modes of the motor mode, the internal combustion engine mode, and the hybrid mode in which the motor 31 and the internal combustion engine 21 are used together, and 3 The expected recovery amount of regenerated energy can also be used to improve fuel efficiency in switching control between two driving modes.

例えば、回生エネルギーの回収量が多いと予想できる場合は、少ないと予想される場合に比べて、内燃エンジンモードからハイブリッドモードに遷移する機会を増やし、あるいは、ハイブリッドモードから電動機モードに遷移する機会を増やすようにすればよい。 For example, if the amount of regenerative energy recovered can be expected to be large, the opportunity to transition from the internal combustion engine mode to the hybrid mode is increased, or the opportunity to transition from the hybrid mode to the motor mode is increased compared to the case where the amount of regenerative energy is expected to be small. You can increase it.

<効果>
本実施形態に係る走行制御装置10は、車両の速度を予想した速度プロファイルを用いて、回生エネルギーの回収量を早期に定量的に予想できる。この予想結果を活用して、好適な走行制御が可能となる。すなわち、回生エネルギーの回収量が多いと予想できる場合は、少ないと予想される場合に比べて、電動機31を用いて走行する機会を増やして、燃費を向上することができる。
<Effect>
The travel control device 10 according to the present embodiment can quantitatively predict the amount of regenerated energy recovered at an early stage by using a speed profile that predicts the speed of the vehicle. Utilizing this predicted result, suitable running control becomes possible. That is, when the amount of regenerative energy recovered can be expected to be large, the chances of traveling by using the electric motor 31 can be increased and the fuel efficiency can be improved as compared with the case where the amount of regenerative energy is expected to be small.

走行制御装置10は、速度プロファイルをガウス関数で近似することにより、回生エネルギーの予想回収量の計算のためのパラメータ数を抑制し、また、予め用意したガウス関数に関する数値表を参照することで、計算量を抑制することができる。 The travel control device 10 suppresses the number of parameters for calculating the expected recovery amount of regenerative energy by approximating the speed profile with a Gaussian function, and also refers to a numerical table related to the Gaussian function prepared in advance. The amount of calculation can be suppressed.

走行制御装置10は、速度プロファイルを、ユーザやユーザ以外の走行履歴に基づいて作成できるので、ユーザが走行経路を設定していなくても、回生エネルギーの予想回収量を推定することができる。また、ユーザが走行経路を設定している場合はこれを用いて速度プロファイルを作成することができ、推定精度を向上することができる。 Since the travel control device 10 can create a speed profile based on the user and the travel history other than the user, the expected recovery amount of the regenerative energy can be estimated even if the user does not set the travel route. Further, when the user has set a traveling route, a speed profile can be created by using the traveling route, and the estimation accuracy can be improved.

走行制御装置10は、回生エネルギーの回収量に影響を与えると考えられる変動要因に基づいて、予想量を補正するので、変動要因を反映して推定精度を向上することができる。 Since the travel control device 10 corrects the expected amount based on the fluctuation factor that is considered to affect the recovery amount of the regenerative energy, the estimation accuracy can be improved by reflecting the fluctuation factor.

走行制御装置10は、速度プロファイルと実際の車両の速度の経時変化との一致度が低い場合は、予想回収量の推定を再度行うので、推定精度を向上することができる。 When the degree of agreement between the speed profile and the time-dependent change in the actual speed of the vehicle is low, the travel control device 10 re-estimates the expected recovery amount, so that the estimation accuracy can be improved.

走行制御装置10は、走行モードを決定する際、内燃エンジン21および電動機31のいずれが好適であるかを、回生エネルギーの予想回収量だけでなく、電池41の蓄電率、車両の速度、必要パワー等に基づいて、回生エネルギーの貯蔵可能性、動作効率、必要パワーの実現可能性を考慮して判定するので、車両の制御の確実性、安定性を高めることができる。 When determining the traveling mode, the traveling control device 10 determines which of the internal combustion engine 21 and the electric motor 31 is suitable, not only the expected recovery amount of the regenerative energy, but also the storage rate of the battery 41, the speed of the vehicle, and the required power. Since the determination is made in consideration of the regenerative energy storage possibility, the operating efficiency, and the feasibility of the required power based on the above, the reliability and stability of the vehicle control can be improved.

以上、本発明の一実施形態を説明したが、本発明は適宜変形して実施できる。本発明は、走行制御装置だけでなく、プロセッサとメモリとを備えた走行制御装置が実行する走行制御方法、走行制御プログラム、走行制御プログラムを記憶したコンピューター読み取り可能な非一時的な記憶媒体、走行制御装置を備えた車両等として捉えることが可能である。 Although one embodiment of the present invention has been described above, the present invention can be appropriately modified and implemented. INDUSTRIAL APPLICABILITY The present invention includes a travel control method executed by a travel control device including a processor and a memory as well as a travel control device, a travel control program, a computer-readable non-temporary storage medium that stores the travel control program, and travel. It can be regarded as a vehicle equipped with a control device.

本発明は、車両等に搭載される走行制御装置に有用である。 The present invention is useful for a traveling control device mounted on a vehicle or the like.

10 走行制御装置
11 作成部
12 推定部
13 決定部
20 内燃エンジンECU
21 内燃エンジン
22 変速機
30 電動機ECU
31 電動機
40 電池ECU
41 電池
50 マネージャECU
60 運転支援ECU
65 自動運転ECU
70 記憶部
80 通信部
90 走行制御ECU
100 EPSECU
101 EPS装置
110 ブレーキECU
111 ブレーキ装置
10 Travel control device 11 Creation unit 12 Estimating unit 13 Determining unit 20 Internal combustion engine ECU
21 Internal combustion engine 22 Transmission 30 Motor ECU
31 Motor 40 Battery ECU
41 Battery 50 Manager ECU
60 Driving support ECU
65 Automatic operation ECU
70 Storage unit 80 Communication unit 90 Travel control ECU
100 EPS ECU
101 EPS device 110 Brake ECU
111 Brake device

Claims (12)

動力源として電動機および内燃エンジンを備える車両に搭載される走行制御装置であって、
各時刻における車両の速度を予想した速度プロファイルを作成する作成部と、
前記速度プロファイルを所定の近似モデルで近似し、近似結果に基づいて、前記電動機の回生制動によって回収可能なエネルギーである回生エネルギーの予想量を推定する推定部と、
前記回生エネルギーの予想量に基づいて、走行に用いる前記動力源を決定する決定部とを備える、走行制御装置。
A travel control device mounted on a vehicle equipped with an electric motor and an internal combustion engine as a power source.
A creation unit that creates a speed profile that predicts the speed of the vehicle at each time,
An estimation unit that approximates the velocity profile with a predetermined approximation model and estimates the estimated amount of regenerative energy, which is the energy that can be recovered by the regenerative braking of the motor, based on the approximation result.
A travel control device including a determination unit that determines the power source used for travel based on the expected amount of regenerative energy.
前記作成部は、ユーザの走行履歴およびユーザ以外の走行履歴のいずれかまたは両方に基づいて、前記速度プロファイルを作成する、請求項1に記載の走行制御装置。 The travel control device according to claim 1, wherein the creation unit creates the speed profile based on either or both of the travel history of the user and the travel history of a non-user. 前記所定の近似モデルは、前記速度プロファイルが表す車両の速度の経時変化を、相異なるピーク位置を有するガウス関数の和で近似するモデルを用いる、請求項1または2に記載の走行制御装置。 The travel control device according to claim 1 or 2, wherein the predetermined approximation model uses a model that approximates the time course of the vehicle speed represented by the speed profile by the sum of Gaussian functions having different peak positions. 前記推定部は、前記ガウス関数のパラメータを、少なくとも、車両の速度、走行距離、走行時間のいずれか2つを用いて算出する、請求項3に記載の走行制御装置。 The travel control device according to claim 3, wherein the estimation unit calculates a parameter of the Gaussian function using at least any two of a vehicle speed, a mileage, and a travel time. 前記推定部は、前記近似結果に基づいて、車両の運動エネルギーの変化に寄与する仕事率および走行抵抗によって消散する仕事率の合計によって表されるパワーを導出し、前記パワーが負である1つ以上の期間を前記回生エネルギーの回収が可能である期間とし、前記期間の、前記パワーの大きさの時間積分値を、前記期間の前記回生エネルギーの予想量の推定値とする、請求項3または4に記載の走行制御装置。 Based on the approximation result, the estimation unit derives a power represented by the sum of the power that contributes to the change in the kinetic energy of the vehicle and the power that is dissipated by the running resistance. The above period is defined as a period during which the regenerative energy can be recovered, and the time-integrated value of the magnitude of the power in the period is used as an estimated value of the expected amount of the regenerative energy in the period. 4. The travel control device according to 4. 前記推定部は、前記回生エネルギーの予想量を、さらに1つ以上の変動要因に基づいて推定する、請求項5に記載の走行制御装置。 The travel control device according to claim 5, wherein the estimation unit further estimates the expected amount of the regenerative energy based on one or more fluctuation factors. 前記変動要因は、路面の種別、路面の勾配、車両の積載重量、天候の少なくとも1つである、請求項6に記載の走行制御装置。 The travel control device according to claim 6, wherein the variable factor is at least one of the type of road surface, the slope of the road surface, the load weight of the vehicle, and the weather. 前記推定部は、前記変動要因に基づいて、前記パワーを補正する、請求項6または7に記載の走行制御装置。 The travel control device according to claim 6 or 7, wherein the estimation unit corrects the power based on the fluctuation factor. 前記推定部は、前記変動要因に基づいて、前記時間積分値を補正する、請求項6〜8のいずれかに記載の走行制御装置。 The travel control device according to any one of claims 6 to 8, wherein the estimation unit corrects the time integration value based on the fluctuation factor. 前記決定部は、現在車両に蓄えられている前記電動機用のエネルギーと、次の前記期間における前記回生エネルギーの予想量との合計が閾値以上であることを含む条件が成立した場合、前記電動機を用いて走行することを決定する、請求項5〜9のいずれかに記載の走行制御装置。 When the condition including the total of the energy for the motor currently stored in the vehicle and the expected amount of the regenerative energy in the next period is equal to or more than the threshold value, the determination unit sets the motor. The travel control device according to any one of claims 5 to 9, wherein the travel control device is determined to be used for traveling. 動力源として電動機および内燃エンジンを備える車両に搭載される走行制御装置が実行する走行制御方法であって、
各時刻における車両の速度を予想した速度プロファイルを作成するステップと、
前記速度プロファイルを所定の近似モデルで近似し、近似結果に基づいて、前記電動機の回生制動によって回収可能なエネルギーである回生エネルギーの予想量を推定するステップと、
前記回生エネルギーの予想量に基づいて、走行に用いる前記動力源を決定するステップとを備える、走行制御方法。
It is a travel control method executed by a travel control device mounted on a vehicle equipped with an electric motor and an internal combustion engine as a power source.
Steps to create a speed profile that predicts the speed of the vehicle at each time,
A step of approximating the velocity profile with a predetermined approximation model and estimating the expected amount of regenerative energy, which is the energy that can be recovered by the regenerative braking of the motor, based on the approximation result.
A traveling control method including a step of determining the power source to be used for traveling based on the expected amount of regenerative energy.
動力源として電動機および内燃エンジンを備える車両に搭載される走行制御装置のコンピューターに実行させる走行制御プログラムであって、
各時刻における車両の速度を予想した速度プロファイルを作成するステップと、
前記速度プロファイルを所定の近似モデルで近似し、近似結果に基づいて、前記電動機の回生制動によって回収可能なエネルギーである回生エネルギーの予想量を推定するステップと、
前記回生エネルギーの予想量に基づいて、走行に用いる前記動力源を決定するステップとを備える、走行制御プログラム。
A travel control program that is executed by a computer of a travel control device mounted on a vehicle equipped with an electric motor and an internal combustion engine as a power source.
Steps to create a speed profile that predicts the speed of the vehicle at each time,
A step of approximating the velocity profile with a predetermined approximation model and estimating the expected amount of regenerative energy, which is the energy that can be recovered by the regenerative braking of the motor, based on the approximation result.
A travel control program comprising a step of determining the power source to be used for travel based on the expected amount of regenerative energy.
JP2020149077A 2019-11-12 2020-09-04 Travel control device, method and program Pending JP2021075266A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205032 2019-11-12
JP2019205032 2019-11-12

Publications (1)

Publication Number Publication Date
JP2021075266A true JP2021075266A (en) 2021-05-20

Family

ID=73343884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149077A Pending JP2021075266A (en) 2019-11-12 2020-09-04 Travel control device, method and program

Country Status (7)

Country Link
US (1) US20210138909A1 (en)
EP (1) EP3828048B1 (en)
JP (1) JP2021075266A (en)
KR (1) KR102477397B1 (en)
CN (1) CN112848906B (en)
BR (1) BR102020022951A2 (en)
RU (1) RU2749742C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780441B2 (en) 2020-11-17 2023-10-10 Toyota Jidosha Kabushiki Kaisha Traveling control apparatus, traveling control method, and non-transitory storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022150718A (en) * 2021-03-26 2022-10-07 トヨタ自動車株式会社 Travel control apparatus, method, and program
JP2022191935A (en) * 2021-06-16 2022-12-28 日野自動車株式会社 Driving mode control apparatus
KR20230092060A (en) * 2021-12-16 2023-06-26 현대자동차주식회사 Vehicle Driving Controlling Method with Optimal Battery Energy Efficiency

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702086B2 (en) 2006-02-15 2011-06-15 トヨタ自動車株式会社 Vehicle driving support device
JP4816780B2 (en) * 2009-09-11 2011-11-16 株式会社デンソー On-vehicle charge / discharge control device and partial control device included therein
KR102349568B1 (en) * 2013-03-14 2022-01-12 알리손 트랜스미션, 인크. System and method for power management during regeneration mode in hybrid electric vehicles
JP5642253B1 (en) * 2013-11-08 2014-12-17 三菱電機株式会社 Vehicle energy management system
US9751521B2 (en) * 2014-04-17 2017-09-05 Palo Alto Research Center Incorporated Control system for hybrid vehicles with high degree of hybridization
US9327712B2 (en) * 2014-04-22 2016-05-03 Alcatel Lucent System and method for control of a hybrid vehicle with regenerative braking using location awareness
KR101655609B1 (en) * 2014-12-11 2016-09-07 현대자동차주식회사 Method for controlling battery state of charge in hybrid electric vehicle
US9533674B2 (en) * 2015-02-23 2017-01-03 Ford Global Technologies, Llc Battery state of charge engine shut-off threshold based on predicted operation
KR101834144B1 (en) * 2015-06-09 2018-04-13 닛산 지도우샤 가부시키가이샤 The mode transition control device of the hybrid vehicle
US9637111B2 (en) * 2015-06-09 2017-05-02 Mitsubishi Electric Research Laboratories, Inc. Method and system for selecting power sources in hybrid electric vehicles
JP6347235B2 (en) * 2015-07-30 2018-06-27 トヨタ自動車株式会社 Control device for hybrid vehicle
US10093304B2 (en) * 2015-09-11 2018-10-09 Ford Global Technologies, Llc Enhanced electric drive mode having predicted destinations to reduce engine starts
JP6436071B2 (en) * 2015-12-07 2018-12-12 株式会社デンソー Vehicle control device
KR101765635B1 (en) * 2016-02-02 2017-08-07 현대자동차 주식회사 System and method for driving mode conversion of hybrid vehicle
JP2018083574A (en) * 2016-11-25 2018-05-31 株式会社デンソー Travel control device for vehicle
WO2018104850A1 (en) * 2016-12-08 2018-06-14 Kpit Technologies Limited Model predictive based control for automobiles
KR101838512B1 (en) * 2017-04-04 2018-03-14 현대자동차주식회사 Hybrid vehicle and method of controlling charge mode
KR102274125B1 (en) * 2017-06-28 2021-07-06 현대자동차주식회사 Control method for inertia driving of eco-friendly vehicle
US10676088B2 (en) * 2018-06-08 2020-06-09 GM Global Technology Operations LLC Powertrain control system and method of operating the same
CN113993760B (en) * 2019-06-26 2022-10-14 沃尔沃卡车集团 Method for controlling a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780441B2 (en) 2020-11-17 2023-10-10 Toyota Jidosha Kabushiki Kaisha Traveling control apparatus, traveling control method, and non-transitory storage medium

Also Published As

Publication number Publication date
EP3828048B1 (en) 2024-01-24
CN112848906A (en) 2021-05-28
CN112848906B (en) 2023-10-10
EP3828048A1 (en) 2021-06-02
BR102020022951A2 (en) 2021-06-01
KR20210058704A (en) 2021-05-24
RU2749742C1 (en) 2021-06-16
US20210138909A1 (en) 2021-05-13
KR102477397B1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP7342843B2 (en) Travel control device, method and program
JP2021075266A (en) Travel control device, method and program
JP4930446B2 (en) Vehicle travel control device
US7360615B2 (en) Predictive energy management system for hybrid electric vehicles
US11807214B2 (en) Travel control device, travel control method, non-transitory storage medium, and vehicle for deciding a power source for traveling based on a predicted amount of regenerative energy and thermal information
US20240042987A1 (en) Driving control device, method, and non-transitory storage medium
EP2335990B1 (en) Driving support device, method, and storage medium
CN110450786B (en) Method for determining predicted acceleration information in an electric vehicle and electric vehicle
US20220306074A1 (en) Driving control device, driving control method, and non-transitory storage medium
EP4112403A1 (en) Method for the performance-enhancing driver assistance of a road vehicle
KR102529600B1 (en) Hybrid electric vehicle control method and soc trajectory generation method for controlling hybrid electric vehicle
JP2021080941A (en) Gear stage determination device, method and simulation device
US20230278540A1 (en) Traveling control device for vehicle, traveling control method, and storage medium
US20230280168A1 (en) Information processing device, system, and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208