JP2021071476A - Immunoassay reagent, immunoassay kit, and immunoassay method - Google Patents

Immunoassay reagent, immunoassay kit, and immunoassay method Download PDF

Info

Publication number
JP2021071476A
JP2021071476A JP2020164334A JP2020164334A JP2021071476A JP 2021071476 A JP2021071476 A JP 2021071476A JP 2020164334 A JP2020164334 A JP 2020164334A JP 2020164334 A JP2020164334 A JP 2020164334A JP 2021071476 A JP2021071476 A JP 2021071476A
Authority
JP
Japan
Prior art keywords
immunoassay
reagent
magnetic particles
substance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020164334A
Other languages
Japanese (ja)
Other versions
JP7269906B2 (en
Inventor
高橋 志郎
Shiro Takahashi
志郎 高橋
隆啓 北川
Takahiro Kitagawa
隆啓 北川
黒川 祐人
Sukehito Kurokawa
祐人 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2021071476A publication Critical patent/JP2021071476A/en
Application granted granted Critical
Publication of JP7269906B2 publication Critical patent/JP7269906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide an immunoassay reagent excellent in storage stability, an immunoassay kit using the immunoassay reagent, and an immunoassay method.SOLUTION: The immunoassay reagent contains a solid-phase carrier (E) for immunoassay, sugar (A) and, water. In the immunoassay reagent (M), the weight ratio of the water is 20-60% by weight with respect to the weight of the immunoassay reagent. The immunoassay reagent (M) preferably further contains protein (B). Further, in the immunoassay reagent (M), the weight ratio of the sugar (A) is preferably 20 to 60% by weight with respect to the weight of the immunoassay reagent.SELECTED DRAWING: None

Description

本発明は、免疫測定用試薬、免疫測定用キット及び免疫測定方法に関する。 The present invention relates to immunoassay reagents, immunoassay kits and immunoassay methods.

免疫測定試薬においては、主要構成要素として固相担体となる磁性粒子やガラスビーズ等の表面に測定対象物質、測定対象物質の類似物質、又は測定対象物質と特異的に結合する物質、例えば、抗原や抗体を固定化したものがある。免疫測定試薬においては、固相担体上に固定化した物質が一定の活性を維持していることが望まれる。経時的に物質の活性が低下したり、保存状態によって物質の活性が変化したのでは正確な測定結果は期待できず、免疫測定試薬としては、大きな問題である。 In immunoassay reagents, a substance to be measured, a substance similar to the substance to be measured, or a substance that specifically binds to the substance to be measured, for example, an antigen, is used as a main component on the surface of magnetic particles or glass beads that serve as a solid phase carrier. And some have immobilized antibodies. In the immunoassay reagent, it is desired that the substance immobilized on the solid phase carrier maintains a certain activity. If the activity of the substance decreases with time or the activity of the substance changes depending on the storage state, accurate measurement results cannot be expected, which is a big problem as an immunoassay reagent.

固相担体に固定化される抗原や抗体の物質自体は、緩衝液等に溶解した液状試薬や、凍結乾燥した凍結乾燥試薬等、それぞれの形態において様々な安定化方法が提案されている。液状試薬の場合、IgM試薬溶液にウシ血清アルブミン(BSA)を添加して安定化する方法(特許文献1)、標識抗体をアミノ酸及びその誘導体を添加して安定化する方法(特許文献2)等が提案されている。また、凍結乾燥試薬の場合、酵素標識抗体溶液にスクロース、トレハロース又はデキストランを添加して凍結乾燥して安定化する方法(特許文献3)が提案されている。しかしながら、固相担体上にこれらの物質を固定化し、液状での長期保存の場合における安定化方法としては、満足のいくものではない。多数検体同時迅速検査を目的とした自動化免疫測定装置の開発において、さらなる安定性の改善が望まれている。 Various stabilization methods have been proposed for the antigen or antibody substance itself immobilized on the solid phase carrier in each form, such as a liquid reagent dissolved in a buffer solution or the like, a freeze-dried reagent, or the like. In the case of a liquid reagent, a method of adding bovine serum albumin (BSA) to an IgM reagent solution to stabilize it (Patent Document 1), a method of stabilizing a labeled antibody by adding an amino acid and a derivative thereof (Patent Document 2), etc. Has been proposed. Further, in the case of a freeze-drying reagent, a method of adding sucrose, trehalose or dextran to an enzyme-labeled antibody solution and freeze-drying to stabilize it (Patent Document 3) has been proposed. However, it is not satisfactory as a stabilization method in the case of immobilizing these substances on a solid phase carrier and storing them in a liquid state for a long period of time. Further improvement in stability is desired in the development of an automated immunoassay device for the purpose of simultaneous rapid testing of a large number of samples.

特開平9−127114号公報Japanese Unexamined Patent Publication No. 9-127114 特開2011−241206号公報Japanese Unexamined Patent Publication No. 2011-241206 特開昭60−149972号公報Japanese Unexamined Patent Publication No. 60-149972

本発明の目的は、保存安定性に優れた免疫測定用試薬並びにその免疫測定用試薬を用いた免疫測定用キット及び免疫測定方法を提供することにある。 An object of the present invention is to provide an immunoassay reagent having excellent storage stability, an immunoassay kit and an immunoassay method using the immunoassay reagent.

本発明者らは、上記目的を達成するため鋭意検討した結果、本発明に到達した。
すなわち本発明は、免疫測定用固相担体(E)と、糖(A)と、水とを含有する免疫測定用試薬であって、
前記水の重量割合が、前記免疫測定用試薬の重量を基準として、20〜60重量%である免疫測定用試薬(M);前記免疫測定用試薬(M)を含む免疫測定用キット;前記免疫測定用試薬(M)を用いる免疫測定方法である。
The present inventors have arrived at the present invention as a result of diligent studies to achieve the above object.
That is, the present invention is an immunoassay reagent containing an immunoassay solid-phase carrier (E), a sugar (A), and water.
The weight ratio of the water is 20 to 60% by weight based on the weight of the immunoassay reagent (M); an immunoassay kit containing the immunoassay reagent (M); the immunity. This is an immunoassay method using a measurement reagent (M).

本発明の免疫測定用キットが有する免疫測定用試薬は、保存安定性に優れるため、有効期間切れによる試薬ロスを低減することができる。 Since the immunoassay reagent contained in the immunoassay kit of the present invention is excellent in storage stability, it is possible to reduce reagent loss due to expiration of the effective period.

<免疫測定用試薬>
本発明の免疫測定用試薬(M)は、免疫測定用固相担体(E)と、糖(A)と、水とを含有する。
本発明において、免疫測定用試薬(M)は、後に詳述する免疫測定用キットを構成する試薬であり、後に詳述する免疫測定方法(試料中の測定対象物質の濃度を測定する免疫測定方法)に用いることができる。
前記の測定対象物質としては、一般的に免疫測定の分野で測定されるものであれば特に限定はされず、例えば血清、血液、血漿、尿等の生体体液、リンパ液、血球、各種細胞類等の生体由来の試料中に含まれるヌクレオチド鎖(オリゴヌクレオチド鎖、ポリヌクレオチド鎖);染色体;核酸(デオキシリボ核酸(DNA)、リボ核酸(RNA)等);ペプチド鎖(例えばC−ペプチド、アンジオテンシンI等);タンパク質〔例えばプロカルシトニン、免疫グロブリンA(IgA)、免疫グロブリンE(IgE)、免疫グロブリンG(IgG)、免疫グロブリンM(IgM)、免疫グロブリンD(IgD)、β2−ミクログロブリン、アルブミン、ヘモグロビン、ミオグロビン、トランスフェリン、プロテインA、C反応性蛋白質(CRP)、フェリチン、トロポニンT(TnT)、ヒト脳性ナトリウム利尿ペプチド前駆体N端フラグメント(NT−proBNP)、これらの分解産物〕;血液凝固関連因子(例えばフィブリノーゲン、フィブリン分解産物、プロトロンビン、トロンビン等);酵素〔例えばアミラーゼ(例えば膵型、唾液腺型、X型等)、アルカリホスファターゼ(例えば肝性、骨性、胎盤性、小腸性等)、酸性ホスファターゼ(例えばPAP等)、γ−グルタミルトランスファラーゼ(例えば腎性、膵性、肝性等)、リパーゼ(例えば膵型、胃型等)、クレアチンキナーゼ(例えばCK−1、CK−2、mCK等)、乳酸脱水素酵素(例えばLDH1〜LDH5等)、グルタミン酸オキザロ酢酸トランスアミナーゼ(例えばASTm、ASTs等)、グルタミン酸ピルビン酸トランスアミナーゼ(例えばALTm、ALTs等)、コリンエステラーゼ(例えばChE1〜ChE5等)、ロイシンアミノペプチダーゼ(例えばC−LAP、AA、CAP等)、レニン、プロテインキナーゼ、チロシンキナーゼ等〕及びこれら酵素のインヒビター;ホルモン(例えばPTH、TSH、インシュリン、LH、FSH、エストラジオール、プロラクチン等);レセプター(例えばエストロゲン、TSH等に対するレセプター);リガンド(例えばエストロゲン、TSH等);細菌(例えば結核菌、肺炎球菌、ジフテリア菌、髄膜炎菌、淋菌、ブドウ球菌、レンサ球菌、腸内細菌、大腸菌、ヘリコバクター・ピロリ等);ウイルス(例えばルベラウイルス、ヘルペスウイルス、肝炎ウイルス、ATLウイルス、AIDSウイルス、インフルエンザウイルス、アデノウイルス、エンテロウイルス、ポリオウイルス、EBウイルス、HAV、HBV、HCV、HIV、HTLV等);真菌(例えばカンジダ、クリプトコッカス等);スピロヘータ(例えばレプトスピラ、梅毒トレポネーマ等);クラミジア、マイコプラズマ等の微生物;当該微生物に由来するタンパク質又はペプチド或いは糖鎖抗原;気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎等のアレルギーの原因となる各種アレルゲン(例えばハウスダスト、例えばコナヒョウダニ、ヤケヒョウダニ等のダニ類、例えばスギ、ヒノキ、スズメノヒエ、ブタクサ、オオアワガエリ、ハルガヤ、ライムギ等の花粉、例えばネコ、イヌ、カニ等の動物、例えば米、卵白等の食物、真菌、昆虫、木材、薬剤、化学物質等に由来するアレルゲン等);脂質(例えばリポタンパク質等);プロテアーゼ(例えばトリプシン、プラスミン、セリンプロテアーゼ等);腫瘍マーカータンパク抗原(例えばPSA、PGI、PGII等);糖鎖抗原〔例えばAFP(例えばL1からL3等)、hCG(hCGファミリー)、トランスフェリン、IgG、サイログロブリン(Tg)、Decay−accelerating−factor(DAF)、癌胎児性抗原(例えばCEA、NCA、NCA−2、NFA等)、CA19−9、PIVKA−II、CA125、前立腺特異抗原、癌細胞が産生する特殊な糖鎖を有する腫瘍マーカー糖鎖抗原、ABO糖鎖抗原等〕;糖鎖(例えばヒアルロン酸、β−グルカン、上記糖鎖抗原等が有する糖鎖等);糖鎖に結合するタンパク質(例えばヒアルロン酸結合タンパク、βグルカン結合タンパク等);リン脂質(例えばカルジオリピン等);リポ多糖(例えばエンドトキシン等);化学物質(例えばT3、T4、FT3、FT4、トリブチルスズ、ノニルフェノール、4−オクチルフェノール、フタル酸ジ−n−ブチル、フタル酸ジシクロヘキシル、ベンゾフェノン、オクタクロロスチレン、フタル酸ジ−2−エチルヘキシル等の環境ホルモン);人体に投与・接種される各種薬剤及びこれらの代謝物;アプタマー;核酸結合性物質;これらの抗体等が挙げられる。上記したものの中でも、抗体、ホルモン、癌マーカー及び心疾患マーカー等が好ましい。
<Reagent for immunoassay>
The immunoassay reagent (M) of the present invention contains an immunoassay solid-phase carrier (E), a sugar (A), and water.
In the present invention, the immunoassay reagent (M) is a reagent constituting an immunoassay kit described in detail later, and an immunoassay method (immunosassay method for measuring the concentration of a substance to be measured in a sample) described in detail later. ) Can be used.
The substance to be measured is not particularly limited as long as it is generally measured in the field of immunoassay, for example, biological fluids such as serum, blood, plasma and urine, lymph fluid, blood cells, various cells and the like. Nucleotide chains (oligonucleotide chains, polynucleotide chains); chromosomes; nucleic acids (deoxyribonucleic acid (DNA), ribonucleic acid (RNA), etc.); peptide chains (eg, C-peptide, angiotensin I, etc.) ); Proteins [eg, procalcitonin, immunoglobulin A (IgA), immunoglobulin E (IgE), immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin D (IgD), β2-microglobulin, albumin, Hemoglobin, myoglobin, transferase, protein A, C reactive protein (CRP), ferritin, troponin T (TnT), human brain sodium diuretic peptide precursor N-terminal fragment (NT-proBNP), degradation products thereof]; Factors (eg fibrinogen, fibrin degradation products, prothrombin, thrombin, etc.); Enzymes (eg, amylase (eg, pancreatic, plasma gland, X, etc.), alkaline phosphatase (eg, hepatic, osseous, placenta, small bowel, etc.), acidic Phosphatase (eg, PAP, etc.), γ-glutamyl transferase (eg, renal, pancreatic, hepatic, etc.), lipase (eg, pancreatic, gastric, etc.), creatine kinase (eg, CK-1, CK-2, mCK, etc.), Lactated dehydrogenase (eg LDH1-LDH5, etc.), glutamate oxaloacetate transaminase (eg, ASTm, ASTs, etc.), glutamate pyruvate transaminase (eg, ALTm, ALTs, etc.), choline esterase (eg, ChE1-ChE5, etc.), leucine aminopeptidase (eg, ChE1-ChE5, etc.) C-LAP, AA, CAP, etc.), renin, protein kinase, tyrosine kinase, etc.] and inhibitors of these enzymes; hormones (eg, PTH, TSH, insulin, LH, FSH, estradiol, prolactin, etc.); receptors (eg, estrogen, TSH, etc.) Receptors for etc.); Ligands (eg estrogen, TSH, etc.); Bacteria (eg, tuberculosis, pneumonia, diphtheria, meningitis, gonococcus, staphylococcus, lensasphere, enterobacteria, Escherichia coli, helicobacter pyrori, etc.) Viruses (eg, rubella virus, herpes virus, hepatitis virus, ATL virus, AI DS virus, influenza virus, adenovirus, enterovirus, poliovirus, EB virus, HAV, HBV, HCV, HIV, HTLV, etc.; fungi (eg, candida, cryptococcus, etc.); spirochete (eg, leptspira, syphilis treponema, etc.); chlamydia, Microorganisms such as mycoplasma; proteins or peptides or sugar chain antigens derived from the microorganisms; various allergens causing allergies such as bronchial asthma, allergic rhinitis, and atopic dermatitis (for example, house dust, for example, ticks such as Kona leopard mite and Yake leopard mite) For pollen such as cedar, hinoki, suzumenohie, butakusa, sardine, hargaya, limegi, for example, for animals such as cats, dogs, crabs, for example, foods such as rice, egg white, fungi, insects, wood, chemicals, chemical substances, etc. Derived allergens, etc.); Lipids (eg, lipoproteins, etc.); Proteas (eg, trypsin, plasmin, serine proteases, etc.); Tumor marker protein antigens (eg, PSA, PGI, PGII, etc.); Sugar chain antigens [eg, from AFP (eg, L1) L3 etc.), hCG (hCG family), transferase, IgG, thyroglobulin (Tg), Decay-accelerating-factor (DAF), cancer fetal antigen (eg CEA, NCA, NCA-2, NFA etc.), CA19-9, PIVKA-II, CA125, prostate-specific antigen, tumor marker sugar chain antigen having a special sugar chain produced by cancer cells, ABO sugar chain antigen, etc.]; Sugar chain (for example, hyaluronic acid, β-glucan, the above sugar chain antigen, etc.) Sugar chains, etc.); Proteins that bind to sugar chains (eg, hyaluronic acid-binding protein, β-glucan-binding protein, etc.); Phosphorlipids (eg, cardiolipin, etc.); Lipopolysaccharides (eg, endotoxin, etc.); Chemical substances (eg, T3, T4) , FT3, FT4, tributyltin, nonylphenol, 4-octylphenol, di-n-butyl phthalate, dicyclohexyl phthalate, benzophenone, octachlorostyrene, environmental hormones such as di-2-ethylhexyl phthalate); Various drugs and their metabolites; antigeners; nucleic acid-binding substances; these antibodies and the like. Among the above, antibodies, hormones, cancer markers, heart disease markers and the like are preferable.

本発明の免疫測定用試薬(M)が含有する糖(A)としては、単糖類、二糖類、多糖類及び糖誘導体(糖アルコール等)等が挙げられる。
単糖類としては、トリオース(ケトトリオース等)、テトロース(ケトテトロース等)、ペントース(ケトペントース、アルドペントース及びデオキシ糖類等)、ヘキソース[ケトヘキソース(プシコース、フルクトース、ソルボース及びタガトース等)、アルドヘキソース(アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース及びタロース等)及びデオキシ糖(フコース、フクロース及びラムノース等)等]並びにヘプトース(セドヘプツロース等)等が挙げられる。
二糖類としては、上記単糖類の内、2分子が脱水縮合してグリコシド結合を形成したものが含まれ、具体的には、トレハロース、スクロース、ラクトース、マルトース及びセロビオース等が挙げられる。
多糖類としては、上記単糖類の内、3分子以上が脱水縮合してグリコシド結合を形成したものが含まれ、具体的には、オリゴ糖(フラクトオリゴ糖等)、アミロース、アミロペクチン、グリコーゲン、セルロース、ヒアルロン酸、コンドロイチン硫酸及びヘパリン等が挙げられる。
糖アルコールとしては、グリセロール、エリトリトール及びマンニトール等が挙げられる。
Examples of the sugar (A) contained in the immunoassay reagent (M) of the present invention include monosaccharides, disaccharides, polysaccharides and sugar derivatives (sugar alcohols and the like).
Examples of monosaccharides include triose (ketotriose, etc.), tetrose (ketotetrose, etc.), pentose (ketopentose, aldopentose, deoxy sugar, etc.), hexose [ketohexose (psicose, fructose, sorbose, tagatous, etc.), aldhexose (allose, alto, etc.). Loin, glucose, mannose, growth, idose, galactose, tetrose, etc.), deoxy sugar (fucose, fukurosu, ramnorse, etc.), etc.], hexose (sedhepturose, etc.) and the like can be mentioned.
Examples of the disaccharide include those in which two molecules of the above monosaccharides are dehydrated and condensed to form a glycosidic bond, and specific examples thereof include trehalose, sucrose, lactose, maltose and cellobiose.
Examples of the polysaccharide include those in which three or more molecules of the above monosaccharides are dehydrated and condensed to form a glycosidic bond. Specifically, oligosaccharides (fructooligosaccharides, etc.), amylose, amylopectin, glycogen, cellulose, etc. Examples thereof include hyaluronic acid, chondroitin sulfate and heparin.
Examples of sugar alcohols include glycerol, erythritol and mannitol.

糖(A)の化学式量又は重量平均分子量は1000以下であることが好ましい。
糖(A)の重量平均分子量は、以下の条件のゲルパーミエーションクロマトグラフィ(GPC)により、測定できる。
測定装置:東ソー株式会社製の「HLC−8120」
カラム:東ソー株式会社製の「TSKgelGMHXL」(2本)と東ソー(株)製の「T SKgelMultiporeHXL−M」(1本)
試料溶液:0.25質量%のTHF溶液
カラムへの試料溶液の注入量:100μl
流速:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:東ソー株式会社製の標準ポリスチレン(TSK standard POLYSTYRENE)12点(数平均分子量:500、1050、2800、5970、9100、18100、37900、96400、190000、355000、1090000、2890000)。
The chemical formula amount or weight average molecular weight of the sugar (A) is preferably 1000 or less.
The weight average molecular weight of the sugar (A) can be measured by gel permeation chromatography (GPC) under the following conditions.
Measuring device: "HLC-8120" manufactured by Tosoh Corporation
Columns: "TSKgel GMHXL" manufactured by Tosoh Corporation (2 pcs) and "T SKgel Multipore HXL-M" manufactured by Tosoh Corporation (1 pcs)
Sample solution: 0.25% by mass THF solution Injection amount of sample solution into the column: 100 μl
Flow velocity: 1 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) manufactured by Tosoh Corporation 12 points (number average molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000, 1090000 , 2890000).

本発明の免疫測定用試薬(M)が含有する免疫測定用固相担体(E)は、固相担体であり、一般的にこの分野で用いられるものであれば特に限定はされず、例えばガラスビーズ、ポリスチレンビーズ、磁性粒子、マイクロプレート、ラテックス等が代表的なものとして挙げられる。これらの内、測定の感度及び測定時間短縮の観点から、後述の抗原(C)又は抗体(D)を有する磁性粒子(H)[抗原(C)又は抗体(D)を固定化した磁性粒子等]であることが好ましく、免疫測定における測定時間の短時間化の観点から、例えば特開2014−210680号公報及び特開2013−019889号公報等に記載の抗原(C)又は抗体(D)を有するシリカ粒子[金属酸化物を含有するシリカ粒子]が更に好ましい。 The immunoassay solid-phase carrier (E) contained in the immunoassay reagent (M) of the present invention is a solid-phase carrier, and is not particularly limited as long as it is generally used in this field. For example, glass. Typical examples include beads, polystyrene beads, magnetic particles, microplates, and latex. Among these, from the viewpoint of measurement sensitivity and shortening of measurement time, magnetic particles (H) having an antigen (C) or antibody (D) described later [magnetic particles on which an antigen (C) or antibody (D) is immobilized, etc. ], And from the viewpoint of shortening the measurement time in immunoassay, for example, the antigen (C) or antibody (D) described in JP-A-2014-210680 and JP-A-2013-019889 can be used. Silica particles having [silica particles containing a metal oxide] are more preferable.

金属酸化物を含有するシリカ粒子としては、免疫測定において測定時間の短時間化の観点から、シリカのマトリックス中に体積平均粒子径が1〜20nmで超常磁性を有する金属酸化物が分散されているものが好ましい。超常磁性とは、外部磁場の存在下で物質の個々の原子磁気モーメントが整列し誘発された一時的な磁場を示し、外部磁場を取り除くと、部分的な整列が損なわれ磁場を示さなくなることをいう。
なお、金属酸化物の体積平均粒子径は、任意の200個の粒子について走査型電子顕微鏡(日本電子株式会社製「JSM−7000F」)で観察して測定された粒子径の平均値である。
As the silica particles containing the metal oxide, a metal oxide having a volume average particle diameter of 1 to 20 nm and having superparamagnetism is dispersed in the silica matrix from the viewpoint of shortening the measurement time in immunoassay. Those are preferable. Hypernormal magnetism refers to a temporary magnetic field in which individual atomic magnetic moments of a substance are aligned and induced in the presence of an external magnetic field, and when the external magnetic field is removed, partial alignment is impaired and the magnetic field is no longer shown. Say.
The volume average particle size of the metal oxide is an average value of the particle size measured by observing any 200 particles with a scanning electron microscope (“JSM-7000F” manufactured by JEOL Ltd.).

平均粒子径が1〜20nmで超常磁性を示す超常磁性金属酸化物としては、鉄、コバルト、ニッケル及びこれらの合金等の酸化物が挙げられるが、磁界に対する感応性が優れていることから、酸化鉄が特に好ましい。超常磁性金属酸化物は、1種を単独で用いても2種以上を併用してもよい。
酸化鉄としては、公知の種々の酸化鉄を用いることができる。
酸化鉄の内、特に化学的な安定性に優れることから、マグネタイト、γ−ヘマタイト、マグネタイト−α−ヘマタイト中間酸化鉄及びγ−ヘマタイト−α−ヘマタイト中間酸化鉄からなる群から選ばれる少なくとも1種が好ましく、大きな飽和磁化を有し、外部磁場に対する感応性が優れていることから、マグネタイトが更に好ましい。
Examples of superparamagnetic metal oxides having an average particle size of 1 to 20 nm and exhibiting superparamagnetism include oxides such as iron, cobalt, nickel and alloys thereof, but they are oxidized because of their excellent sensitivity to magnetic fields. Iron is particularly preferred. As the superparamagnetic metal oxide, one type may be used alone or two or more types may be used in combination.
As the iron oxide, various known iron oxides can be used.
Of iron oxides, at least one selected from the group consisting of magnetite, γ-hematite, magnetite-α-hematite intermediate iron oxide and γ-hematite-α-hematite intermediate iron oxide because of its excellent chemical stability. Is preferable, and magnetite is more preferable because it has a large saturation magnetization and is excellent in sensitivity to an external magnetic field.

金属酸化物を含有するシリカ粒子中の超常磁性金属酸化物の含有量の下限は、金属酸化物を含有するシリカ粒子の重量を基準として60重量%が好ましく、更に好ましくは65重量%であり、上限は95重量%が好ましく、更に好ましくは80重量%である。
超常磁性金属酸化物の含有量が60重量%以上であると、得られた金属酸化物を含有するシリカ粒子の磁性が十分であるため、実際の用途面における分離操作を短時間で行えるので好ましい。95重量%以下のものは合成が容易である。
The lower limit of the content of the supernormal magnetic metal oxide in the silica particles containing the metal oxide is preferably 60% by weight, more preferably 65% by weight, based on the weight of the silica particles containing the metal oxide. The upper limit is preferably 95% by weight, more preferably 80% by weight.
When the content of the superparamagnetic metal oxide is 60% by weight or more, the magnetism of the obtained silica particles containing the metal oxide is sufficient, and the separation operation in the actual application can be performed in a short time, which is preferable. .. Those having a weight of 95% by weight or less are easy to synthesize.

超常磁性金属酸化物の製造方法は、特に限定されないが、Massartにより報告されたものをベースとして水溶性鉄塩及びアンモニアを用いる共沈殿法(R.Massart,IEEE Trans.Magn.1981,17,1247)や水溶性鉄塩の水溶液中の酸化反応を用いた方法により合成することができる。 The method for producing the superparamagnetic metal oxide is not particularly limited, but is a co-precipitation method using a water-soluble iron salt and ammonia based on the method reported by Massart (R. Massart, IEEE Trans. Magn. 1981, 17, 1247). ) Or a method using an oxidation reaction in an aqueous solution of a water-soluble iron salt.

金属酸化物を含有するシリカ粒子の体積平均粒子径は、好ましくは1〜5μm、更に好ましくは1〜3μmである。体積平均粒子径が1μm以上であると、分離回収の際の時間が比較的短くなる傾向にある。また、5μm以下であると、表面積が比較的大きくなる結果、固定化する物質(対象物質、測定対象物質の類似物質又は測定対象物質と特異的に結合する物質)の結合量も多くなり、結合効率が上昇する傾向にある。 The volume average particle size of the silica particles containing the metal oxide is preferably 1 to 5 μm, more preferably 1 to 3 μm. When the volume average particle size is 1 μm or more, the time for separation and recovery tends to be relatively short. Further, when it is 5 μm or less, as a result of the relatively large surface area, the amount of the substance to be immobilized (the target substance, the substance similar to the substance to be measured or the substance specifically bound to the substance to be measured) is also increased, and the binding amount is increased. Efficiency tends to increase.

金属酸化物を含有するシリカ粒子の体積平均粒子径は、後述の水中油型エマルションを作製する際の混合条件(せん断力等)を調節して水中油型エマルションの粒子径を調整することにより制御することができる。また、金属酸化物を含有するシリカ粒子製造時の水洗工程の条件変更や通常の分級等の方法によっても体積平均粒子径を所望の値とすることができる。 The volume average particle size of the silica particles containing the metal oxide is controlled by adjusting the particle size of the oil-in-water emulsion by adjusting the mixing conditions (shearing force, etc.) when producing the oil-in-water emulsion described later. can do. Further, the volume average particle diameter can be set to a desired value by changing the conditions of the water washing process at the time of producing silica particles containing a metal oxide or by a method such as ordinary classification.

本発明における金属酸化物を含有するシリカ粒子の体積平均粒子径は、任意の200個の磁性粒子について走査型電子顕微鏡(日本電子株式会社製「JSM−7000F」)で観察して測定された粒子径の平均値である。 The volume average particle diameter of the silica particles containing a metal oxide in the present invention is a particle measured by observing any 200 magnetic particles with a scanning electron microscope (“JSM-7000F” manufactured by JEOL Ltd.). It is the average value of the diameter.

本発明における金属酸化物を含有するシリカ粒子は、例えば体積平均粒子径が1〜20nmの超常磁性金属酸化物粒子、前記超常磁性金属酸化物粒子の重量に基づいて30〜500重量%の(アルキル)アルコキシシラン及び必要に応じて分散剤を含有する分散液と、水、水溶性有機溶媒、非イオン性界面活性剤及び(アルキル)アルコキシシランの加水分解用触媒を含有する溶液とを混合して水中油型エマルションを形成後、(アルキル)アルコキシシランの加水分解反応及び縮合反応を行い、超常磁性金属酸化物がシリカに包含された磁性粒子の水性分散体を得た後、磁性粒子の水性分散体を遠心分離及び/又は集磁により固液分離し、水又はメタノール等で洗浄することにより得られる。
また、必要に応じて、更に、上記の操作で得た磁性粒子、(アルキル)アルコキシシラン、水、水溶性有機溶媒、非イオン性界面活性剤及び(アルキル)アルコキシシランの加水分解用触媒を混合し、(アルキル)アルコキシシランの加水分解反応及び縮合反応を実施し、コア−シェル構造を有するシリカ粒子としても良い。
上記及び以下において、(アルキル)アルコキシシランとは、アルキルアルコキシシラン又はアルコキシシランを意味する。
The silica particles containing the metal oxide in the present invention are, for example, supernormal magnetic metal oxide particles having a volume average particle diameter of 1 to 20 nm, and 30 to 500% by weight (alkyl) based on the weight of the supernormal magnetic metal oxide particles. ) A dispersion containing an alkoxysilane and, if necessary, a dispersant, and a solution containing water, a water-soluble organic solvent, a nonionic surfactant and a catalyst for hydrolysis of (alkyl) alkoxysilane are mixed. After forming an oil-in-water emulsion, a hydrolysis reaction and a condensation reaction of (alkyl) alkoxysilane are carried out to obtain an aqueous dispersion of magnetic particles in which a supernormal magnetic metal oxide is contained in silica, and then an aqueous dispersion of magnetic particles is obtained. It is obtained by solid-liquid separation of the body by centrifugation and / or collection of magnetism, and washing with water, methanol or the like.
Further, if necessary, the magnetic particles obtained by the above operation, (alkyl) alkoxysilane, water, a water-soluble organic solvent, a nonionic surfactant, and a catalyst for hydrolysis of (alkyl) alkoxysilane are further mixed. Then, the hydrolysis reaction and the condensation reaction of the (alkyl) alkoxysilane may be carried out to obtain silica particles having a core-shell structure.
In the above and below, (alkyl) alkoxysilane means alkylalkoxysilane or alkoxysilane.

本発明において、前記の抗原(C)としては、一般的この分野で測定されるものであれば特に限定はされず、具体的には下記免疫測定に用いられる抗原が含まれる。
血清、血液、血漿、尿等の生体体液、リンパ液、血球、各種細胞類等の生体由来の試料中に含まれるヌクレオチド鎖(オリゴヌクレオチド鎖、ポリヌクレオチド鎖);染色体;核酸(デオキシリボ核酸(DNA)、リボ核酸(RNA)等);ペプチド鎖(例えばC−ペプチド、アンジオテンシンI等);タンパク質〔例えばプロカルシトニン、免疫グロブリンA(IgA)、免疫グロブリンE(IgE)、免疫グロブリンG(IgG)、免疫グロブリンM(IgM)、免疫グロブリンD(IgD)、β2−ミクログロブリン、アルブミン、ヘモグロビン、ミオグロビン、トランスフェリン、プロテインA、C反応性蛋白質(CRP)、フェリチン、トロポニンT(TnT)、ヒト脳性ナトリウム利尿ペプチド前駆体N端フラグメント(NT−proBNP)、これらの分解産物〕;血液凝固関連因子(例えばフィブリノーゲン、フィブリン分解産物、プロトロンビン、トロンビン等);酵素〔例えばアミラーゼ(例えば膵型、唾液腺型、X型等)、アルカリホスファターゼ(例えば肝性、骨性、胎盤性、小腸性等)、酸性ホスファターゼ(例えばPAP等)、γ−グルタミルトランスファラーゼ(例えば腎性、膵性、肝性等)、リパーゼ(例えば膵型、胃型等)、クレアチンキナーゼ(例えばCK−1、CK−2、mCK等)、乳酸脱水素酵素(例えばLDH1〜LDH5等)、グルタミン酸オキザロ酢酸トランスアミナーゼ(例えばASTm、ASTs等)、グルタミン酸ピルビン酸トランスアミナーゼ(例えばALTm、ALTs等)、コリンエステラーゼ(例えばChE1〜ChE5等)、ロイシンアミノペプチダーゼ(例えばC−LAP、AA、CAP等)、レニン、プロテインキナーゼ、チロシンキナーゼ等〕及びこれら酵素のインヒビター;ホルモン(例えばPTH、TSH、インシュリン、LH、FSH、エストラジオール、プロラクチン等);レセプター(例えばエストロゲン、TSH等に対するレセプター);リガンド(例えばエストロゲン、TSH等);細菌(例えば結核菌、肺炎球菌、ジフテリア菌、髄膜炎菌、淋菌、ブドウ球菌、レンサ球菌、腸内細菌、大腸菌、ヘリコバクター・ピロリ等);ウイルス(例えばルベラウイルス、ヘルペスウイルス、肝炎ウイルス、ATLウイルス、AIDSウイルス、インフルエンザウイルス、アデノウイルス、エンテロウイルス、ポリオウイルス、EBウイルス、HAV、HBV、HCV、HIV、HTLV等);真菌(例えばカンジダ、クリプトコッカス等);スピロヘータ(例えばレプトスピラ、梅毒トレポネーマ等);クラミジア、マイコプラズマ等の微生物;当該微生物に由来するタンパク質又はペプチド或いは糖鎖抗原;気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎等のアレルギーの原因となる各種アレルゲン(例えばハウスダスト、例えばコナヒョウダニ、ヤケヒョウダニ等のダニ類、例えばスギ、ヒノキ、スズメノヒエ、ブタクサ、オオアワガエリ、ハルガヤ、ライムギ等の花粉、例えばネコ、イヌ、カニ等の動物、例えば米、卵白等の食物、真菌、昆虫、木材、薬剤、化学物質等に由来するアレルゲン等);脂質(例えばリポタンパク質等);プロテアーゼ(例えばトリプシン、プラスミン、セリンプロテアーゼ等);腫瘍マーカータンパク抗原(例えばPSA、PGI、PGII等);糖鎖抗原〔例えばAFP(例えばL1からL3等)、hCG(hCGファミリー)、トランスフェリン、IgG、サイログロブリン(Tg)、Decay−accelerating−factor(DAF)、癌胎児性抗原(例えばNCA、NCA−2、NFA等)、PIVKA−II、CA125、前立腺特異抗原、癌細胞が産生する特殊な糖鎖を有する腫瘍マーカー糖鎖抗原、ABO糖鎖抗原等〕;糖鎖(例えばヒアルロン酸、β−グルカン、上記糖鎖抗原等が有する糖鎖等);糖鎖に結合するタンパク質(例えばヒアルロン酸結合タンパク、βグルカン結合タンパク等);リン脂質(例えばカルジオリピン等);リポ多糖(例えばエンドトキシン等);化学物質(例えばT3、T4、FT3、FT4、トリブチルスズ、ノニルフェノール、4−オクチルフェノール、フタル酸ジ−n−ブチル、フタル酸ジシクロヘキシル、ベンゾフェノン、オクタクロロスチレン、フタル酸ジ−2−エチルヘキシル等の環境ホルモン);人体に投与・接種される各種薬剤及びこれらの代謝物;アプタマー;核酸結合性物質等が挙げられる。
In the present invention, the antigen (C) is not particularly limited as long as it is generally measured in this field, and specifically includes the antigen used for the following immunoassay.
Nucleotide chains (oligonucleotide chains, polynucleotide chains) contained in biological samples such as serum, blood, plasma, urine, lymph fluid, blood cells, and various cells; chromosomes; nucleic acids (deoxyribonucleic acid (DNA)) , Ribonucleic acid (RNA), etc.); Peptide chains (eg, C-peptide, angiotensin I, etc.); Proteins [eg, procalcitonin, immunoglobulin A (IgA), immunoglobulin E (IgE), immunoglobulin G (IgG), immunity Globulin M (IgM), Immunoglobulin D (IgD), β2-microglobulin, albumin, hemoglobin, myoglobin, transferase, protein A, C reactive protein (CRP), ferritin, troponin T (TnT), human brain sodium diuretic peptide Precursor N-terminal fragments (NT-proBNP), degradation products thereof]; Blood coagulation-related factors (eg, fibrinogen, fibrin degradation products, prothrombin, thrombin, etc.); Enzymes [eg, amylase (eg, pancreatic, salivary gland, X, etc.) , Alkaline phosphatase (eg, hepatic, osseous, placenta, small intestine, etc.), Acid phosphatase (eg, PAP, etc.), γ-glutamyl transferase (eg, renal, pancreatic, hepatic, etc.), Lipase (eg, pancreatic, gastric) Types, etc.), creatine kinase (eg, CK-1, CK-2, mCK, etc.), lactate dehydrogenase (eg, LDH1-LDH5, etc.), glutamate oxaloacetate transaminase (eg, ASTm, ASTs, etc.), glutamate pyruvate transaminase (eg, ASTm, etc.) ALTm, ALTs, etc.), choline esterase (eg, ChE1-ChE5, etc.), leucine aminopeptidase (eg, C-LAP, AA, CAP, etc.), renin, protein kinase, tyrosine kinase, etc.] and inhibitors of these enzymes; hormones (eg, PTH, TSH, insulin, LH, FSH, estradiol, prolactin, etc.); Receptors (eg, receptors for estrogen, TSH, etc.); Ligands (eg, estrogen, TSH, etc.); Bacteria (eg, tuberculosis, pneumonia, diphtheria, meningitis) , Goco, staphylococcus, lensasphere, enterobacteria, Escherichia coli, Helicobacter pylori, etc.); Viruses (eg, rubella virus, herpes virus, hepatitis virus, ATL virus, AIDS virus, influenza virus, adenovirus, enterovirus, poliovirus) , EB Will Su, HAV, HBV, HCV, HIV, HTLV, etc.); Fungi (eg, candida, cryptococcus, etc.); Spiroheta (eg, leptspira, syphilis treponema, etc.); Microorganisms such as chlamydia, mycoplasma; Proteins or peptides or sugars derived from the microorganisms Chain antigens; various allergens that cause allergies such as bronchial asthma, allergic rhinitis, and atopic dermatitis (for example, house dust, for example, ticks such as Kona leopard mite, Yake leopard mite, etc. Pollen such as limes, animals such as cats, dogs, crabs, etc., foods such as rice, egg white, etc., allergens derived from fungi, insects, wood, drugs, chemical substances, etc.); lipids (eg, lipoproteins, etc.); proteases (For example, trypsin, plasmin, serine protease, etc.); Tumor marker protein antigen (for example, PSA, PGI, PGII, etc.); Glycan antigen [for example, AFP (for example, L1 to L3, etc.), hCG (hCG family), transferase, IgG, thyroglobulin, etc.) (Tg), Decay-accelerating-factor (DAF), cancer fetal antigens (eg NCA, NCA-2, NFA, etc.), PIVKA-II, CA125, prostate-specific antigens, having special sugar chains produced by cancer cells Tumor marker sugar chain antigen, ABO sugar chain antigen, etc.]; Sugar chain (for example, hyaluronic acid, β-glucan, sugar chain of the above sugar chain antigen, etc.); Protein that binds to the sugar chain (for example, hyaluronic acid-binding protein, β Glucan-binding protein, etc.); Phosphorlipids (eg, cardiolipin, etc.); Lipopolysaccharides (eg, endotoxin, etc.); Chemical substances (eg, T3, T4, FT3, FT4, tributyltin, nonylphenol, 4-octylphenol, di-n-butyl phthalate, etc.) Environmental hormones such as dicyclohexyl phthalate, benzophenone, octachlorostyrene, di-2-ethylhexyl phthalate); various drugs administered / inoculated to the human body and their metabolites; aptamers; nucleic acid-binding substances and the like.

本発明において、抗体(D)としては、一般的この分野で測定されるものであれば特に限定はされず、具体的には抗原(C)として例示したものに対する抗体が挙げられる。尚、本発明において用いられる抗体には、パパインやペプシン等の蛋白質分解酵素、或いは化学的分解により生じるFab、F(ab’)フラグメント等の分解産物も包含される。 In the present invention, the antibody (D) is not particularly limited as long as it is generally measured in this field, and specific examples thereof include antibodies against those exemplified as the antigen (C). The antibody used in the present invention also includes proteolytic enzymes such as papain and pepsin, and degradation products such as Fab and F (ab') 2 fragments generated by chemical degradation.

本発明において、磁性粒子に抗原(C)又は抗体(D)を固定化して磁性粒子(H)とする方法としては、上述の磁性粒子に、抗原(C)又は抗体(D)を物理吸着させる方法が挙げられるが、より効率良く測定対象物質等、具体的には、抗原(C)又は抗体(D)を固定化させる観点から、グルタルアルデヒド、アルブミン、カルボジイミド、ストレプトアビジン、ビオチン及び官能基を有するアルキルアルコキシシランからなる群から選ばれる少なくとも1種の有機化合物を磁性粒子の表面に結合させ、それらを介して、抗原(C)又は抗体(D)を磁性粒子に固定化させるのが好ましく、更に好ましくは官能基(エチレン性不飽和基、エポキシ基、アミノ基、メルカプト基及びイソシアネート基等)を有するアルキルアルコキシシランを介して固定化させることである。
このような官能基を有するアルキルアルコキシシランとしては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、トリス−(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン等が挙げられる。
In the present invention, as a method of immobilizing an antigen (C) or an antibody (D) on a magnetic particle to form a magnetic particle (H), the antigen (C) or the antibody (D) is physically adsorbed on the above-mentioned magnetic particle. Although a method can be mentioned, glutalaldehyde, albumin, carbodiimide, streptavidin, biotin and functional groups can be used from the viewpoint of immobilizing the antigen (C) or antibody (D) more efficiently, such as the substance to be measured. It is preferable that at least one organic compound selected from the group consisting of alkylalkoxysilanes having is bonded to the surface of magnetic particles, and the antigen (C) or antibody (D) is immobilized on the magnetic particles via them. More preferably, it is immobilized via an alkylalkoxysilane having a functional group (ethylene unsaturated group, epoxy group, amino group, mercapto group, isocyanate group, etc.).
Examples of the alkylalkoxysilane having such a functional group include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-. Glycydoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyl Trimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N -2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propyl Amin, N-phenyl-3-aminopropyltrimethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3 -Isocyanate propyltriethoxysilane and the like can be mentioned.

また、前記の抗原(C)又は抗体(D)を有する磁性粒子(H)としては、前記抗原(C)に対する抗体(CA)を介して磁性粒子に結合してなる磁性粒子(H1)及び/又は前記抗体(D)に対する抗原(DA)を介して磁性粒子に結合してなる磁性粒子(H2)であることが好ましい。
抗原(DA)としては、前記の抗原(C)と同様のものが挙げられ、好ましいものも同様である。
また、抗体(CA)としては、前記の抗体(D)と同様のものが挙げられ、好ましいものも同様である。
また、上記の磁性粒子(H1)における抗体(CA)として好ましいのは、F(ab’)及びFabである。
Further, as the magnetic particles (H) having the antigen (C) or the antibody (D), the magnetic particles (H1) formed by binding to the magnetic particles via the antibody (CA) against the antigen (C) and / Alternatively, it is preferably a magnetic particle (H2) formed by binding to the magnetic particle via an antigen (DA) against the antibody (D).
Examples of the antigen (DA) include those similar to the above-mentioned antigen (C), and preferred ones are also the same.
Moreover, as the antibody (CA), the same thing as the said antibody (D) can be mentioned, and the preferable one is also the same.
Further, F (ab') 2 and Fab are preferable as the antibody (CA) in the magnetic particles (H1).

前記の磁性粒子(H1)を製造する方法としては、まず、公知の方法(特開2014−210680号公報及び特開2013−019889号公報に記載の方法等)等で、抗体(CA)を有する磁性粒子(H)[抗体(CA)を固定化した磁性粒子]を製造し、その後、公知の方法等で、磁性粒子(H)上の抗体(CA)に、抗原(C)を結合させる方法等が挙げられる。
また、前記の磁性粒子(H2)を製造する方法としては、まず、公知の方法(特開2014−210680号公報及び特開2013−019889号公報に記載の方法等)等で、抗原(DA)を有する磁性粒子(H)[抗原(DA)を固定化した磁性粒子]を製造し、その後、公知の方法等で、磁性粒子(H)上の抗原(DA)に、抗体(D)を結合させる方法等が挙げられる。
As a method for producing the magnetic particles (H1), first, an antibody (CA) is provided by a known method (methods described in JP-A-2014-210680 and JP-A-2013-019889, etc.). A method of producing magnetic particles (H) [magnetic particles on which an antibody (CA) is immobilized], and then binding an antigen (C) to an antibody (CA) on the magnetic particles (H) by a known method or the like. And so on.
Further, as a method for producing the magnetic particles (H2), first, an antigen (DA) is produced by a known method (methods described in JP-A-2014-210680 and JP-A-2013-019889, etc.). The magnetic particles (H) [magnetic particles on which the antigen (DA) is immobilized] are produced, and then the antibody (D) is bound to the antigen (DA) on the magnetic particles (H) by a known method or the like. There is a method of making it.

免疫測定用試薬(M)中の水の重量割合は、保存安定性の観点から、免疫測定用試薬(M)の重量を基準として、20〜60重量%である。20重量%未満又は60重量%を超えると保存安定性が悪化する。免疫測定用試薬(M)中の水の重量割合は、保存安定性を更に高める観点から、免疫測定用試薬(M)の重量を基準として、20〜50重量%であることが好ましい。
免疫測定用試薬(M)中の糖(A)の重量割合は、保存安定性の観点から、免疫測定用試薬(M)の重量を基準として、20〜60重量%が好ましく、更に好ましくは25〜55重量%である。
免疫測定用試薬(M)中の免疫測定用固相担体(E)の重量割合は、免疫測定用試薬(M)の重量を基準として、免疫測定工程における再分散性[免疫測定用固相担体(E)が磁性粒子の場合は、集磁及び再分散性]の観点から、0.001〜10重量%が好ましく、更に好ましくは0.01〜1重量%である。
The weight ratio of water in the immunoassay reagent (M) is 20 to 60% by weight based on the weight of the immunoassay reagent (M) from the viewpoint of storage stability. If it is less than 20% by weight or more than 60% by weight, the storage stability deteriorates. The weight ratio of water in the immunoassay reagent (M) is preferably 20 to 50% by weight based on the weight of the immunoassay reagent (M) from the viewpoint of further enhancing storage stability.
The weight ratio of the sugar (A) in the immunoassay reagent (M) is preferably 20 to 60% by weight, more preferably 25, based on the weight of the immunoassay reagent (M) from the viewpoint of storage stability. ~ 55% by weight.
The weight ratio of the immunoassay solid phase carrier (E) in the immunoassay reagent (M) is redispersibility in the immunoassay step based on the weight of the immunoassay reagent (M). When (E) is a magnetic particle, it is preferably 0.001 to 10% by weight, more preferably 0.01 to 1% by weight, from the viewpoint of magnetic collection and redispersibility].

糖(A)と水との重量比率[糖(A)/水]は、保存安定性の観点から、0.33〜3.0であることが好ましく、0.80〜3.0であることが更に好ましい。 The weight ratio of sugar (A) to water [sugar (A) / water] is preferably 0.33 to 3.0, preferably 0.80 to 3.0, from the viewpoint of storage stability. Is more preferable.

免疫測定用試薬(M)のpHは、保存安定性の観点から、5〜10が好ましく、更に好ましくは5〜7である。
免疫測定用試薬(M)は、上記のpHとなるように緩衝剤(2−モルホリノエタンスルホン酸等)を含有していることが好ましい。
The pH of the immunoassay reagent (M) is preferably 5 to 10, more preferably 5 to 7, from the viewpoint of storage stability.
The immunoassay reagent (M) preferably contains a buffer (2-morpholinoetan sulfonic acid or the like) so as to have the above pH.

免疫測定用試薬(M)中には、保存安定性を妨げない範囲で、その他の成分{タンパク質(B)[牛血清アルブミン、カゼイン(又はその加水分解物)及びコラーゲンペプチド(又はその酵素分解物)等]、無機塩(塩化ナトリウム等)、界面活性剤(モノステアリン酸ポリオキシエチレンソルビタン等)、防腐剤(アジ化ナトリウム等)及び非特異反応防止剤等(正常動物由来のIgG抗体等)からなる群より選ばれる少なくとも1種等}を含有させてもよい。
免疫測定用試薬(M)中、タンパク質(B)、無機塩、界面活性剤、防腐剤及び非特異反応防止剤を含む場合、それぞれの含有量は、(M)の重量に基づいて、タンパク質(B)の含有量は、0.001〜30重量%、無機塩の含有量は0.001〜5重量%、界面活性剤の含有量は0.001〜10重量%、防腐剤の含有量は0.001〜0.1重量%、非特異反応防止剤の含有量は0.0001〜5重量%が好ましい。
また、免疫測定用試薬(M)がタンパク質(B)を含有する場合、タンパク質(B)と水との重量比[タンパク質(B)/水]は、保存安定性の観点から、0.1〜1.0であることが好ましい。
The immunoassay reagent (M) contains other components {protein (B) [bovine serum albumin, casein (or its hydrolyzate) and collagen peptide (or its enzymatic degradation product) as long as it does not interfere with storage stability. ), Etc.], inorganic salts (sodium chloride, etc.), surfactants (polyoxyethylene sorbitan monostearate, etc.), preservatives (sodium azide, etc.) and non-specific reaction inhibitors (IgG antibody, etc. derived from normal animals) At least one selected from the group consisting of} may be contained.
When the immunoassay reagent (M) contains a protein (B), an inorganic salt, a surfactant, a preservative and a non-specific reaction inhibitor, the content of each is based on the weight of the protein (M). The content of B) is 0.001 to 30% by weight, the content of inorganic salt is 0.001 to 5% by weight, the content of surfactant is 0.001 to 10% by weight, and the content of preservative is The content of the non-specific reaction inhibitor is preferably 0.001 to 0.1% by weight, preferably 0.0001 to 5% by weight.
When the immunoassay reagent (M) contains a protein (B), the weight ratio of the protein (B) to water [protein (B) / water] is 0.1 to 0 from the viewpoint of storage stability. It is preferably 1.0.

免疫測定用試薬(M)に含有させる界面活性剤としては、公知の非イオン界面活性剤、両性界面活性剤及びアニオン界面活性剤等が挙げられるが、界面活性剤としては、非特異的吸着の低減の観点から、水溶性の非イオン界面活性剤が好ましい。
尚、水溶性とは、25℃の水100gに10g溶解することを意味する。
水溶性の非イオン界面活性剤として、具体的には、HLBが12以上のポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテル(ポリオキシエチレンオクチルエーテル等)及びポリオキシエチレンソルビタン脂肪族エステル等が挙げられる。
Examples of the surfactant contained in the immunoassay reagent (M) include known nonionic surfactants, amphoteric surfactants and anionic surfactants, and examples of the surfactant include non-specific adsorption. From the viewpoint of reduction, a water-soluble nonionic surfactant is preferable.
In addition, water-soluble means that 10 g is dissolved in 100 g of water at 25 ° C.
Specific examples of the water-soluble nonionic surfactant include polyoxyethylene nonylphenyl ether having an HLB of 12 or more, polyoxyethylene alkyl ether (polyoxyethylene octyl ether, etc.), polyoxyethylene sorbitan aliphatic ester, and the like. Can be mentioned.

<免疫測定用キット>
本発明の免疫測定用キットは、本発明の免疫測定用試薬(M)を含む免疫測定用キットである。
<Immunoassay kit>
The immunoassay kit of the present invention is an immunoassay kit containing the immunoassay reagent (M) of the present invention.

本発明の免疫測定用キットには、免疫測定用試薬(M)以外に、免疫測定用標識試薬(F)、化学発光試薬(I)、免疫反応用緩衝液試薬(Y)[後述の免疫測定工程において、免疫測定用試薬(M)から抽出した免疫測定用固相担体(E)と混合するための緩衝液]、標準試薬(濃度既知の測定対象物溶液等)、希釈用試薬(高濃度検体の希釈用試薬等)、洗浄試薬(反応容器の洗浄用試薬等)等を含んでもよく、さらに取り扱い説明書、測定に必要な治具等(例えば検体容器等)を含んでもよい。 In addition to the immunoassay reagent (M), the immunoassay kit of the present invention includes an immunoassay labeling reagent (F), a chemical luminescent reagent (I), and an immune reaction buffer reagent (Y) [immunity measurement described later]. In the step, a buffer solution for mixing with the immunoassay solid phase carrier (E) extracted from the immunoassay reagent (M)], a standard reagent (solution of a measurement object having a known concentration, etc.), a reagent for dilution (high concentration). A reagent for diluting a sample, etc.), a cleaning reagent (a reagent for cleaning a reaction vessel, etc.) and the like may be included, and an instruction manual, a jig necessary for measurement (for example, a sample container, etc.) may be included.

免疫測定用標識試薬(F)としては、後述の具体的な免疫測定方法(サンドイッチ法及び競合法等)の説明でも述べるように、標識物質により標識された測定対象物質、標識物質により標識された測定対象物質の類似物質、又は、標識物質により標識された物質であって測定対象物質と特異的に結合する物質を含有する標識試薬を用いることが好ましい。 As the immunoassay labeling reagent (F), as described in the description of specific immunoassay methods (sandwich method, competitive method, etc.) described later, the measurement target substance labeled with the labeling substance and the labeling substance labeled with the labeling substance. It is preferable to use a labeling reagent containing a substance similar to the substance to be measured or a substance labeled with the labeling substance and specifically binding to the substance to be measured.

免疫測定用標識試薬(F)において、標識するために用いられる標識物質としては、
例えば酵素免疫測定法(EIA)において用いられるアルカリホスファターゼ、β−ガラクトシダーゼ、ペルオキシダーゼ(以下、PODと略記することがある)、マイクロペルオキシダーゼ、グルコースオキシダーゼ、グルコース−6−リン酸脱水素酵素、リンゴ酸脱水素酵素、ルシフェラーゼ、チロシナーゼ、酸性ホスファターゼ等の酵素類;
例えば放射免疫測定法(RIA)において用いられる99mTc、131I、125I、14C、3H、32P等の放射性同位元素;
例えば蛍光免疫測定法(FIA)において用いられるフルオレセイン、ダンシル、フルオレスカミン、クマリン、ナフチルアミン又はこれらの誘導体、グリーン蛍光タンパク質(GFP)等の蛍光性物質;
例えばルシフェリン、イソルミノール、ルミノール、ビス(2,4,6−トリフロロフェニル)オキザレート等の発光性物質;
例えばフェノール、ナフトール、アントラセン又はこれらの誘導体等の紫外部に吸収を有する物質;
例えば4−アミノ−2,2,6,6−テトラメチルピペリジン−1−オキシル、3−アミノ−2,2,5,5−テトラメチルピロリジン−1−オキシル、2,6−ジ−t−ブチル−α−(3,5−ジ−t−ブチル−4−オキソ−2,5−シクロヘキサジエン−1−イリデン)−p−トリオキシル等のオキシル基を有する化合物に代表されるスピンラベル化剤としての性質を有する物質等が挙げられる。
これらのうち、感度等の観点から、酵素、蛍光性物質が好ましく、更に好ましいのはアルカリホスファターゼ、POD及びグルコースオキシダーゼであり、特に好ましいのはPODである。
In the immunoassay labeling reagent (F), the labeling substance used for labeling is
For example, alkaline phosphatase, β-galactosidase, peroxidase (hereinafter, may be abbreviated as POD), microperoxidase, glucose oxidase, glucose-6-phosphate dehydrogenase, and malic acid dehydration used in enzyme immunoassay (EIA). Enzymes such as elementary enzymes, luciferase, tyrosinase, acid phosphatase;
For example, radioisotopes such as 99mTc, 131I, 125I, 14C, 3H, 32P used in Radioimmunoassay (RIA);
Fluorescent substances such as fluorescein, dancil, fluorescamine, coumarin, naphthylamine or derivatives thereof, green fluorescent protein (GFP) used in fluorescence immunoassay (FIA);
Luminescent substances such as luciferin, isolminol, luminol, bis (2,4,6-trifluorophenyl) oxalate;
Substances with ultraviolet absorption, such as phenol, naphthol, anthracene or derivatives thereof;
For example, 4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-amino-2,2,5,5-tetramethylpyrrolidin-1-oxyl, 2,6-di-t-butyl. As a spin labelant typified by a compound having an oxyl group such as −α- (3,5-di-t-butyl-4-oxo-2,5-cyclohexadiene-1-ylidene) -p-trioxyl. Examples include substances having properties.
Of these, enzymes and fluorescent substances are preferable from the viewpoint of sensitivity and the like, alkaline phosphatase, POD and glucose oxidase are more preferable, and POD is particularly preferable.

標識物質を測定対象物質、測定対象物質の類似物質及び測定対象物質と特異的に結合する物質に結合させるには、一般的にこの分野で用いられる方法、例えば自体公知のEIA、RIA及びFIA等において一般に行われている自体公知の標識方法[例えば、医化学実験講座、第8巻、山村雄一監修、第1版、中山書店、1971;図説 蛍光抗体、川生明著、第1版、(株)ソフトサイエンス社、1983;酵素免疫測定法、石川栄治、河合忠、室井潔編、第2版、医学書院、1982等]等を利用すればよい。 In order to bind a labeling substance to a substance to be measured, a substance similar to the substance to be measured, and a substance that specifically binds to the substance to be measured, a method generally used in this field, for example, EIA, RIA and FIA known per se, etc. A self-known labeling method commonly used in [For example, Medical Chemistry Experiment Course, Volume 8, Supervision by Yuichi Yamamura, 1st Edition, Nakayama Shoten, 1971; Illustrated Fluorescent Antibody, by Akira Kawao, 1st Edition, ( Soft Science Co., Ltd., 1983; Enzyme Immunoassay, Eiji Ishikawa, Tadashi Kawai, Kiyoshi Muroi, 2nd Edition, Medical School, 1982, etc.] and the like may be used.

標識物質の使用量は、用いる標識物質の種類により異なるため一概には言えないが、例えばPODを標識物質として使用する場合には、測定対象物質、測定対象物質の類似物質又は測定対象物質と特異的に結合する物質と標識物質とを、例えば好ましくは1:1〜20のモル比、更に好ましくは1:1〜10のモル比、特に好ましくは1:1〜2のモル比となるように、緩衝液(トリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等の一般的にこの分野で用いられている緩衝液)中に含有させて用いればよい。
尚、前記の緩衝液のpHは、抗原抗体反応を抑制しない範囲であればよく、5〜9が好ましい。
また、このような緩衝液中には、目的の抗原抗体反応を阻害しないものであれば、安定化剤(アルブミン、グロブリン、水溶性ゼラチン、ポリエチレングリコール等)、界面活性剤及び糖類等を含有させておいてもよい
The amount of labeling substance used varies depending on the type of labeling substance used, so it cannot be said unconditionally. For example, when POD is used as a labeling substance, it is specific to the substance to be measured, a substance similar to the substance to be measured, or the substance to be measured. The substance to be specifically bound and the labeling substance are, for example, preferably in a molar ratio of 1: 1 to 20, more preferably in a molar ratio of 1: 1 to 10, and particularly preferably in a molar ratio of 1: 1 to 2. , A buffer solution (a buffer solution generally used in this field such as a Tris buffer solution, a phosphate buffer solution, a veronal buffer solution, a boric acid buffer solution, and a Good buffer solution) may be used.
The pH of the buffer solution may be in a range that does not suppress the antigen-antibody reaction, and is preferably 5 to 9.
Further, such a buffer solution contains a stabilizer (albumin, globulin, water-soluble gelatin, polyethylene glycol, etc.), a surfactant, a saccharide, or the like as long as it does not inhibit the target antigen-antibody reaction. May be left

化学発光試薬(I)は、上記の標識物質に基づき選択され、例えば、標識物質がペルオキシダーゼである場合、2,3−ジヒドロ−1,4−フタラジンジオン化合物及び化学発光増強剤を必須構成成分としてなる化学発光試薬第1液と、酸化剤及び水を必須構成成分としてなる化学発光試薬第2液とを含んでなる。 The chemiluminescent reagent (I) is selected based on the above-mentioned labeling substance. For example, when the labeling substance is peroxidase, 2,3-dihydro-1,4-phthalazinedione compound and chemiluminescence enhancer are essential constituents. It contains the first chemiluminescent reagent solution and the second chemiluminescent reagent solution containing an oxidizing agent and water as essential constituents.

2,3−ジヒドロ−1,4−フタラジンジオン化合物としては、例えば、特開平2−291299号公報、特開平10−319015号公報及び特開2000−279196号公報等に記載の公知の2,3−ジヒドロ−1,4−フタラジンジオン化合物及びこれらの混合物等が使用できる。
これらの内、ルミノール、イソルミノール、N−アミノヘキシル−N−エチルイソルミノール(AHEI)、N−アミノブチル−N−エチルイソルミノール(ABEI)及びこれらの金属塩(アルカリ金属塩等)が好ましく、更に好ましいのはルミノール及びその金属塩、特に好ましいのはルミノールのナトリウム塩である。
Examples of the 2,3-dihydro-1,4-phthalazinedione compound include known 2,391299, JP-A-10-31901, and JP-A-2000-279196, which are described in JP-A-2-291299 and JP-A-2000-279196. 3-Dihydro-1,4-phthalazinedione compounds and mixtures thereof can be used.
Of these, luminol, isolminol, N-aminohexyl-N-ethylisoluminol (AHEI), N-aminobutyl-N-ethylisoluminol (ABEI) and metal salts thereof (alkali metal salts, etc.) are preferable. More preferred is luminol and a metal salt thereof, and particularly preferred is a sodium salt of luminol.

化学発光増強剤としては、例えば、特開昭59−500252号公報、特開昭59−171839号公報及び特開平2−291299号公報等に記載の公知の化学発光増強剤及びこれらの混合物等が使用できる。これらの内、化学発光増強効果等の観点から、フェノールが好ましく、更に好ましいのはp−ヨードフェノール、4−(シアノメチルチオ)フェノール及び4−シアノメチルチオ−2−クロロフェノール、特に好ましいのは4−(シアノメチルチオ)フェノールである。 Examples of the chemiluminescence enhancer include known chemiluminescence enhancers described in JP-A-59-500252, JP-A-59-171839, JP-A-2-291299, and the like, and mixtures thereof. Can be used. Of these, phenol is preferable from the viewpoint of chemiluminescence enhancing effect and the like, more preferably p-iodophenol, 4- (cyanomethylthio) phenol and 4-cyanomethylthio-2-chlorophenol, and particularly preferably 4-. (Cyanomethylthio) Phenol.

化学発光試薬第1液は、液体であることが好ましく、また、酵素の蛍光強度の観点からはアルカリ性であることが好ましい。第1液のpHは、7〜11が好ましく、更に好ましくは8〜10である。
なお、pHは、JIS K0400−12−10:2000に準拠して測定される(測定温度25℃)。
The first liquid of the chemiluminescent reagent is preferably a liquid, and is preferably alkaline from the viewpoint of the fluorescence intensity of the enzyme. The pH of the first liquid is preferably 7 to 11, and more preferably 8 to 10.
The pH is measured in accordance with JIS K040-12-1-10: 2000 (measurement temperature 25 ° C.).

化学発光試薬第2液が含有する酸化剤としては、例えば、特開平8−261943号公報及び特開2000−279196号公報等に記載の公知の酸化剤等[無機の過酸化物(過酸化水素、過ホウ酸ナトリウム及び過ホウ酸カリウム等)、有機過酸化物(過酸化ジアルキル及び過酸化アシル等)、ペルオクソ酸化合物(ペルオクソ硫酸及びペルオクソリン酸等)等]の水溶液が挙げられる。
これらの内、保存安定性等の観点から、過酸化水素水溶液、過ホウ酸ナトリウム水溶液及び過ホウ酸カリウム水溶液が好ましく、更に好ましいのは過酸化水素水溶液である。
Examples of the oxidizing agent contained in the second liquid of the chemical luminescent reagent include known oxidizing agents described in JP-A-8-261943 and JP-A-2000-279196 [Inorganic peroxide (hydrogen peroxide). , Sodium perborate, potassium perborate, etc.), organic peroxides (dialkyl peroxide, acyl peroxide, etc.), peroxic acid compounds (peroxosulfate, peroxolic acid, etc.), etc.].
Of these, from the viewpoint of storage stability and the like, an aqueous solution of hydrogen peroxide, an aqueous solution of sodium perborate and an aqueous solution of potassium perborate are preferable, and an aqueous solution of hydrogen peroxide is more preferable.

化学発光試薬(I)として、感度の観点から、ルミノール発光試薬(I1)[2,3−ジヒドロ−1,4−フタラジンジオン化合物がルミノール及び/又はその金属塩である化学発光試薬第1液]及び過酸化水素液(I2)[酸化剤が過酸化水素である化学発光試薬第2液]を含むことが好ましい。 As the chemiluminescent reagent (I), from the viewpoint of sensitivity, the chemiluminescent reagent 1st solution in which the luminol luminescent reagent (I1) [2,3-dihydro-1,4-phthalazinedione compound is luminol and / or a metal salt thereof. ] And the hydrogen peroxide solution (I2) [the second solution of the chemiluminescent reagent in which the oxidizing agent is hydrogen peroxide] are preferably contained.

<免疫測定方法>
本発明の免疫測定方法は、本発明の免疫測定用試薬(M)を用いる免疫反応測定方法であり、免疫測定を実施する直前で、免疫測定用試薬(M)から免疫測定用固相担体(E)を抽出する工程を実施することが好ましい。
具体的には、免疫測定用試薬(M)中の免疫測定用固相担体(E)を磁力等により抽出し、その後、免疫反応用緩衝液試薬(Y)と混合することで、免疫測定方法に用いる免疫測定用固相担体試薬(Z)を得ることができる。
こうして得た免疫測定用固相担体試薬(Z)を用いて、公知の免疫測定方法(具体的には後述のサンドイッチ法及び競合法等)等を実施することができる。
免疫反応用緩衝液試薬(Y)としては、緩衝液以外に、本発明の効果を阻害しない範囲であれば、塩(塩化ナトリウム等)、エチレンジアミン四酢酸、血清(マウス血清等)、アルブミン(ウシ血清アルブミン等)、グロブリン、その他のタンパク質(カゼイン加水分解物)、水溶性ゼラチン、ポリエチレングリコール等の安定化剤、界面活性剤[上記の免疫測定用試薬(M)の説明で例示した界面活性剤等]及び糖[前記の糖(A)等]等を含有させておいてもよい。
免疫測定用固相担体試薬(Z)中の免疫測定用固相担体(E)の重量割合は、免疫測定用固相担体試薬(Z)の重量を基準として、0.001〜10重量%が好ましく、更に好ましくは0.01〜1重量%である。
<Immunoassay method>
The immunoassay method of the present invention is an immunoassay measurement method using the immunoassay reagent (M) of the present invention, and immediately before performing immunoassay, the immunoassay reagent (M) is used as an immunoassay solid-state carrier ( It is preferable to carry out the step of extracting E).
Specifically, the immunoassay method is performed by extracting the immunoassay solid phase carrier (E) in the immunoassay reagent (M) by magnetic force or the like and then mixing it with the immunoassay buffer reagent (Y). The solid phase carrier reagent (Z) for immunoassay used in the above can be obtained.
Using the solid-phase carrier reagent (Z) for immunoassay thus obtained, a known immunoassay method (specifically, the sandwich method and the competitive method described later) and the like can be carried out.
In addition to the buffer solution, the buffer solution reagent (Y) for an immune reaction includes salts (sodium chloride, etc.), ethylenediamine tetraacetic acid, serum (mouse serum, etc.), and albumin (bovine) as long as the effects of the present invention are not impaired. Serum albumin, etc.), globulin, other proteins (casein hydrolyzate), water-soluble gelatin, stabilizers such as polyethylene glycol, surfactants [surfactants exemplified in the above description of the immunoassay reagent (M)). Etc.] and sugar [the above-mentioned sugar (A) etc.] and the like may be contained.
The weight ratio of the immunoassay solid support carrier (E) in the immunoassay solid support reagent (Z) is 0.001 to 10% by weight based on the weight of the immunoassay solid support reagent (Z). It is preferable, more preferably 0.01 to 1% by weight.

本発明における免疫測定用固相担体試薬(Z)を用いた免疫反応の方法には、免疫測定の分野で一般的に行われる文献[例えば、酵素免疫測定法第2版(石川栄治ら編集、医学書院)1982年]記載のサンドイッチ法、競合法及び特開平6−130063号公報記載の方法、具体的には以下の3種の方法が含まれる。 The method of immunoreaction using the solid-phase carrier reagent (Z) for immunoassay in the present invention is described in the literature generally used in the field of immunoassay [for example, Enzyme Immunoassay 2nd Edition (edited by Eiji Ishikawa et al., Igaku-Shoin) 1982] The sandwich method, the competitive method and the method described in JP-A-6-130063, specifically, the following three methods are included.

本発明における免疫測定方法の内、免疫測定用固相担体(E)として、抗原(C)又は抗体(D)を有する磁性粒子(H)を用いる方法としては、具体的には以下の3種の方法が含まれる。
<第1の方法:サンドイッチ法>
磁性粒子(H)(好ましくは金属酸化物を含有する磁性粒子)として、測定対象物質と特異的に結合する物質{測定対象物質結合物質;具体的には、抗原(C)又は抗体(D)}を、粒子の表面に固定化しているものを用いる。
そして、「測定対象物質を含む試料(例えば生体試料)」と、「磁性粒子(H)」と、「標識物質により標識された物質であって測定対象物質と特異的に結合する物質(標識測定対象物質結合物質)」とを接触させる。
これにより、「磁性粒子(H)に固定化した測定対象物質結合物質」と「測定対象物質」と「標識測定対象物質結合物質」との複合体(標識複合体)を形成させる。
その後、標識複合体を担持した磁性粒子(H)をB/F分離して、標識複合体中の標識物質量を測定し、その結果に基づいて試料中の測定対象物質を測定する。
Among the immunoassay methods in the present invention, the following three types are specifically used as a method using magnetic particles (H) having an antigen (C) or an antibody (D) as a solid-phase carrier (E) for immunoassay. Method is included.
<First method: Sandwich method>
As magnetic particles (H) (preferably magnetic particles containing a metal oxide), a substance that specifically binds to a substance to be measured {a substance to be measured-binding substance; specifically, an antigen (C) or an antibody (D). } Is immobilized on the surface of the particles.
Then, "a sample containing a substance to be measured (for example, a biological sample)", "magnetic particles (H)", and "a substance labeled by a labeling substance that specifically binds to the substance to be measured (labeled measurement)". Contact with the target substance binding substance).
As a result, a complex (labeled complex) of the "measurement target substance binding substance immobilized on the magnetic particles (H)", the "measurement target substance", and the "labeled measurement target substance binding substance" is formed.
Then, the magnetic particles (H) carrying the labeled complex are separated by B / F, the amount of the labeled substance in the labeled complex is measured, and the substance to be measured in the sample is measured based on the result.

<第2の方法:競合法1>
磁性粒子(H)(好ましくは金属酸化物を含有する磁性粒子)として、測定対象物質及び/又は測定対象物質の類似物質{具体的には、抗原(C)又は抗体(D)}を、粒子の表面に固定化しているものを用いる。
そして、「測定対象物質を含む試料(例えば生体試料)」と、「標識物質により標識された物質であって測定対象物質と特異的に結合する物質(標識測定対象物質結合物質)」と、「磁性粒子(H)」とを接触させる。
これにより、「標識測定対象物質結合物質」に、「磁性粒子(H)に固定化した測定対象物質及び/又は測定対象物質の類似物質」と、「測定対象物質」とを競合反応させ、「磁性粒子(H)に固定化した測定対象物質及び/又は測定対象物質の類似物質」と「標識測定対象物質結合物質」との複合体(標識複合体)を形成させる。
その後、標識複合体を担持した磁性粒子(H)をB/F分離して、標識複合体中の標識物質量を測定し、その結果に基づいて試料中の測定対象物質を測定する。
<Second method: Competitive method 1>
As the magnetic particles (H) (preferably magnetic particles containing a metal oxide), a substance to be measured and / or a substance similar to the substance to be measured {specifically, an antigen (C) or an antibody (D)} is used as particles. Use the one that is fixed on the surface of.
Then, "a sample containing a substance to be measured (for example, a biological sample)", "a substance labeled with a labeling substance that specifically binds to the substance to be measured (labeled substance binding substance to be measured)", and " It is brought into contact with "magnetic particles (H)".
As a result, the "labeled substance-binding substance to be measured" is made to compete with the "substance to be measured and / or a substance similar to the substance to be measured" immobilized on the magnetic particles (H) and the "substance to be measured", and " A complex (labeled complex) of the "substance to be measured and / or a substance similar to the substance to be measured" immobilized on the magnetic particles (H) and the "substance to be labeled and the substance to be measured" is formed.
Then, the magnetic particles (H) carrying the labeled complex are separated by B / F, the amount of the labeled substance in the labeled complex is measured, and the substance to be measured in the sample is measured based on the result.

<第3の方法:競合法2>
磁性粒子(H)(好ましくは金属酸化物を含有する磁性粒子)として、測定対象物質と特異的に結合する物質{測定対象物質結合物質;具体的には、抗原(C)又は抗体(D)}を、粒子の表面に固定化しているものを用いる。
そして、「測定対象物質を含む試料(例えば生体試料)」と、「標識物質により標識された測定対象物質及び/又は標識物質により標識された測定対象物質の類似物質(標識測定対象物質又はその類似物質)」と、「磁性粒子(H)」とを接触させる。
これにより、「磁性粒子(H)に固定化した測定対象物質結合物質」に、「測定対象物質」と、「標識測定対象物質又はその類似物質」とを競合反応させ、「磁性粒子(H)に固定化した測定対象結合物質」と「標識測定対象物質又はその類似物質」との複合体(標識複合体)を形成させる。
その後、標識複合体を担持した磁性粒子(H)をB/F分離して、標識複合体中の標識物質量を測定し、その結果に基づいて試料中の測定対象物質を測定する。
<Third method: Competitive method 2>
As magnetic particles (H) (preferably magnetic particles containing a metal oxide), a substance that specifically binds to a substance to be measured {a substance to be measured-binding substance; specifically, an antigen (C) or an antibody (D). } Is immobilized on the surface of the particles.
Then, "a sample containing a substance to be measured (for example, a biological sample)" and "a substance to be measured labeled with a labeled substance and / or a substance similar to a substance to be measured labeled with a labeled substance (a substance to be labeled or similar thereof). The substance) ”and the“ magnetic particle (H) ”are brought into contact with each other.
As a result, the "measurement target substance" and the "labeled measurement target substance or a similar substance" are competitively reacted with the "measurement target substance binding substance immobilized on the magnetic particles (H)", and the "magnetic particles (H)) A complex (labeled complex) of the "measurement target binding substance" immobilized on the "labeled measurement target substance or a similar substance thereof" is formed.
Then, the magnetic particles (H) carrying the labeled complex are separated by B / F, the amount of the labeled substance in the labeled complex is measured, and the substance to be measured in the sample is measured based on the result.

本発明における測定対象物質の類似物質(アナログ)としては、「測定対象物質と特異的に結合する物質」が有する「測定対象物質との結合部位」と結合し得るもの、言い換えれば、「測定対象物質」が有する「測定対象物質と特異的に結合する物質」との結合部位を有するもの、更に言い換えれば、「測定対象物質」と「測定対象物質と特異的に結合する物質」との反応時に共存させると、「測定対象物質」と「測定対象物質と特異的に結合する物質」との反応と競合し得るものが挙げられる。 As the similar substance (analog) of the substance to be measured in the present invention, the substance that can be bonded to the "bonding site with the substance to be measured" possessed by the "substance that specifically binds to the substance to be measured", in other words, the "measurement target". A substance that has a binding site with a "substance that specifically binds to the substance to be measured" that the "substance" has, in other words, at the time of reaction between the "substance to be measured" and the "substance that specifically binds to the substance to be measured" When coexisting, there are substances that can compete with the reaction between the "substance to be measured" and the "substance that specifically binds to the substance to be measured".

本発明における「測定対象物質と特異的に結合する物質」は、測定対象物質が抗原(C)であるときは抗体(D)であることが好ましく、測定対象物質が抗体(D)であるときは抗原(C)であることが好ましい。 The "substance that specifically binds to the substance to be measured" in the present invention is preferably an antibody (D) when the substance to be measured is an antigen (C), and is preferably an antibody (D) when the substance to be measured is an antibody (D). Is preferably the antigen (C).

本発明の免疫測定方法としては、化学発光酵素免疫測定法(CLEIA)、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、電気化学発光免疫測定法(ECLIA)、蛍光酵素免疫測定法(FEIA)、化学発光免疫測定法(CLIA)、ラテックス光学免疫測定法(LPIA)及びラテックス粒子計数免疫凝集測定法(CIA)に用いられる検査の測定方法等が挙げられる。 The immunoassay method of the present invention includes chemiluminescent enzyme immunoassay (CLEIA), enzyme immunoassay (EIA), radioimmunosassay (RIA), chemiluminescent immunoassay (ECLIA), and fluorescent enzyme immunoassay. (FEIA), chemiluminescent immunoassay (CLIA), latex optical immunoassay (LPIA), latex particle counting immunoassay (CIA) and the like.

以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, parts indicate parts by weight.

<実施例1>
以下により、免疫測定用試薬(M−1)を得た。
<Example 1>
The immunoassay reagent (M-1) was obtained as follows.

磁性粒子(PH−1)の作製:
<磁性金属酸化物粒子の作製>
反応容器に塩化鉄(III)6水和物186部、塩化鉄(II)4水和物68部及び水1288部を仕込んで溶解させて50℃に昇温し、撹拌下温度を50〜55℃に保持しながら、25重量%アンモニア水280部を1時間かけて滴下し、水中にマグネタイト粒子を得た。得られたマグネタイト粒子に分散剤であるオレイン酸64部を加え、2時間撹拌を継続した。室温に冷却後、デカンテーションにより固液分離して得られたオレイン酸が吸着したマグネタイト粒子を水1000部で洗浄する操作を3回行い、さらにアセトン1000部で洗浄する操作を2回行い、40℃で2日間乾燥させることで、体積平均粒子径が15nmの超常磁性金属酸化物粒子を得た。
Preparation of magnetic particles (PH-1):
<Preparation of magnetic metal oxide particles>
186 parts of iron (III) chloride hexahydrate, 68 parts of iron (II) chloride tetrahydrate and 1288 parts of water are charged in a reaction vessel and dissolved to raise the temperature to 50 ° C., and the temperature under stirring is 50 to 55. While maintaining the temperature at ° C., 280 parts of 25 wt% aqueous ammonia was added dropwise over 1 hour to obtain magnetite particles in the water. 64 parts of oleic acid as a dispersant was added to the obtained magnetite particles, and stirring was continued for 2 hours. After cooling to room temperature, the operation of washing the magnetite particles adsorbed with oleic acid obtained by solid-liquid separation by decantation with 1000 parts of water was performed three times, and further the operation of washing with 1000 parts of acetone was performed twice. By drying at ° C. for 2 days, superparamagnetic metal oxide particles having a volume average particle diameter of 15 nm were obtained.

<コア層の作製>
超常磁性金属酸化物粒子80部をテトラエトキシシラン240部に加えて分散し、分散液(a1)を調製した。
次に、反応容器に水5050部、25重量%アンモニア水溶液3500部、非イオン界面活性剤(「NSA−17」、三洋化成工業(株)製)400部を加えてクリアミックス(エムテクニック(株)製)を用いて混合し溶液(a2)を得た。50℃に昇温後、クリアミックスの回転数6,000rpmで攪拌しながら、上記分散液(a1)を溶液(a2)に1時間かけて滴下後、50℃で1時間反応させた。反応後、2,000rpmで20分間遠心分離して微粒子の存在する上清を除き、コア層を得た。
<Preparation of core layer>
80 parts of superparamagnetic metal oxide particles were added to 240 parts of tetraethoxysilane and dispersed to prepare a dispersion liquid (a1).
Next, 5050 parts of water, 3500 parts of a 25 wt% ammonia aqueous solution, and 400 parts of a nonionic surfactant (“NSA-17”, manufactured by Sanyo Chemical Industries, Ltd.) were added to the reaction vessel to clear mix (M-Technique Co., Ltd.). ) Was mixed to obtain a solution (a2). After raising the temperature to 50 ° C., the dispersion liquid (a1) was added dropwise to the solution (a2) over 1 hour while stirring at a rotation speed of 6,000 rpm of the clear mix, and then reacted at 50 ° C. for 1 hour. After the reaction, the mixture was centrifuged at 2,000 rpm for 20 minutes to remove the supernatant in which fine particles were present, and a core layer was obtained.

<磁性粒子の作製>
反応容器にコア層80部、脱イオン水2500部、25重量%アンモニア水溶液260部、エタノール2500部、テトラエトキシシラン1200部を加えてクリアミックス(エムテクニック(株)製)を用いて混合し、クリアミックスの回転数6,000rpmで攪拌しながら2時間反応させた。反応後、2,000rpmで20分間遠心分離して微粒子の存在する上清を除去した。遠心分離後沈殿した粒子に脱イオン水を4000部加えて粒子を再分散させ、分散した粒子を、磁石を用いて粒子を集磁し上清を除く操作を10回行った。
次に、得られた固相に水5000部を加えて粒子を分散させて600rpmで10分間遠心分離後、微粒子の存在する上清を除く操作を20回行い、続いて得られた固相に水5000部を加えて粒子を分散させて300rpmで10分間遠心分離することにより、大きな粒子径の粒子を沈降させて除去することで分級を行った。
さらに、磁石を用いて粒子を集磁し上澄み液を除去した。その後、水5000部を加えてコアシェル粒子を分散させた後に、磁石を用いて粒子を集磁し上清を除く操作を10回行い、目的とする体積平均粒子径2.0μmの磁性粒子(PH−1)を得た。得られた磁性粒子(PH−1)中の超常磁性金属酸化物粒子の含有量を測定した結果、含有量は81重量%であった。
<Making magnetic particles>
80 parts of the core layer, 2500 parts of deionized water, 260 parts of a 25 wt% ammonia aqueous solution, 2500 parts of ethanol, and 1200 parts of tetraethoxysilane were added to the reaction vessel and mixed using Clearmix (manufactured by M-Technique Co., Ltd.). The reaction was carried out for 2 hours with stirring at a clear mix rotation speed of 6,000 rpm. After the reaction, the supernatant containing fine particles was removed by centrifugation at 2,000 rpm for 20 minutes. After centrifugation, 4000 parts of deionized water was added to the precipitated particles to redisperse the particles, and the dispersed particles were collected 10 times by using a magnet to collect the particles and remove the supernatant.
Next, 5000 parts of water was added to the obtained solid phase to disperse the particles, and after centrifugation at 600 rpm for 10 minutes, the operation of removing the supernatant in which the fine particles were present was performed 20 times, and then the obtained solid phase was obtained. Classification was performed by precipitating and removing particles having a large particle size by adding 5000 parts of water to disperse the particles and centrifuging at 300 rpm for 10 minutes.
Further, the particles were collected using a magnet to remove the supernatant liquid. Then, after adding 5000 parts of water to disperse the core-shell particles, the operation of collecting the particles using a magnet and removing the supernatant was performed 10 times, and the target magnetic particles (PH) having a volume average particle diameter of 2.0 μm were performed. -1) was obtained. As a result of measuring the content of the superparamagnetic metal oxide particles in the obtained magnetic particles (PH-1), the content was 81% by weight.

<粒子(超常磁性金属酸化物粒子及び磁性粒子)の体積平均粒子径の測定方法>
走査型電子顕微鏡(型番:JSM−7000F、メーカー名:日本電子株式会社)を用いて、任意の200個の超常磁性金属酸化物粒子を観察して粒子径を測定し、体積平均粒子径を求めた。
磁性粒子についても同様の方法で、体積平均粒子径を求めた。
<Measurement method of volume average particle size of particles (superparamagnetic metal oxide particles and magnetic particles)>
Using a scanning electron microscope (model number: JSM-7000F, manufacturer name: JEOL Ltd.), observe any 200 superparamagnetic metal oxide particles and measure the particle size to obtain the volume average particle size. It was.
For magnetic particles, the volume average particle diameter was determined by the same method.

<超常磁性金属酸化物粒子の含有量の測定方法>
磁性粒子の任意の20個について、走査型電子顕微鏡(型番JSM−7000F、メーカー名日本電子株式会社)で観察し、エネルギー分散型X線分光装置(型番INCA Wave/Energy、メーカー名オックスフォード社)により超常磁性金属酸化物粒子の含有量を測定し、その平均値を含有量Sとした。また、同測定にてシリカの含有量を測定し、その平均値を含有量Tとした。以下の計算式(1)にて、超常磁性金属酸化物粒子の含有量を求めた。
超常磁性金属酸化物粒子の含有量(重量%)=(S)/(S+T)×100・・・(1)
<Method of measuring the content of superparamagnetic metal oxide particles>
Observe any 20 magnetic particles with a scanning electron microscope (model number JSM-7000F, manufacturer name JEOL Ltd.) and use an energy dispersive X-ray spectrometer (model number INCA Wave / Energy, manufacturer name Oxford). The content of the ultranormal magnetic metal oxide particles was measured, and the average value thereof was taken as the content S. Further, the silica content was measured by the same measurement, and the average value thereof was taken as the content T. The content of the superparamagnetic metal oxide particles was determined by the following calculation formula (1).
Content of superparamagnetic metal oxide particles (% by weight) = (S) / (S + T) × 100 ... (1)

<抗Tgモノクローナル抗体F(ab’)の作製>
抗Tgモノクローナル抗体(マウス)(Hytest社製)10mgを、pH4.0の0.1M酢酸緩衝液2mlに溶解し、0.2mgのペプシンを加え37℃で3時間インキユベートした。1M炭酸緩衝液(pH9.0)を適量加えて中性(pH:7.0)にして反応を停止させた後、0.2M塩化ナトリウム含有0.02Mリン酸緩衝液(pH7.2)で平衡化したウルトラゲルAcA−44(LKB)カラム(02,OX70cm、シグマアルドリッチ社製)でゲル濾過を行い、続いて5mM EDTA・2Naを含有した0.05Mリン酸緩衝液(pH6.0)で透析し、抗Tgモノクローナル抗体F(ab’)を得た。
<Preparation of anti-Tg monoclonal antibody F (ab') 2>
10 mg of an anti-Tg monoclonal antibody (mouse) (manufactured by Hytest) was dissolved in 2 ml of 0.1 M acetate buffer having a pH of 4.0, 0.2 mg of pepsin was added, and the mixture was inked at 37 ° C. for 3 hours. After stopping the reaction by adding an appropriate amount of 1M carbonate buffer (pH 9.0) to neutralize (pH: 7.0), use 0.02M phosphate buffer (pH 7.2) containing 0.2M sodium chloride. Gel filtration was performed on an equilibrated Ultragel AcA-44 (LKB) column (02, OX70 cm, manufactured by Sigma Aldrich), followed by 0.05 M phosphate buffer (pH 6.0) containing 5 mM EDTA.2Na. Dialysis was performed to obtain anti-Tg monoclonal antibody F (ab') 2.

磁性粒子(H1−1)及び免疫測定用試薬(M−1)の作製:
1重量%γ−アミノプロピルトリエトキシシラン含有アセトン溶液40mLの入った蓋付きポリエチレン瓶に製造した磁性粒子(PH−1)40mgを加え、25℃で1時間反応させ、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去した。次いで脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌した後、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を5回行った。次いで、この洗浄後の磁性粒子を2重量%グルタルアルデヒド含有水溶液40mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。そして、脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌したのち、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を10回行った。
更にこの洗浄後の磁性粒子を、抗Tgモノクローナル抗体F(ab’)を10μg/mLの濃度で含む0.02Mリン酸緩衝液(pH8.7)120mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。反応後、ネオジウム磁石で磁性粒子を集磁後、抗Tgモノクローナル抗体F(ab’)含有リン酸緩衝液を除去した。
次いで、磁性粒子を0.001重量%のTg(サイログロブリン、Hytest社製)及び1重量%の牛血清アルブミン含有の0.02Mリン酸緩衝液(pH7.0)40mLの入った蓋付きポリエチレン瓶に加え、25℃で12時間静置することで、Tg−抗Tgモノクローナル抗体F(ab’)複合体が結合してなる磁性粒子(H1−1)(Tgが抗Tgモノクローナル抗体F(ab’)を介して磁性粒子に結合したもの)を調整した。ネオジウム磁石で磁性粒子(H1−1)を集磁後、上清を除去した。
次に、磁性粒子(H1−1)の濃度が0.01重量%になるように、表1に示した各成分を表1に記載の重量部含有する磁性粒子保存液(X1)で希釈し、磁性粒子(H1−1)を含有する免疫測定用試薬(M−1)を調製した。
Preparation of magnetic particles (H1-1) and immunoassay reagent (M-1):
Add 40 mg of the produced magnetic particles (PH-1) to a polyethylene bottle with a lid containing 40 mL of an acetone solution containing 1 wt% γ-aminopropyltriethoxysilane, react at 25 ° C. for 1 hour, and collect the magnetic particles with a neodymium magnet. After magnetism, the liquid was removed by suction with an aspirator. Next, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 5 times. Next, the washed magnetic particles were added to a polyethylene bottle with a lid containing 40 mL of a 2 wt% glutaraldehyde-containing aqueous solution, and the mixture was reacted at 25 ° C. for 1 hour. Then, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 10 times.
Further, the washed magnetic particles were added to a polyethylene bottle with a lid containing 120 mL of 0.02 M phosphate buffer (pH 8.7) containing anti-Tg monoclonal antibody F (ab') 2 at a concentration of 10 μg / mL. The reaction was carried out at 25 ° C. for 1 hour. After the reaction, the magnetic particles were collected with a neodymium magnet, and then the phosphate buffer solution containing anti-Tg monoclonal antibody F (ab') 2 was removed.
The magnetic particles were then placed in a covered polyethylene bottle containing 40 mL of 0.02 M phosphate buffer (pH 7.0) containing 0.001 wt% Tg (thyroglobulin, Hytest) and 1 wt% bovine serum albumin. In addition, the magnetic particles (H1-1) to which the Tg-anti-Tg monoclonal antibody F (ab') 2 complex is bound by standing at 25 ° C. for 12 hours (Tg is the anti-Tg monoclonal antibody F (ab'). ) Those bound to the magnetic particles via 2) were adjusted. After collecting magnetic particles (H1-1) with a neodymium magnet, the supernatant was removed.
Next, each component shown in Table 1 is diluted with a magnetic particle storage solution (X1) containing parts by weight shown in Table 1 so that the concentration of the magnetic particles (H1-1) becomes 0.01% by weight. , A reagent for immunoassay (M-1) containing magnetic particles (H1-1) was prepared.

なお、表1における各成分として、以下のものを用いた。
糖(A−1):グリセロール
糖(A−2):トレハロース
糖(A−3):ラクトース
糖(A−4):フラクトオリゴ糖[富士フイルム和光純薬(株)製、和光一級、分子量(化学式量)が504の化合物と、分子量(化学式量)が666の化合物と、分子量(化学式量)が828の化合物とを含有する混合物]
MES:2−モルホリノエタンスルホン酸
NaCl:食塩
タンパク質(B−1):BSA(牛血清アルブミン)
タンパク質(B−2):カゼイン[牛乳製、ナカライテスク(株)製]
タンパク質(B−3):カゼイン加水分解物[メルク社製]
タンパク質(B−4):コラーゲンペプチド酵素分解品[富士フイルム和光純薬(株)製]
The following components were used as the components in Table 1.
Sugar (A-1): Gglycerol Sugar (A-2): Trehalose Sugar (A-3): Lactose Sugar (A-4): Fructo-oligosaccharide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako first-class, molecular weight (chemical formula) A mixture containing a compound having a molecular weight (amount) of 504, a compound having a molecular weight (chemical formula) of 666, and a compound having a molecular weight (chemical formula) of 828]
MES: 2-morpholinoetan sulfonic acid NaCl: salt protein (B-1): BSA (bovine serum albumin)
Protein (B-2): Casein [Made of milk, made by Nacalai Tesque Co., Ltd.]
Protein (B-3): Casein hydrolyzate [Merck & Co., Ltd.]
Protein (B-4): Collagen peptide enzymatically decomposed product [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]

<実施例2〜9、16、19〜21及び比較例1〜2>
実施例1において、磁性粒子保存液(X1)に代えて、表1に記載の各成分を表1に記載の重量部含有する磁性粒子保存液(X2)〜(X9)、(X16)、(X19)〜(X21)又は(X’1)〜(X’2)を用い、免疫測定用試薬(M)における磁性粒子(H)の濃度を0.01重量%から表1に記載の濃度に変更した以外は、実施例1と同様に実施して、免疫測定用試薬(M−2)〜(M−9)、(M−16)、(M−19)〜(M−21)及び比較用の免疫測定用試薬(M’−1)〜(M’−2)を得た。
<Examples 2-9, 16, 19-21 and Comparative Examples 1-2>
In Example 1, instead of the magnetic particle preservative solution (X1), the magnetic particle preservative solutions (X2) to (X9), (X16), (X16), which contain each component shown in Table 1 by weight as shown in Table 1. Using X19) to (X21) or (X'1) to (X'2), the concentration of the magnetic particles (H) in the immunoassay reagent (M) was changed from 0.01% by weight to the concentration shown in Table 1. Except for the changes, the same procedure as in Example 1 was carried out, and immunoassay reagents (M-2) to (M-9), (M-16), (M-19) to (M-21) and comparisons were carried out. Reagents for immunoassay (M'-1) to (M'-2) were obtained.

<実施例10及び比較例3>
1重量%γ−アミノプロピルトリエトキシシラン含有アセトン溶液40mLの入った蓋付きポリエチレン瓶に、実施例1で得た製造した磁性粒子(PH−1)40mgを加え、25℃で1時間反応させ、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去した。次いで脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌した後、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を5回行った。次いで、この洗浄後の磁性粒子を2重量%グルタルアルデヒド含有水溶液40mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。そして、脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌したのち、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を10回行った。
更にこの洗浄後の磁性粒子を、Tg(サイログロブリン、Hytest社製)を10μg/mLの濃度で含む0.02Mリン酸緩衝液(pH8.7)120mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。反応後、ネオジウム磁石で磁性粒子を集磁後、Tg含有リン酸緩衝液を除去することで、Tgが結合してなる磁性粒子(H−1)を得た。
次に、磁性粒子(H−1)の濃度が0.1重量%になるように、表1に記載の各成分を表1に記載の重量部含有する磁性粒子保存液(X10)又は(X’3)で希釈し、磁性粒子(H−1)を含有する免疫測定用試薬(M−10)及び比較用の免疫測定用試薬(M’−3)を調製した。
<Example 10 and Comparative Example 3>
40 mg of the magnetic particles (PH-1) produced in Example 1 were added to a polyethylene bottle with a lid containing 40 mL of an acetone solution containing 1 wt% γ-aminopropyltriethoxysilane, and the mixture was reacted at 25 ° C. for 1 hour. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator. Next, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 5 times. Next, the washed magnetic particles were added to a polyethylene bottle with a lid containing 40 mL of a 2 wt% glutaraldehyde-containing aqueous solution, and the mixture was reacted at 25 ° C. for 1 hour. Then, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 10 times.
Further, the washed magnetic particles were added to a polyethylene bottle with a lid containing 120 mL of 0.02 M phosphate buffer (pH 8.7) containing Tg (thyroglobulin, manufactured by Hytest) at a concentration of 10 μg / mL, and the temperature was 25 ° C. Was reacted for 1 hour. After the reaction, the magnetic particles were collected with a neodymium magnet, and then the Tg-containing phosphate buffer solution was removed to obtain magnetic particles (H-1) in which Tg was bonded.
Next, the magnetic particle preservative solution (X10) or (X) containing each component shown in Table 1 by weight according to Table 1 so that the concentration of the magnetic particles (H-1) becomes 0.1% by weight. Diluted with '3) to prepare an immunoassay reagent (M-10) containing magnetic particles (H-1) and an immunoassay reagent (M'-3) for comparison.

<実施例11又は比較例4>
実施例1における磁性粒子(H1−1)及び免疫測定用試薬(M−1)の作製において、抗Tgモノクローナル抗体F(ab’)に代えてTg(サイログロブリン、Hytest社製)を用い、Tg(サイログロブリン、Hytest社製)に代えて抗Tgモノクローナル抗体(マウス)(Hytest社製)を用いることで、磁性粒子(H1−1)に代えて、抗Tgモノクローナル抗体−Tg複合体が結合してなる磁性粒子(H2−1)(抗Tgモノクローナル抗体がTgを介して磁性粒子に結合したもの)を得、更に、磁性粒子保存液(X1)に代えて、表1に記載の各成分を表1に記載の重量部含有する磁性粒子保存液(X11)又は(X’4)を用い、免疫測定用試薬(M)における磁性粒子(H)の濃度を0.01重量%から表1に記載の濃度に変更した以外は、実施例1と同様に実施して、免疫測定用試薬(M−11)及び比較用の免疫測定用試薬(M’−4)を得た。
<Example 11 or Comparative Example 4>
In the preparation of the magnetic particles (H1-1) and the immunoassay reagent (M-1) in Example 1, Tg (thyroglobulin, manufactured by Hytest) was used instead of the anti-Tg monoclonal antibody F (ab') 2. By using an anti-Tg monoclonal antibody (mouse) (manufactured by Hytest) instead of (thyroglobulin, manufactured by Hytest), the anti-Tg monoclonal antibody-Tg complex is bound instead of the magnetic particles (H1-1). (H2-1) (anti-Tg monoclonal antibody bound to magnetic particles via Tg) is obtained, and each component shown in Table 1 is shown in place of the magnetic particle storage solution (X1). Table 1 shows the concentration of the magnetic particles (H) in the immunoassay reagent (M) from 0.01% by weight using the magnetic particle preservative solution (X11) or (X'4) contained in 1 part by weight. An immunoassay reagent (M-11) and a comparative immunoassay reagent (M'-4) were obtained in the same manner as in Example 1 except that the concentration was changed to.

<実施例12>
実施例2における磁性粒子(PH−1)の作製中の<コア層の作製>において、超常磁性金属酸化物粒子の投入量を80部から63部に変更した以外は、実施例2における磁性粒子(PH−1)の作製と同様に実施し、体積平均粒子径2.0μmの磁性粒子(PH−2)を得た。得られた磁性粒子(PH−2)中の超常磁性金属酸化物粒子の含有量を測定した結果、含有量は61重量%であった。
実施例2の以降の操作において、磁性粒子(PH−1)に代えて、磁性粒子(PH−2)を用いた以外は同様にして実施し、磁性粒子(H1−1)に代えて、Tg−抗Tgモノクローナル抗体F(ab’)複合体が結合してなる磁性粒子(H1−2)(Tgが抗Tgモノクローナル抗体F(ab’)を介して磁性粒子に結合したもの)を含有し、磁性粒子保存液(X12)で希釈された免疫測定用試薬(M−12)を得た。
<Example 12>
The magnetic particles in Example 2 except that the input amount of the superparamagnetic metal oxide particles was changed from 80 parts to 63 parts in <Preparation of the core layer> during the production of the magnetic particles (PH-1) in Example 2. The same procedure as in the preparation of (PH-1) was carried out to obtain magnetic particles (PH-2) having a volume average particle diameter of 2.0 μm. As a result of measuring the content of the superparamagnetic metal oxide particles in the obtained magnetic particles (PH-2), the content was 61% by weight.
In the subsequent operations of Example 2, the same procedure was carried out except that the magnetic particles (PH-2) were used instead of the magnetic particles (PH-1), and Tg was used instead of the magnetic particles (H1-1). - containing the anti-Tg monoclonal antibody F (ab ') 2 complex formed by binding magnetic particles (H1-2) (Tg anti Tg monoclonal antibody F (ab' that bound to the magnetic particles via a) 2) Then, an immunoassay reagent (M-12) diluted with a magnetic particle storage solution (X12) was obtained.

<実施例13>
実施例2における磁性粒子(PH−1)の作製中の<コア層の作製>において、超常磁性金属酸化物粒子の投入量を80部から92部に変更した以外は、実施例2における磁性粒子(PH−1)の作製と同様に実施し、体積平均粒子径2.0μmの磁性粒子(PH−3)を得た。得られた磁性粒子(PH−3)中の超常磁性金属酸化物粒子の含有量を測定した結果、含有量は90重量%であった。
実施例2の以降の操作において、磁性粒子(PH−1)に代えて、磁性粒子(PH−3)を用いた以外は同様にして実施し、磁性粒子(H1−1)に代えて、Tg−抗Tgモノクローナル抗体F(ab’)複合体が結合してなる磁性粒子(H1−3)(Tgが抗Tgモノクローナル抗体F(ab’)を介して磁性粒子に結合したもの)を含有し、磁性粒子保存液(X13)で希釈された免疫測定用試薬(M−13)を得た。
<Example 13>
The magnetic particles in Example 2 except that the input amount of the superparamagnetic metal oxide particles was changed from 80 parts to 92 parts in <Preparation of the core layer> during the production of the magnetic particles (PH-1) in Example 2. The same procedure as in the production of (PH-1) was carried out to obtain magnetic particles (PH-3) having a volume average particle diameter of 2.0 μm. As a result of measuring the content of the superparamagnetic metal oxide particles in the obtained magnetic particles (PH-3), the content was 90% by weight.
In the subsequent operations of Example 2, the same procedure was carried out except that the magnetic particles (PH-3) were used instead of the magnetic particles (PH-1), and Tg was used instead of the magnetic particles (H1-1). - containing the anti-Tg monoclonal antibody F (ab ') 2 complex formed by binding magnetic particles (H1-3) (Tg anti Tg monoclonal antibody F (ab' that bound to the magnetic particles via a) 2) Then, an immunoassay reagent (M-13) diluted with a magnetic particle storage solution (X13) was obtained.

<実施例14>
実施例2における磁性粒子(PH−1)の作製中の<磁性粒子の作製>において、「600rpmで10分間遠心分離」する工程に代えて、「1200rpmで10分間遠心分離」する工程を実施し、また、「300rpmで10分間遠心分離」する工程に代えて、「600rpmで10分間遠心分離」する工程を実施した以外は、実施例2における磁性粒子(PH−1)の作製と同様に実施し、体積平均粒子径1.0μmの磁性粒子(PH−4)を得た。得られた磁性粒子(PH−4)中の超常磁性金属酸化物粒子の含有量を測定した結果、含有量は81重量%であった。
実施例2の以降の操作において、磁性粒子(PH−1)に代えて、磁性粒子(PH−4)を用いた以外は同様にして実施し、磁性粒子(H1−1)に代えて、Tg−抗Tgモノクローナル抗体F(ab’)複合体が結合してなる磁性粒子(H1−4)(Tgが抗Tgモノクローナル抗体F(ab’)を介して磁性粒子に結合したもの)を含有し、磁性粒子保存液(X14)で希釈された免疫測定用試薬(M−14)を得た。
<Example 14>
In <Preparation of magnetic particles> during production of magnetic particles (PH-1) in Example 2, a step of "centrifuging at 1200 rpm for 10 minutes" was carried out instead of the step of "centrifuging at 600 rpm for 10 minutes". In addition, the same procedure as in the production of the magnetic particles (PH-1) in Example 2 was carried out except that the step of "centrifuging at 600 rpm for 10 minutes" was carried out instead of the step of "centrifuging at 300 rpm for 10 minutes". Then, magnetic particles (PH-4) having a volume average particle diameter of 1.0 μm were obtained. As a result of measuring the content of the superparamagnetic metal oxide particles in the obtained magnetic particles (PH-4), the content was 81% by weight.
In the subsequent operations of Example 2, the same procedure was carried out except that the magnetic particles (PH-4) were used instead of the magnetic particles (PH-1), and Tg was used instead of the magnetic particles (H1-1). - containing the anti-Tg monoclonal antibody F (ab ') 2 complex formed by binding magnetic particles (H1-4) (Tg anti Tg monoclonal antibody F (ab' that bound to the magnetic particles via a) 2) Then, an immunoassay reagent (M-14) diluted with a magnetic particle storage solution (X14) was obtained.

<実施例15>
実施例2における磁性粒子(PH−1)の作製中の<磁性粒子の作製>において、「600rpmで10分間遠心分離」する工程に代えて、「200rpmで10分間遠心分離」する工程を実施し、また、「300rpmで10分間遠心分離」する工程に代えて、「100rpmで10分間遠心分離」する工程を実施した以外は、実施例2における磁性粒子(PH−1)の作製と同様に実施し、体積平均粒子径5.0μmの磁性粒子(PH−5)を得た。得られた磁性粒子(PH−5)中の超常磁性金属酸化物粒子の含有量を測定した結果、含有量は81重量%であった。
実施例2の以降の操作において、磁性粒子(PH−1)に代えて、磁性粒子(PH−5)を用いた以外は同様にして実施し、磁性粒子(H1−1)に代えて、Tg−抗Tgモノクローナル抗体F(ab’)複合体が結合してなる磁性粒子(H1−5)(Tgが抗Tgモノクローナル抗体F(ab’)を介して磁性粒子に結合したもの)を含有し、磁性粒子保存液(X15)で希釈された免疫測定用試薬(M−15)を得た。
<Example 15>
In <Preparation of magnetic particles> during production of magnetic particles (PH-1) in Example 2, a step of "centrifuging at 200 rpm for 10 minutes" was carried out instead of the step of "centrifuging at 600 rpm for 10 minutes". In addition, the same procedure as in the production of the magnetic particles (PH-1) in Example 2 was carried out except that the step of "centrifuging at 100 rpm for 10 minutes" was carried out instead of the step of "centrifuging at 300 rpm for 10 minutes". Then, magnetic particles (PH-5) having a volume average particle diameter of 5.0 μm were obtained. As a result of measuring the content of the superparamagnetic metal oxide particles in the obtained magnetic particles (PH-5), the content was 81% by weight.
In the subsequent operations of Example 2, the same procedure was carried out except that the magnetic particles (PH-5) were used instead of the magnetic particles (PH-1), and Tg was used instead of the magnetic particles (H1-1). - containing the anti-Tg monoclonal antibody F (ab ') 2 complex formed by binding magnetic particles (H1-5) (Tg anti Tg monoclonal antibody F (ab' that bound to the magnetic particles via a) 2) Then, an immunoassay reagent (M-15) diluted with a magnetic particle storage solution (X15) was obtained.

<実施例17>
実施例2における磁性粒子(H1−1)及び免疫測定用試薬(M−1)の作製において、抗Tgモノクローナル抗体F(ab’)に代えて以下の方法で作製した抗Tgモノクローナル抗体Fabを用いたこと以外は実施例2と同様に実施して、磁性粒子(H1−1)に代えて、Tg−抗Tgモノクローナル抗体Fab複合体が結合してなる磁性粒子(H1−6)(Tgが抗Tgモノクローナル抗体Fabを介して磁性粒子に結合したもの)を含有し、磁性粒子保存液(X17)で希釈された免疫測定用試薬(M−17)を調整した。
<抗Tgモノクローナル抗体Fabの作製>
抗Tgモノクローナル抗体(マウス)(Hytest社製)10mgを、0.2M塩化ナトリウム含有0.02Mリン酸緩衝液(pH7.2)2mlに溶解し、0.2mgのパパインを加え37℃で3時間インキユベートした。反応液に終濃度が0.03Mとなるようにヨードアセトアミドを添加し完全に溶解させて反応を停止した後、0.2M塩化ナトリウム含有0.02Mリン酸緩衝液(pH7.2)で平衡化したウルトラゲルAcA−44(LKB)カラム(02,OX70cm、シグマアルドリッチ社製)でゲル濾過を行い、続いてNAbTM Protein A Plus Spin Column(5 mL、サーモフィッシャー社製)に供し、カラムの素通り液を回収することで、抗Tgモノクローナル抗体Fabを得た。
<Example 17>
In the preparation of the magnetic particles (H1-1) and the immunoassay reagent (M-1) in Example 2, the anti-Tg monoclonal antibody Fab prepared by the following method was used instead of the anti-Tg monoclonal antibody F (ab') 2. A magnetic particle (H1-6) (Tg) formed by binding a Tg-anti-Tg monoclonal antibody Fab complex instead of the magnetic particle (H1-1) was carried out in the same manner as in Example 2 except that it was used. An immunoassay reagent (M-17) containing the anti-Tg monoclonal antibody Fab bound to the magnetic particles and diluted with the magnetic particle storage solution (X17) was prepared.
<Preparation of anti-Tg monoclonal antibody Fab>
10 mg of an anti-Tg monoclonal antibody (mouse) (manufactured by Hytest) was dissolved in 2 ml of 0.02 M phosphate buffer (pH 7.2) containing 0.2 M sodium chloride, 0.2 mg of papain was added, and the temperature was 37 ° C. for 3 hours. Ink buffered. Iodoacetamide was added to the reaction solution so that the final concentration was 0.03 M, completely dissolved to stop the reaction, and then equilibrated with 0.02 M phosphate buffer (pH 7.2) containing 0.2 M sodium chloride. Gel filtration was performed on an Ultragel AcA-44 (LKB) column (02, OX70 cm, manufactured by Sigma Aldrich), followed by application to NAb TM Protein A Plus Spin Volume (5 mL, manufactured by Thermo Fisher), and the column was passed through. By recovering the solution, an anti-Tg monoclonal antibody Fab was obtained.

<実施例18>
1重量%γ−アミノプロピルトリエトキシシラン含有アセトン溶液40mLの入った蓋付きポリエチレン瓶に、実施例1で得た磁性粒子(PH−1)40mgを加え、25℃で1時間反応させ、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去した。次いで脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌した後、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を5回行った。次いで、この洗浄後の磁性粒子を2重量%グルタルアルデヒド含有水溶液40mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。そして、脱イオン水40mLを加えて蓋をし、ポリスチレン瓶をゆっくりと2回倒置攪拌したのち、ネオジウム磁石で磁性粒子を集磁後、液をアスピレーターで吸引除去して磁性粒子を洗浄した。この洗浄操作を10回行った。
更にこの洗浄後の磁性粒子を、抗Tgモノクローナル抗体(マウス)(Hytest社製)を10μg/mLの濃度で含む0.02Mリン酸緩衝液(pH8.7)120mLの入った蓋付きポリエチレン瓶に加え、25℃で1時間反応させた。反応後、ネオジウム磁石で磁性粒子を集磁後、抗Tgモノクローナル抗体含有リン酸緩衝液を除去することで、抗Tgモノクローナル抗体が結合してなる磁性粒子(H−2)を得た。
次に、磁性粒子(H−2)の濃度が0.1重量%になるように、表1に記載の各成分を表1に記載の重量部含有する磁性粒子保存液(X18)で希釈し、磁性粒子(H−2)を含有する免疫測定用試薬(M−18)を調製した。
<Example 18>
To a polyethylene bottle with a lid containing 40 mL of an acetone solution containing 1 wt% γ-aminopropyltriethoxysilane, 40 mg of the magnetic particles (PH-1) obtained in Example 1 was added and reacted at 25 ° C. for 1 hour to generate a neodymium magnet. After collecting the magnetic particles with, the liquid was sucked and removed with an aspirator. Next, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 5 times. Next, the washed magnetic particles were added to a polyethylene bottle with a lid containing 40 mL of a 2 wt% glutaraldehyde-containing aqueous solution, and the mixture was reacted at 25 ° C. for 1 hour. Then, 40 mL of deionized water was added to cover the bottle, and the polystyrene bottle was slowly inverted and stirred twice. After collecting the magnetic particles with a neodymium magnet, the liquid was attracted and removed with an aspirator to wash the magnetic particles. This cleaning operation was performed 10 times.
Further, the washed magnetic particles were placed in a polyethylene bottle with a lid containing 120 mL of 0.02 M phosphate buffer (pH 8.7) containing an anti-Tg monoclonal antibody (mouse) (manufactured by Hytest) at a concentration of 10 μg / mL. In addition, the reaction was carried out at 25 ° C. for 1 hour. After the reaction, the magnetic particles were collected with a neodymium magnet, and then the anti-Tg monoclonal antibody-containing phosphate buffer was removed to obtain magnetic particles (H-2) to which the anti-Tg monoclonal antibody was bound.
Next, each component shown in Table 1 is diluted with a magnetic particle preservative solution (X18) containing parts by weight shown in Table 1 so that the concentration of the magnetic particles (H-2) becomes 0.1% by weight. , A reagent for immunoassay (M-18) containing magnetic particles (H-2) was prepared.

免疫測定用試薬(M−1)〜(M−21)及び比較用の免疫測定用試薬(M’−1)〜(M’−4)のpHを、表1に示す。 Table 1 shows the pHs of the immunoassay reagents (M-1) to (M-21) and the comparative immunoassay reagents (M'-1) to (M'-4).

Figure 2021071476
Figure 2021071476

<実施例22>
実施例1で得た免疫測定用試薬(M−1)、並びに、以下の免疫反応用緩衝液試薬(Y−1)、標識試薬(F−1)(POD標識抗ヒトIgGポリクローナル抗体含有試薬)、化学発光試薬第1液(I−1)及び化学発光試薬第2液(I−2)を組み合わせて本発明の免疫測定用キット(S−1)を得た。
<Example 22>
The immunoassay reagent (M-1) obtained in Example 1, and the following immune reaction buffer reagent (Y-1) and labeling reagent (F-1) (POD-labeled anti-human IgG polyclonal antibody-containing reagent). , The chemiluminescent reagent first solution (I-1) and the chemiluminescent reagent second solution (I-2) were combined to obtain the immunoassay kit (S-1) of the present invention.

免疫反応用緩衝液試薬(Y−1)の作製:
10重量%のBSA、0.1重量%のナロアクティーCL−100[ポリオキシアルキレンアルキルエーテル、三洋化成工業(株)製]、0.1重量%のEDTA(エチレンジアミン−N,N,N’,N’−四酢酸二ナトリウム塩二水和物、(株)同仁化学研究所製)、5重量%のマウス血清[コスモ・バイオ(株)製]及び0.02Mリン酸ナトリウム(pH7.0)を含有する免疫反応用緩衝液(Y−1)を調整し、冷蔵(2〜10℃)で保存した。
Preparation of buffer reagent (Y-1) for immune reaction:
10% by weight BSA, 0.1% by weight Naroacty CL-100 [polyoxyalkylene alkyl ether, manufactured by Sanyo Kasei Kogyo Co., Ltd.], 0.1% by weight EDTA (ethylenediamine-N, N, N', N'-Disodium tetraacetate dihydrate, manufactured by Dojin Chemical Laboratory Co., Ltd., 5% by weight mouse serum [manufactured by Cosmo Bio Co., Ltd.] and 0.02M sodium phosphate (pH 7.0) The buffer solution for immune reaction (Y-1) containing the above was prepared and stored in a refrigerator (2 to 10 ° C.).

標識試薬(F−1)の作製:
抗ヒトIgGポリクローナル抗体(ウサギ)(ダコジャパン(株)製)、西洋ワサビ由来POD(東洋紡(株)製)を用い、文献(エス・ヨシタケ、エム・イマガワ、イー・イシカワ、エトール;ジェイ.バイオケム,Vol.92,1982,1413−1424)に記載の方法でPOD標識抗ヒトIgGポリクローナル抗体(ウサギ)を調製した。これを0.5重量%の牛血清アルブミン及び界面活性剤として1重量%ナロアクティーCL−100を含有する0.02Mリン酸緩衝液(pH7.0)で、POD標識抗ヒトIgGポリクローナル抗体(ウサギ)濃度として100nMの濃度に希釈し、標識試薬(F−1)を調製し、冷蔵(2〜10℃)で保存した。
Preparation of labeling reagent (F-1):
Using anti-human IgG polyclonal antibody (rabbit) (manufactured by Dako Japan Co., Ltd.) and horseradish-derived POD (manufactured by Toyobo Co., Ltd.), literature (S Yoshitake, M Imagawa, E Ishikawa, Etol; Jay Biochem , Vol. 92, 1982, 1413-1424) to prepare a POD-labeled anti-human IgG polyclonal antibody (rabbit). A 0.02M phosphate buffer (pH 7.0) containing 0.5% by weight of bovine serum albumin and 1% by weight of Naroacty CL-100 as a surfactant was used as a POD-labeled anti-human IgG polyclonal antibody (rabbit). ) Concentration was diluted to a concentration of 100 nM to prepare a labeling reagent (F-1), which was stored in a refrigerator (2 to 10 ° C.).

化学発光試薬第1液(I−1)の調製:
ルミノールのナトリウム塩[シグマ アルドリッチ ジャパン(株)製]0.7g及び4−(シアノメチルチオ)フェノール0.1gを1,000mLメスフラスコに仕込んだ。3−[4−(2−ヒドロキシエチル)−1−ピペラジニル]プロパンスルホン酸/水酸化ナトリウム緩衝液(10mM、pH8.6)を溶液の容量が1,000mLになるように仕込み、25℃で均一混合して化学発光試薬第1液(I−1)を調製した。測定に用いるまで冷蔵(2〜10℃)保存した。
Preparation of chemiluminescent reagent first solution (I-1):
0.7 g of luminol sodium salt [manufactured by Sigma-Aldrich Japan Co., Ltd.] and 0.1 g of 4- (cyanomethylthio) phenol were placed in a 1,000 mL volumetric flask. Add 3- [4- (2-hydroxyethyl) -1-piperazinyl] propanesulfonic acid / sodium hydroxide buffer (10 mM, pH 8.6) to a solution volume of 1,000 mL and homogenize at 25 ° C. The chemiluminescent reagent first solution (I-1) was prepared by mixing. It was stored refrigerated (2-10 ° C) until used for measurement.

化学発光試薬第2液(I−2)の調製:
1,000mL及び過酸化水素[和光純薬工業(株)製、試薬特級、濃度30重量%]6.6gを1,000mLメスフラスコに仕込んだ。脱イオン水を溶液の容量が1,000mLになるように仕込み、25℃で均一混合して化学発光試薬第2液(I−2)を調製した。測定に用いるまで冷蔵(2〜10℃)保存した。
Preparation of chemiluminescent reagent second liquid (I-2):
1,000 mL and 6.6 g of hydrogen peroxide [manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent, concentration 30% by weight] were charged into a 1,000 mL volumetric flask. Deionized water was charged so that the volume of the solution was 1,000 mL, and the mixture was uniformly mixed at 25 ° C. to prepare a chemiluminescent reagent second solution (I-2). It was stored refrigerated (2-10 ° C) until used for measurement.

<実施例23〜31、33〜38及び40〜42並びに比較例5〜7>
実施例22において、免疫測定用試薬(M−1)に代えて、免疫測定用試薬(M−2)〜(M−10)、(M−12)〜(M−17)若しくは(M−19)〜(M−21)又は比較用の免疫測定用試薬(M’−1)〜(M’−3)を用いた以外は実施例22と同様に実施して、本発明の免疫測定用キット(S−2)〜(S−10)、(S−12)〜(S−17)及び(S−19)〜(S−21)並びに比較用の免疫測定用キット(S’−1)〜(S’−3)を得た。
<Examples 23 to 31, 33 to 38 and 40 to 42, and Comparative Examples 5 to 7>
In Example 22, instead of the immunoassay reagent (M-1), the immunoassay reagents (M-2) to (M-10), (M-12) to (M-17) or (M-19) )-(M-21) or the comparative immunoassay reagents (M'-1)-(M'-3) were carried out in the same manner as in Example 22, and the immunoassay kit of the present invention was used. (S-2) to (S-10), (S-12) to (S-17) and (S-19) to (S-21), and a comparative immunoassay kit (S'-1) to (S'-3) was obtained.

<実施例32及び39並びに比較例8>
実施例22において、免疫測定用試薬(M−1)に代えて、免疫測定用試薬(M−11)若しくは(M−18)又は比較用の免疫測定用試薬(M’−4)を用い、標識試薬(F−1)に代えて、以下の標識試薬(F−2)を用いた以外は実施例22と同様に実施して、本発明の免疫測定用キット(S−11)及び(S−18)並びに比較用の免疫測定用キット(S’−4)を得た。
<Examples 32 and 39 and Comparative Example 8>
In Example 22, instead of the immunoassay reagent (M-1), an immunoassay reagent (M-11) or (M-18) or a comparative immunoassay reagent (M'-4) was used. The immunoassay kit (S-11) and (S) of the present invention were carried out in the same manner as in Example 22 except that the following labeling reagent (F-2) was used instead of the labeling reagent (F-1). -18) and a comparative immunoassay kit (S'-4) were obtained.

標識試薬(F−2)の作製:
実施例1における標識試薬(F−1)の作製において、抗ヒトIgGポリクローナル抗体(ウサギ)(ダコジャパン(株)製)に代えて、抗Tgマウスモノクローナル抗体(Hytest社製)を用いた以外は同様にして実施し、標識試薬(F−2)[100nMのPOD標識抗Tgマウスモノクローナル抗体を含有する試薬]を調製し、冷蔵(2〜10℃)で保存した。
Preparation of labeling reagent (F-2):
In the preparation of the labeling reagent (F-1) in Example 1, an anti-Tg mouse monoclonal antibody (manufactured by Hytest) was used instead of the anti-human IgG polyclonal antibody (rabbit) (manufactured by Dako Japan Co., Ltd.). The same procedure was carried out to prepare a labeling reagent (F-2) [reagent containing 100 nM POD-labeled anti-Tg mouse monoclonal antibody] and stored in a refrigerator (2 to 10 ° C.).

実施例22〜42で得た免疫測定用キット(S−1)〜(S−21)又は比較例5〜8で得た比較用の免疫測定用キット(S’−1)〜(S’−4)を用いて、以下の方法で免疫測定を実施し、免疫測定用試薬(M)の保存安定性を評価した。
<免疫測定用試薬(M)の保存安定性の評価方法>
以下のサンドイッチ法による免疫測定を実施し、免疫測定用試薬(M)の保存安定性を評価した。
製造後冷蔵(4〜7℃)で5日間保存した免疫測定用試薬(M)0.05mLを試験管に分注し、磁石で磁性粒子を集磁して上清をアスピレーターで除去した後、免疫反応用緩衝液試薬(Y−1)を加えて磁性粒子を分散させ、免疫測定用固相担体試薬(Z)を得た[磁性粒子の濃度は、免疫測定用固相担体試薬(Z)の重量を基準として表2の値の濃度となるように調製した]。
次に、プール血清[実施例22〜31、33〜38及び40〜42並びに比較例5〜7では、300IU/mLの抗サイログロブリン抗体(TgAb)を含有するプール血清を用い、実施例32及び39並びに比較例8では、10ng/mLのTgを含有するプール血清を用いた]0.05mLを試験管に注入し、試験管中で37℃3分間反応させ、複合体[実施例22〜31、33〜38及び40〜42並びに比較例5〜7では、Tgを固定化した磁性粒子/TgAb複合体、実施例32及び39並びに比較例8では、抗Tgモノクローナル抗体を固定化した磁性粒子/Tg複合体]を形成させた。
反応後、試験管の外側からネオジウム磁石で磁性粒子を10秒間集め、試験管中の液をアスピレーターで除き、ネオジウム磁石を側面から十分に離した。その後、生理食塩水0.5mLを加えて磁性粒子を分散させて集磁後、アスピレーターで液を除く洗浄操作を2回行った。
Immunoassay kits (S-1) to (S-21) obtained in Examples 22 to 42 or comparative immunoassay kits (S'-1) to (S'-) obtained in Comparative Examples 5 to 8. Using 4), immunoassay was carried out by the following method, and the storage stability of the immunoassay reagent (M) was evaluated.
<Evaluation method of storage stability of immunoassay reagent (M)>
Immunoassay was performed by the following sandwich method, and the storage stability of the immunoassay reagent (M) was evaluated.
After production, 0.05 mL of the immunoassay reagent (M) stored in a refrigerator (4 to 7 ° C.) for 5 days was dispensed into a test tube, magnetic particles were collected with a magnet, and the supernatant was removed with an aspirator. The buffer reagent for immune reaction (Y-1) was added to disperse the magnetic particles to obtain a solid phase carrier reagent (Z) for immunomeasurement [the concentration of the magnetic particles is the solid phase carrier reagent (Z) for immunomeasurement). The concentration was adjusted to the value shown in Table 2 based on the weight of.]
Next, pooled sera [Examples 22-31, 33-38 and 40-42 and Comparative Examples 5-7 used pooled sera containing 300 IU / mL of anti-thyroglobulin antibody (TgAb), and used Examples 32 and 39. Further, in Comparative Example 8, 0.05 mL [using pooled serum containing 10 ng / mL Tg] was injected into a test tube and reacted at 37 ° C. for 3 minutes in the test tube, and the complex [Examples 22 to 31, In 33-38 and 40-42 and Comparative Examples 5 to 7, the Tg-immobilized magnetic particles / TgAb complex, and in Examples 32 and 39 and Comparative Example 8, the anti-Tg monoclonal antibody-immobilized magnetic particles / Tg. Complex] was formed.
After the reaction, magnetic particles were collected from the outside of the test tube with a neodymium magnet for 10 seconds, the liquid in the test tube was removed with an aspirator, and the neodymium magnet was sufficiently separated from the side surface. Then, 0.5 mL of physiological saline was added to disperse the magnetic particles, and after collecting the magnetism, the washing operation of removing the liquid with an aspirator was performed twice.

続いて、免疫測定用キットが有する標識試薬(F)[実施例22〜31、33〜38及び40〜42並びに比較例5〜7では、標識試薬(F−1)を用い、実施例32及び39並びに比較例8では、標識試薬(F−2)を用いた]0.05mLを試験管に注入し、試験管中で37℃3分間反応させ、複合体[実施例22〜31、33〜38及び40〜42並びに比較例5〜7では、Tgを固定化した磁性粒子/TgAb/POD標識抗ヒトIgGポリクローナル抗体複合体、実施例32及び39並びに比較例8では、抗Tgモノクローナル抗体を固定化した磁性粒子/Tg/POD標識抗Tgマウスモノクローナル抗体複合体]を形成させた。
反応後、試験管の外側からネオジウム磁石で磁性粒子を10秒間集め、試験管中の液をアスピレーターで除き、ネオジウム磁石を側面から十分に離した。その後、生理食塩水0.5mLを加えて磁性粒子を分散させて集磁後、アスピレーターで液を除く洗浄操作を2回行った。
最後に、化学発光試薬第1液(I−1)0.07mLと化学発光試薬第2液(I−2)0.07mLとを同時に加え、37℃で45秒間発光反応させ、化学発光試薬を添加後43〜45秒の平均発光量をルミノメーター[ベルトールドジャパン社製「Lumat LB9507」]で測定した。この時の平均発光量を平均発光量(Y1)とした。
Subsequently, the labeling reagent (F) contained in the immunoassay kit [Examples 22 to 31, 33 to 38 and 40 to 42, and Comparative Examples 5 to 7 use the labeling reagent (F-1), and Examples 32 and 32 and In 39 and Comparative Example 8, 0.05 mL using the labeling reagent (F-2) was injected into a test tube and reacted at 37 ° C. for 3 minutes in the test tube, and the complex [Examples 22 to 31, 33 to In 38 and 40-42 and Comparative Examples 5 to 7, Tg-immobilized magnetic particles / TgAb / POD-labeled anti-human IgG polyclonal antibody complex, and in Examples 32 and 39 and Comparative Example 8, anti-Tg monoclonal antibody was immobilized. Transformed magnetic particles / Tg / POD-labeled anti-Tg mouse monoclonal antibody complex] were formed.
After the reaction, magnetic particles were collected from the outside of the test tube with a neodymium magnet for 10 seconds, the liquid in the test tube was removed with an aspirator, and the neodymium magnet was sufficiently separated from the side surface. Then, 0.5 mL of physiological saline was added to disperse the magnetic particles, and after collecting the magnetism, the washing operation of removing the liquid with an aspirator was performed twice.
Finally, 0.07 mL of the chemiluminescent reagent first solution (I-1) and 0.07 mL of the chemiluminescent reagent second solution (I-2) are added at the same time, and the chemiluminescent reagent is luminescence-reacted at 37 ° C. for 45 seconds to prepare the chemiluminescent reagent. The average chemiluminescence amount 43 to 45 seconds after the addition was measured with a luminometer [“Lumat LB9507” manufactured by Berthold Japan Co., Ltd.]. The average amount of light emitted at this time was defined as the average amount of light emitted (Y1).

製造後冷蔵(4〜7℃)で5日間保存した免疫測定用試薬(M)に代えて、製造後35℃で5日間保管(加速試験)した免疫測定用試薬(M)を用いて、上記と同様に平均発光量を測定し、この値を平均発光量(Y2)とした。 Instead of the immunoassay reagent (M) stored in a refrigerator (4 to 7 ° C.) for 5 days after production, the immunoassay reagent (M) stored at 35 ° C. for 5 days (accelerated test) after production was used. The average light emission amount was measured in the same manner as in the above, and this value was taken as the average light emission amount (Y2).

免疫測定用試薬(M)の保存安定性は、以下の計算式で得られる発光量比から算出した。結果を表2に示す。
発光量比(%)=(Y2/Y1)×100
The storage stability of the immunoassay reagent (M) was calculated from the luminescence amount ratio obtained by the following formula. The results are shown in Table 2.
Light emission ratio (%) = (Y2 / Y1) x 100

Figure 2021071476
Figure 2021071476

測定対象物質が抗体であり、測定対象物質と特異的に結合する物質として抗原(C)を固定化した磁性粒子を含有する免疫測定用試薬(M)について、免疫測定用試薬(M)における水の重量割合が20〜60重量%である実施例22〜31、33〜38及び40〜42と、水の重量割合が20〜60重量%の範囲外である比較例5〜7とを比較すると、実施例22〜31、33〜38及び40〜42の方が、免疫測定用試薬(M)の保存安定性に優れることが分かる。
また、測定対象物質が抗原であり、測定対象物質と特異的に結合する物質として抗体(D)を固定化した磁性粒子を含有する免疫測定用試薬(M)について、免疫測定用試薬(M)における水の重量割合が20〜60重量%である実施例32及び39と、水の重量割合が20〜60重量%の範囲外である比較例8とを比較すると、実施例32及び39の方が、免疫測定用試薬(M)の保存安定性に優れることが分かる。
Regarding the immunoassay reagent (M) containing magnetic particles in which an antigen (C) is immobilized as a substance that specifically binds to the substance to be measured, the substance to be measured is water in the reagent (M) for immunoassay. Comparing Examples 22 to 31, 33 to 38 and 40 to 42 in which the weight ratio of water is 20 to 60% by weight with Comparative Examples 5 to 7 in which the weight ratio of water is outside the range of 20 to 60% by weight. It can be seen that Examples 22 to 31, 33 to 38 and 40 to 42 are superior in storage stability of the immunoassay reagent (M).
Further, with respect to the immunoassay reagent (M) containing magnetic particles in which an antibody (D) is immobilized as a substance that specifically binds to the measurement target substance and the measurement target substance is an antigen, the immunoassay reagent (M) 32 and 39 in which the weight ratio of water in the above is 20 to 60% by weight and Comparative Example 8 in which the weight ratio of water is outside the range of 20 to 60% by weight are compared with Examples 32 and 39. However, it can be seen that the immunoassay reagent (M) is excellent in storage stability.

本発明の免疫測定用試薬、免疫測定用キット及び免疫測定方法は、保存安定性に優れていることから、放射免疫測定法、酵素免疫測定法、蛍光免疫測定法及び化学発光免疫測定法等の臨床検査に幅広く適用できる。 Since the immunoassay reagent, immunoassay kit, and immunoassay method of the present invention are excellent in storage stability, radioimmunoassay, enzyme immunoassay, fluorescence immunoassay, chemoluminescence immunoassay, etc. Widely applicable to clinical tests.

Claims (9)

免疫測定用固相担体(E)と、糖(A)と、水とを含有する免疫測定用試薬であって、
前記水の重量割合が、前記免疫測定用試薬の重量を基準として、20〜60重量%である免疫測定用試薬(M)。
An immunoassay reagent containing a solid-phase carrier (E) for immunoassay, sugar (A), and water.
The immunoassay reagent (M) in which the weight ratio of the water is 20 to 60% by weight based on the weight of the immunoassay reagent.
さらに、タンパク質(B)を含有する請求項1に記載の免疫測定用試薬。 The immunoassay reagent according to claim 1, further comprising a protein (B). 前記糖(A)の重量の割合が、前記免疫測定用試薬の重量を基準として、20〜60重量%である請求項1又は2に記載の免疫測定用試薬。 The immunoassay reagent according to claim 1 or 2, wherein the ratio of the weight of the sugar (A) is 20 to 60% by weight based on the weight of the immunoassay reagent. 前記免疫測定用固相担体(E)が、抗原(C)又は抗体(D)を有する磁性粒子(H)である請求項1〜3のいずれか1項に記載の免疫測定用試薬。 The reagent for immunoassay according to any one of claims 1 to 3, wherein the solid-phase carrier (E) for immunoassay is a magnetic particle (H) having an antigen (C) or an antibody (D). 前記磁性粒子(H)が、前記抗原(C)に対する抗体(CA)を介して磁性粒子に結合してなる磁性粒子(H1)及び/又は前記抗体(D)に対する抗原(DA)を介して磁性粒子に結合してなる磁性粒子(H2)である請求項4に記載の免疫測定用試薬。 The magnetic particles (H) are magnetic via the magnetic particles (H1) formed by binding to the magnetic particles via an antibody (CA) against the antigen (C) and / or via an antigen (DA) against the antibody (D). The immunoassay reagent according to claim 4, which is a magnetic particle (H2) formed by binding to a particle. 前記磁性粒子(H1)における抗体(CA)が、F(ab’)及び/又はFabである請求項5に記載の免疫測定用試薬。 The reagent for immunoassay according to claim 5, wherein the antibody (CA) in the magnetic particles (H1) is F (ab') 2 and / or Fab. 前記磁性粒子(H)が、体積平均粒子径が1〜20nmの超常磁性金属酸化物を60〜95重量%含有する磁性粒子である請求項4〜6のいずれか1項に記載の免疫測定用試薬。 The immunoassay according to any one of claims 4 to 6, wherein the magnetic particles (H) are magnetic particles containing 60 to 95% by weight of a superparamagnetic metal oxide having a volume average particle diameter of 1 to 20 nm. reagent. 請求項1〜7のいずれか1項に記載の免疫測定用試薬を含む免疫測定用キット。 An immunoassay kit comprising the reagent for immunoassay according to any one of claims 1 to 7. 請求項1〜7のいずれか1項に記載の免疫測定用試薬を用いる免疫測定方法。
An immunoassay method using the immunoassay reagent according to any one of claims 1 to 7.
JP2020164334A 2019-10-29 2020-09-30 Immunoassay reagent, immunoassay kit, and immunoassay method Active JP7269906B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196494 2019-10-29
JP2019196494 2019-10-29

Publications (2)

Publication Number Publication Date
JP2021071476A true JP2021071476A (en) 2021-05-06
JP7269906B2 JP7269906B2 (en) 2023-05-09

Family

ID=75713028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020164334A Active JP7269906B2 (en) 2019-10-29 2020-09-30 Immunoassay reagent, immunoassay kit, and immunoassay method

Country Status (1)

Country Link
JP (1) JP7269906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671175A (en) * 2021-09-07 2021-11-19 普十生物科技(北京)有限公司 Reagent and kit for detecting thromboxane B2

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035263A (en) * 1983-08-05 1985-02-23 Wako Pure Chem Ind Ltd Stabilization of immunologically active substance immobilized on non-soluble carrier and physiologically active substance measuring reagent containing the same as composition unit
JPS60149972A (en) * 1984-01-17 1985-08-07 Yatoron:Kk Stabilization of enzyme labelled antibody
JPS62209362A (en) * 1986-03-10 1987-09-14 Chemo Sero Therapeut Res Inst Composition for immune agglutination
JPH09127114A (en) * 1995-11-01 1997-05-16 Dainabotsuto Kk Stabilized igm reagent for immunoassay
JPH1038883A (en) * 1996-07-24 1998-02-13 Eiken Chem Co Ltd Stabilization method of antigen activity
JPH11304801A (en) * 1998-04-17 1999-11-05 Tosoh Corp Autoantibody detecting method by indirect antigen immobilization
WO2009118108A1 (en) * 2008-03-26 2009-10-01 Merck Patent Gmbh Method of long term storage of substrate-coupled beads
JP2011241206A (en) * 2010-04-23 2011-12-01 Arkray Inc Method for stabilizing labeled antibody
JP2013019889A (en) * 2011-06-15 2013-01-31 Sanyo Chem Ind Ltd Magnetic particle and manufacturing method thereof
JP2014210680A (en) * 2013-04-18 2014-11-13 三洋化成工業株式会社 Magnetic particles and method for producing the same
JP2016520193A (en) * 2013-05-14 2016-07-11 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Receptor-containing stabilizing solution
JP2017181492A (en) * 2016-03-24 2017-10-05 三洋化成工業株式会社 Particle composition, reagent for immunoassay, and immunoassay method
JP2018119959A (en) * 2017-01-25 2018-08-02 三洋化成工業株式会社 Method for producing antigen/antibody-immobilized particle, method for producing immunoassay reagent, and immunoassay method
JP2018124277A (en) * 2017-02-02 2018-08-09 三洋化成工業株式会社 Particle-containing composition, immunoassay reagent, immunoassay method and particle storage method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035263A (en) * 1983-08-05 1985-02-23 Wako Pure Chem Ind Ltd Stabilization of immunologically active substance immobilized on non-soluble carrier and physiologically active substance measuring reagent containing the same as composition unit
JPS60149972A (en) * 1984-01-17 1985-08-07 Yatoron:Kk Stabilization of enzyme labelled antibody
JPS62209362A (en) * 1986-03-10 1987-09-14 Chemo Sero Therapeut Res Inst Composition for immune agglutination
JPH09127114A (en) * 1995-11-01 1997-05-16 Dainabotsuto Kk Stabilized igm reagent for immunoassay
JPH1038883A (en) * 1996-07-24 1998-02-13 Eiken Chem Co Ltd Stabilization method of antigen activity
JPH11304801A (en) * 1998-04-17 1999-11-05 Tosoh Corp Autoantibody detecting method by indirect antigen immobilization
WO2009118108A1 (en) * 2008-03-26 2009-10-01 Merck Patent Gmbh Method of long term storage of substrate-coupled beads
JP2011241206A (en) * 2010-04-23 2011-12-01 Arkray Inc Method for stabilizing labeled antibody
JP2013019889A (en) * 2011-06-15 2013-01-31 Sanyo Chem Ind Ltd Magnetic particle and manufacturing method thereof
JP2014210680A (en) * 2013-04-18 2014-11-13 三洋化成工業株式会社 Magnetic particles and method for producing the same
JP2016520193A (en) * 2013-05-14 2016-07-11 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Receptor-containing stabilizing solution
JP2017181492A (en) * 2016-03-24 2017-10-05 三洋化成工業株式会社 Particle composition, reagent for immunoassay, and immunoassay method
JP2018119959A (en) * 2017-01-25 2018-08-02 三洋化成工業株式会社 Method for producing antigen/antibody-immobilized particle, method for producing immunoassay reagent, and immunoassay method
JP2018124277A (en) * 2017-02-02 2018-08-09 三洋化成工業株式会社 Particle-containing composition, immunoassay reagent, immunoassay method and particle storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671175A (en) * 2021-09-07 2021-11-19 普十生物科技(北京)有限公司 Reagent and kit for detecting thromboxane B2

Also Published As

Publication number Publication date
JP7269906B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
JP5977743B2 (en) Measuring method using magnetic silica particles and reagent for the measuring method
JP6182520B2 (en) Magnetic silica particles, method for measuring a substance to be measured using the magnetic silica particles, and reagent for measuring the substance to be measured
JP6651794B2 (en) Cardiac troponin I measuring reagent and method
JP6773402B2 (en) Separation method of target substance using magnetic silica particles
JP5844195B2 (en) Magnetic silica particles, immunoassay using the same, and reagent for immunoassay
JP5104622B2 (en) Method for measuring the concentration of analytes using magnetic particles
JP7269906B2 (en) Immunoassay reagent, immunoassay kit, and immunoassay method
JP2023133205A (en) Immunological measurement method, immunological measurement kit, and solid-phase support reagent
JP2018124277A (en) Particle-containing composition, immunoassay reagent, immunoassay method and particle storage method
JP6636072B2 (en) Immunoassay reagent, immunoassay kit and immunoassay method
JP4879067B2 (en) Sample preparation solution for immunoassay, reagent kit for immunoassay, and immunoassay method
JP7211748B2 (en) Immunoassay reagent, immunoassay kit, and immunoassay method
JP6635985B2 (en) Immunoassay reagent, immunoassay kit and immunoassay method
JP6672353B2 (en) Immunoassay method and immunoassay kit used therefor
JP2010101703A (en) Immunoassay and measuring reagent kit
JP7431711B2 (en) Immunoassay method and immunoassay kit
JP6636070B2 (en) Immunoassay method and kit for immunoassay
JP7191913B2 (en) Immunoassay method and immunoassay kit
JP2016136130A (en) Reagent for immunoassay and immunoassay method
JP6449221B2 (en) Particle composition, immunoassay reagent and immunoassay method
JP6646691B2 (en) Method for producing antigen or antibody-immobilized particles and immunoassay reagent and immunoassay method
JP6767452B2 (en) Immunoassay reagents, immunoassay kits and immunoassay methods
JP2019052905A (en) Immunoassay method, immunoassay reagent and immunoassay kit containing the same
JP2023124359A (en) Immunoassay measurement method and cleansing agent
JP2022156263A (en) Immunoassay reagent, immunoassay kit, and immunoassay method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7269906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150