JP2021072255A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2021072255A
JP2021072255A JP2019200107A JP2019200107A JP2021072255A JP 2021072255 A JP2021072255 A JP 2021072255A JP 2019200107 A JP2019200107 A JP 2019200107A JP 2019200107 A JP2019200107 A JP 2019200107A JP 2021072255 A JP2021072255 A JP 2021072255A
Authority
JP
Japan
Prior art keywords
fuel cell
water
exhaust gas
amount
circulation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200107A
Other languages
Japanese (ja)
Other versions
JP7406345B2 (en
Inventor
道忠 岡田
Michitada Okada
道忠 岡田
佐藤 浩之
Hiroyuki Sato
浩之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Dainichi Co Ltd
Original Assignee
Kyocera Corp
Dainichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Dainichi Co Ltd filed Critical Kyocera Corp
Priority to JP2019200107A priority Critical patent/JP7406345B2/en
Publication of JP2021072255A publication Critical patent/JP2021072255A/en
Application granted granted Critical
Publication of JP7406345B2 publication Critical patent/JP7406345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a fuel cell device capable of efficiently recovering water contained in exhaust gas of a fuel cell.SOLUTION: A fuel cell device 100 includes a fuel cell module 1 that generates electricity, a reformer 12 that supplies fuel gas, a heat exchanger 3 that exchanges heat between exhaust gas discharged from a fuel cell and a heat medium, a heat medium circulation pump P1 arranged in a circulation flow path Q that circulates the heat medium, and a control device 20. The control device 20 controls the drive of the heat medium circulation pump P1 according to an exhaust gas fluid value calculated from the exhaust gas.SELECTED DRAWING: Figure 1

Description

本開示は、燃料電池装置に関する。 The present disclosure relates to a fuel cell device.

燃料電池は、水素を含有する原燃料ガスと酸素含有ガス(空気)とを用いて発電を行ない、電気を外部に供給する。また、燃料電池は、原燃料ガスを、水素を含む燃料ガスに改質する改質反応や、発電や、余剰ガスの燃焼などにより生じた排ガス中の熱を回収して温水として貯留し、この温水を直接にまたは間接に外部に供給する、コジェネレーションシステムの一部を構成する。 The fuel cell uses a hydrogen-containing raw fuel gas and an oxygen-containing gas (air) to generate electricity and supply electricity to the outside. In addition, the fuel cell recovers the heat in the exhaust gas generated by the reforming reaction that reforms the raw fuel gas into a fuel gas containing hydrogen, power generation, combustion of surplus gas, etc., and stores it as hot water. It constitutes a part of a cogeneration system that supplies hot water directly or indirectly to the outside.

ところで、燃料電池は、改質反応において水が生成する。また、セルスタックにおける発電反応により、燃料電池セルにおいて水が生成する。したがって、燃料電池の排ガスには、多くの水分(水蒸気)が含まれている。 By the way, in a fuel cell, water is generated in a reforming reaction. In addition, water is generated in the fuel cell due to the power generation reaction in the cell stack. Therefore, the exhaust gas of the fuel cell contains a large amount of water (water vapor).

そこで、燃料電池装置においては、燃料電池から排出された排ガスを熱交換器等に通して冷却するとともに、この熱交換時に、前記排ガスに含まれる水蒸気が凝縮して生成される凝縮水を回収して水タンク等に貯留する。そして、貯留された水を、天然ガス等の原燃料を水蒸気改質する改質器に改質水として供給する、いわゆる水自立運転が行われている。 Therefore, in the fuel cell device, the exhaust gas discharged from the fuel cell is passed through a heat exchanger or the like to be cooled, and at the time of this heat exchange, the condensed water generated by condensing the water vapor contained in the exhaust gas is recovered. And store it in a water tank, etc. Then, so-called water self-sustaining operation is performed in which the stored water is supplied as reformed water to a reformer that reforms raw fuel such as natural gas by steam reforming.

前述の凝縮水の回収に関し、特許文献1には、顕熱/潜熱比が小さい場合であっても、熱回収効率を最適にする燃料電池システムが開示されている。この燃料電池システムの制御装置は、熱交換器入口の貯湯水温度に応じて、熱交換器出口の目標貯湯水温度を設定する目標温度設定部と、熱交換器出口の貯湯水温度が設定された目標温度となるように、貯湯水循環ポンプの送出量を制御する送出量制御部と、を備えている。 Regarding the above-mentioned recovery of condensed water, Patent Document 1 discloses a fuel cell system that optimizes heat recovery efficiency even when the sensible heat / latent heat ratio is small. In the control device of this fuel cell system, the target temperature setting unit that sets the target hot water storage water temperature at the heat exchanger outlet and the hot water storage water temperature at the heat exchanger outlet are set according to the hot water storage water temperature at the heat exchanger inlet. It is provided with a delivery amount control unit that controls the delivery amount of the hot water storage water circulation pump so that the target temperature is reached.

特開2019−21464号公報Japanese Unexamined Patent Publication No. 2019-21464

本開示の目的は、燃料電池の排ガス中に含まれる水分を効率よく回収することのできる燃料電池装置を提供することである。 An object of the present disclosure is to provide a fuel cell device capable of efficiently recovering water contained in the exhaust gas of a fuel cell.

本開示の燃料電池装置は、燃料ガスと酸素含有ガスとを用いて発電を行なう燃料電池と、原燃料を水蒸気改質して前記燃料ガスを前記燃料電池に供給する改質器と、前記燃料電池より排出される排ガスと熱媒とを熱交換させる熱交換器と、前記熱交換器に熱媒を循環させる循環流路に配設された循環ポンプと、制御装置と、を備える。
前記制御装置は、前記排ガスより算出される排ガス流体値に対応して前記循環ポンプの駆動を制御する、凝縮水回収制御を実行可能である。
The fuel cell apparatus of the present disclosure includes a fuel cell that generates power using a fuel gas and an oxygen-containing gas, a reformer that reforms raw fuel with steam and supplies the fuel gas to the fuel cell, and the fuel. It includes a heat exchanger that exchanges heat between the exhaust gas discharged from the battery and the heat medium, a circulation pump arranged in a circulation flow path that circulates the heat medium in the heat exchanger, and a control device.
The control device can execute condensed water recovery control that controls the drive of the circulation pump according to the exhaust gas fluid value calculated from the exhaust gas.

本開示の燃料電池装置によれば、燃料電池の排ガス中に含まれる水分を、効率よく回収することができる。 According to the fuel cell device of the present disclosure, the water contained in the exhaust gas of the fuel cell can be efficiently recovered.

実施形態の燃料電池装置の概略構成図である。It is a schematic block diagram of the fuel cell apparatus of embodiment. 外装ケース内の燃料電池装置の構成を示す斜視図である。It is a perspective view which shows the structure of the fuel cell apparatus in an outer case.

以下、図面を参考にしながら、実施形態を説明する。なお、以下の実施形態においては、燃料電池として固体酸化物形の燃料電池を例示するが、例えば固体高分子形の燃料電池等に適用することもでき、その場合、構成は適宜変更すればよい。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiment, the solid oxide fuel cell is exemplified as the fuel cell, but it can also be applied to, for example, a solid polymer fuel cell, and in that case, the configuration may be appropriately changed. ..

図1は、実施形態の燃料電池装置の構成の概略を示すブロック図であり、図2は、外装ケース内の燃料電池装置の構成を示す斜視図である。なお、燃料電池装置において汎用的な装置や機器等については、詳しい説明を行なわず、図中への符号の付与のみに留めているものもある。 FIG. 1 is a block diagram showing an outline of the configuration of the fuel cell device of the embodiment, and FIG. 2 is a perspective view showing the configuration of the fuel cell device in the outer case. It should be noted that some fuel cell devices, such as general-purpose devices and devices, are not described in detail and are limited to the addition of reference numerals in the drawings.

図1に示す燃料電池装置100は、燃料電池モジュール1と、燃料電池モジュール1に接続された熱交換器3と、燃料電池モジュール1から排出される高温度の排ガスの熱および熱エネルギーを、熱媒循環流路Qを介した熱交換により回収し、温水として貯留する蓄熱タンク4と、排ガス中に含まれる水分が熱交換により凝縮して生成した凝縮水を、凝縮水流路Cを介して改質水として貯留する改質水タンク6と、を備える。 The fuel cell device 100 shown in FIG. 1 heats the heat and heat energy of the fuel cell module 1, the heat exchanger 3 connected to the fuel cell module 1, and the high temperature exhaust gas discharged from the fuel cell module 1. The heat storage tank 4 which is recovered by heat exchange via the medium circulation flow path Q and stored as hot water, and the condensed water generated by condensing the water contained in the exhaust gas by heat exchange are modified through the condensed water flow path C. A reformed water tank 6 for storing as quality water is provided.

また、燃料電池装置100は、原燃料ポンプおよび原燃料流路等を含む原燃料供給装置13と、空気ブロアおよび酸素含有ガス流路等を含む酸素含有ガス供給装置14を備える。さらに、水自立運転を継続するための、前述の改質水タンク6と、これに接続された改質水供給ポンプP2および改質水流路Rを含む改質水供給装置を含む。 Further, the fuel cell device 100 includes a raw material fuel supply device 13 including a raw material fuel pump, a raw material fuel flow path, and the like, and an oxygen-containing gas supply device 14 including an air blower, an oxygen-containing gas flow path, and the like. Further, the above-mentioned reforming water tank 6 for continuing the water self-sustaining operation, and a reforming water supply device including a reforming water supply pump P2 connected to the reforming water tank 6 and a reforming water flow path R are included.

そして、燃料電池装置100は、先に述べた熱交換器3、蓄熱タンク4、ラジエータ5、熱媒循環ポンプP1と、これらを環状に接続する熱媒循環流路Qとからなる熱媒循環系(ヒートサイクル)を備えている。なお、図1では、熱交換器3入口側の、比較的低温の熱媒が流れる上流側の流路をQ1と表示し、熱交換器3出口側の、比較的高温の熱媒が流れる下流側の流路をQ2と表示している。なお、ラジエータ5は設けない構成としてもよい。 The fuel cell device 100 is a heat medium circulation system including the heat exchanger 3, the heat storage tank 4, the radiator 5, the heat medium circulation pump P1 described above, and the heat medium circulation flow path Q connecting them in a ring shape. (Heat cycle) is provided. In FIG. 1, the flow path on the upstream side where the relatively low temperature heat medium flows on the inlet side of the heat exchanger 3 is indicated as Q1, and the downstream flow path on the outlet side of the heat exchanger 3 where the relatively high temperature heat medium flows. The flow path on the side is indicated as Q2. The radiator 5 may not be provided.

熱媒循環系の熱源である燃料電池モジュール1は、収納容器10に収容されている。収納容器10の内部には、複数の燃料電池セルが積層されたセルスタック11と、水蒸気を用いて原燃料の水蒸気改質を行なう改質器12と、余剰の燃料ガスに点火するための着火ヒータ(図示省略)、および、触媒容器2に充填された排ガス触媒等を備える。 The fuel cell module 1, which is the heat source of the heat medium circulation system, is housed in the storage container 10. Inside the storage container 10, a cell stack 11 in which a plurality of fuel cell cells are stacked, a reformer 12 that reforms the raw fuel with steam using steam, and ignition for igniting excess fuel gas are ignited. It includes a heater (not shown), an exhaust gas catalyst filled in the catalyst container 2, and the like.

上述のような構成の燃料電池装置100において、燃料電池モジュール1内で生じた、水分を含む排ガスは、触媒容器2内の排ガス触媒を介して排ガス流路Eに導出された後、燃料電池モジュール1に隣接する熱交換器3に導入される。 In the fuel cell device 100 having the above-described configuration, the exhaust gas containing water generated in the fuel cell module 1 is led out to the exhaust gas flow path E via the exhaust gas catalyst in the catalyst container 2, and then the fuel cell module. It is introduced into the heat exchanger 3 adjacent to 1.

熱交換器3は、高温の排ガスが図示上側から下方に向かって流下し、低温の熱媒(水)が図示下側から上方に向かって流過する、向流式となっている。また、熱交換器3の最下部は、熱交換により液化した水(凝縮水)と、水分の取り除かれた排ガスとを分離する、気水分離器になっている。 The heat exchanger 3 is of a countercurrent type in which high-temperature exhaust gas flows downward from the upper side in the drawing and low-temperature heat medium (water) flows upward from the lower side in the drawing. Further, the lowermost portion of the heat exchanger 3 is a brackish water separator that separates water liquefied by heat exchange (condensed water) and exhaust gas from which water has been removed.

気水分離器で水を取り除かれた排ガスは、排気流路Vを経由して機外に排出される。一方、気水分離器で分離された凝縮水は、凝縮水流路Cを経由して改質水タンク6に回収され貯留される。 The exhaust gas from which water has been removed by the steam separator is discharged to the outside of the machine via the exhaust flow path V. On the other hand, the condensed water separated by the brackish water separator is collected and stored in the reformed water tank 6 via the condensed water flow path C.

なお、燃料電池装置100は、図2に示すような、各フレーム31と各外装パネル32とからなるケース30の中に配設されている。このケース30の中の、燃料電池モジュール1および各補機の周りや、流路、配管等には、以下のような制御手段20や、複数の計測機器やセンサ、または他の補機等が設けられている。 The fuel cell device 100 is arranged in a case 30 including each frame 31 and each exterior panel 32 as shown in FIG. In this case 30, around the fuel cell module 1 and each auxiliary machine, in the flow path, piping, etc., the following control means 20, a plurality of measuring devices, sensors, other auxiliary machines, etc. are installed. It is provided.

燃料電池装置100は、前述の燃料電池モジュール1および各補機の動作を制御する手段として、電力調整装置(図示省略)と、この電力調整装置と連係して、燃料電池の発電運転を補助する各補機の動作を制御する制御装置20と、この制御装置20に付属または内蔵される記憶装置等を備える。 The fuel cell device 100 assists the power generation operation of the fuel cell in cooperation with a power adjusting device (not shown) and the power adjusting device as a means for controlling the operation of the above-mentioned fuel cell module 1 and each auxiliary machine. It includes a control device 20 that controls the operation of each auxiliary machine, a storage device attached to or built in the control device 20, and the like.

制御装置20は、記憶装置および表示装置(ともに図示省略)と、燃料電池装置100を構成する各種構成部品および各種センサと接続され、これらの各機能部をはじめとして、燃料電池装置100の全体を制御および管理する。制御装置20は、それに付属する記憶装置(図示省略)に記憶されているプログラムを取得して、このプログラムを実行することにより、燃料電池装置100の各部にかかる、種々の機能を実現する。 The control device 20 is connected to a storage device and a display device (both not shown), various components and various sensors constituting the fuel cell device 100, and includes each of these functional units and the entire fuel cell device 100. Control and manage. The control device 20 acquires a program stored in a storage device (not shown) attached to the control device 20 and executes this program to realize various functions related to each part of the fuel cell device 100.

また、燃料電池装置100は、筐体内外の各部の温度を計測するための、温度センサ、サーミスタ等の温度計測器または温度計を、複数備える。 Further, the fuel cell device 100 includes a plurality of temperature measuring instruments or thermometers such as a temperature sensor and a thermistor for measuring the temperature of each part inside and outside the housing.

たとえば、図1に示すように、燃料電池モジュール1(燃焼部)から排出された排ガスを、燃焼処理する触媒容器2内の排ガス触媒の温度の測定を行なうサーミスタTM1が配置されている。なお、サーミスタTM1は、熱交換器3内を流過する熱媒の温度を測定してもよい。なお、従来設けられていた熱交換器3の熱媒出口側(高温側)にあたる熱媒循環流路Qの下流側には、サーミスタは配置しなくてもよい。また、触媒容器2と熱交換器3の間の排ガス流路E上にサーミスタを配設して、排ガス温度を測定してもよい。 For example, as shown in FIG. 1, a thermistor TM1 for measuring the temperature of the exhaust gas catalyst in the catalyst container 2 that burns the exhaust gas discharged from the fuel cell module 1 (combustion unit) is arranged. The thermistor TM1 may measure the temperature of the heat medium flowing through the heat exchanger 3. The thermistor may not be arranged on the downstream side of the heat medium circulation flow path Q, which is the heat medium outlet side (high temperature side) of the heat exchanger 3 conventionally provided. Further, the thermistor may be arranged on the exhaust gas flow path E between the catalyst container 2 and the heat exchanger 3 to measure the exhaust gas temperature.

さらに、改質水タンク6においては、タンクの底部(低部)に近い、所定の低水位位置には、貯留された改質水の水位の低下または渇水を示すための水検知器WL1が配設され、タンクの所定の満水位に近い、高水位位置には、改質水の水位である上水面が上昇して貯水量が増えたことを検出する水検知器WL2が配設されている。 Further, in the reformed water tank 6, a water detector WL1 for indicating a decrease in the water level of the stored reformed water or a drought is arranged at a predetermined low water level position near the bottom (lower part) of the tank. A water detector WL2 is installed at a high water level position close to a predetermined full water level of the tank to detect that the water level, which is the water level of reformed water, has risen and the amount of stored water has increased. ..

前述の制御装置20から、上述のセンサ類、または他の機能部または装置に制御信号または各種の情報などを送信する場合、制御装置20と他の機能部とは、有線または無線により接続されていればよい。各図では、制御装置20と、燃料電池を構成する各装置および各センサとを結ぶ接続線の図示を、省略している場合がある。また、制御装置20が行なう本実施形態に特徴的な制御については、後記で説明する。 When a control signal or various information is transmitted from the control device 20 to the sensors or other functional units or devices, the control device 20 and the other functional units are connected by wire or wirelessly. Just do it. In each figure, the illustration of the connection line connecting the control device 20, each device constituting the fuel cell, and each sensor may be omitted. Further, the control characteristic of the present embodiment performed by the control device 20 will be described later.

なお、後記の実施形態において、熱媒循環流路Q(ヒートサイクル)に配設された熱媒循環ポンプP1は、その回転駆動モータがパルス駆動方式のものであり、制御装置20は、パルス駆動のオン/オフデューティ比を増減させて、ポンプP1の回転駆動力およびその吐出量を制御している。 In the embodiment described later, the heat medium circulation pump P1 arranged in the heat medium circulation flow path Q (heat cycle) has a rotary drive motor of a pulse drive type, and the control device 20 is pulse drive. The on / off duty ratio of the pump P1 is increased or decreased to control the rotational driving force of the pump P1 and its discharge amount.

以上の構成の燃料電池装置100において、燃料電池が運転を行なっている場合、制御装置20は、燃料電池モジュール1の排出する排ガスに関連する所定の項目を用いて算出される「排ガス流体値」に対応して、熱媒循環ポンプP1の駆動および吐出と、熱媒循環流路Qの流量(循環量)とを制御する。 In the fuel cell device 100 having the above configuration, when the fuel cell is operating, the control device 20 has an "exhaust gas fluid value" calculated by using a predetermined item related to the exhaust gas discharged from the fuel cell module 1. Corresponding to, the drive and discharge of the heat medium circulation pump P1 and the flow rate (circulation amount) of the heat medium circulation flow path Q are controlled.

このように、排ガス流体値に基づいて、熱媒循環ポンプP1を駆動させることで、効率よく凝縮水を回収することが可能になる。以下に、具体的な実施形態について説明する。 In this way, by driving the heat medium circulation pump P1 based on the exhaust gas fluid value, it becomes possible to efficiently recover the condensed water. A specific embodiment will be described below.

たとえば、前述の構成の燃料電池装置100が発電運転を行なっている場合、制御装置20は、燃料電池モジュール1が排出する熱および凝縮水を効率よく回収する制御として、セルスタック11に供給される燃料ガスの流量と改質水量測定部が測定する、改質器12に供給される改質水の流量と、に関連して算出される排ガス流体値に基づいて、熱媒循環流路Qの熱媒循環ポンプP1の駆動と吐出とを制御することができる。 For example, when the fuel cell device 100 having the above configuration is performing power generation operation, the control device 20 is supplied to the cell stack 11 as a control for efficiently recovering the heat and condensed water discharged from the fuel cell module 1. The heat medium circulation flow path Q is based on the flow rate of the fuel gas, the flow rate of the reforming water supplied to the reformer 12 measured by the reforming water amount measuring unit, and the exhaust gas fluid value calculated in relation to the flow rate. It is possible to control the drive and discharge of the heat medium circulation pump P1.

ここで、熱媒循環ポンプP1を駆動させることで回収される凝縮水量について、詳述する。凝縮水量とは、燃料電池モジュール1より排出される排ガスに含まれる水蒸気量から、熱交換後の排ガスが含むことができる飽和水蒸気量を引くことで算出できる。 Here, the amount of condensed water recovered by driving the heat medium circulation pump P1 will be described in detail. The amount of condensed water can be calculated by subtracting the amount of saturated water vapor that can be contained in the exhaust gas after heat exchange from the amount of water vapor contained in the exhaust gas discharged from the fuel cell module 1.

燃料電池モジュール1より排出される排ガスに含まれる水蒸気量は、前述の構成の燃料電池装置100が発電運転を行なっている場合、燃料電池モジュール1に投入される燃料ガス由来の水分量と、改質器12に投入される水分量とが主体となる。また、排ガスに含まれる水蒸気量をより正確に算出する場合には、燃料電池モジュール1に投入される空気に含まれる水分量を加えてもよい。 The amount of water vapor contained in the exhaust gas discharged from the fuel cell module 1 is the same as the amount of water derived from the fuel gas input to the fuel cell module 1 when the fuel cell device 100 having the above configuration is performing power generation operation. The amount of water charged into the pawn 12 is the main component. Further, when calculating the amount of water vapor contained in the exhaust gas more accurately, the amount of water contained in the air charged into the fuel cell module 1 may be added.

燃料電池モジュール1に投入される燃料ガス由来の水分量とは、燃料ガス流量に含まれる水素の量を算出して換算する。すなわち、例えば燃料ガスに含まれるメタン等の水素を含む成分の成分割合から、水素の割合を算出し、それを水分量に換算する。また改質器12に投入される水分量とは、改質水供給ポンプP2より供給される改質水量とすればよい。言い換えれば、改質水量測定部が測定する計測値(水量)とすればよい。燃料電池モジュール1に投入される空気に含まれる水分量とは、相対湿度、空気温度、空気供給量とから算出することができる。 The amount of water derived from the fuel gas charged into the fuel cell module 1 is converted by calculating the amount of hydrogen contained in the fuel gas flow rate. That is, for example, the ratio of hydrogen is calculated from the ratio of the components containing hydrogen such as methane contained in the fuel gas, and the ratio is converted into the amount of water. The amount of water charged into the reformer 12 may be the amount of reformed water supplied from the reforming water supply pump P2. In other words, it may be a measured value (water amount) measured by the reformed water amount measuring unit. The amount of water contained in the air charged into the fuel cell module 1 can be calculated from the relative humidity, the air temperature, and the amount of air supplied.

なお、改質水量測定部が測定する改質水の量に関し、改質水の流量は、改質水流路Rに配設した水流量計等により直接測定してもよく、改質水供給ポンプP2が、吐出量や回転数等の諸元を出力可能なものであれば、その諸元を利用して、演算により求めてもよい。たとえば、吐出量がフィン回転数で表される水ポンプの場合であれば、予め検量線を用意しておくことにより、回転数〔回転/分〕と回転駆動継続時間〔分〕の積で、ポンプの吐出水量を求めることができる。また、改質水供給ポンプP2がパルスモータ駆動のものであれば、その駆動のデューティ比から、ポンプの吐出水量等を推計することもできる。 Regarding the amount of reformed water measured by the reformed water amount measuring unit, the flow rate of the reformed water may be directly measured by a water flow meter or the like arranged in the reformed water flow path R, and the reformed water supply pump. If P2 can output specifications such as the discharge amount and the number of rotations, the specifications may be used to obtain the specifications by calculation. For example, in the case of a water pump whose discharge amount is represented by the fin rotation speed, by preparing a calibration curve in advance, the product of the rotation speed [rotation / minute] and the rotation drive duration [minute] can be obtained. The amount of water discharged from the pump can be obtained. Further, if the reforming water supply pump P2 is driven by a pulse motor, the amount of discharged water of the pump can be estimated from the duty ratio of the driving.

以上より、燃料電池モジュール1より排出される排ガス量に含まれる水蒸気量を算出することができ、本明細書において、上記排ガス量に含まれる水蒸気量を、排ガス流体値と呼ぶ。すなわち、排ガス流体値とは、燃料電池モジュール1より排出される排ガス量に関連して求められる水蒸気量のことを意味する。 From the above, the amount of water vapor contained in the amount of exhaust gas discharged from the fuel cell module 1 can be calculated, and in the present specification, the amount of water vapor contained in the amount of exhaust gas is referred to as an exhaust gas fluid value. That is, the exhaust gas fluid value means the amount of water vapor obtained in relation to the amount of exhaust gas discharged from the fuel cell module 1.

なお、通常、燃料電池モジュール1より排出されて熱交換器3に入る排ガスの温度は高く、また燃料電池モジュール1より排出される排ガスに含まれる水分量はさほど多くない。それゆえ、熱交換器3の入口時点では、排ガスに含まれる水分は飽和水蒸気量には達していない。それゆえ、上記の算出式において、排ガスの熱交換器3への入口温度をあえて考慮していない。しかしながら、排ガスの飽和水蒸気量を考慮する場合には、排ガス流体値の算出において、サーミスタTM1にて測定された排ガスの温度を用いて飽和水蒸気量を算出し、上記で算出した排ガス量に関連して求められる水蒸気量と、飽和水蒸気量とを比較すればよい。排ガスに含まれる水蒸気量が多い場合には、その値と排ガス流体値とし、飽和水蒸気量が多い場合には、その値を排ガス流体値とすればよい。 Normally, the temperature of the exhaust gas discharged from the fuel cell module 1 and entering the heat exchanger 3 is high, and the amount of water contained in the exhaust gas discharged from the fuel cell module 1 is not so large. Therefore, at the time of inlet of the heat exchanger 3, the water content in the exhaust gas has not reached the saturated water vapor amount. Therefore, in the above calculation formula, the inlet temperature of the exhaust gas to the heat exchanger 3 is not taken into consideration. However, when considering the saturated water vapor amount of the exhaust gas, the saturated water vapor amount is calculated using the temperature of the exhaust gas measured by the thermistor TM1 in the calculation of the exhaust gas fluid value, and is related to the exhaust gas amount calculated above. The amount of water vapor obtained can be compared with the amount of saturated water vapor. When the amount of water vapor contained in the exhaust gas is large, the value and the exhaust gas fluid value may be used, and when the saturated water vapor amount is large, the value may be used as the exhaust gas fluid value.

続いて、熱交換後の排ガスが含む飽和水蒸気量は、熱交換器3より排出される排ガス流量(すなわち燃料電池モジュール1より排出される排ガス流量)、排ガス温度、ガス圧力等を掛け合わせて算出する。なお算出にあたっては、1999年発刊の日本機械学会蒸気表より算出した蒸気状態量計算関数を用いて算出することができる。 Subsequently, the saturated water vapor amount contained in the exhaust gas after heat exchange is calculated by multiplying the exhaust gas flow rate discharged from the heat exchanger 3 (that is, the exhaust gas flow rate discharged from the fuel cell module 1), the exhaust gas temperature, the gas pressure, and the like. To do. The calculation can be performed using the steam state quantity calculation function calculated from the steam table of the Japan Society of Mechanical Engineers published in 1999.

制御装置20は、上述の排ガスより算出される排ガス流体値に対応して、循環ポンプP1の駆動および吐出量(以下、駆動としてまとめて表現する)を制御することで、効率よく凝縮水回収を行うことができる。すなわち、制御装置20は、予め調査された、熱媒循環ポンプの駆動と、排ガスの熱交換前の温度と、熱交換後の温度との関係のテーブルを記憶しておく。そして、制御装置20は、排ガスより算出される排ガス流体値に含まれる水蒸気量から、必要とする凝縮水が得られるための、熱媒循環ポンプP1の所定の駆動を、記憶したテーブルから導き出し、熱媒循環ポンプP1に対して、所定の駆動となるように制御する。 The control device 20 efficiently recovers condensed water by controlling the drive and discharge amount (hereinafter collectively referred to as drive) of the circulation pump P1 according to the exhaust gas fluid value calculated from the above-mentioned exhaust gas. It can be carried out. That is, the control device 20 stores a table of the relationship between the drive of the heat medium circulation pump, the temperature before the heat exchange of the exhaust gas, and the temperature after the heat exchange, which has been investigated in advance. Then, the control device 20 derives a predetermined drive of the heat medium circulation pump P1 for obtaining the required condensed water from the amount of water vapor contained in the exhaust gas fluid value calculated from the exhaust gas from the stored table. The heat medium circulation pump P1 is controlled so as to be driven in a predetermined manner.

それにより、従前のように、熱交換器出口の貯湯水温度が目標となるように熱媒循環ポンプの駆動を制御することに比べて、効率よく必要となる凝縮水量を回収することができる。 As a result, it is possible to efficiently recover the required amount of condensed water, as compared with controlling the drive of the heat medium circulation pump so that the temperature of the hot water stored at the outlet of the heat exchanger becomes the target as in the past.

上記の熱媒循環ポンプP1の駆動において、必要とする凝縮水を算出するにあたり、改質水タンク6内の改質水の水位に基づいて、熱媒循環ポンプP1の駆動を制御してもよい。 In calculating the condensed water required for driving the heat medium circulation pump P1, the drive of the heat medium circulation pump P1 may be controlled based on the water level of the reforming water in the reforming water tank 6. ..

すなわち、前述の凝縮水回収制御の実行中に、改質水の水位を検知する水位検知部である、低水位の水検知器WL1または高水位の水検知器WL2による水位検知もしくは水位未検知が発報された場合、制御装置20は、改質水タンク6内の改質水の水位を優先項目として熱媒循環ポンプP1の駆動を補正する制御を実行する、 That is, during the execution of the above-mentioned condensed water recovery control, the water level is detected or not detected by the low water level water detector WL1 or the high water level water detector WL2, which is a water level detection unit that detects the water level of the reformed water. When the alarm is issued, the control device 20 executes a control for correcting the drive of the heat medium circulation pump P1 with the water level of the reforming water in the reforming water tank 6 as a priority item.

具体的には、たとえば改質水タンク6内の改質水(水面)の高水位を検知する水検知器WL2が水を検出した場合、制御装置20は、改質水タンク6内に貯留された改質水の水量が、オーバーフローの発生する満水に近いと判断して、凝縮水回収制御実行中の熱媒循環ポンプP1の駆動(デューティ比)を、それ以前より減少させる駆動の〔マイナス(−)補正〕を実行してもよい。それにより、凝縮水の回収量を低減し、オーバーフローの発生を抑制することができる。 Specifically, for example, when the water detector WL2 that detects the high water level of the reformed water (water surface) in the reformed water tank 6 detects water, the control device 20 is stored in the reformed water tank 6. Judging that the amount of reformed water is close to full water where overflow occurs, the drive (duty ratio) of the heat medium circulation pump P1 during execution of condensed water recovery control is reduced from before [minus (minus (duty)). -) Correction] may be executed. As a result, the amount of condensed water recovered can be reduced and the occurrence of overflow can be suppressed.

他方、たとえば改質水タンク6内の改質水(水面)の改質水(水面)の高水位を検知するWL2が水を検出しない場合や、低水位を検知する水検知器WL1が水を検出しない場合は、制御装置20は、改質水タンク6内に貯留された改質水の水量が、不足するもしくは渇水の発生する水位に近いと判断して、凝縮水回収制御実行中の熱媒循環ポンプP1の駆動(デューティ比)を、それ以前より増加させる駆動の〔プラス(+)補正〕を実行する。それにより、凝集水の回収量を増大させ、改質水の水量が、不足するおそれや、渇水が発生するおそれを低減することができる。 On the other hand, for example, when the WL2 which detects the high water level of the reformed water (water surface) of the reformed water (water surface) in the reformed water tank 6 does not detect water, or when the water detector WL1 which detects the low water level detects water. If not detected, the control device 20 determines that the amount of reformed water stored in the reforming water tank 6 is insufficient or close to the water level at which drought occurs, and the heat during execution of the condensed water recovery control. The drive (duty ratio) of the medium circulation pump P1 is increased from before, and the drive [plus (+) correction] is executed. As a result, the amount of coagulated water recovered can be increased, and the risk of insufficient amount of reformed water and the risk of drought can be reduced.

このようにして、燃料電池の排ガス中に含まれる水分を効率よく回収しつつ、改質水タンク6内に貯留される改質水の水量を、自立運転を継続するのに適当な範囲に保つことができる。 In this way, while efficiently recovering the water contained in the exhaust gas of the fuel cell, the amount of reformed water stored in the reformed water tank 6 is kept within an appropriate range for continuing independent operation. be able to.

なお、凝縮水回収制御中に、例えば改質水(水面)の高水位を検知するWL2が水を検出するようになった場合には、熱媒循環ポンプP1の駆動(デューティ比)を、それ以前より減少させる駆動の〔マイナス(−)補正〕を実行して、凝縮水の回収量を低減し、オーバーフローの発生を抑制してもよい。 When the WL2 that detects the high water level of the reformed water (water surface) detects water during the condensed water recovery control, for example, the drive (duty ratio) of the heat medium circulation pump P1 is set. The drive [minus (-) correction], which is reduced from before, may be executed to reduce the amount of condensed water recovered and suppress the occurrence of overflow.

ところで、燃料電池装置の熱交換器3は、その内部の配管等に、経年により汚れ等が付着して、熱交換効率が低下する場合がある。本開示の燃料電池装置においては、これに対応するため、以下のような制御を実行する。 By the way, in the heat exchanger 3 of the fuel cell device, dirt or the like may adhere to the piping or the like inside the fuel cell device over time, and the heat exchange efficiency may decrease. In the fuel cell device of the present disclosure, the following control is executed in order to cope with this.

すなわち、燃料電池装置100の制御装置20が、燃料電池の累積発電時間を記録可能な記憶装置(図示省略)を備えており、この記憶装置が計数またはカウントする累積発電時間が、予め定められた第1時間以上に達した場合、制御装置20は、前述の凝縮水回収制御の実行中に、前記循環ポンプの駆動を所定時間補正して増加させる、吐出量増量制御を実行する。 That is, the control device 20 of the fuel cell device 100 includes a storage device (not shown) capable of recording the cumulative power generation time of the fuel cell, and the cumulative power generation time counted or counted by this storage device is predetermined. When the first hour or more is reached, the control device 20 executes the discharge amount increase control for correcting and increasing the drive of the circulation pump for a predetermined time during the execution of the condensed water recovery control described above.

なお、前述のポンプの駆動を所定時間補正して増加させるとは、先に述べた熱媒循環ポンプの〔プラス(+)補正〕と同様の操作のことである。すなわち、制御装置20は、凝縮水回収制御実行中の熱媒循環ポンプP1の駆動(デューティ比)を、所定の時間の間、それ以前より増加させる駆動の〔プラス(+)補正〕を実行する。 It should be noted that increasing the drive of the pump by correcting it for a predetermined time is the same operation as the [plus (+) correction] of the heat medium circulation pump described above. That is, the control device 20 executes [plus (+) correction] of the drive for increasing the drive (duty ratio) of the heat medium circulation pump P1 during the execution of the condensed water recovery control for a predetermined time. ..

これにより、経年の汚れ付着等に起因する熱交換効率の低下を抑制することができる。 As a result, it is possible to suppress a decrease in heat exchange efficiency due to adhesion of dirt over time.

1 燃料電池モジュール
3 熱交換器
12 改質器
20 制御装置
100 燃料電池装置
Q 熱媒循環流路
P1 熱媒循環ポンプ
1 Fuel cell module 3 Heat exchanger 12 Reformer 20 Control device 100 Fuel cell device Q Heat medium circulation flow path P1 Heat medium circulation pump

Claims (4)

燃料ガスと酸素含有ガスとを用いて発電を行なう燃料電池と、
原燃料を水蒸気改質して前記燃料ガスを前記燃料電池に供給する改質器と、
前記燃料電池より排出される排ガスと熱媒とを熱交換させる熱交換器と、
前記熱交換器に熱媒を循環させる循環流路に配設された循環ポンプと、
制御装置と、を備え、
該制御装置は、前記排ガスより算出される排ガス流体値に対応して前記循環ポンプの駆動を制御する、凝縮水回収制御を実行可能である燃料電池装置。
A fuel cell that generates electricity using fuel gas and oxygen-containing gas,
A reformer that steam reforms raw fuel and supplies the fuel gas to the fuel cell,
A heat exchanger that exchanges heat between the exhaust gas discharged from the fuel cell and the heat medium.
A circulation pump arranged in a circulation flow path for circulating a heat medium in the heat exchanger,
Equipped with a control device,
The control device is a fuel cell device capable of executing condensed water recovery control that controls the drive of the circulation pump according to the exhaust gas fluid value calculated from the exhaust gas.
前記改質器に供給される改質水の量を測定する改質水量測定部、を備え、
前記制御装置は、
前記排ガスの流量と前記改質水量測定部が測定する改質水の流量とを用いて前記排ガス流体値を算出し、該排ガス流体値に基づいて、前記循環ポンプの駆動を制御する、請求項1に記載の燃料電池装置。
A reformed water amount measuring unit for measuring the amount of reformed water supplied to the reformer is provided.
The control device is
The claim that the exhaust gas fluid value is calculated using the flow rate of the exhaust gas and the flow rate of the reformed water measured by the reformed water amount measuring unit, and the drive of the circulation pump is controlled based on the exhaust gas fluid value. The fuel cell device according to 1.
前記改質水を貯留する改質水タンクと、
前記改質水タンクに貯留された改質水の水位を検知する水位検知部と、を備え、
前記制御装置は、
前記排ガス温度と、
前記排ガス流体値と、
前記改質水タンク内の改質水の水位と、
に基づいて前記循環ポンプの駆動を制御する、請求項1または請求項2に記載の燃料電池装置。
A reformed water tank for storing the reformed water and
A water level detection unit for detecting the water level of the reformed water stored in the reformed water tank is provided.
The control device is
The exhaust gas temperature and
The exhaust gas fluid value and
The water level of the reformed water in the reformed water tank and
The fuel cell device according to claim 1 or 2, wherein the drive of the circulation pump is controlled based on the above.
燃料電池の累積発電時間を記録可能な記憶装置を備え、
前記制御装置は、前記累積発電時間が所定の数値以上の場合、
前記循環ポンプの駆動を増加させる吐出量増量制御を実行する、請求項1〜3のいずれか1つに記載の燃料電池装置。
Equipped with a storage device that can record the cumulative power generation time of the fuel cell
When the cumulative power generation time is equal to or longer than a predetermined value, the control device
The fuel cell device according to any one of claims 1 to 3, which executes a discharge amount increase control for increasing the drive of the circulation pump.
JP2019200107A 2019-11-01 2019-11-01 fuel cell device Active JP7406345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200107A JP7406345B2 (en) 2019-11-01 2019-11-01 fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200107A JP7406345B2 (en) 2019-11-01 2019-11-01 fuel cell device

Publications (2)

Publication Number Publication Date
JP2021072255A true JP2021072255A (en) 2021-05-06
JP7406345B2 JP7406345B2 (en) 2023-12-27

Family

ID=75713434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200107A Active JP7406345B2 (en) 2019-11-01 2019-11-01 fuel cell device

Country Status (1)

Country Link
JP (1) JP7406345B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257644A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Method of controlling fuel cell system
JP2016225103A (en) * 2015-05-29 2016-12-28 アイシン精機株式会社 Fuel cell system
JP2018125072A (en) * 2017-01-30 2018-08-09 東京瓦斯株式会社 Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257644A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Method of controlling fuel cell system
JP2016225103A (en) * 2015-05-29 2016-12-28 アイシン精機株式会社 Fuel cell system
JP2018125072A (en) * 2017-01-30 2018-08-09 東京瓦斯株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP7406345B2 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP6476566B2 (en) Fuel cell system
JP5491062B2 (en) Fuel cell system
EP2551947A1 (en) Fuel cell system
WO2009051348A1 (en) Heat recovery apparatus of fuel cell system
US20110269041A1 (en) Fuel cell cogeneration system
CN110190296A (en) Battery thermal management system and its control method
JP2012160300A (en) Fuel cell system
JP7369595B2 (en) fuel cell device
JP5985841B2 (en) Fuel cell system
JP2021072255A (en) Fuel cell device
JP5025929B2 (en) Fuel cell power generation system
JP4690101B2 (en) Fuel cell system
JP4133628B2 (en) Cogeneration system
JP7101758B2 (en) Fuel cell device, control device and control program
JP2014089883A (en) Fuel cell unit and cogeneration system
JP5752912B2 (en) Solid oxide fuel cell
JP5935537B2 (en) Fuel cell system
JP5725851B2 (en) Fuel cell device
JP5200705B2 (en) Fluid supply amount estimation device and fuel cell system
JP2013191311A (en) Fuel cell system
JP6981867B2 (en) Fuel cell device
JP2013089541A (en) Fuel cell power generation device
JP6946788B2 (en) Fuel cell system
JP5305119B2 (en) Fuel cell power generation monitoring system
JP7294187B2 (en) fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150