JP2021072157A - Recycling method for lithium ion battery - Google Patents

Recycling method for lithium ion battery Download PDF

Info

Publication number
JP2021072157A
JP2021072157A JP2019195871A JP2019195871A JP2021072157A JP 2021072157 A JP2021072157 A JP 2021072157A JP 2019195871 A JP2019195871 A JP 2019195871A JP 2019195871 A JP2019195871 A JP 2019195871A JP 2021072157 A JP2021072157 A JP 2021072157A
Authority
JP
Japan
Prior art keywords
ion battery
battery
lithium
lithium ion
recycling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019195871A
Other languages
Japanese (ja)
Other versions
JP7234485B2 (en
Inventor
温 川下
Atsushi Kawashita
温 川下
由和 山岡
Yoshikazu Yamaoka
由和 山岡
浦田 泰裕
Yasuhiro Urata
泰裕 浦田
英喜 橋本
Hideki Hashimoto
英喜 橋本
林 健二
Kenji Hayashi
健二 林
新一 小倉
Shinichi Ogura
新一 小倉
洋平 高野
Yohei Takano
洋平 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Matsuda Sangyo Co Ltd
Original Assignee
Honda Motor Co Ltd
Matsuda Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Matsuda Sangyo Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019195871A priority Critical patent/JP7234485B2/en
Publication of JP2021072157A publication Critical patent/JP2021072157A/en
Application granted granted Critical
Publication of JP7234485B2 publication Critical patent/JP7234485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To provide a recycling method for lithium ion batteries, capable of suppressing contamination due to copper without the generation of sparks due to electricity remaining when a used lithium ion battery is dismantled.SOLUTION: In a recycling method for lithium ion batteries, a used lithium ion battery is discharged and dismantled thereby to separate and recover a battery material. In the method, dismantling work is started at the stage when discharge is performed and a cell voltage becomes equal to or less than a voltage at which sparks do not generate, and the dismantling work is finished at the stage where there is no contamination due to elution of copper or at the stage where the contamination is minor.SELECTED DRAWING: Figure 2

Description

本発明は、使用済みのリチウムイオン電池のリサイクル方法に関し、特には、熱処理せずに使用済みのリチウムイオン電池から各種有価金属を分離、回収することができるリサイクル方法に関する。なお、本明細書において、リチウムイオン電池の最小構成単位をセル(単電池)と称し、セルを複数使用して、直列接続又は並列接続して容量等を調整したものをモジュール(組電池)と称し、さらに、モジュールを複数組み合わせて蓄電システムを構成したものをパックと称する。そして、セル電圧とは、セルを放電時にセルに負荷される電圧を意味する。 The present invention relates to a method for recycling a used lithium-ion battery, and more particularly to a recycling method capable of separating and recovering various valuable metals from a used lithium-ion battery without heat treatment. In the present specification, the minimum structural unit of a lithium-ion battery is referred to as a cell (cell battery), and a module (combined battery) is a battery in which a plurality of cells are used and connected in series or in parallel to adjust the capacity and the like. Further, a pack is a combination of a plurality of modules to form a power storage system. The cell voltage means the voltage applied to the cell when the cell is discharged.

リチウムイオン電池は、エネルギー密度などの性能が優れていることから、電気自動車用などとして広く研究開発が行われている。リチウムイオン電池には、正極活物質としてマンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、鉄リン酸リチウム(LiFePO)などが含まれており、また、正極集電体として、アルミ箔、負極集電体として、Cu箔などが含まれている。したがって、使用済みのリチウムイオン電池からこれらの電池素材を適切に分離して、Cu、Co、Niなどの各種有価金属を回収することが求められている。 Lithium-ion batteries are widely researched and developed for electric vehicles because of their excellent performance such as energy density. The lithium ion battery contains lithium manganate (LiMnO 4 ), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium iron phosphate (LiFePO 4 ), and the like as positive electrode active materials. , Aluminum foil is included as the positive electrode current collector, and Cu foil is included as the negative electrode current collector. Therefore, it is required to appropriately separate these battery materials from the used lithium-ion battery and recover various valuable metals such as Cu, Co, and Ni.

使用済みのリチウムイオン電池から電池素材を回収する方法として、電池を水に浸漬して残留する電気の放電を行った後、焙焼してセパレータや電解液などの有機物質を分解燃焼させた後、その焙焼物を粉砕、篩分けし、その中に含まれる各種の有価金属を分離回収することが行われている(例えば、特許文献1〜3)。また、放電後に、電池ケースに穴を空けて電解液を除去した後、電池ケースを切断して、中から正極、負極、セパレータを機械的に取り出して、電極集電体を構成する銅箔やアルミ箔、また電極活物質を化学的に分離することが行われている(例えば、特許文献4〜5)。 As a method of recovering the battery material from a used lithium-ion battery, the battery is immersed in water to discharge the remaining electricity, and then roasted to decompose and burn organic substances such as separators and electrolytes. , The roasted product is crushed and sieved, and various valuable metals contained therein are separated and recovered (for example, Patent Documents 1 to 3). Further, after discharging, a hole is made in the battery case to remove the electrolytic solution, and then the battery case is cut, and the positive electrode, the negative electrode, and the separator are mechanically taken out from the inside to form a copper foil or a copper foil constituting the electrode current collector. The aluminum foil and the electrode active material are chemically separated (for example, Patent Documents 4 to 5).

特開2012−229481号公報Japanese Unexamined Patent Publication No. 2012-229481 特開2016−37661号公報Japanese Unexamined Patent Publication No. 2016-37661 特開2017−174517号公報JP-A-2017-174517 特開2013−4299号公報Japanese Unexamined Patent Publication No. 2013-4299 特開2006−331707号公報Japanese Unexamined Patent Publication No. 2006-331707

使用済みの電池には電気が残留しているため、安全にリサイクルを進めるためには、上記の通り、導電性を有する液体に浸漬して完全放電したり、放電器を用いて残留する電気を放電したりして、電気的危険性を除去することが行われている。しかしながら、リチウムイオン電池は特性上、放電によりある程度電圧を下げても、復電現象によって電圧が回復することがあり、その結果、電池セルの解体作業時に火花が発生することがあった。万が一、その火花によって有機溶媒に引火した場合には、火災や爆発など大規模な災害が懸念されるという問題があった。 Since electricity remains in the used battery, in order to proceed with recycling safely, as described above, it is immersed in a conductive liquid to completely discharge it, or the remaining electricity is discharged using a discharger. Electric discharge is removed to eliminate electrical hazards. However, due to the characteristics of lithium-ion batteries, even if the voltage is lowered to some extent by discharging, the voltage may recover due to the power recovery phenomenon, and as a result, sparks may occur during the dismantling work of the battery cells. In the unlikely event that the spark ignites the organic solvent, there is a problem that there is a concern about a large-scale disaster such as a fire or an explosion.

一方、上記復電現象を抑えるために、水に浸漬するなどして0V付近まで完全放電に近い形での放電手法を用いることが考えられる。しかし、この場合、負極集電体の銅が溶出してしまい、取り出した正極にコンタミネーションが生じるという問題があった。
このようなことから、本発明は、上記問題を解消することを目的とするものであって、使用済みリチウムイオン電池解体時に残留する電気によって火花が発生することなく、且つ、銅による正極へのコンタミネーションを抑制することができる、リチウムイオン電池のリサイクル方法を提供することを課題とする。
On the other hand, in order to suppress the above-mentioned power recovery phenomenon, it is conceivable to use a discharge method in a form close to complete discharge up to around 0 V by immersing in water. However, in this case, there is a problem that the copper of the negative electrode current collector elutes and contamination occurs in the taken out positive electrode.
Therefore, the present invention aims to solve the above-mentioned problems, and the electricity remaining at the time of disassembling the used lithium-ion battery does not generate sparks, and copper is used for the positive electrode. An object of the present invention is to provide a method for recycling a lithium ion battery that can suppress contamination.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、放電工程と解体工程とが分かれていると、その間に復電現象が起こることから、放電させながら火花の発生しない電圧まで低下させた時点で解体作業を開始し、また、銅の溶出によるコンタミネーションが軽微な時点で解体作業を終了させることにより、安全にリチウムイオン電池の解体作業が可能となると共に、正極への銅によるコンタミネーションを抑制することができるとの知見が得られた。 As a result of diligent research to solve the above problems, if the discharge process and the dismantling process are separated, a power recovery phenomenon occurs between them, so that sparks do not occur while discharging. By starting the dismantling work when the voltage is lowered to the voltage and ending the dismantling work when the contamination due to copper elution is slight, the lithium ion battery can be safely disassembled and the positive electrode is reached. It was found that the contamination by copper can be suppressed.

本発明者らは、この知見に基づき、以下の発明を提供する。
1)使用済みリチウムイオン電池を放電、解体して電池素材を分離、回収する方法であって、放電を実施して火花が発生しないセル電圧以下となった段階で解体作業を開始し、銅の溶出による汚染がない或いは汚染が軽微な段階で解体作業を終了することを特徴とするリチウムイオン電池のリサイクル方法。
2)抵抗を用いて放電しセル電圧が2.4V以下となってから、リチウムイオン電池の解体作業を開始することを特徴とする上記1)記載のリチウムイオン電池のリサイクル方法。
3)固定抵抗(1Ω)による放電を実施した場合にセル電圧が0.6V以下となってから30分以内にリチウムイオン電池の解体作業を終了することを特徴とする上記1)又は2)に記載のリチウムイオン電池のリサイクル方法。
4)0.01〜100Ωの抵抗を用いて放電することを特徴とする上記1)〜3)のいずれか一に記載のリチウムイオン電池のリサイクル方法。
5)正極中への銅の溶出量が10ppm以下であることを特徴とする上記1)〜4)のいずれか一に記載のリチウムイオン電池のリサイクル方法。
Based on this finding, the present inventors provide the following inventions.
1) This is a method of discharging and disassembling a used lithium-ion battery to separate and recover the battery material. When the battery voltage is below the cell voltage at which sparks do not occur after discharging, the dismantling work is started and the copper is used. A method for recycling a lithium-ion battery, characterized in that the dismantling work is completed at a stage where there is no contamination due to elution or the contamination is minor.
2) The method for recycling a lithium ion battery according to 1) above, wherein the dismantling work of the lithium ion battery is started after discharging using a resistor and the cell voltage becomes 2.4 V or less.
3) The above 1) or 2) is characterized in that the dismantling work of the lithium ion battery is completed within 30 minutes after the cell voltage becomes 0.6 V or less when the discharge is performed by the fixed resistance (1 Ω). The method for recycling a lithium-ion battery described.
4) The method for recycling a lithium ion battery according to any one of 1) to 3) above, which comprises discharging using a resistor of 0.01 to 100Ω.
5) The method for recycling a lithium ion battery according to any one of 1) to 4) above, wherein the amount of copper eluted into the positive electrode is 10 ppm or less.

本発明によれば、安全にリチウムイオン電池を解体することができるとともに、銅による正極へのコンタミネーションを低減することができるという優れた効果を有する。また、回収された金属は、汚染が少ないことから直接、他の製品の製造に利用することができるという優れた効果を有する。さらに本発明によれば、熱処理を行わずに電池の解体作業を行うため、コンパクトな処理設備とすることができ、低コストで電池素材を回収することができるという優れた効果を有する。 According to the present invention, the lithium ion battery can be safely disassembled, and the contamination of copper to the positive electrode can be reduced, which is an excellent effect. In addition, the recovered metal has an excellent effect that it can be directly used for manufacturing other products because it is less contaminated. Further, according to the present invention, since the battery is disassembled without heat treatment, it is possible to obtain a compact processing facility and have an excellent effect that the battery material can be recovered at low cost.

放電工程から解体工程までの使用済み電池の電圧変化を示す図である。It is a figure which shows the voltage change of the used battery from the discharge process to the disassembly process. 放電工程中に解体工程を実施した使用済み電池の電圧変化を示す図である。It is a figure which shows the voltage change of the used battery which carried out the disassembly process during the discharge process.

本発明のリチウムイオン電池のリサイクル方法は、使用済みの電池を、熱処理せずに電池を機械的に解体することができることを特徴とする。そして、使用済みのリチウムイオン電池を解体後は、各種電池素材を適宜、分離、回収することができる。リチウムイオン電池は通常、正極として、Al箔材の両面にCo、Ni、Mnなどが含まれる正極材が塗布されたものが使用され、負極として、Cu箔材の両面にC(グラファイト)が塗布されたものが使用される。したがって、正極材から、高価なMn、Co、Niなどを分離回収することができる。 The method for recycling a lithium-ion battery of the present invention is characterized in that a used battery can be mechanically disassembled without heat treatment. Then, after disassembling the used lithium-ion battery, various battery materials can be appropriately separated and recovered. Lithium-ion batteries are usually used as a positive electrode in which a positive electrode material containing Co, Ni, Mn, etc. is coated on both sides of an Al foil material, and as a negative electrode, C (graphite) is coated on both sides of a Cu foil material. The one that has been used is used. Therefore, expensive Mn, Co, Ni and the like can be separated and recovered from the positive electrode material.

一般に使用済みのリチウムイオン電池は機能破壊を目的として熱処理を施し、素材のリサイクルを念頭においていない場合には、焼却後に埋め立てや路盤材などに用いられ、一方、素材をリサイクルする場合は、熱処理後、粉砕などを行った後、濃縮工程(化学的手法、物理的手法)を経て、各種素材の選別、分離回収が行われる。しかし、いずれの場合も、大規模な焼却設備が必要であり、また、焙焼物を粉砕などするため複雑で高コストな処理となる。これに対して、本発明のリサイクル方法は、このような熱処理は行わずに、電池素材を回収するため、コンパクトな設備とすることができ、低コストで、有価金属を回収することができるというメリットがある。 Generally, used lithium-ion batteries are heat-treated for the purpose of destroying their functions. If the material is not recycled, it is used for landfill or roadbed material after incineration. On the other hand, if the material is recycled, it is after heat treatment. After performing crushing and the like, various materials are sorted and separated and recovered through a concentration step (chemical method, physical method). However, in either case, a large-scale incineration facility is required, and the roasted product is crushed, which is a complicated and costly process. On the other hand, in the recycling method of the present invention, since the battery material is recovered without performing such heat treatment, the equipment can be made compact and the valuable metal can be recovered at low cost. There are merits.

ここで、使用済みのリチウムイオン電池を解体する場合、予め電池に残留する電気を放電する必要がある。放電が十分でないと、電池の解体作業時に火花が発生して、電池に含まれる有機溶媒に引火して、火災や爆発などのおそれがあるためである。一方、完全に放電させた場合には、負極集電体を構成する銅が溶出して、正極活物質を構成するNi、Coなどの有価金属を汚染してしまい、直接他の製品の製造に利用できない。 Here, when disassembling a used lithium-ion battery, it is necessary to discharge the electricity remaining in the battery in advance. This is because if the discharge is insufficient, sparks are generated during the dismantling work of the battery, and the organic solvent contained in the battery is ignited, which may cause a fire or an explosion. On the other hand, when the battery is completely discharged, the copper constituting the negative electrode current collector elutes and contaminates valuable metals such as Ni and Co constituting the positive electrode active material, which is directly used for manufacturing other products. Not available.

図1に、放電工程から解体工程(洗浄、開封処理)までの使用済み電池の電圧変化を示す。固定抵抗(1Ω)による放電を実施した場合、銅の溶出がないセル電圧0.6Vで放電を中断すると、復電現象によって、セル電圧1.1V以上に上昇し、電池を解体(短絡)すると、火花(スパーク)が発生するということがあった。 FIG. 1 shows the voltage change of the used battery from the discharge process to the disassembly process (cleaning, opening process). When discharging with a fixed resistor (1Ω), if the discharging is interrupted at a cell voltage of 0.6V without copper elution, the cell voltage rises to 1.1V or more due to the power recovery phenomenon, and the battery is disassembled (short-circuited). , Sparks were sometimes generated.

このように、電池解体時における火花の発生と銅の溶出を考慮した最適な放電には、トレードオフの関係がある。この点、充放電器を活用することで、電圧1.1V以下、0.6V以上にセル電圧を制御することも考えられるが、一般的に組電池として使用するリチウムイオン電池において、一つ一つのセルに対して電圧を制御しながら解体を進めることは、高コストとなるため、現実性がない。 As described above, there is a trade-off relationship between the generation of sparks at the time of battery dismantling and the optimum discharge considering the elution of copper. In this regard, it is conceivable to control the cell voltage to a voltage of 1.1 V or less and 0.6 V or more by utilizing a charger / discharger, but in a lithium ion battery generally used as an assembled battery, each one is used. It is not realistic to proceed with dismantling while controlling the voltage for one cell because it is expensive.

本発明者らは、試行錯誤の末、放電工程と解体工程とが分かれていることで、その間に復電現象が起こることから、使用済みの電池を放電させながら解体すれば、復電現象を生じさせることがないことを閃いた。
これに基づき本発明は、放電を実施して火花が発生しない電圧以下となった段階で解体作業を開始し、銅の溶出による汚染がない或いは汚染が軽微な段階で解体作業を終了することを特徴とするものである。なお、放電を続けながら解体と分別とを実施するが、分別過程で導通部が離れ、放電状態が解かれることになるが、このときは火花が発生することはないため、特に問題はない。
After trial and error, the present inventors separate the discharge process and the disassembly process, and a power recovery phenomenon occurs between them. Therefore, if the used battery is disassembled while being discharged, the power recovery phenomenon can be caused. I flashed that it wouldn't happen.
Based on this, the present invention starts the dismantling work when the voltage becomes lower than the voltage at which sparks are not generated by performing electric discharge, and ends the dismantling work when there is no contamination due to elution of copper or the contamination is slight. It is a feature. Disassembly and separation are carried out while continuing the discharge, but the conductive part is separated during the separation process and the discharge state is released, but at this time, sparks do not occur, so there is no particular problem.

図2に、放電工程中に解体工程(洗浄、開封処理)を実施したときの使用済み電池の電圧変化を示す。固定抵抗(1Ω)による放電を実施しながら、セル電圧が2.4V以下となってから解体作業を開始する。放電状態を解除した後に解体すると、セル電圧が1.1V以上で火花が発生するが、放電しながら解体した場合は、セル電圧が2.4V以下でも火花が発生しないことがある。好ましくはセル電圧が2.0V以下、より好ましくは1.5V以下、さらに好ましくは、1.2V以下の時点で解体作業を開始する。なお、温度、湿度、電池の状態によって火花が発生するセル電圧が若干異なることから、事前に火花の発生するセル電圧を確認することが好ましい。 FIG. 2 shows the voltage change of the used battery when the disassembling step (cleaning, opening process) is performed during the discharging step. While discharging with a fixed resistor (1Ω), the dismantling work is started after the cell voltage becomes 2.4V or less. When disassembled after releasing the discharged state, sparks are generated when the cell voltage is 1.1 V or more, but when disassembled while discharging, sparks may not be generated even when the cell voltage is 2.4 V or less. The dismantling work is preferably started when the cell voltage is 2.0 V or less, more preferably 1.5 V or less, and even more preferably 1.2 V or less. Since the cell voltage at which sparks are generated differs slightly depending on the temperature, humidity, and battery condition, it is preferable to confirm the cell voltage at which sparks are generated in advance.

表1に、固定抵抗(1Ω)による放電を実施した場合の、セル電圧0.6V以下の放電時間に対する正極中のCu品位を示す。表1のとおり、放電時間が15分でCu濃度が6wtppmであり、20分で8wtppmであり、30分で9wtppmであり、35分で12wtppmである。なお、使用済みのリチウムイオン電池をセル電圧0.6V以下(固定抵抗は1Ωとする)にせずに解体し、回収した正極を分析すると6wtppm程度のCuが含まれていた。この結果から、固定抵抗(1Ω)による放電を実施した場合に、セル電圧が0.6Vとなる前に解体作業を終了させることが好ましいが、0.6Vとなってから30分以内であれば、銅の溶出量が10wtppm以下と少なく銅による汚染は軽微であり、許容されるものである。 Table 1 shows the Cu grade in the positive electrode for a discharge time of a cell voltage of 0.6 V or less when discharging with a fixed resistance (1 Ω) is performed. As shown in Table 1, the discharge time is 15 minutes, the Cu concentration is 6 wtppm, 20 minutes is 8 wtppm, 30 minutes is 9 wtppm, and 35 minutes is 12 wtppm. When the used lithium-ion battery was disassembled without reducing the cell voltage to 0.6 V or less (fixed resistance is 1 Ω) and the recovered positive electrode was analyzed, Cu of about 6 wtppm was contained. From this result, when discharging with a fixed resistor (1Ω), it is preferable to finish the dismantling work before the cell voltage reaches 0.6V, but if it is within 30 minutes after reaching 0.6V. The elution amount of copper is as small as 10 wtppm or less, and the contamination by copper is slight and is acceptable.

Figure 2021072157
Figure 2021072157

図2では、1Ωの固定抵抗器を用いて放電を行っているが、抵抗値が低いほど、銅が溶出するまでの時間が短く(図2のグラフの傾きが大きい)、抵抗値が高いほど、銅が溶出するまでの時間が長い(図2のグラフの傾きが小さい)。したがって、すぐに解体する場合には、低抵抗のものを用いて放電し、一方、数日後、あるいは1週間後に解体を予定している場合には、高抵抗のものを用いて放電することができる。このように、解体作業時間あるいは解体作業予定日等を考慮して、抵抗値を決めることが望ましい。好ましくは0.01〜100Ωの抵抗を用いることができる。 In FIG. 2, discharge is performed using a 1Ω fixed resistor. The lower the resistance value, the shorter the time until copper elutes (the slope of the graph in FIG. 2 is larger), and the higher the resistance value. , It takes a long time for copper to elute (the slope of the graph in FIG. 2 is small). Therefore, if you want to disassemble immediately, you can discharge using a low resistance one, while if you plan to disassemble after a few days or a week, you can discharge using a high resistance one. it can. In this way, it is desirable to determine the resistance value in consideration of the dismantling work time, the scheduled dismantling work date, and the like. Preferably, a resistor of 0.01 to 100 Ω can be used.

本開示では、固定抵抗器を用いて放電を行っているが、例えば、SUS線(番線)やニクロム線など素材自体が適度な抵抗を有しているものを活用してもよく、さらには、電球などを用いることもできる。このように固定抵抗を始め、多種多様な部材を用いて放電することが可能であり、その中から適度な抵抗を有すものを選択することができる。 In the present disclosure, discharge is performed using a fixed resistor, but for example, a material such as a SUS wire (numbered wire) or a nichrome wire having an appropriate resistance may be utilized, and further, a material having an appropriate resistance may be used. A light bulb or the like can also be used. In this way, it is possible to discharge using a wide variety of members including fixed resistance, and one having an appropriate resistance can be selected from among them.

以上の方法を用いて、使用済みのリチウムイオン電池を安全に解体することができ、その後は、従来技術を用いて、各種の電池素材を分離、回収することができる。通常、リチウムイオン電池は、Al素材、あるいは、Fe、SUS素材のケースの中に、Al箔材の両面に正極材(Co、Ni、Mnなどが含まれる)が塗布された正極と、Cu箔材の両面に負極材(C)が塗布された負極と、PP(ポリプロピレン)やPE(ポリエチレン)からなるセパレータが設置されている。 The used lithium-ion battery can be safely disassembled by using the above method, and then various battery materials can be separated and recovered by using the prior art. Usually, a lithium ion battery has a positive electrode in which positive electrode materials (including Co, Ni, Mn, etc.) are coated on both sides of the Al foil material in a case made of Al material or Fe, SUS material, and a Cu foil. A negative electrode coated with a negative electrode material (C) on both sides of the material and a separator made of PP (polypropylene) or PE (polyethylene) are installed.

回収した正極は、水素吸蔵合金などの製品の原料として、あるいは、製錬原料とすることができる。正極をフラックス(CaOなど)と共に溶解すると、Alが還元剤となって、リチウムと複合酸化物を形成しているCo、Ni、Mnを金属(メタル)として、還元することができる。このとき、Alが過剰に含まれているため、メタル中にAlが取り込まれるが、水素吸蔵合金にはAlを含む組成のものが存在することから、Alが含まれていても特に問題はない。このように製品とする場合には、不純物となり得るCuを低減する本発明が特に有効である。精錬原料とする場合には、酸溶解、精製(溶媒抽出など)によって、高価なCo、Ni、Mnを各々、分離回収することができる。一方、回収した負極は、Cu精錬原料とすることができ、PPやPEは、プラスチックリサイクルへと分離することができる。また、ケース素材であるAlはAl二次合金として、FeやSUSは鉄屑(鉄鋼原料)として、それぞれ分離、回収することができる。 The recovered positive electrode can be used as a raw material for products such as hydrogen storage alloys or as a raw material for smelting. When the positive electrode is dissolved together with a flux (CaO or the like), Al can be used as a reducing agent, and Co, Ni, and Mn forming a composite oxide with lithium can be reduced as a metal. At this time, since Al is excessively contained, Al is incorporated into the metal, but since some hydrogen storage alloys have a composition containing Al, there is no particular problem even if Al is contained. .. In the case of producing a product in this way, the present invention that reduces Cu that can be an impurity is particularly effective. When used as a refining raw material, expensive Co, Ni, and Mn can be separated and recovered by acid dissolution and purification (solvent extraction, etc.). On the other hand, the recovered negative electrode can be used as a Cu refining raw material, and PP and PE can be separated into plastic recycling. Further, Al, which is a case material, can be separated and recovered as an Al secondary alloy, and Fe and SUS can be separated and recovered as iron scrap (steel raw material).

次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples are merely representative examples, and the present invention need not be limited to these examples and should be interpreted within the scope of the technical idea described in the specification. It is a thing.

(実施例1)
使用済みのリチウムイオンの電池パックをモジュールへと解体した後、モジュールを粗放電した(セル電圧0.6V/セル以上、固定抵抗1Ω)。次に、このモジュールを解体して、使用済み電池セルとし、電池セルを放電しながら、セル電圧が2.4V以下(固定抵抗1Ω)となってから電池セルを解体(開封)して、セル電圧が0.6V以下となってから30分以内に正極、負極、セパレータ、ケース、蓋、端子の各種電池素材を分離した。その後、上記の手法によって、各種電池素材から有価金属等を回収した。このとき、正極中のCuの品位は6wtppmであった。
(Example 1)
After disassembling the used lithium-ion battery pack into a module, the module was extensively discharged (cell voltage 0.6 V / cell or more, fixed resistance 1 Ω). Next, this module is disassembled to make a used battery cell, and while discharging the battery cell, the battery cell is disassembled (opened) after the cell voltage becomes 2.4 V or less (fixed resistance 1 Ω). Within 30 minutes after the voltage became 0.6 V or less, various battery materials for the positive electrode, the negative electrode, the separator, the case, the lid, and the terminal were separated. Then, valuable metals and the like were recovered from various battery materials by the above method. At this time, the grade of Cu in the positive electrode was 6 wtppm.

(実施例2)
使用済みのリチウムイオンの電池パックをモジュールへと解体した後、モジュールを粗放電した(セル電圧0.6V/セル以上、固定抵抗1Ω)。次に、このモジュールを解体して、使用済み電池セルとし、電池セルを放電しながら、セル電圧が1.6V以下(SUS線使用)となってから、電池セルを解体(開封)して、セル電圧が0.6V以下となってから30分以内に正極、負極、セパレータ、ケース、蓋、端子の各種電池素材を分離した。その後、上記の手法によって、各種電池素材から有価金属等を回収した。このとき、正極中のCuの品位は10wtppm未満であった。
(Example 2)
After disassembling the used lithium-ion battery pack into a module, the module was extensively discharged (cell voltage 0.6 V / cell or more, fixed resistance 1 Ω). Next, this module is disassembled to make a used battery cell, and while discharging the battery cell, the cell voltage becomes 1.6 V or less (using a SUS line), and then the battery cell is disassembled (opened). Within 30 minutes after the cell voltage became 0.6 V or less, various battery materials for the positive electrode, the negative electrode, the separator, the case, the lid, and the terminal were separated. Then, valuable metals and the like were recovered from various battery materials by the above method. At this time, the grade of Cu in the positive electrode was less than 10 wtppm.

本発明は、安全にリチウムイオン電池を解体することができるとともに、銅による正極へのコンタミネーションを低減することができる。そして、回収された金属は、汚染が少ないことから直接、他の製品の製造に利用することができる。本発明のリサイクル方法は、電気自動車、定地(住宅、ビル、太陽電池、風力発電)用蓄電池(システム)、非常用蓄電池(UPSや可搬バッテリーなど)、建設機械車両(産業用車両)、フォークリフト、電動車いす、などに用いられる大型のバッテリーや、携帯電話用や単三電池型などの小型のバッテリーに、用いられているリチウムイオン電池から、有価金属を回収するのに有用である。
INDUSTRIAL APPLICABILITY According to the present invention, the lithium ion battery can be safely disassembled, and contamination of the positive electrode by copper can be reduced. The recovered metal can be directly used for manufacturing other products because it is less contaminated. The recycling method of the present invention includes electric vehicles, storage batteries (systems) for fixed land (houses, buildings, solar cells, wind power generation), emergency storage batteries (UPS, portable batteries, etc.), construction machinery vehicles (industrial vehicles), It is useful for recovering valuable metals from lithium-ion batteries used in large batteries used in forklifts, electric wheelchairs, etc., and small batteries used in mobile phones, AA batteries, etc.

Claims (5)

使用済みリチウムイオン電池を放電、解体して電池素材を分離、回収する方法であって、放電を実施して火花が発生しないセル電圧以下となった段階で解体作業を開始し、銅の溶出による汚染がない或いは汚染が軽微な段階で解体作業を終了することを特徴とするリチウムイオン電池のリサイクル方法。 This is a method of discharging and disassembling a used lithium-ion battery to separate and recover the battery material. The dismantling work is started when the voltage drops below the cell voltage at which sparks do not occur after discharging, and by elution of copper. A method for recycling a lithium-ion battery, characterized in that the dismantling work is completed at a stage where there is no contamination or the contamination is minor. 抵抗を用いて放電しセル電圧が2.4V以下となってからリチウムイオン電池の解体作業を開始することを特徴とする請求項1記載のリチウムイオン電池のリサイクル方法。 The method for recycling a lithium ion battery according to claim 1, wherein the dismantling work of the lithium ion battery is started after discharging using a resistor and the cell voltage becomes 2.4 V or less. 固定抵抗(1Ω)による放電を実施した場合にセル電圧が0.6V以下となってから30分以内にリチウムイオン電池の解体作業を終了することを特徴とする請求項1又は2に記載のリチウムイオン電池のリサイクル方法。 The lithium according to claim 1 or 2, wherein the dismantling work of the lithium ion battery is completed within 30 minutes after the cell voltage becomes 0.6 V or less when the discharge is performed by the fixed resistance (1 Ω). How to recycle ion batteries. 0.01〜100Ωの抵抗を用いて放電することを特徴とする請求項1〜3のいずれか一項に記載のリチウムイオン電池のリサイクル方法。 The method for recycling a lithium ion battery according to any one of claims 1 to 3, wherein the lithium ion battery is discharged using a resistor of 0.01 to 100 Ω. 正極中への銅の溶出量が10ppm以下であることを特徴とする請求項1〜4のいずれか一項に記載のリチウムイオン電池のリサイクル方法。
The method for recycling a lithium ion battery according to any one of claims 1 to 4, wherein the amount of copper eluted into the positive electrode is 10 ppm or less.
JP2019195871A 2019-10-29 2019-10-29 How to recycle lithium ion batteries Active JP7234485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019195871A JP7234485B2 (en) 2019-10-29 2019-10-29 How to recycle lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195871A JP7234485B2 (en) 2019-10-29 2019-10-29 How to recycle lithium ion batteries

Publications (2)

Publication Number Publication Date
JP2021072157A true JP2021072157A (en) 2021-05-06
JP7234485B2 JP7234485B2 (en) 2023-03-08

Family

ID=75713737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195871A Active JP7234485B2 (en) 2019-10-29 2019-10-29 How to recycle lithium ion batteries

Country Status (1)

Country Link
JP (1) JP7234485B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195948A (en) * 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195948A (en) * 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device

Also Published As

Publication number Publication date
JP7234485B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
Forte et al. Lithium iron phosphate batteries recycling: An assessment of current status
Sonoc et al. Opportunities to improve recycling of automotive lithium ion batteries
Vanitha et al. Waste minimization and recovery of valuable metals from spent lithium-ion batteries–a review
Yanamandra et al. Recycling of Li-ion and lead acid batteries: a review
US8882007B1 (en) Process for recovering and regenerating lithium cathode material from lithium-ion batteries
Vezzini Manufacturers, materials and recycling technologies
WO2021201055A1 (en) Heat treatment method for battery-waste and lithium recovery method
JPH1197076A (en) Method for processing battery
CN102637921A (en) Novel high-efficient comprehensive utilization method for recycling waste lithium-ion battery
CN110719963B (en) Treatment method of lithium ion battery waste
JP7271833B2 (en) Lithium recovery method
KR20210077962A (en) Method for recovering valuable metals from used battery cell
CN109659642B (en) Method for separating aluminum foil and positive active material in waste lithium ion battery positive plate
Wang et al. A review of processes and technologies for the recycling of spent lithium-ion batteries
Al-Asheh et al. Treatment and recycling of spent lithium-based batteries: a review
JP7234485B2 (en) How to recycle lithium ion batteries
CN103367839A (en) Method for recovering and separating anode pole piece from waste and old lithium ion battery
JP7133688B2 (en) How to dispose of lithium-ion battery scrap
US20230275279A1 (en) Remanufacturing of a battery cell
Persis et al. A Comparative Analysis on the Conventional Methods, Benefits of Recycling the Spent Lithium-ion Batteries with a Special focus on Ultrasonic Delamination.
KR20210103594A (en) Storage and/or transportation of sodium-ion cells
Martynková et al. Recyclability, circular economy, and environmental aspects of lithium–sulfur batteries
Nowaczek et al. Overview of funding sources and technologies for the recovery of raw materials from spent batteries and rechargeable batteries in Poland
Davies et al. Raw Materials and Recycling of Lithium-Ion Batteries
Zhao et al. Recycling opportunities for lithium-ion power batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7234485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150