JP2021071442A - Measurement method for electric resistivity of thin film formed on metal substrate, and method for manufacturing electronic component and apparatus for manufacturing electronic component using the measurement method - Google Patents

Measurement method for electric resistivity of thin film formed on metal substrate, and method for manufacturing electronic component and apparatus for manufacturing electronic component using the measurement method Download PDF

Info

Publication number
JP2021071442A
JP2021071442A JP2019199848A JP2019199848A JP2021071442A JP 2021071442 A JP2021071442 A JP 2021071442A JP 2019199848 A JP2019199848 A JP 2019199848A JP 2019199848 A JP2019199848 A JP 2019199848A JP 2021071442 A JP2021071442 A JP 2021071442A
Authority
JP
Japan
Prior art keywords
metal substrate
thin film
film formed
electrical resistivity
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199848A
Other languages
Japanese (ja)
Other versions
JP7352234B2 (en
Inventor
哲夫 清水
Tetsuo Shimizu
哲夫 清水
利隆 久保
Toshitaka Kubo
利隆 久保
楠 葉
Nan Yo
楠 葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yazaki Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Yazaki Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019199848A priority Critical patent/JP7352234B2/en
Publication of JP2021071442A publication Critical patent/JP2021071442A/en
Application granted granted Critical
Publication of JP7352234B2 publication Critical patent/JP7352234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a measurement method for electric resistivity of a thin film formed on a metal substrate.SOLUTION: The method includes steps of: (I) measuring current-voltage characteristics of a laminate comprising a metal substrate and a thin film formed on the metal substrate by use of a C-AFM; and (II) measuring current-voltage characteristics of a metal substrate of the same kind as the above metal substrate by use of a C-AFM. A contact resistance Rc_TF between the cantilever of the C-AFM and the laminate is obtained by the gradient of a current-voltage curve obtained in the step (I), a contact resistance Rc_m between the cantilever of the C-AFM and the metal substrate is obtained by a current-voltage curve obtained in step (II), and the electric resistivity of the thin film is calculated by the formula of ρTH=(ρa+ρm)Rc_TF/Rc_m-ρa, where ρa represents the electric resistivity of the cantilever of the C-AFM, ρm represents the electric resistivity of the metal substrate, and ρTH represents the electric resistivity of the thin film.SELECTED DRAWING: Figure 1

Description

本発明は、金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置に関する。 The present invention relates to a method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing an electronic component using the measuring method, and an apparatus for manufacturing an electronic component.

金属薄膜、ポリマー薄膜等の薄膜が様々な電子部品に用いられている。薄膜の電気抵抗の測定方法としては、ASTM、JIS規格で規定されており、通常、抵抗計を用いて評価され
る。例えば、非特許文献1には、Si基板上にスピンコート法で形成された膜厚300nmの酸化グラフェン膜の電気抵抗を抵抗計を用いて測定したことが報告されている。ミクロンオーダーの薄膜では、4端子法でも測定可能であるが、それより薄い薄膜では、従来の4端子法を用いると、ショートして評価出来ないという問題がある。そこで、薄膜の抵抗の測定方法が提案されている。例えば、非特許文献2には、コンダクティブ原子間力顕微鏡を用いたSiO基板上のカーボンナノチューブの抵抗測定が報告されている。
Thin films such as metal thin films and polymer thin films are used in various electronic components. The method for measuring the electrical resistance of a thin film is specified by ASTM and JIS standards, and is usually evaluated using an ohmmeter. For example, Non-Patent Document 1 reports that the electrical resistance of a graphene oxide film having a film thickness of 300 nm formed on a Si substrate by a spin coating method was measured using an ohmmeter. A micron-order thin film can be measured by the 4-terminal method, but a thinner thin film has a problem that it cannot be evaluated due to a short circuit when the conventional 4-terminal method is used. Therefore, a method for measuring the resistance of a thin film has been proposed. For example, Non-Patent Document 2 reports resistance measurement of carbon nanotubes on a SiO 2 substrate using a conductive atomic force microscope.

グラフェン膜は炭素原子から構成された単原子膜であり、電気伝導性及び化学的安定性に優れることから、高い信頼性を持つ新たな材料として脚光を浴びている。例えば、特許文献1には、pチャネルFET(電界効果トランジスタ)もnチャネルFETも用いることなく、グラフェンをFETの電子走行層に導入し、グラフェン材料が有するアンバイポーラ特性を活用して、CMOSと等価な相補型理論動作を実現することが開示されている。また、特許文献2には、剥離しにくい電極端子を有する所望形状のグラフェン素材を容易に作製する方法として、グラフェン化を促進する機能を有する所定形状の触媒金属層を基板本体上に形成する工程と、前記触媒金属層の表面に炭素源を供給してグラフェンを成長させる工程と、前記触媒金属層から前記グラフェンをグラフェン素材として取り出す工程と、を含み、前記工程(c)で前記グラフェンをグラフェン素材として取り出す前又は後に、下地をなすTi層とMo,Ni,Ta及びWからなる群より選ばれた金属を主成分とする保護層とをこの順で積層した構造を持つ電極端子を形成する方法が開示されている。また、特許文献3には、水素イオンまたは酸素イオンが伝導できるイオン伝導体を有するイオン伝導体材料層と、前記イオン伝導体材料層を挟むゲート電極層および絶縁体基板上に積層した酸化グラフェンまたはグラフェンを有するグラフェン系材料層と、前記グラフェン系材料層の表面上もしくはその層間または前記絶縁体基板上に設けられたドレイン電極層およびソース電極層を設けた電気伝導素子が開示されている。 The graphene film is a monatomic film composed of carbon atoms, and is in the limelight as a new material with high reliability because of its excellent electrical conductivity and chemical stability. For example, in Patent Document 1, graphene is introduced into the electronic traveling layer of the FET without using a p-channel FET (field effect transistor) or an n-channel FET, and the anbipolar characteristics of the graphene material are utilized to form CMOS. It is disclosed to realize an equivalent complementary type theoretical operation. Further, Patent Document 2 describes a step of forming a catalyst metal layer having a predetermined shape having a function of promoting graphene formation on a substrate main body as a method for easily producing a graphene material having a desired shape having electrode terminals that are difficult to peel off. A step of supplying a carbon source to the surface of the catalyst metal layer to grow graphene and a step of extracting the graphene from the catalyst metal layer as a graphene material are included. Before or after taking out as a material, an electrode terminal having a structure in which a Ti layer forming a base and a protective layer containing a metal as a main component selected from the group consisting of Mo, Ni, Ta and W are laminated in this order is formed. The method is disclosed. Further, Patent Document 3 describes graphene oxide or graphene oxide laminated on an ion conductor material layer having an ion conductor capable of conducting hydrogen ions or oxygen ions, a gate electrode layer sandwiching the ion conductor material layer, and an insulator substrate. An electrically conductive element having a graphene-based material layer having graphene and a drain electrode layer and a source electrode layer provided on the surface of the graphene-based material layer, between the layers thereof, or on the insulator substrate is disclosed.

WO2010/010944WO2010 / 01944 特開2012−144419号公報Japanese Unexamined Patent Publication No. 2012-144419 WO2015/068651WO2015 / 068651

Journal of Materials Chemistry C, 2019 Issue 9, pp.2583-2588Journal of Materials Chemistry C, 2019 Issue 9, pp.2583-2588 Science, 26 Apr 1996: Vol. 272, Issue 5261, pp. 523-526Science, 26 Apr 1996: Vol. 272, Issue 5261, pp. 523-526

本発明の第一の課題は、金属基板上に形成された薄膜の電気抵抗率の測定方法を提供することである。また、当該測定方法を利用する電子部品の製造方法及び電子部品の製造装
置を提供することを更なる課題とする。
A first object of the present invention is to provide a method for measuring the electrical resistivity of a thin film formed on a metal substrate. Further, it is a further subject to provide a manufacturing method of electronic parts and a manufacturing apparatus of electronic parts using the measurement method.

本発明者らは、銅基板のような金属基板上の薄膜の抵抗を4端子法で測定しようとすると、銅基板に電気が流れて測定の精度が悪かったところ、コンダクティブ原子間力顕微鏡を用い、金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定し、特定の式を用いることで、金属基板上に形成された薄膜の電気抵抗率を測定することに想到し、本発明を完成させた。 When the present inventors tried to measure the resistance of a thin film on a metal substrate such as a copper substrate by the four-terminal method, electricity flowed through the copper substrate and the measurement accuracy was poor. Therefore, the present inventors used a conductive interatomic force microscope. By measuring the current-voltage characteristics of a metal substrate and a laminate containing a thin film formed on the metal substrate and the current-voltage characteristics of a metal substrate of the same type as the metal substrate, and using a specific formula, the metal The present invention was completed with the idea of measuring the electrical resistance of a thin film formed on a substrate.

本発明は以下の具体的態様等を提供する。
<1> 金属基板上に形成された薄膜の電気抵抗率の測定方法であって、
(I)コンダクティブ原子間力顕微鏡を用いて前記金属基板及び前記金属基板上に形成さ
れた薄膜を含む積層体の電流−電圧特性を測定する工程、及び
(II)コンダクティブ原子間力顕微鏡を用いて前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する工程、を含み、
前記(I)工程で得られた電流−電圧曲線の傾きから得られる、前記コンダクティブ原子
間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗をRc_TFとし、
前記(II)工程で得られた電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗をRc_mとし、
下記式(1)より前記薄膜の電気抵抗率を算出する、金属基板上に形成された薄膜の電気抵抗率の測定方法。
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率、ρは前記金属基板の電気抵抗率、ρTHは前記薄膜の電気抵抗率を表す。)
<2> 前記薄膜の厚みが1nm以上100nm以下である、<1>記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。
<3> 前記薄膜が、グラフェンまたは酸化グラフェンからなる、<1>又は<2>に記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。
<4> 前記金属基板が、銅、鉄、アルミニウム及びそれらの合金からなる群より選択される、<1>〜<3>のいずれかに記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。
<5> 金属基板及び前記金属基板上に形成された薄膜を備える電子部品の製造方法であって、
金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程、
金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程、
<1>〜<4>のいずれかに記載の金属基板上に形成された薄膜の電気抵抗率の測定方法により前記金属基板上に形成された薄膜の電気抵抗率を測定する工程、及び
前記工程により測定された薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定工程、
を含む、電子部品の製造方法。
<6>前記電子部品がコネクタである、<5>に記載の電子部品の製造方法。
<7> 金属基板上に薄膜を形成する薄膜形成部、及び
前記金属基板上に形成された薄膜の導電性を評価する導電性評価部、を備え、
前記導電性評価部が以下の(A)〜(C)を含むことを特徴とする、電子部品の製造装置。
(A)前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する原子間力顕微鏡
(B)下記式(1)より前記薄膜の電気抵抗率を算出する電気抵抗率算出部
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、Rc_TFは前記原子間力顕微鏡による前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性測定結果の電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗;Rc_mは前記原子間力顕微鏡による前記金属基板と同じ種類の金属基板の電流−電圧特性の測定結果の前記電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗;ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率;ρは前記金属基板の電気抵抗率;ρTHは前記薄膜の電気抵抗率を表す。)
(C)前記電気抵抗率算出部(B)により算出された前記薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定部
<8>前記電子部品がコネクタである、<7>に記載の電子部品の製造装置。
The present invention provides the following specific aspects and the like.
<1> A method for measuring the electrical resistivity of a thin film formed on a metal substrate.
(I) Using a conductive atomic force microscope to measure the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate, and (II) Using a conductive atomic force microscope. Including the step of measuring the current-voltage characteristics of a metal substrate of the same type as the metal substrate.
The contact resistance between the cantilever of the conductive atomic force microscope and the laminate containing the metal substrate and the thin film formed on the metal substrate, which is obtained from the slope of the current-voltage curve obtained in the step (I). Let R c_TF
The contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate obtained from the slope of the current-voltage curve obtained in the step (II) is R c_m .
A method for measuring the electrical resistivity of a thin film formed on a metal substrate, which calculates the electrical resistivity of the thin film from the following formula (1).
ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
(In the formula (1), ρ a represents the electrical resistivity of the cantilever of the conductive atomic force microscope, ρ m represents the electrical resistivity of the metal substrate, and ρ TH represents the electrical resistivity of the thin film.)
<2> The method for measuring the electrical resistivity of a thin film formed on a metal substrate according to <1>, wherein the thickness of the thin film is 1 nm or more and 100 nm or less.
<3> The method for measuring the electrical resistivity of a thin film formed on a metal substrate according to <1> or <2>, wherein the thin film is made of graphene or graphene oxide.
<4> The electrical resistivity of the thin film formed on the metal substrate according to any one of <1> to <3>, wherein the metal substrate is selected from the group consisting of copper, iron, aluminum and alloys thereof. Measurement method.
<5> A method for manufacturing an electronic component including a metal substrate and a thin film formed on the metal substrate.
A step of preparing a metal substrate and a laminate containing a thin film formed on the metal substrate,
A step of preparing a metal substrate and a laminate containing a thin film formed on the metal substrate,
A step of measuring the electrical resistivity of the thin film formed on the metal substrate by the method for measuring the electrical resistivity of the thin film formed on the metal substrate according to any one of <1> to <4>, and the above-mentioned step. Judgment step of determining whether or not the electrical resistivity of the thin film measured by
Manufacturing methods for electronic components, including.
<6> The method for manufacturing an electronic component according to <5>, wherein the electronic component is a connector.
<7> A thin film forming section for forming a thin film on a metal substrate and a conductivity evaluation section for evaluating the conductivity of the thin film formed on the metal substrate are provided.
An apparatus for manufacturing electronic components, wherein the conductivity evaluation unit includes the following (A) to (C).
(A) An interatomic force microscope that measures the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate and the current-voltage characteristics of the same type of metal substrate as the metal substrate (B). Electrical resistivity calculation unit for calculating the electrical resistivity of the thin film from the following equation (1) ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
In the formula (1), R c_TF is obtained from the slope of the current-voltage curve of the current-voltage characteristic measurement result of the metal substrate and the laminate containing the thin film formed on the metal substrate by the atomic force microscope. , Contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate and the laminate containing the thin film formed on the metal substrate; R c_m is the same type of metal substrate as the metal substrate by the atomic force microscope. current - - the current measurement results voltage characteristics obtained from the slope of the voltage curve, the contact resistance between the Conductive AFM cantilever and the metal substrate; is [rho a electrical cantilever of the Conductive AFM Resistance; ρ m is the electrical resistance of the metal substrate; ρ TH is the electrical resistance of the thin film.)
(C) Judgment unit <8> for determining whether or not the electrical resistivity of the thin film calculated by the electrical resistivity calculation unit (B) satisfies a predetermined reference value <8> The electronic component is a connector, <7 > The electronic component manufacturing apparatus described in.

本発明によれば、金属基板上に形成された薄膜の電気抵抗率の測定方法が提供される。また、当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置が提供される。 According to the present invention, there is provided a method for measuring the electrical resistivity of a thin film formed on a metal substrate. Further, a method for manufacturing an electronic component and an apparatus for manufacturing an electronic component using the measurement method are provided.

図1は、Conductive AFMによる接触電流評価の模式図である。FIG. 1 is a schematic diagram of contact current evaluation by a connected AFM. 図2は、実施例1のConductive AFMの測定部位を示した図である。FIG. 2 is a diagram showing a measurement site of the Conducive AFM of Example 1. 図3は、実施例1の銅基板部のI−V曲線を示した図である。FIG. 3 is a diagram showing an IV curve of the copper substrate portion of Example 1. 図4は、実施例1の酸化グラフェン膜(薄膜部)のI−V曲線を示した図である。FIG. 4 is a diagram showing an IV curve of the graphene oxide film (thin film portion) of Example 1.

以下、本発明を実施する好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferred embodiment of the present invention will be described. However, the following embodiments are merely examples. The present invention is not limited to the following embodiments.

1.金属基板上に形成された薄膜の電気抵抗率の測定方法
本発明の一実施形態は、(I)コンダクティブ原子間力顕微鏡を用いて前記金属基板及
び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性を測定する工程、及び(II)コンダクティブ原子間力顕微鏡を用いて前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する工程、を含み、前記(I)工程で得られた電流−電圧曲線の傾きから
得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗をRc_TFとし、前記(II)工程で得られた電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗をRc_mとし、下記式(1)より前記薄膜の電気抵抗率を算出することを特徴とする。
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率、ρは前記金属基板の電気抵抗率、ρTHは前記薄膜の電気抵抗率を表す。)
1. 1. Method for Measuring Electrical Resistance of a Thin Film Formed on a Metal Substrate In one embodiment of the present invention, (I) a laminate containing the metal substrate and a thin film formed on the metal substrate using a conductive interatomic force microscope. The step (I) includes the step of measuring the current-voltage characteristic of the body and (II) the step of measuring the current-voltage characteristic of the same type of metal substrate as the metal substrate using a conductive interatomic force microscope. The contact resistance between the cantilever of the conductive interatomic force microscope and the laminate containing the metal substrate and the thin film formed on the metal substrate, which is obtained from the slope of the current-voltage curve obtained in the above, is defined as R c_TF. The contact resistance between the cantilever of the conductive interatomic force microscope and the metal substrate obtained from the slope of the current-voltage curve obtained in step (II) is R c_m, and the electrical resistance of the thin film is calculated from the following equation (1). It is characterized by calculating the rate.
ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
(In the formula (1), ρ a represents the electrical resistivity of the cantilever of the conductive atomic force microscope, ρ m represents the electrical resistivity of the metal substrate, and ρ TH represents the electrical resistivity of the thin film.)

接触抵抗を求めるHolm式により、Rc_m及びRc_THがそれぞれ下記の式(2)及び式(3)で表される。式中、ρは測定に用いるコンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率、ρは前記金属基板の電気抵抗率、ρTHは前記薄膜の電気抵抗率である。aは接触面積投影円半径に相当する。
c_m=(ρ+ρ)/4a 式(2)
c_TH=(ρ+ρTH)/4a 式(3)
コンダクティブ原子間力顕微鏡のカンチレバープローブの先端半径が100〜200nmと非常に尖っているため、プローブの先端が測定サンプルと接触する部分は真の接触面積となる。薄膜の膜厚が100nm以下と薄い場合、同じカンチレバーで同じ荷重を印加する場合に、式(2)中のaと式(3)中のaはほぼ同じと仮定できる。よって、式(2)及び式(3)から金属基板上の薄膜の電気抵抗率を下記式(1)によって算出できる。
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
R c_m and R c_TH are represented by the following equations (2) and (3), respectively, according to the Holm equation for obtaining the contact resistance. In the formula, ρ a is the electrical resistivity of the cantilever of the conductive atomic force microscope used for the measurement, ρ m is the electrical resistivity of the metal substrate, and ρ TH is the electrical resistivity of the thin film. a corresponds to the contact area projected circle radius.
R c_m = (ρ a + ρ m ) / 4a 1 equation (2)
R c_TH = (ρ a + ρ TH ) / 4a 2 equation (3)
Since the tip radius of the cantilever probe of the conductive atomic force microscope is as sharp as 100 to 200 nm, the portion where the tip of the probe contacts the measurement sample is the true contact area. When the thickness of the thin film 100nm thinner than the case of applying the same load at the same cantilever, a 1 and a 2 in formula (3) in the formula (2) can be assumed to be approximately the same. Therefore, the electrical resistivity of the thin film on the metal substrate can be calculated from the equations (2) and (3) by the following equation (1).
ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)

(I)コンダクティブ原子間力顕微鏡を用いて前記金属基板及び前記金属基板上に形成さ
れた薄膜を含む積層体の電流−電圧特性を測定する工程
図1にConductive AFMによる接触電流評価の模式図を示す。また、図2に後述の実施例1のConductive AFMの測定部位を示す。図1及び2に示されるように、コンダクティブ原子間力顕微鏡を用いて金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性を測定する。図1中、101は金属基板上に薄膜が形成された測定サンプルを表し、102はコンダクティブ原子間力顕微鏡のカンチレバーを表し、103はコンダクティブ原子間力顕微鏡の試料台を表す。図2中、201aは酸化グラフェン膜(薄膜)を表し、201bは銅基板(金属基板)を表し、202はコンダクティブ原子間力顕微鏡のカンチレバーを表す。コンダクティブ原子間力顕微鏡は、市販品を用いることができ、例えば、パークシステムズ社のPark NX10、日立ハイテクノロジーズ社のAFM5500Mが挙げられる。カンチレバーは、市販品を用いることができ、例えば、Pt、Rh、Au若しくは導電性ダイヤモンドコートしたSi製のものが挙げられる。コンダクティブ原子間力顕微鏡を用いて測定した、金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧曲線の傾きから、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗が得られる。本明細書において、(I)工程で得られた電流−電
圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗をRc_TFとする。
(I) Step of measuring the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate using a conductive atomic force microscope Fig. 1 shows a schematic diagram of contact current evaluation by Conducive AFM. Shown. In addition, FIG. 2 shows the measurement site of the Conducive AFM of Example 1 described later. As shown in FIGS. 1 and 2, a conductive atomic force microscope is used to measure the current-voltage characteristics of the metal substrate and the laminate including the thin film formed on the metal substrate. In FIG. 1, 101 represents a measurement sample in which a thin film is formed on a metal substrate, 102 represents a cantilever of a conductive atomic force microscope, and 103 represents a sample table of a conductive atomic force microscope. In FIG. 2, 201a represents a graphene oxide film (thin film), 201b represents a copper substrate (metal substrate), and 202 represents a cantilever of a conductive atomic force microscope. Commercially available products can be used as the conductive atomic force microscope, and examples thereof include Park NX10 manufactured by Park Systems Co., Ltd. and AFM5500M manufactured by Hitachi High-Technologies Corporation. Commercially available cantilever can be used, and examples thereof include those made of Pt, Rh, Au or conductive diamond-coated Si. From the inclination of the current-voltage curve of the metal substrate and the laminate containing the thin film formed on the metal substrate, which was measured using a conductive atomic force microscope, the cantilever of the conductive atomic force microscope, the metal substrate, and the metal substrate. Contact resistance with a laminate containing a thin film formed on a metal substrate can be obtained. In the present specification, the cantilever of the conductive atomic force microscope obtained from the slope of the current-voltage curve obtained in step (I), the metal substrate, and the laminate containing the thin film formed on the metal substrate. Let R c_TF be the contact resistance of.

(II)コンダクティブ原子間力顕微鏡を用いて前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する工程
図2に示されるように、コンダクティブ原子間力顕微鏡を用いて金属基板と同じ種類の金属基板の電流−電圧特性を測定する。本工程では薄膜が形成された金属基板の電流−電圧特性を測定できればよく、「前記金属基板と同じ種類の金属基板」とは、薄膜が形成された金属基板と同じ種類の別の金属基板であってもよいし、薄膜が形成された金属基板そのものであってもよい。原子間力顕微鏡は、市販品を用いることができ、「(I)コンダ
クティブ原子間力顕微鏡を用いて前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性を測定する工程」の項で例示したものと同様のものが好ましく用いられる。コストの観点から、(II)工程で用いる原子間力顕微鏡は、(I)工程で用
いられる原子間力顕微鏡と同一の原子間力顕微鏡を用いることが好ましい。コンダクティブ原子間力顕微鏡を用いて測定した、前記金属基板と同じ種類の金属基板の電流−電圧曲線の傾きから、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗が得られる。本明細書において、(II)工程で得られた電流−電圧曲線の傾きから
得られる、コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗をRc_mとする。
(II) Step of measuring the current-voltage characteristics of the same type of metal substrate as the metal substrate using a conductive atomic force microscope As shown in Fig. 2, the same type as the metal substrate using a conductive atomic force microscope. Measure the current-voltage characteristics of the metal substrate of. In this step, it is sufficient if the current-voltage characteristics of the metal substrate on which the thin film is formed can be measured, and the "metal substrate of the same type as the metal substrate" is another metal substrate of the same type as the metal substrate on which the thin film is formed. It may be a metal substrate itself on which a thin film is formed. A commercially available product can be used as the atomic force microscope, and "(I) a conductive interatomic force microscope is used to measure the current-voltage characteristics of the metal substrate and the laminate including the thin film formed on the metal substrate. The same as those exemplified in the section "Steps to be performed" is preferably used. From the viewpoint of cost, it is preferable to use the same atomic force microscope as the atomic force microscope used in the step (I) as the atomic force microscope used in the step (II). The contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate can be obtained from the inclination of the current-voltage curve of the same type of metal substrate as the metal substrate measured using the conductive atomic force microscope. In the present specification, the contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate obtained from the slope of the current-voltage curve obtained in step (II) is defined as R c_m.

(薄膜)
薄膜を構成する材料、厚みは、目的に応じて適宜選択することが出来る。
本発明の一実施形態においては、薄膜の厚みが1nm以上100nm以下であることが好ましく、1nm以上30nm以下であることがより好ましい。この範囲の厚みを有する
薄膜について、本発明の測定方法を用いると、好適に電気抵抗率が測定出来る。
また、本発明の一実施形態においては、薄膜が、導電性の観点から、グラフェン、酸化グラフェン(GO)、Au又はAgからなることが好ましく、グラフェンまたは酸化グラフェンからなることがより好ましい。コネクタ等の電気接続部材には、相手側端子との高い接触信頼性と、相手側端子との接続部における高い耐摩耗性が求められている。そのため、コネクタの接点部には、一般的に、金、銀及び錫などの貴金属からなる貴金属めっきが施されている。しかし、高価な貴金属めっきを用いると、コネクタの生産コストが高くなりやすい。電気接続部材に、グラフェンまたは酸化グラフェンからなる薄膜を用いることで、貴金属を用いるより、コストが抑制される。シリコン基板は絶縁性のため、電気泳動堆積法(EPD)を用いてシリコン基板上に酸化グラフェンを成膜出来ない。このようなシリコン基板上に成膜出来ない薄膜は、非特許文献1の方法のように、シリコン基板上で電気抵抗率を測定することが出来ない。また、シリコン基板上に成膜出来ない材料のナノメートルオーダーの薄膜の電気抵抗率を金属基板上で測定しようとしても、電流が金属基板を優先的に流れるため、精度良く測定することが出来ない。本実施形態の測定方法によると、従来の方法では金属基板上では測定できず、さらに、シリコン基板上に成膜出来ない材料の薄膜の電気抵抗率を測定することが出来る。
(Thin film)
The material and thickness constituting the thin film can be appropriately selected according to the purpose.
In one embodiment of the present invention, the thickness of the thin film is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 30 nm or less. The electrical resistivity of a thin film having a thickness in this range can be suitably measured by using the measuring method of the present invention.
Further, in one embodiment of the present invention, the thin film is preferably composed of graphene, graphene oxide (GO), Au or Ag, and more preferably graphene or graphene oxide from the viewpoint of conductivity. Electrical connection members such as connectors are required to have high contact reliability with the mating terminal and high wear resistance at the connecting portion with the mating terminal. Therefore, the contact portion of the connector is generally plated with a precious metal made of a precious metal such as gold, silver or tin. However, if expensive precious metal plating is used, the production cost of the connector tends to be high. By using a thin film made of graphene or graphene oxide for the electrical connection member, the cost can be suppressed as compared with the use of a precious metal. Since the silicon substrate is insulating, graphene oxide cannot be formed on the silicon substrate by the electrophoretic deposition method (EPD). With such a thin film that cannot be formed on a silicon substrate, the electrical resistivity cannot be measured on the silicon substrate as in the method of Non-Patent Document 1. Further, even if an attempt is made to measure the electrical resistivity of a nanometer-order thin film of a material that cannot be formed on a silicon substrate on a metal substrate, the current flows preferentially through the metal substrate, so that the measurement cannot be performed accurately. .. According to the measuring method of the present embodiment, it is possible to measure the electrical resistivity of a thin film of a material that cannot be measured on a metal substrate by the conventional method and cannot be formed on a silicon substrate.

(金属基板)
金属基板の種類、大きさは、目的に応じて適宜選択することが出来る。
本発明の一実施形態においては、コストの観点から、金属基板が、銅、鉄、アルミニウム及びそれらの合金からなる群より選択されることが好ましい。コネクタの端子母材とする場合には銅が好ましく用いられ、電極とする場合にはアルミニウム及びアルミニウム合金が好ましく用いられる。
(Metal substrate)
The type and size of the metal substrate can be appropriately selected according to the purpose.
In one embodiment of the present invention, the metal substrate is preferably selected from the group consisting of copper, iron, aluminum and alloys thereof from the viewpoint of cost. Copper is preferably used when it is used as a terminal base material for a connector, and aluminum and an aluminum alloy are preferably used when it is used as an electrode.

2.電子部品の製造方法
本発明の測定方法は、金属基板及び前記金属基板上に形成された薄膜を含む積層体の薄膜の電気抵抗率の測定を、薄膜と金属基板とを分離することなく行うため、測定結果に基づき、前記積層体をそのまま加工に供することが出来る。したがって、上記金属基板上に形成された薄膜の電気抵抗率の測定方法を電子部品製造の一工程とすることにより、効率良く電子部品を製造することが出来る。すなわち、金属基板及び前記金属基板上に形成された薄膜を備える電子部品の製造方法であって、金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程、上記「1.金属基板上に形成された薄膜の電気抵抗率の測定方法」で説明した測定方法により前記金属基板上に形成された薄膜の電気抵抗率を測定する工程、及び前記工程により測定された薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定工程を含む、金属基板及び前記金属基板上に形成された薄膜を備える電子部品の製造方法も本発明の一態様である。
2. Method for Manufacturing Electronic Components The measuring method of the present invention is for measuring the electric resistance of a metal substrate and a thin film of a laminate including a thin film formed on the metal substrate without separating the thin film and the metal substrate. Based on the measurement results, the laminated body can be processed as it is. Therefore, by setting the method for measuring the electrical resistivity of the thin film formed on the metal substrate as one step of manufacturing electronic components, it is possible to efficiently manufacture electronic components. That is, a method for manufacturing an electronic component including a metal substrate and a thin film formed on the metal substrate, wherein a laminate containing the metal substrate and the thin film formed on the metal substrate is prepared. The step of measuring the electric resistance of the thin film formed on the metal substrate by the measuring method described in "Method of measuring the electric resistance of the thin film formed on the metal substrate", and the electricity of the thin film measured by the step. An aspect of the present invention is also a method for manufacturing an electronic component including a metal substrate and a thin film formed on the metal substrate, which includes a determination step of determining whether or not the resistance rate satisfies a predetermined reference value.

(金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程)
金属基板及び前記金属基板上に形成された薄膜を含む積層体は、市販品を入手してもよいし、金属基板上に公知の方法で薄膜を形成する工程を実施して作製してもよい。「金属基板」及び「薄膜」は上記「1.金属基板上に形成された薄膜の電気抵抗率の測定方法」の項の説明が適用される。
金属基板上に薄膜を形成する方法は特に限定されず、薄膜の種類、厚みに応じて適宜選択すればよい。例えば、電気泳動堆積法(EPD)、ゾルゲル法、スピンコーティング、ディップコーティング、ナイフコーティング、蒸着、スパッタリング、反応性スパッタリング、イオンビームスパッタリング、CVD等の公知の薄膜形成手段を用いることができる。中でも、薄膜がグラフェンまたは酸化グラフェンからなる場合、コストの観点から、EPD法が好ましい。グラフェンを酸化してなる酸化グラフェンは、安価で大量に入手可能な黒鉛を化学的に酸化することにより合成される。酸化グラフェンは、カルボキシル基又は水酸基等の極性基を有するため、水などの極性溶媒中で分散性を示すとともに、極性
溶媒中において帯電する。そのため、当該極性溶媒に金属基板を投入し、当該金属基板に電圧を印加すると、酸化グラフェンとは反対電荷を有する基板に堆積することができる。
(Step of preparing a metal substrate and a laminate containing a thin film formed on the metal substrate)
The metal substrate and the laminate containing the thin film formed on the metal substrate may be a commercially available product, or may be produced by carrying out a step of forming a thin film on the metal substrate by a known method. .. As for the "metal substrate" and the "thin film", the description in the section "1. Method for measuring the electrical resistivity of the thin film formed on the metal substrate" is applied.
The method for forming the thin film on the metal substrate is not particularly limited, and may be appropriately selected depending on the type and thickness of the thin film. For example, known thin film forming means such as electrophoretic deposition (EPD), sol-gel method, spin coating, dip coating, knife coating, vapor deposition, sputtering, reactive sputtering, ion beam sputtering, and CVD can be used. Above all, when the thin film is made of graphene or graphene oxide, the EPD method is preferable from the viewpoint of cost. Graphene oxide, which is obtained by oxidizing graphene, is synthesized by chemically oxidizing graphite, which is inexpensive and available in large quantities. Since graphene oxide has a polar group such as a carboxyl group or a hydroxyl group, it exhibits dispersibility in a polar solvent such as water and is charged in the polar solvent. Therefore, when a metal substrate is charged into the polar solvent and a voltage is applied to the metal substrate, it can be deposited on a substrate having a charge opposite to that of graphene oxide.

(金属基板上に形成された薄膜の電気抵抗率を測定する工程)
本工程は、「1.金属基板上に形成された薄膜の電気抵抗率の測定方法」の項の説明が適用される。
(Step of measuring the electrical resistivity of a thin film formed on a metal substrate)
The description in the section "1. Method for measuring the electrical resistivity of a thin film formed on a metal substrate" is applied to this step.

(前記工程により測定された薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定)工程
本工程により、電子部品の材料として適切なものを選択する。前記所定の基準値は、電子部品によって設定されるものであり、各種基準に応じて設定すればよい。例えば、コネクタであれば、0.05Ω・cm以下とすることができ、スイッチであれば0.1Ω・cm以下とすることができる。
本実施形態では、上記の工程以外は特に限定されず、製造目的の電子部品に応じ、通常の製造工程を実施すればよい。
本実施形態において、電子部品としては、コネクタ、スイッチ等が好ましく挙げられる。
本実施形態の電子部品の製造方法によると、従来、金属基板上では測定できなかった薄膜の電気抵抗率を、薄膜と金属基板とを分離せずに金属基板上に形成された状態で測定でき、評価し、所定の基準値を満たすと判定された積層体のみをそのまま電子部品の材料として用いることができる。そのため、電子部品完成後の検査工程の簡略化、電子部品の廃棄の回避等を実現でき、電子部品製造プロセス全体として簡便化され、コストが抑制される。
(Determination of determining whether or not the electrical resistivity of the thin film measured in the above step satisfies a predetermined reference value) Step In this step, an appropriate material for electronic parts is selected. The predetermined reference value is set by the electronic component, and may be set according to various standards. For example, in the case of a connector, it can be 0.05 Ω · cm or less, and in the case of a switch, it can be 0.1 Ω · cm or less.
In the present embodiment, the steps other than the above steps are not particularly limited, and a normal manufacturing process may be carried out according to the electronic component for manufacturing purposes.
In the present embodiment, the electronic components preferably include connectors, switches and the like.
According to the method for manufacturing electronic components of the present embodiment, the electrical resistivity of a thin film, which could not be measured on a metal substrate in the past, can be measured in a state of being formed on the metal substrate without separating the thin film and the metal substrate. , Only the laminate determined to satisfy a predetermined reference value can be used as it is as a material for electronic components. Therefore, the inspection process after the completion of the electronic component can be simplified, the disposal of the electronic component can be avoided, and the entire electronic component manufacturing process can be simplified and the cost can be suppressed.

3.電子部品の製造装置
金属基板上に薄膜を形成する薄膜形成部、及び前記金属基板上に形成された薄膜の導電性を評価する導電性評価部備える電子部品の製造装置であって、前記導電性評価部が以下の(A)〜(C)を含む電子部品の製造装置も本発明の一態様である。
(A)前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する原子間力顕微鏡
(B)下記式(1)より前記薄膜の電気抵抗率を算出する電気抵抗率算出部
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、Rc_TFは前記原子間力顕微鏡による前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性測定結果の電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記薄膜との接触抵抗;Rc_mは前記原子間力顕微鏡による前記金属基板と同じ種類の金属基板の電流−電圧特性の測定結果の前記電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗;ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率;ρは前記金属基板の電気抵抗率;ρTHは前記薄膜の電気抵抗率を表す。)
(C)前記電気抵抗率算出部(B)により算出された前記薄膜の電気抵抗率が所定の基準値を満たすか否か判定する判定部
3. 3. Electronic component manufacturing device An electronic component manufacturing device that includes a thin film forming unit that forms a thin film on a metal substrate and a conductivity evaluation unit that evaluates the conductivity of the thin film formed on the metal substrate. An apparatus for manufacturing an electronic component whose evaluation unit includes the following (A) to (C) is also an aspect of the present invention.
(A) An interatomic force microscope that measures the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate and the current-voltage characteristics of the same type of metal substrate as the metal substrate (B). Electrical resistivity calculation unit for calculating the electrical resistivity of the thin film from the following equation (1) ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
In the formula (1), R c_TF is obtained from the slope of the current-voltage curve of the current-voltage characteristic measurement result of the metal substrate and the laminate containing the thin film formed on the metal substrate by the atomic force microscope. , Contact resistance between the cantilever of the conductive atomic force microscope and the thin film; R c_m is the current-voltage curve of the measurement result of the current-voltage characteristics of the same type of metal substrate as the metal substrate by the atomic force microscope. The contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate obtained from the inclination; ρ a is the electrical resistance of the cantilever of the conductive atomic force microscope; ρ m is the electrical resistance of the metal substrate; ρ TH represents the electrical resistance of the thin film.)
(C) A determination unit for determining whether or not the electrical resistivity of the thin film calculated by the electrical resistivity calculation unit (B) satisfies a predetermined reference value.

(薄膜形成部)
金属基板上に薄膜を形成する薄膜形成部では、金属基板上に薄膜を形成する工程が実施される。
金属基板上に薄膜を形成する工程は、目的とする薄膜に応じて選択すればよく、「2.電子部品の製造方法」の項の「金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程」の説明が適用される。薄膜形成部は、例えば、電気泳動堆積法(EPD)を用いる場合は、薄膜の種類に応じて、反応容器、電極を組み合わせて作製してもよ
い。また、市販されているスピンコーター、ディップコーター、ナイフコーター、蒸着装置、イオンビームスパッタリング装置、CVD装置、PVD装置等を用いてもよい。
(Thin film forming part)
In the thin film forming portion where the thin film is formed on the metal substrate, a step of forming the thin film on the metal substrate is carried out.
The step of forming the thin film on the metal substrate may be selected according to the target thin film, and includes the "metal substrate and the thin film formed on the metal substrate" in the section "2. Manufacturing method of electronic components". The description of "the process of preparing the laminate" applies. For example, when the electrophoretic deposition method (EPD) is used, the thin film forming portion may be formed by combining a reaction vessel and an electrode depending on the type of thin film. Further, a commercially available spin coater, dip coater, knife coater, vapor deposition apparatus, ion beam sputtering apparatus, CVD apparatus, PVD apparatus and the like may be used.

(導電性評価部)
導電性評価部により、金属基板上に形成された薄膜の導電性を評価する工程を行う。導電性評価部は以下の(A)〜(C)を含む。
(A)前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する原子間力顕微鏡
(B)下記式(1)より前記薄膜の電気抵抗率を算出する電気抵抗率算出部
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、Rc_TFは前記原子間力顕微鏡による前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性測定結果の電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記薄膜との接触抵抗;Rc_mは前記原子間力顕微鏡による前記金属基板と同じ種類の金属基板の電流−電圧特性の測定結果の前記電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗;ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率;ρは前記金属基板の電気抵抗率;ρTHは前記薄膜の電気抵抗率を表す。)
(C)前記電気抵抗率算出部(B)により算出された前記薄膜の電気抵抗率が所定の基準値を満たすか否か判定する判定部
上記(A)前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する原子間力顕微鏡は、市販品を用いることができ、「1.金属基板上に形成された薄膜の電気抵抗率の測定方法」の項での説明が適用される。電気抵抗率算出部(B)は、「2.電子部品の製造方法」の項で説明した「金属基板上に形成された薄膜の電気抵抗率を測定する工程」が実施できれば特に限定されず、例えば、式(1)に基づき薄膜の電気抵抗率を求めるように設定されたプログラムに基づいて処理を行う装置を電子間力顕微鏡に連結して実施することができる。また、判定部(C)では、前記薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定工程が実施できれば特に限定されず、電気抵抗率算出部が、予め基準値を設定したプログラムにより判定処理を行うように判定部を兼ね備えることも出来るし、予め基準値を設定したプログラムにより判定処理を行う装置を電気抵抗率算出部に連結して判定処理を行ってもよい。
(Conductivity evaluation unit)
The conductivity evaluation unit performs a step of evaluating the conductivity of the thin film formed on the metal substrate. The conductivity evaluation unit includes the following (A) to (C).
(A) An interatomic force microscope that measures the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate and the current-voltage characteristics of the same type of metal substrate as the metal substrate (B). Electrical resistivity calculation unit for calculating the electrical resistivity of the thin film from the following equation (1) ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
In the formula (1), R c_TF is obtained from the slope of the current-voltage curve of the current-voltage characteristic measurement result of the metal substrate and the laminate containing the thin film formed on the metal substrate by the atomic force microscope. , Contact resistance between the cantilever of the conductive atomic force microscope and the thin film; R c_m is the current-voltage curve of the measurement result of the current-voltage characteristics of the same type of metal substrate as the metal substrate by the atomic force microscope. The contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate obtained from the inclination; ρ a is the electrical resistance of the cantilever of the conductive atomic force microscope; ρ m is the electrical resistance of the metal substrate; ρ TH represents the electrical resistance of the thin film.)
(C) A determination unit for determining whether or not the electrical resistivity of the thin film calculated by the electrical resistivity calculation unit (B) satisfies a predetermined reference value. (A) Formed on the metal substrate and the metal substrate. As an interatomic force microscope for measuring the current-voltage characteristics of the laminate containing the thin film and the current-voltage characteristics of a metal substrate of the same type as the metal substrate, a commercially available product can be used. The description in the section "Method of measuring the electrical resistivity of the thin film formed in" applies. The electrical resistivity calculation unit (B) is not particularly limited as long as the "step of measuring the electrical resistivity of the thin film formed on the metal substrate" described in the section "2. Manufacturing method of electronic components" can be performed. For example, an apparatus that performs processing based on a program set to obtain the electrical resistivity of the thin film based on the equation (1) can be connected to an electron inter-force microscope. Further, the determination unit (C) is not particularly limited as long as the determination step of determining whether or not the electrical resistivity of the thin film satisfies a predetermined reference value can be performed, and the electrical resistivity calculation unit sets the reference value in advance. It is also possible to combine the determination unit so that the determination process is performed by the program, or the device that performs the determination process by the program in which the reference value is set in advance may be connected to the electrical resistivity calculation unit to perform the determination process.

本実施形態では、上記の薄膜形成部及び導電性評価部以外は特に限定されず、製造目的の電子部品に応じ、通常のユニットを備えればよい。
本実施形態において、電子部品としては、コネクタ、スイッチ等が好ましく挙げられる。
本実施形態の電子部品の製造装置によると、従来、金属基板上では測定できなかった薄膜の電気抵抗率を、薄膜と金属基板と分離することなく金属基板上に形成された状態で測定出来、評価し、所定の基準値を満たすと判定された場合には、そのまま電子部品の材料として用いるため、電子部品製造プロセス全体として簡便化され、コストが抑制される。
In the present embodiment, the parts other than the thin film forming part and the conductivity evaluation part are not particularly limited, and a normal unit may be provided according to the electronic component for manufacturing purposes.
In the present embodiment, the electronic components preferably include connectors, switches and the like.
According to the electronic component manufacturing apparatus of the present embodiment, the electric resistance of a thin film, which could not be measured on a metal substrate in the past, can be measured in a state of being formed on the metal substrate without separating the thin film and the metal substrate. When it is evaluated and it is determined that the predetermined reference value is satisfied, it is used as it is as a material for electronic components, so that the entire electronic component manufacturing process is simplified and the cost is suppressed.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention can be appropriately modified as long as the gist of the present invention is not deviated. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below.

[実施例1]
EPD法で酸化グラフェン(GO)を銅基板上に成膜した。成膜条件を表1に示す。膜厚を測定するため基板の半分にGOを成膜した。コンダクティブ原子間力顕微鏡(Con
ductive AFM)を用いてトポグラフィー像を取得し、膜厚を測定したところ、約4nmであった。Conductive AFM(パークシステムズ社製NX10、ダイヤモンドコートSiカンチレバーCDT−NCLR、測定条件:荷重980nN)を用い、銅基板部及び銅基板上にGO膜が形成された積層体のI−V特性をそれぞれ測定した。
図3に銅基板部のI−V曲線、図4にGO膜部(積層体)のI−V曲線を示す。得られたI−V曲線の傾きからカンチレバーとCu基板との接触抵抗C及びカンチレバーと銅基板上にGO膜が形成された積層体との接触抵抗Rc_GOを算出した。
図3よりRc_cuが21.84kΩである。図4よりRc_GOが207.94kΩである。カンチレバーはダイヤモンドでコートしたため、ρカンチレバーは0.005Ω・cmであった。銅の電気抵抗率ρCuは1.7×10−6Ω・cmであった。上記の値を式(1)に代入して算出されたGOの電気抵抗率は、ρGO=0.043Ω・cmであった。
[Example 1]
Graphene oxide (GO) was formed on a copper substrate by the EPD method. The film forming conditions are shown in Table 1. GO was formed on half of the substrate to measure the film thickness. Conductive Atomic Force Microscope (Con)
A topographic image was obtained using a ductive AFM) and the film thickness was measured and found to be about 4 nm. Using Conducive AFM (NX10 manufactured by Park Systems, diamond-coated Si cantilever CDT-NCLR, measurement condition: load 980 nN), measure the IV characteristics of the copper substrate and the laminate in which the GO film is formed on the copper substrate, respectively. did.
FIG. 3 shows the IV curve of the copper substrate portion, and FIG. 4 shows the IV curve of the GO film portion (laminated body). From the slope of the obtained IV curve, the contact resistance C between the cantilever and the Cu substrate and the contact resistance R c_GO between the cantilever and the laminate in which the GO film was formed on the copper substrate were calculated.
From FIG. 3, R c_cu is 21.84 kΩ. From FIG. 4, R c_GO is 207.94 kΩ. Since the cantilever was coated with diamond, the ρ cantilever was 0.005 Ω · cm. The electrical resistivity of copper ρ Cu was 1.7 × 10 -6 Ω · cm. The electrical resistivity of GO calculated by substituting the above value into the equation (1) was ρ GO = 0.043Ω · cm.

Figure 2021071442
Figure 2021071442

本発明の金属基板上に形成された薄膜の電気抵抗率の測定方法を用いると、従来は絶縁基板上で測定していた薄膜の電気抵抗率を金属基板上に形成された状態で測定することができる。本発明の金属基板上に形成された薄膜の電気抵抗率の測定方法は、薄膜と金属基板とを分離することなく、簡便な工程で測定が可能であり、測定結果に基づき測定対象をそのまま電子部品に用いることが出来、電子部品製造の一工程として導入出来、コストが抑えられるので、工業的利用価値が大きい。 When the method for measuring the electrical resistivity of a thin film formed on a metal substrate of the present invention is used, the electrical resistivity of a thin film conventionally measured on an insulating substrate can be measured in a state of being formed on the metal substrate. Can be done. In the method for measuring the electrical resistance of a thin film formed on a metal substrate of the present invention, measurement can be performed in a simple process without separating the thin film and the metal substrate, and the measurement target is electronically measured as it is based on the measurement result. It can be used for parts, can be introduced as a process of manufacturing electronic parts, and the cost can be suppressed, so it has great industrial utility value.

101 測定サンプル
102 コンダクティブ原子間力顕微鏡のカンチレバー
103 試料台
201a 酸化グラフェン膜
201b 銅基板
202 コンダクティブ原子間力顕微鏡のカンチレバー
101 Measurement sample 102 Cantilever of conductive atomic force microscope 103 Sample stand 201a Graphene oxide film 201b Copper substrate 202 Cantilever of conductive atomic force microscope

Claims (8)

金属基板上に形成された薄膜の電気抵抗率の測定方法であって、
(I)コンダクティブ原子間力顕微鏡を用いて前記金属基板及び前記金属基板上に形成さ
れた薄膜を含む積層体の電流−電圧特性を測定する工程、及び
(II)コンダクティブ原子間力顕微鏡を用いて前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する工程、を含み、
前記(I)工程で得られた電流−電圧曲線の傾きから得られる、前記コンダクティブ原子
間力顕微鏡のカンチレバーと前記金属基板及び前記金属基板上に形成された薄膜を含む積層体との接触抵抗をRc_TFとし、
前記(II)工程で得られた電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗をRc_mとし、
下記式(1)より前記薄膜の電気抵抗率を算出する、金属基板上に形成された薄膜の電気抵抗率の測定方法。
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率、ρは前記金属基板の電気抵抗率、ρTHは前記薄膜の電気抵抗率を表す。)
A method for measuring the electrical resistivity of a thin film formed on a metal substrate.
(I) Using a conductive atomic force microscope to measure the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate, and (II) Using a conductive atomic force microscope. Including the step of measuring the current-voltage characteristics of a metal substrate of the same type as the metal substrate.
The contact resistance between the cantilever of the conductive atomic force microscope and the laminate containing the metal substrate and the thin film formed on the metal substrate, which is obtained from the slope of the current-voltage curve obtained in the step (I). Let R c_TF
The contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate obtained from the slope of the current-voltage curve obtained in the step (II) is R c_m .
A method for measuring the electrical resistivity of a thin film formed on a metal substrate, which calculates the electrical resistivity of the thin film from the following formula (1).
ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
(In the formula (1), ρ a represents the electrical resistivity of the cantilever of the conductive atomic force microscope, ρ m represents the electrical resistivity of the metal substrate, and ρ TH represents the electrical resistivity of the thin film.)
前記薄膜の厚みが1nm以上100nm以下である、請求項1記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。 The method for measuring the electrical resistivity of a thin film formed on a metal substrate according to claim 1, wherein the thickness of the thin film is 1 nm or more and 100 nm or less. 前記薄膜が、グラフェンまたは酸化グラフェンからなる、請求項1又は2記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。 The method for measuring the electrical resistivity of a thin film formed on a metal substrate according to claim 1 or 2, wherein the thin film is made of graphene or graphene oxide. 前記金属基板が、銅、鉄、アルミニウム及びそれらの合金からなる群より選択される、請求項1〜3のいずれか1項に記載の金属基板上に形成された薄膜の電気抵抗率の測定方法。 The method for measuring the electrical resistivity of a thin film formed on a metal substrate according to any one of claims 1 to 3, wherein the metal substrate is selected from the group consisting of copper, iron, aluminum and alloys thereof. .. 金属基板及び前記金属基板上に形成された薄膜を備える電子部品の製造方法であって、金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程、
金属基板及び前記金属基板上に形成された薄膜を含む積層体を準備する工程、
請求項1〜4のいずれか1項に記載の金属基板上に形成された薄膜の電気抵抗率の測定方法により前記金属基板上に形成された薄膜の電気抵抗率を測定する工程、及び
前記工程により測定された薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定工程、
を含む、電子部品の製造方法。
A method for manufacturing an electronic component including a metal substrate and a thin film formed on the metal substrate, wherein a laminate containing the metal substrate and the thin film formed on the metal substrate is prepared.
A step of preparing a metal substrate and a laminate containing a thin film formed on the metal substrate,
A step of measuring the electrical resistivity of a thin film formed on the metal substrate by the method for measuring the electrical resistivity of a thin film formed on the metal substrate according to any one of claims 1 to 4, and the step of measuring the electrical resistivity of the thin film formed on the metal substrate. Judgment step of determining whether or not the electrical resistivity of the thin film measured by
Manufacturing methods for electronic components, including.
前記電子部品がコネクタである、請求項5に記載の電子部品の製造方法。 The method for manufacturing an electronic component according to claim 5, wherein the electronic component is a connector. 金属基板上に薄膜を形成する薄膜形成部、及び
前記金属基板上に形成された薄膜の導電性を評価する導電性評価部、を備え、
前記導電性評価部が以下の(A)〜(C)を含むことを特徴とする、電子部品の製造装置。
(A)前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性及び前記金属基板と同じ種類の金属基板の電流−電圧特性を測定する原子間力顕微鏡
(B)下記式(1)より前記薄膜の電気抵抗率を算出する電気抵抗率算出部
ρTH=(ρ+ρ)Rc_TF/Rc_m−ρ 式(1)
(式(1)中、Rc_TFは前記原子間力顕微鏡による前記金属基板及び前記金属基板上に形成された薄膜を含む積層体の電流−電圧特性測定結果の電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板及び前記金属
基板上に形成された薄膜を含む積層体との接触抵抗;Rc_mは前記原子間力顕微鏡による前記金属基板と同じ種類の金属基板の電流−電圧特性の測定結果の前記電流−電圧曲線の傾きから得られる、前記コンダクティブ原子間力顕微鏡のカンチレバーと前記金属基板との接触抵抗;ρは前記コンダクティブ原子間力顕微鏡のカンチレバーの電気抵抗率;ρは前記金属基板の電気抵抗率;ρTHは前記薄膜の電気抵抗率を表す。)
(C)前記電気抵抗率算出部(B)により算出された前記薄膜の電気抵抗率が所定の基準値を満たすか否かを判定する判定部
A thin film forming section for forming a thin film on a metal substrate and a conductivity evaluation section for evaluating the conductivity of the thin film formed on the metal substrate are provided.
An apparatus for manufacturing electronic components, wherein the conductivity evaluation unit includes the following (A) to (C).
(A) An interatomic force microscope that measures the current-voltage characteristics of the metal substrate and the laminate containing the thin film formed on the metal substrate and the current-voltage characteristics of the same type of metal substrate as the metal substrate (B). Electrical resistivity calculation unit for calculating the electrical resistivity of the thin film from the following equation (1) ρ TH = (ρ a + ρ m ) R c_TF / R c_m −ρ a equation (1)
In the formula (1), R c_TF is obtained from the slope of the current-voltage curve of the current-voltage characteristic measurement result of the metal substrate and the laminate containing the thin film formed on the metal substrate by the atomic force microscope. , Contact resistance between the cantilever of the conductive atomic force microscope and the metal substrate and the laminate containing the thin film formed on the metal substrate; R c_m is the same type of metal substrate as the metal substrate by the atomic force microscope. current - - the current measurement results voltage characteristics obtained from the slope of the voltage curve, the contact resistance between the Conductive AFM cantilever and the metal substrate; is [rho a electrical cantilever of the Conductive AFM Resistance; ρ m is the electrical resistance of the metal substrate; ρ TH is the electrical resistance of the thin film.)
(C) A determination unit for determining whether or not the electrical resistivity of the thin film calculated by the electrical resistivity calculation unit (B) satisfies a predetermined reference value.
前記電子部品がコネクタである、請求項7に記載の電子部品の製造装置。 The electronic component manufacturing apparatus according to claim 7, wherein the electronic component is a connector.
JP2019199848A 2019-11-01 2019-11-01 A method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing electronic components, and an apparatus for manufacturing electronic components using the measurement method Active JP7352234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199848A JP7352234B2 (en) 2019-11-01 2019-11-01 A method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing electronic components, and an apparatus for manufacturing electronic components using the measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199848A JP7352234B2 (en) 2019-11-01 2019-11-01 A method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing electronic components, and an apparatus for manufacturing electronic components using the measurement method

Publications (2)

Publication Number Publication Date
JP2021071442A true JP2021071442A (en) 2021-05-06
JP7352234B2 JP7352234B2 (en) 2023-09-28

Family

ID=75713686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199848A Active JP7352234B2 (en) 2019-11-01 2019-11-01 A method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing electronic components, and an apparatus for manufacturing electronic components using the measurement method

Country Status (1)

Country Link
JP (1) JP7352234B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700352B2 (en) 2005-01-12 2011-06-15 出光興産株式会社 TFT substrate and manufacturing method thereof
JP4644723B2 (en) 2008-03-31 2011-03-02 株式会社日立ハイテクノロジーズ Measuring device with nanotube probe
JP2010210449A (en) 2009-03-11 2010-09-24 Hitachi High-Technologies Corp Conductive nanotube probe, electrical characteristics evaluation apparatus using the same, and scanning probe microscope

Also Published As

Publication number Publication date
JP7352234B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
Qian et al. Hexagonal boron nitride thin film for flexible resistive memory applications
Boussaad et al. Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method
EP2518117B1 (en) Electrical conductors having organic compound coatings
O'Hare et al. On the microelectrode behaviour of graphite–epoxy composite electrodes
CN102884437A (en) Contact probe
US8663446B2 (en) Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
CN103854859A (en) Capacitor
Rigsby et al. The multi-functional role of boric acid in cobalt electrodeposition and superfill
Venkatraman et al. Electrochemical atomic layer deposition of cobalt enabled by the surface-limited redox replacement of underpotentially deposited zinc
Brownson et al. Limitations of CVD graphene when utilised towards the sensing of heavy metals
JP2000129426A (en) Method for improving electroconductivity of metal, alloy and metallic oxide
JP4332073B2 (en) Scanning microscope probe
CN109890996A (en) The manufacturing method of al member and al member
Bartlett et al. The electrodeposition of silver from supercritical carbon dioxide/acetonitrile
CN103003901A (en) Solid electrolytic capacitor
Rasool et al. Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays
US20080227294A1 (en) Method of making an interconnect structure
JP7352234B2 (en) A method for measuring the electrical resistivity of a thin film formed on a metal substrate, a method for manufacturing electronic components, and an apparatus for manufacturing electronic components using the measurement method
KR20170095880A (en) Method for producing metal-plated stainless steel material
Morales-Masis et al. Towards a quantitative description of solid electrolyte conductance switches
JP7470321B2 (en) Sn-graphene composite plating film metal terminal and its manufacturing method
Portales et al. Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers
Tao Electrochemical fabrication of metallic quantum wires
CN114990488A (en) Conductive film composite
Qiu et al. Electrodeposition of Cu on CoTa Barrier in the Alkaline CuSO4-Ethylenediamine Solution

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7352234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150