JP2021071300A - Image inspection device and image inspection system - Google Patents
Image inspection device and image inspection system Download PDFInfo
- Publication number
- JP2021071300A JP2021071300A JP2019196051A JP2019196051A JP2021071300A JP 2021071300 A JP2021071300 A JP 2021071300A JP 2019196051 A JP2019196051 A JP 2019196051A JP 2019196051 A JP2019196051 A JP 2019196051A JP 2021071300 A JP2021071300 A JP 2021071300A
- Authority
- JP
- Japan
- Prior art keywords
- image
- value
- pixel
- classification
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 109
- 230000007547 defect Effects 0.000 claims abstract description 71
- 238000000605 extraction Methods 0.000 claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000000284 extract Substances 0.000 claims description 11
- 230000000052 comparative effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 64
- 238000000034 method Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 13
- 238000012935 Averaging Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Control Or Security For Electrophotography (AREA)
- Facsimiles In General (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、画像検査装置及び画像検査システムに関する。 The present invention relates to an image inspection device and an image inspection system.
大量の印刷を行う場合、通常、オペレーターが何度か試し印刷を行って各種の調整を行い、印刷内容に問題のないことを見本により確認できたら本印刷を開始する。しかし、本印刷された用紙の画像において、何らかの要因で、見本に対する色ズレが生じたり、歪みが生じたりすることがある。そこで、近年は、画像形成装置の後段の搬送路上にスキャナ等の読取装置を設け、印刷出力される各用紙の画像を読み取って得た読取画像を画像検査装置が検査する検査システムが提供されるようになった。この検査では、用紙に形成される画像の元となる画像を出力対象画像として保存しておく。そして、画像検査装置は、本印刷で印刷した用紙をスキャナで読み取って得た画像(読取画像)と、保存してある出力対象画像とを比較する。 When printing a large amount of prints, the operator usually performs trial printing several times to make various adjustments, and when it is confirmed by a sample that there is no problem in the printed contents, the main printing is started. However, in the image of the printed paper, color deviation or distortion may occur with respect to the sample for some reason. Therefore, in recent years, there has been provided an inspection system in which a scanning device such as a scanner is provided on a transport path in the subsequent stage of the image forming apparatus, and the image inspection device inspects the scanned image obtained by reading the image of each paper to be printed out. It became so. In this inspection, an image that is the source of the image formed on the paper is saved as an output target image. Then, the image inspection device compares the image (scanned image) obtained by scanning the paper printed by the main printing with a scanner and the stored output target image.
読取画像と、出力対象画像とを比較すると、読取画像から画像欠陥が検出されることがある。画像欠陥の種類としては、例えば、所定方向に連続し、又は所定方向に途切れながら現れる幅の細いスジや帯等がある。このような画像欠陥は、スジ状欠陥と総称される。ただし、以下の説明では、スジ状欠陥を、「スジ」とも略記する。スジは、画像形成装置やスキャナなどの読取装置が備えるドラムやローラなどのキズや汚れが原因で生じる欠陥であり、オペレーターが意図していない画素値(輝度値ともいう)の階調差(「スジ強度」ともいう)や濃度ムラとして現れる。スジとしては、例えば、元の画像より薄い白スジ、元の画像より濃い黒スジ等がある。スジは繰り返し生じやすく、オペレーターや顧客が認識しやすい欠陥であるため、本印刷の途中であってもスジを確実に検出することが求められる。 Comparing the scanned image with the output target image, image defects may be detected in the scanned image. Examples of the types of image defects include narrow streaks and bands that appear continuously in a predetermined direction or interrupted in a predetermined direction. Such image defects are collectively referred to as streak-like defects. However, in the following description, the streak-like defect is also abbreviated as "streak". A streak is a defect caused by scratches or stains on a drum or roller of a reading device such as an image forming device or a scanner, and is a gradation difference (also referred to as a brightness value) of a pixel value (also referred to as a brightness value) not intended by the operator. It also appears as "streak strength") or uneven density. Examples of the streaks include white streaks that are lighter than the original image, black streaks that are darker than the original image, and the like. Since streaks are likely to occur repeatedly and are easily recognized by operators and customers, it is required to reliably detect streaks even during the main printing.
スジを検出するために、特許文献1に開示された技術が知られている。この特許文献1には、出力対象画像と読み取り画像との第1の差分画像に対して、所定の画素数離れた画素と差分を取った第2の差分画像を生成し、第2の差分画像に対して、画素値が第1の閾値よりも大きい画素の第1の画素数と、画素値が第1の閾値よりも小さい画素の第2の画素数を算出して、画素列毎の第1の画素数と第2の画素数との比率に基づいてスジを判断する技術が開示されている。
A technique disclosed in
スジは様々な要因により、用紙に形成された画像の副走査方向又は主走査方向に現れる。例えば、画像形成装置が備える帯電極がトナーなどによって汚れている場合、汚れた箇所の帯電がうまくいかず、結果として、画像の副走査方向にスジとして現れることがある。また、感光体ドラムなどの回転体に不良が生じた場合には、回転体が回転する周期に同期して主走査方向にスジが現れる。 The streaks appear in the sub-scanning direction or the main scanning direction of the image formed on the paper due to various factors. For example, when the band electrode included in the image forming apparatus is contaminated with toner or the like, the contaminated portion may not be charged well, and as a result, it may appear as a streak in the sub-scanning direction of the image. Further, when a defect occurs in a rotating body such as a photoconductor drum, streaks appear in the main scanning direction in synchronization with the rotation cycle of the rotating body.
図1は、副走査方向(FD:Feed direction)に画素値を平均化したデータの一例を示すグラフである。このグラフの横軸は、主走査方向(CD:Cross direction)における読取画像の主走査位置を表し、縦軸は、G−ch(緑チャンネル)で読み取られた読取画像の画素毎の画素値を表す。このグラフは、スキャナ等の読取装置が平坦な画像を読み取った結果に基づき、主走査方向に同じ位置にある副走査方向の画素の画素値を平均化したものである。以下の例では、シートに画像や字が形成される印字方向が主走査方向に一致するものとして説明するが、印字方向が副走査方向に一致する場合も同様である。図1に示す読取画像には、副走査方向へ2本のスジが生じていたとする。 FIG. 1 is a graph showing an example of data in which pixel values are averaged in the sub-scanning direction (FD: Feed direction). The horizontal axis of this graph represents the main scanning position of the scanned image in the main scanning direction (CD: Cross direction), and the vertical axis represents the pixel value for each pixel of the scanned image read in the G-ch (green channel). Represent. This graph is an average of the pixel values of the pixels in the sub-scanning direction at the same position in the main scanning direction based on the result of reading a flat image by a scanning device such as a scanner. In the following example, the printing direction in which images and characters are formed on the sheet will be described as matching the main scanning direction, but the same applies when the printing direction coincides with the sub-scanning direction. It is assumed that the scanned image shown in FIG. 1 has two streaks in the sub-scanning direction.
印刷物に連続して発生するスジは目立ちやすく、オペレーターが視認しやすい。しかし、スジがある箇所と、スジがない箇所では、画像の画素値の差分が非常に小さいことが多い。このため、読取画像にスジが存在していても、副走査方向に平均化された画素値の変動は、スジがない他の位置で濃度ムラにより生じた画素値の変動とほとんど変わらなかった。特許文献1に開示された技術は、第1の差分画像において、所定の画素数離れた画素と差分を取った第2の差分画像を生成したものであったが、オペレーターが視認できるようなスジを検出することができなかった。
The streaks that occur continuously on the printed matter are easily noticeable and easy for the operator to see. However, the difference between the pixel values of the image is often very small between the place where there is a streak and the place where there is no streak. Therefore, even if the scanned image has streaks, the fluctuation of the pixel value averaged in the sub-scanning direction is almost the same as the fluctuation of the pixel value caused by the density unevenness at other positions where there is no streak. The technique disclosed in
本発明はこのような状況に鑑みて成されたものであり、読取画像に生じるスジ状欠陥を検出できるようにすることを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to enable detection of streak-like defects occurring in a scanned image.
上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した画像検査装置は、画像が形成された記録材から読み取られた読取画像に含まれる複数の画素のうち、注目画素の画素値に対する、注目画素を基準として第1の方向に第1画素数だけ離れた比較画素の画素値の差分値を算出し、差分値を分類閾値で第1及び第2の分類値に分類した分類結果を画素値の変化量として算出する変化量算出部と、分類結果の第1の方向に対して交差する第2の方向ごとに同じ第1の分類値の個数をカウントした第1のカウント結果、及び第2の分類値の個数をカウントした第2のカウント結果を得て、第1のカウント結果に含まれる第1の分類値の個数と、第1の方向に第2画素数だけ離れた、第2のカウント結果に含まれる第2の分類値の個数とを加算した値を、記録材に形成された画像に発生するスジ状欠陥の複数の特徴量として抽出する特徴量抽出部と、第1の方向の同じ位置ごとに、複数の特徴量から算出した値と、予め設定された欠陥検出閾値とを比較してスジ状欠陥を検出し、記録材に形成された画像の品質を判断する品質判断部と、を備える。
なお、上記の画像検査装置は本発明の一態様であり、本発明の一側面を反映した画像検査システムについても、上記の画像検査装置と同様に構成される。
In order to achieve at least one of the above-mentioned objects, an image inspection apparatus reflecting one aspect of the present invention is noted among a plurality of pixels included in a scanned image read from a recording material on which an image is formed. The difference value of the pixel value of the comparison pixel, which is separated by the number of the first pixels in the first direction with respect to the pixel value of the pixel with respect to the pixel of interest, is calculated, and the difference value is set to the first and second classification values by the classification threshold. The change amount calculation unit that calculates the classified classification result as the change amount of the pixel value, and the first that counts the same number of first classification values for each second direction that intersects with the first direction of the classification result. The number of the first classification value included in the first count result and the number of second pixels in the first direction are obtained by obtaining the count result of and the second count result obtained by counting the number of the second classification values. Feature quantity extraction that extracts the value obtained by adding the number of the second classification values included in the second count result, which are separated by a distance, as a plurality of feature quantities of streaky defects generated in the image formed on the recording material. A streak-like defect is detected by comparing a value calculated from a plurality of feature quantities with a preset defect detection threshold value at the same position in the first direction, and the image formed on the recording material. It is equipped with a quality judgment unit that judges quality.
The above-mentioned image inspection apparatus is one aspect of the present invention, and an image inspection system reflecting one aspect of the present invention is configured in the same manner as the above-mentioned image inspection apparatus.
本発明によれば、視認可能なスジ状欠陥の有無をスジの特徴を利用して精度よく検出するため、記録材に形成される画像の品質を向上することができる。
上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, since the presence or absence of visible streak-like defects is accurately detected by utilizing the characteristics of the streaks, the quality of the image formed on the recording material can be improved.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and redundant description will be omitted.
[第1の実施の形態]
<画像検査システムの構成>
本発明者は、読取画像に含まれる注目画素と、注目画素の近くにある比較画素との差分を取ることで、オペレーターが視認可能なスジを検出する画像検査装置を発明した。以下に、第1の実施の形態に係る、読取画像からスジを検出可能な画像検査装置を含む画像検査システムの構成例及び動作例について、図2〜図9を参照して説明する。
[First Embodiment]
<Configuration of image inspection system>
The present inventor has invented an image inspection device that detects streaks that can be visually recognized by an operator by taking a difference between a pixel of interest included in a scanned image and a comparison pixel near the pixel of interest. Hereinafter, a configuration example and an operation example of an image inspection system including an image inspection device capable of detecting streaks from a scanned image according to the first embodiment will be described with reference to FIGS. 2 to 9.
始めに、図2を参照して、本発明の第1の実施の形態に係る画像検査システムの構成例について説明する。
図2は、本発明の第1の実施の形態に係る画像検査システム1の概要構成図である。なお、図2には、本発明の説明に必要と考える要素又はその関連要素を記載しており、本発明の画像検査システムは図2に示す例に限定されない。
First, a configuration example of the image inspection system according to the first embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a schematic configuration diagram of the
画像検査システム1は、画像形成装置2及び画像検査装置3を備える。画像形成装置2は、静電気を用いて画像の形成を行う電子写真方式によって用紙に画像を形成する画像形成装置の一例である。画像形成装置2は、例えば、イエロー(Y)、マゼンタ(M)、シアン(C)及びブラック(K)の4色のトナー画像を重ね合わせるタンデム形式によって、用紙上にカラー画像を形成する。画像形成装置2には、不図示のLAN(Local Area Network)を介して、オペレーターによって操作されるPC(Personal Computer)6(後述する図3を参照)等が接続されている。そして、PC6からLANを介して画像形成装置2にジョブが投入される。画像形成装置2は、投入されたジョブに従って、画像形成処理等の各種の処理を行う。
The
始めに、画像形成装置2の構成例について説明する。
画像形成装置2は、自動原稿給送装置(ADF:Auto Document Feeder)12を有する画像入力部11、操作表示部13を備える。また、画像形成装置2は、給紙トレイ20及び画像形成部30を有するプリンター部10を備える。
First, a configuration example of the
The
画像入力部11は、ADF12の原稿台上の原稿から画像を光学的に読み取り、読み取った画像をA/D変換して画像データを生成する。なお、画像入力部11は、プラテンガラス上で原稿から画像を読み込むこともできる。
The
操作表示部13は、液晶パネル等からなる表示部、及び、タッチセンサ等からなる操作部で構成される。表示部及び操作部は、例えばタッチパネルとして一体に形成される。操作表示部13は、操作部に入力されたオペレーターからの操作内容を表す操作信号を生成し、該操作信号を制御部50(後述する図3を参照)に供給する。また、操作表示部13は、制御部50から供給される表示信号に基づいて、表示部に、オペレーターによる操作内容や設定情報等を表示する。なお、操作部をマウスやタブレットなどで構成し、表示部とは別体で構成することも可能である。
The
給紙トレイ20は、画像形成部30で画像形成が行われる用紙Shを収容する容器である。給紙トレイ20には、それぞれ、紙種や坪量等が異なる用紙が収容される。用紙Shは、記録材の一例である。画像形成装置2は、記録材の一例である樹脂製のシートにも画像を形成することが可能である。なお、本実施形態では、2つの給紙トレイ20を設けた例を挙げたが、給紙トレイ20の個数は1つであってもよく、3個以上であってもよい。
The
画像形成装置2には、給紙トレイ20から給紙された用紙Shを画像検査装置3まで搬送する搬送路21が設けられる。搬送路21には、用紙Shを搬送するための複数の搬送ローラが設けられる。
The
定着部36の下流側では、搬送路21が伸長して画像検査装置3の搬送路41に接続されている。また、搬送路21は、定着部36の下流側で分岐する。分岐した搬送路21の一端には、プリンター部10の上流側の搬送路21に合流する反転搬送路22が接続されている。反転搬送路22には、用紙Shを反転させる反転部23が設けられている。反転部23で反転された用紙Shは、反転搬送路22を通して搬送路21の上流側に返される。また、経路の切り替えによって反転した用紙Shが、定着部36の下流側の搬送路21に戻された後、画像検査装置3に搬送されることもある。
On the downstream side of the fixing
画像形成部30は、Y、M、C及びKの各色のトナー画像を形成するための、4つの画像形成ユニット31Y,31M,31C及び31Kを備え、用紙Shに画像を形成する。画像形成ユニット31Y,31M,31C及び31Kはそれぞれ、帯電部、露光部(いずれも不図示)、像担持体としての感光体ドラム32Y,32M,32C,32K、及び、現像部33Y,33M,33C,33Kを備える。
The
現像部33Y,33M,33C,33Kは、感光体ドラム32Y,32M,32C,32Kの各表面(外周部)に、画像に応じた光を照射することにより、各感光ドラムの周上に静電潜像を形成させる。そして、現像部33Y,33M,33C,33Kは、該静電潜像にトナーを付着させることにより、感光体ドラム32Y,32M,32C,32K上にトナー画像を形成する。
The developing
また、画像形成部30は、中間転写ベルト34、2次転写部35及び定着部36を備える。中間転写ベルト34は、感光体ドラム32Y,32M,32C,32Kに形成された画像が1次転写されるベルトである。2次転写部35は、中間転写ベルト34上に1次転写された各色のトナー画像を、搬送路21を搬送された用紙Shに2次転写するローラである。
Further, the
定着部36は、2次転写部35の用紙搬送方向の下流側に配置されて、画像形成部30から供給されるカラーのトナー画像が形成された用紙Shに対して、定着処理を施す。定着部36は、搬送された用紙Shを加熱及び加圧することにより用紙Shの表面側に、画像形成部30により転写された画像を定着する。定着部36により画像が定着した用紙Shは、搬送路21によって画像検査装置3に搬送されるか、反転搬送路22を通して反転部23により表裏が反転された後、プリンター部10の上流側で搬送路21に返される。表裏反転された用紙Shは、プリンター部10によって裏面への画像形成が行われる。その後、定着部36によって定着処理が施された用紙Shは、画像検査装置3に搬送される。
The fixing
次に、画像検査装置3の構成例について説明する。
画像検査装置3は、画像形成装置2から搬送された用紙Shに形成(印刷)された画像に発生したスジを検出するための画像検査を行う。用紙Shに形成された画像に対する処理、すなわち画像検査装置3による画像の検査は、主に画像検査装置3に取付けられた検査処理装置5によって行われる。
Next, a configuration example of the
The
画像検査装置3は、画像形成装置2から搬送されてきた用紙Shを搬送する搬送路41,42,43、切替え部44、読取部45a,45b、測色計46、搬送路41上を搬送された用紙Shが排紙される排紙トレイ47,48を有する。
The
読取部45a,45bは、それぞれイメージセンサー等の画像入力装置の一例である。読取部45a,45bは、例えば、用紙Shの表面に光を投射し、用紙Shからの反射光を画像データとして取り込む。このように読取部45a,45bが用紙Shの画像データを取り込むことを「読取る」と呼ぶ。読取部45aは、搬送路41を搬送される用紙Shを搬送路41の下方から読取り、読取部45bは、搬送路41を搬送される用紙Shを搬送路41の上方から読取る。以降の説明では、読取部45a,45bを区別しないため、「読取部45」と総称する。そして、読取部45は、取り込んだ画像データを検査処理装置5に出力する。
The
測色計46は、搬送路41を搬送される用紙Shの上面に形成された画像を読み取り、読み取って得た画像情報に基づいて、該画像の色濃度(反射濃度)を測定する色濃度測定装置の一例である。測色計46は、例えば、光の波長ごとの反射光の強度(スペクトル)を計測可能な測色器であり、測定した色の濃度(反射濃度)や、L*a*b*値などを出力する。測色計46には、例えば、不図示の複数のセンサ(光電変換素子)を用紙幅方向(用紙搬送方向と直交する方向)の全域にわたる1次元上に配列したスキャナ(ラインセンサ)が使用される。測色計46をスキャナで構成した場合、画像の読み取りは、スキャナをその配置方向と直交する方向(用紙搬送方向)に移動させながら行われる。そして、測色計46は、画像の読み取りが行われる領域をメッシュ状に分割して得られる各領域を対象として、用紙Sh上に形成された画像の色濃度を測定する。測色計46は、測定した色濃度の情報を、検査処理装置5に出力する。
The
なお、測色計46を単一のセンサで構成し、該センサを2次元的に移動させることにより、用紙Shに形成された画像の色の濃度を測定してもよい。または、測色計46を2次元上(マトリクス状)に配置した複数のセンサで構成し、該複数のセンサで1回の測定により用紙上の全画素の色の濃度を読み取ってもよい。
The
画像検査装置3は、搬送路41に接続される搬送路42,43を備える。
搬送路42は、搬送路41の途中から分岐する経路であり、検査処理装置5により検査された用紙Shを、排紙トレイ47(排紙部の一例)に排紙する。排紙トレイ47には、検査処理装置5によって画像が正常と判断された用紙Sh(「正常用紙」とも呼ぶ)が排紙される。
The
The transport path 42 is a path that branches from the middle of the transport path 41, and the paper Sh inspected by the
搬送路43も搬送路41の途中から分岐する経路であり、検査処理装置5により検査された用紙Shを、排紙トレイ48(排紙部の一例)に排紙する。排紙トレイ48には、検査処理装置5によって画像が異常と判断された用紙Sh(「異常用紙」とも呼ぶ)が排紙される。
The
切替え部44は、搬送路42,43のいずれかに用紙Shが搬送されるよう、用紙Shの搬送方向を切替える。なお、画像検査装置3に一つの排紙トレイ47しかない場合、正常用紙と異常用紙が混在して排紙される。この場合、正常用紙と異常用紙は、例えば、それぞれ排紙される方向に直交する方向に少しずらして排紙される。
The switching
画像検査装置3に搬送される用紙Shは、両面又は片面に画像が形成された印刷物である。画像検査装置3は、画像形成装置2が用紙Shの両面又は片面に形成した画像を読取り、検査処理装置5が所定の検査を行う。
The paper Sh conveyed to the
なお、本実施の形態では、画像形成装置2が用紙Shの両面に画像を形成可能であるため、検査処理装置5が用紙Shの両面を検査する例を挙げた。しかし、検査処理装置5は、用紙Shの片面だけに画像を形成可能な画像形成装置から搬送された用紙Shの片面だけを検査するように構成してもよい。
In this embodiment, since the
[画像形成装置の制御系の構成]
次に、図3を参照して、画像形成装置2の制御系の構成例について説明する。
図3は、画像形成装置2の制御系の構成例を示すブロック図である。
画像形成装置2は、主要な構成として、通信I/F部51、用紙搬送部24、画像入力部11、画像形成部30、制御部50、記憶部52、定着部36及び操作表示部13を備える。
[Structure of control system of image forming apparatus]
Next, a configuration example of the control system of the
FIG. 3 is a block diagram showing a configuration example of the control system of the
The
通信I/F部51は、ネットワーク又は専用線を介して、オペレーターが操作する端末であるPC6との間でデータを送受信するインターフェースである。通信I/F部51として、例えばNIC(Network Interface Card)が用いられる。
The communication I /
用紙搬送部24は、制御部50による制御に基づいて、図2に示した搬送路21、反転搬送路22上に設けられた搬送ローラ(図示略)、及び反転部23を駆動する。
The
制御部50は、CPU(Central Processing Unit)501、ROM(Read Only Memory)502、RAM(Random Access Memory)503及び入力画像処理部504を備える。
ROM502には、制御部50のCPU501が実行するプログラム、又はプログラムの実行時に使用するデータ等が保存される。CPU501は、ROM502に保存されたプログラムを読み出すことにより、画像形成装置2を構成する各部の制御を行う。
RAM503には、CPU501の演算処理の途中に発生した変数やパラメータなどが一時的に書き込まれる。
The
The
Variables and parameters generated during the arithmetic processing of the
入力画像処理部504は、PC6から通信I/F部51を介して入力したジョブに含まれる入力画像に所定の画像処理(例えば、ラスタライズ処理)を施し、印刷用画像データを作成する。また、入力画像処理部504は、画像入力部11がADF12で読み取った原稿から取得した画像データ、又は、外部から取得した画像データについても画像処理を施し、印刷用画像データを作成する。この印刷用画像データは、画像形成部30及び画像検査装置3に送られる。画像検査装置3では、印刷用画像データが、出力対象画像603b(後述する図4を参照)として保存される。
The input
制御部50は、用紙搬送部24を制御して搬送ローラを駆動させ、用紙Shを搬送路21上で搬送させる。また、制御部50は、入力画像処理部504が作成した印刷用画像データを画像形成部30に出力する。また、制御部50は、画像形成部30を制御して、用紙Shに画像を形成させる。また、制御部50は、定着部36を制御して、画像を用紙Shに定着させる。
The
また、制御部50は、操作表示部13から操作信号を受信し、該操作信号に応じた制御を行う。さらに、制御部50は、操作表示部13に表示信号を出力し、操作表示部13が、各種操作指示や設定情報を入力するための各種設定画面や各種処理結果等を表示する操作画面を表示パネルに表示する。操作表示部13に表示される情報としては、画像検査装置3から出力される、スジ検出結果631(後述する図4を参照)も含まれる。
Further, the
記憶部52には、制御部50のCPU501がプログラムを実行する際に使用するパラメータや、プログラムを実行して得られたデータなどが保存される。例えば、記憶部52には、各濃度レベルの画像形成条件等の情報が保存される。なお、記憶部52に、CPU501が実行するプログラムを記憶させてもよい。
The
[画像検査装置の制御系の構成]
次に、図4を参照して、画像検査装置3の制御系の構成例について説明する。
図4は、画像検査装置3の制御系の構成例を示すブロック図である。
[Configuration of control system for image inspection equipment]
Next, a configuration example of the control system of the
FIG. 4 is a block diagram showing a configuration example of the control system of the
画像検査装置3は、主要な構成として、通信I/F部61、用紙搬送部62、読取部45、測色計46を備える。また、画像検査装置3に取り付けられた検査処理装置5は、制御部60及び記憶部63を備える。また、検査処理装置5には、記憶装置4が取り付けられる。
The
通信I/F部61は、ネットワークを介して、画像形成装置2との間でデータを送受信するインターフェースである。通信I/F部61として、例えばNICが用いられる。
用紙搬送部62は、制御部60による制御に基づいて、図2に示した搬送路41上に設けられた搬送ローラ(不図示)を駆動する。
The communication I /
The
上述したように読取部45は、搬送路41を搬送される用紙Shの上面及び下面に形成された画像を読取る。本実施の形態では、読取部45a,45bで読取られた用紙Shの画像データを「読取画像」と呼ぶ。
As described above, the
読取部45が、画像が形成された用紙Shから読み取った画像は、読取画像603aとして、制御部60のRAM603に保存される。また、検査処理装置5が、画像形成装置2から受け取ったRIP処理済みの印刷用画像データが、出力対象画像603bとしてRAM603に保存される。後述する第2の実施の形態にて説明するように、出力対象画像603bについても、読取画像603aの検査に使用されることがある。なお、読取画像603a及び出力対象画像603bは、大容量のHDD等で構成される記憶部63に保存されてもよい。また、測色計46から画像検査装置3に出力される色濃度の情報が、読取画像603a及び出力対象画像603bに含まれてもよい。
The image read by the
制御部60は、CPU601、ROM602、RAM603、変化量算出部611、欠陥特徴量抽出部612及び品質判断部613を備える。
The
CPU601は、ROM602に保存されたプログラムを読み出すことにより、画像検査装置3を構成する各部の制御を行う。CPU601がROM602から読み出したプログラムを実行することで、変化量算出部611、欠陥特徴量抽出部612及び品質判断部613の各機能が実現される。
The
ROM602には、制御部60のCPU601が実行するプログラム、又はプログラムの実行時に使用するデータ等が保存される。ROM602は、CPU601によって実行されるプログラムを格納したコンピューター読取可能な非一過性の記録媒体の一例として用いられる。
The
RAM603には、CPU601の演算処理の途中に発生した変数やパラメータなどが一時的に書き込まれる。上述したようにRAM603には、読取画像603a及び出力対象画像603b、差分画像603c1、分類結果603d及びパラメータ603eも保存される。
Variables and parameters generated during the arithmetic processing of the
パラメータ603eは、制御部60又はオペレーターによって設定された各種の値を含む。パラメータ603eは、例えば、後述するスジ特徴量からスジを検出するための欠陥検出閾値等を含む。変化量算出部611、欠陥特徴量抽出部612及び品質判断部613は、パラメータ603eから読み出した各種の値に基づいて各種の処理を行う。
The
変化量算出部611は、読取画像603aに含まれる複数の画素のうち、注目画素の画素値に対する、注目画素を基準として第1の方向に第1画素数だけ離れた比較画素の画素値の差分値を算出し、差分値を分類閾値で第1及び第2の分類値に分類した分類結果603dを画素値の変化量として算出する。以下、第1の方向を主走査方向、第2の方向を副走査方向として説明する。ただし、検出対象とするスジの方向が主走査方向であれば、第1の方向を副走査方向、第2の方向を主走査方向としてもよい。つまり、第1の方向は、印字方向に平行な水平方向、又は印字方向に垂直な垂直方向のいずれかである。また、本実施の形態では、第1画素数を“3”とする。
The change
例えば、変化量算出部611は、読取画像603aに含まれる複数の画素から選択した注目画素の画素値と、比較画素の画素値との差分値を算出する。そして、変化量算出部611は、読取画像603aの他の画素に対しても同様の処理を行って算出した差分値を含む差分画像603c1を生成する。このとき、変化量算出部611は、読取画像603aを水平又は垂直方向に所定画素数だけシフトして得たシフト画像(不図示)と、シフト前の読取画像603aとの差分をとって差分画像603c1を生成することが可能である。シフトとは、注目画素に対して比較画素を決定するための画素間の距離を表す。差分画像603c1の詳細については、後述する図6にて説明する。
For example, the change
また、変化量算出部611は、差分画像603c1に含まれる各画素の差分値の大きさ及び符号に基づいて、画素毎に複数に分類した分類結果603dを変化量として生成する。上述したように分類結果603dは、変化量算出部611が、差分画像603c1に含まれる複数の画素ごとに、差分値を分類閾値で分類(3値化)した結果として表される。分類閾値は、パラメータ603eに設定される値である。
Further, the change
本実施の形態では、変化量算出部611が分類閾値を参照して、差分画像603c1に含まれる各画素の差分値を、画素ごとに3値化する処理を「多値化」という。分類閾値によっては、変化量算出部611が差分画像603c1の差分値を2値化、4値化等に多値化してもよい。また、分類閾値は、画像検査の開始前に、予め設定される値であり、読取画像603aの解像度、用紙Shに形成された画像の種類等によって異なる値が設定されることがある。分類結果603dの詳細については、後述する図7にて説明する。
In the present embodiment, the process in which the change
欠陥特徴量抽出部612は、副走査方向にある複数の画素に基づいて算出された変化量に基づいて、用紙Shに形成された画像に発生するスジ状欠陥の特徴量(「スジ特徴量」と呼ぶ)を抽出する。例えば、欠陥特徴量抽出部612は、スジが発生する方向が副走査方向である場合に、主走査方向の所定位置ごとに分類結果603dを副走査方向に参照して、平均化結果(3値化平均化結果)からスジ特徴量を抽出する。3値化平均化結果は、変化量算出部611が分類閾値で分類して多値化した差分値を、欠陥特徴量抽出部612が平均化して得る結果であり、後述する図8の中段に示す3値化平均値で表すグラフで示される。スジ特徴量の詳細については、後述する図8にて説明する。
The defect feature
そして、欠陥特徴量抽出部612は、主走査方向の所定位置ごとに副走査方向にある分類結果603dを参照して、分類結果603dの分類ごとに画素数をカウントしたカウント結果を得る(後述する図10を参照)。欠陥特徴量抽出部612は、スジが発生する方向が副走査方向である場合に、比較画素がある方向とは反対方向に、注目画素から第1画素数だけ離れた位置で得られたカウント結果を参照して特徴量を抽出することができる。
Then, the defect feature
品質判断部613は、主走査方向の同じ位置ごとに、複数のスジ特徴量から算出した値と、予め設定された欠陥検出閾値とを比較してスジ状欠陥を検出し、用紙Shに形成された画像の品質を判断する。この際、品質判断部613は、主走査方向における注目画素の所定位置でのカウント結果と、注目画素から離れた位置で参照したカウント結果との比率に基づいてスジ状欠陥を検出する(後述する図10を参照)。
The
品質判断部613は、スジ特徴量からスジを検出しなければ読取画像603aを正常と判断する。一方、品質判断部613は、スジ特徴量からスジを検出すれば読取画像603aを異常と判断する。そして、品質判断部613は、読取画像603aの元となったページのページ番号等を含むスジ検出結果631を記憶部63に保存する。
If the
スジ検出結果631は、記憶部63に保存されるだけでなく、画像検査装置3に接続された外部の記憶装置4に送られる。記憶装置4は、例えば、画像検査装置3に接続されたUSB(Universal Serial Bus)メモリ、SSD(Solid State Drive)、HDD(Hard Disk Drive)等としてよい。スジ検出結果631が記憶装置4に送られることにより、オペレーターは、記憶装置4に保存されたスジ検出結果631を表示し、内容を確認することができる。なお、通信I/F部61を経由して接続するクラウドのサーバー(図示略)又はPC6にスジ検出結果631を転送し、保存してもよい。
The
また、制御部60は、必要に応じて記憶部63から読出したスジ検出結果631を、通信I/F部61を介して画像形成装置2又はPC6に送信する。画像形成装置2は、操作表示部13にスジ検出結果631を表示することができる。このため、画像形成装置2及び画像検査装置3のオペレーターは、操作表示部13からスジ検出結果631の内容を確認することができる。また、オペレーターは、PC6からスジ検出結果631の内容を確認することもできる。
Further, the
制御部60は、スジ検出結果631に従って、搬送路41を搬送される用紙Shの排紙トレイ(排紙先の一例)を選択する。例えば、制御部60は、切替え部44を動作して、搬送路42に搬送させた正常用紙を排紙トレイ47に排紙させ、搬送路43に搬送させた異常用紙を排紙トレイ48に排紙させる。
The
また、制御部60は、スジ検出結果631にスジありと書き込まれた読取画像603aに対応するページの再印刷処理(「リカバリ処理」と呼ぶ)を、通信I/F部61を通じて画像形成装置2に指示することができる。なお、リカバリ処理は、オペレーターにより、スジの要因となった回転体のクリーニング、交換等が行われた後に、画像検査システム1にて自動的に、又はオペレーターの手動により実施される。
Further, the
次に、読取画像、画像シフト、差分画像、分類結果、スジ検出の例を順に説明する。
図5は、読取画像603aの例を示す図である。読取画像603aは、R,G,Bのいずれかのチャンネルの画素値を、図中に1マスで表す画素毎に示したものである。
Next, examples of scanned image, image shift, difference image, classification result, and streak detection will be described in order.
FIG. 5 is a diagram showing an example of the scanned
画素値は、R,G,Bのチャンネルごとに“0”〜“255”の間の数字をとる。図中には、注目画素と比較画素の例を示した。比較画素は、注目画素から見て水平方向に1画素数(例えば、3画素)だけシフトした位置の画素である。なお、比較画素は、注目画素から見て水平方向に1画素だけシフトした位置の画素としてもよい。注目画素と比較画素の関係は、他の画素についても成り立つ。 The pixel value takes a number between "0" and "255" for each of the R, G, and B channels. In the figure, an example of a pixel of interest and a comparison pixel is shown. The comparison pixel is a pixel at a position shifted by one pixel number (for example, three pixels) in the horizontal direction when viewed from the pixel of interest. The comparison pixel may be a pixel at a position shifted by one pixel in the horizontal direction when viewed from the pixel of interest. The relationship between the pixel of interest and the comparison pixel also holds for other pixels.
変化量算出部611は、注目画素の画素値から比較画素の画素値を減じて差分値を得る。
図6は、差分画像603c1の例を示す図である。
The change
FIG. 6 is a diagram showing an example of the difference image 603c1.
上述したように変化量算出部611が生成した差分画像603c1は、注目画素と比較画素との差分値を、注目画素の位置に格納したものとなる。例えば、図5に示した読取画像603aの注目画素の画素値が“79”、比較画素の画素値が“90”であるので、差分値は、“−11”(=79−90)となる。このような計算が、読取画像603aに含まれる他の画素においても行われ、差分画像603c1が生成される。
As described above, the difference image 603c1 generated by the change
上述したように差分画像603c1には、注目画素ごとに差分値が格納される。しかし、差分値のままでは、読取画像603aにスジがある箇所と、スジがない箇所との差が小さいので、スジを検出しにくい。そこで、パラメータ603eに2つの閾値を設定し、変化量算出部611が、2つの閾値を用いて、各画素の差分値を3種類に分類した分類結果603dを得るための3値化処理を行う。
図7は、分類結果603dの例を示す図である。
As described above, the difference image 603c1 stores the difference value for each pixel of interest. However, if the difference value is left as it is, the difference between the portion where the scanned
FIG. 7 is a diagram showing an example of the
本実施の形態では、パラメータ603eに、第1分類閾値として“+8”、第2分類閾値として“−8”が設定されている。変化量算出部611は、差分値が第1分類閾値より大きい画素の差分値を“255”に置き換え、差分値が第2分類閾値より小さい画素の差分値を“0”に置き換える。また、変化量算出部611は、差分値が第2分類閾値以上、かつ第1分類閾値以下である画素の差分値を“128”に置き換える。図7より、差分画像603c1に含まれる各画素の差分値は、“0”、“128”、“255”のいずれかに置き換わったことが示される。
In the present embodiment, the
なお、第1分類閾値及び第2分類閾値は、品質判断部613が検出対象とするスジの濃さ(画素値の階調差)に基づいて調整される。例えば、スジのない領域では、大半の画素の差分値が“128”に置き換えられるような閾値が設定されるとよい。
The first classification threshold value and the second classification threshold value are adjusted based on the density of streaks (gradation difference of pixel values) to be detected by the
ここで、スジ特徴量の抽出処理について、図8を参照して説明する。
図8は、欠陥特徴量抽出部612がスジ特徴量を抽出する処理の様子を示す図である。
Here, the extraction process of the streak feature amount will be described with reference to FIG.
FIG. 8 is a diagram showing a state of processing in which the defect feature
図8の上段には、読取画像603aの中で事前に判明している平坦な画像の領域(「平坦領域」と呼ぶ)を主走査位置で示される特定の位置毎に、画素値を副走査方向で平均化した平均化結果のグラフが示される。
画素値の平均化結果を示すグラフより、主走査位置が“14”である箇所にスジがあることが示される。スジがある位置の画素値は、周辺の画素値と比較して、少し変動が大きいことが分かる。しかし、この変動が、ノイズ又はスジのいずれが影響して生じたのかは明確でない。
In the upper part of FIG. 8, the area of the flat image (referred to as “flat area”) known in advance in the scanned
From the graph showing the result of averaging the pixel values, it is shown that there is a streak at the position where the main scanning position is “14”. It can be seen that the pixel value at the position where there is a streak has a little large fluctuation as compared with the peripheral pixel value. However, it is not clear whether this fluctuation was caused by noise or streaks.
図8の中段には、3値化平均化結果のグラフが示される。
欠陥特徴量抽出部612は、副走査方向にある分類結果603dを参照し、各画素の値を平均化する。この処理により、欠陥特徴量抽出部612は、分類結果603dの各画素の値(3値化した値)を副走査方向に平均化して3値化平均値をグラフで表した3値化平均化結果を得る。読取画像603aにノイズがなければ、3値化平均値は128となる。図中に破線の円で示す主走査位置が“10”、“14”の位置が“128”に対して差分が大きい箇所である。しかし、これらの位置にある3値化平均値は、周辺にある3値化平均値との差分が小さいため、スジとして検出し、ノイズから分離することが難しい。
A graph of the averaging result is shown in the middle of FIG.
The defect feature
そこで、欠陥特徴量抽出部612は、3値化平均化結果からスジ特徴量を抽出する。
図8の下段には、欠陥特徴量抽出部612が算出したスジ特徴量のグラフが示される。
欠陥特徴量抽出部612は、3値化平均化結果に基づいて、ある主走査位置の3値化平均値と、この主走査位置に対して水平方向に3画素だけ異なる主走査位置の3値化平均値との差分をとり、差分値の絶対値を算出する。
Therefore, the defect feature
The lower part of FIG. 8 shows a graph of the streak feature amount calculated by the defect feature
Based on the ternary averaging result, the defect feature
品質判断部613は、スジ特徴量が、パラメータ603eから読み出した欠陥検出閾値(図中に破線で示す値)の“40”以上であれば、スジとして検出する設定がされている。そして、品質判断部613は、主走査位置が“14”の位置に大きな値があると判断する。この場合、品質判断部613は、主走査位置が“14”の位置にスジを検出することができる。そして、品質判断部613は、用紙Shに形成された画像を異常と判断する。
The
次に、検査処理装置5で行われる処理の例について、図9を参照して説明する。
図9は、第1の実施の形態に係る検査処理装置5で行われる処理の例を示すフローチャートである。
Next, an example of the processing performed by the
FIG. 9 is a flowchart showing an example of processing performed by the
始めに、変化量算出部611は、RAM603から読み出して入力する読取画像603a(例えば、図5)を第1画素数(例えば、3画素)だけ画像シフトする(S1)。そして、変化量算出部611は、ステップS1より得たシフト画像と、ステップS1の処理を行っていない読取画像603aとに基づいて差分画像603c1(例えば、図6)を生成する(S2)。
First, the change
次に、変化量算出部611は、パラメータ603eから読み出した第1分類閾値及び第2分類閾値に基づいて、差分画像603c1の3値化処理を行い、各画素に3値化した値を含む分類結果603d(例えば、図7)を生成する(S3)。
Next, the change
次に、欠陥特徴量抽出部612は、分類結果603dに基づいて、スジ特徴量(例えば、図8の下段)を抽出する(S4)。そして、品質判断部613は、抽出されたスジ特徴量を、パラメータ603eから読み出した欠陥検出閾値と比較して、スジを検出し(S5)、読取画像603aの品質を判断する。品質判断部613は、スジ検出結果631を記憶部63に書き込む。その後、検査処理装置5は、本処理を終了する。
Next, the defect feature
以上説明した第1の実施の形態に係る検査処理装置5では、読取画像603aを数画素分シフトして得たシフト画像と、読取画像603aとの差分をとって差分画像603c1を得た後、差分画像603c1を3値化し、スジ特徴量を抽出することで、読取画像603aにおけるスジを検出する。この検査処理装置5は、読取画像603a内でスジが発生した領域が平坦であっても、検査処理装置5がスジを検出できるので、スジの検出精度が向上する。
In the
[第1の実施の形態の変形例]
なお、図8には、分類結果を平均化する例を示したが、欠陥特徴量抽出部612が、分類値をカウントした比率に基づいて、スジを検出してもよい。ここでは、本変形例に係る欠陥特徴量抽出部612及び品質判断部613の処理について説明する。
[Modified example of the first embodiment]
Although FIG. 8 shows an example of averaging the classification results, the defect feature
欠陥特徴量抽出部612は、分類結果603dの主走査方向に対して交差する副走査方向ごとに同じ第1の分類値の個数をカウントした第1のカウント結果、及び第2の分類値の個数をカウントした第2のカウント結果を得て、第1のカウント結果に含まれる第1の分類値の個数と、主走査方向に第2画素数だけ離れた、第2のカウント結果に含まれる第2の分類値の個数とを加算した値を、記録材に形成された画像に発生するスジ状欠陥の複数の特徴量として抽出する。
The defect feature
そして、品質判断部613は、主走査方向に沿って、複数の特徴量から算出した値と、予め設定された欠陥検出閾値とを比較してスジ状欠陥を検出し、記録材に形成された画像の品質を判断する。この際、品質判断部613は、複数の特徴量として、主走査方向の同じ位置にある第1特徴量及び第2特徴量の比率が、欠陥検出閾値以上である場合に、スジ状欠陥を検出する。
Then, the
具体的なスジ状欠陥の検出方法について、図10を参照して説明する。
図10は、差分画像603c1に含まれる特定の画素値の画素数を垂直方向にカウントした様子、並びに第1及び第2特徴量について示す図である。
A specific method for detecting streaky defects will be described with reference to FIG.
FIG. 10 is a diagram showing a state in which the number of pixels of a specific pixel value included in the difference image 603c1 is counted in the vertical direction, and the first and second feature amounts.
図10の上側に示すように、欠陥特徴量抽出部612は、第1及び第2のカウント結果を得る。図中に示す、“+8”は、図7にて説明した第1分類閾値を表し、“−8”は、第2分類閾値を表す。そして、図10には、欠陥特徴量抽出部612が、差分画像603c1の副走査方向に“+8”より大きい画素値を含む画素の個数をカウントした第1のカウント結果と、差分画像603c1の副走査方向に“−8”より小さい画素値を含む画素の個数をカウントした第2のカウント結果とが示される。
As shown on the upper side of FIG. 10, the defect feature
つまり、第1及び第2のカウント結果は、欠陥特徴量抽出部612が、分類結果603dに含まれる分類値の個数を副走査方向に、分類値ごと(例えば、“0”、“255”ごと)にカウントした値とも言える。このため、欠陥特徴量抽出部612は、分類結果603dに含まれる画素の分類値に対して、例えば“200”より大きい分類値を含む画素の個数をカウントした第1のカウント結果と、差分画像603c1の副走査方向に“100”より小さい分類値を含む画素の個数をカウントした第2のカウント結果とを求めてもよい。
That is, in the first and second count results, the defect feature
図10には、主走査位置が一致するように第1及び第2のカウント結果が並べられた様子が示される。そして、欠陥特徴量抽出部612は、カウントした結果を、水平方向に3画素(第2画素数の一例)だけ離れた比較画素列にあるカウントした結果と合算する。このとき、欠陥特徴量抽出部612は、分類結果603dの主走査方向の注目画素列の画素71の位置における第1のカウント結果と、注目画素列の画素71の位置から第2画素数(例えば、3画素)だけ離れた、第2のカウント結果とを加算した値を第1特徴量として抽出する。また、欠陥特徴量抽出部612は、分類結果603dの主走査の注目画素列の画素72の位置における第2のカウント結果と、注目画素列の画素72の位置から第2画素数だけ離れた、第1のカウント結果とを加算した値を第2特徴量として抽出する。
FIG. 10 shows how the first and second count results are arranged so that the main scanning positions match. Then, the defect feature
欠陥特徴量抽出部612がカウントした結果の合算値は、図10の下側に示す第1特徴量及び第2特徴量として表される。第1特徴量は、注目画素列の“−8”より小さい画素のカウント結果と比較画素列の“+8”より大きい画素のカウント結果を合算した値である。例えば、注目画素列の画素72のカウント結果“9”と、比較画素列の画素81のカウント結果“9”を合算した値“18”(第1特徴量)が、第1特徴量の画素91に格納される。
The total value of the results counted by the defect feature
また、第2特徴量は、注目画素列の“+8”より大きい画素のカウント結果と比較画素列の“−8”より小さい画素のカウント結果を合算した値である。例えば、注目画素列の画素71のカウント結果“1”と、比較画素列の画素82のカウント結果“0”を合算した値“1”(第2特徴量)が、第2特徴量の画素92に格納される。
The second feature amount is a total value of the count result of the pixel larger than "+8" of the pixel string of interest and the count result of the pixel smaller than "-8" of the comparison pixel string. For example, the value "1" (second feature amount), which is the sum of the count result "1" of the
そして、品質判断部613は、同じ画素列ごとに、第1特徴量と第2特徴量の比率を算出する。この比率が10倍以上である場合、品質判断部613は、注目画素列の主走査位置でスジを検出する。図10では、18/1=18(倍)の比率が算出されるため、注目画素列でスジが検出される。なお、スジの検出に用いられる比率の閾値は、パラメータ603eに格納されており、オペレーターが適宜変更することが可能である。
Then, the
また、検出が要求されるスジの濃さに合わせて、図7に示した第1分類閾値及び第2分類閾値が調整されていれば、品質判断部613は、同じ画素列ごとに、第1特徴量と第2特徴量の比率を算出せず、第1特徴量又は第2特徴量からスジを検出してもよい。
Further, if the first classification threshold value and the second classification threshold value shown in FIG. 7 are adjusted according to the density of the streaks required to be detected, the
なお、幅の広いスジは、スジによる影響(画素値の変化)がなだらかである。このため、注目画素に対して比較画素として抽出する画素の位置が近過ぎると、比較画素との差分が小さくなってスジを検出できない。一方で、注目画素に対して比較画素が遠すぎると、狭い平坦領域に生じたスジを検出できない。 It should be noted that the wide streaks have a gentle effect (change in pixel value) due to the streaks. Therefore, if the positions of the pixels to be extracted as the comparison pixels are too close to the pixels of interest, the difference from the comparison pixels becomes small and the streaks cannot be detected. On the other hand, if the comparison pixel is too far from the pixel of interest, the streaks generated in the narrow flat region cannot be detected.
そこで、変化量算出部611が差分画像603c1を得るために算出する第1画素数は、異なる複数の値(例えば、3画素、5画素、7画素、15画素)としてよい。そして、変化量算出部611は、異なる複数の値ごとに算出した差分値を注目画素の位置に格納した複数の差分画像603c1を生成してもよい。変化量算出部611が注目画素に対してシフトする比較画素のシフト数をパラメータ603eに、複数設定し、1つの注目画素に対して、異なるシフト数でシフトした比較画素との差分を求めることにより、スジの有無を並列で解析してもよい。このような処理により、欠陥特徴量抽出部612は、複数の差分画像603c1からそれぞれスジ特徴量を抽出し、品質判断部613は、抽出されたスジ特徴量からスジを検出してもよい。これにより、スジの太さによらず、読取画像603aに現れたスジを検出することができる。
Therefore, the number of first pixels calculated by the change
[第2の実施の形態]
<平坦画像の領域以外の領域に現れるスジの検出>
上述した実施の形態では、読取画像603aのうち、平坦領域に現れるスジを検出する処理の例を説明した。平坦領域であれば、分類閾値は検出対象とするスジの濃さ(画素値の階調差)に応じて変動させればよい。そこで、変化量算出部611は、読取画像603aから平坦領域のみを抽出して差分画像603c1を生成した後、欠陥特徴量抽出部612がスジ特徴量を抽出し、品質判断部613が、抽出された領域だけを対象としてスジを検出すればよい。
[Second Embodiment]
<Detection of streaks appearing in areas other than the flat image area>
In the above-described embodiment, an example of the process of detecting the streaks appearing in the flat region in the scanned
しかし、実際の印刷物には、平坦領域だけでなく、平坦でない画像の領域(「非平坦領域」と呼ぶ)が現れる。例えば、画素値の変動量が小さいグラデーションがあるような非平坦領域に乗ったスジは目立ってしまう。そこで、第2の実施の形態では、検査処理装置5Aが、非平坦領域に現れるスジを検出する処理について説明する。
However, in an actual printed matter, not only a flat region but also a non-flat image region (referred to as "non-flat region") appears. For example, a streak on a non-flat region where there is a gradation in which the amount of fluctuation of the pixel value is small becomes conspicuous. Therefore, in the second embodiment, the process of detecting the streaks appearing in the non-flat region by the
図11は、画像検査装置3の制御系の構成例を示すブロック図である。本実施の形態に係る画像検査装置3が備える検査処理装置5Aでは、用紙Shに画像を形成するために使用されるRIP画像が画像形成装置2から検査装置3Aに送られると、RIP画像から印刷物の非平坦領域における画素値の変動量を抽出し、抽出した変動量に基づいて、3値化する閾値を変動させる。
FIG. 11 is a block diagram showing a configuration example of the control system of the
検査処理装置5Aの制御部60は、上述した第1の実施の形態に係る変化量算出部611、欠陥特徴量抽出部612及び品質判断部613に加えて、画像変換部615及び位置合わせ部616を備える。本実施の形態においても、CPU601がROM602から読み出したプログラムを実行することで、画像変換部615及び位置合わせ部616の各機能が実現される。
The
RAM603に保存される出力対象画像603bは、事前に画像形成装置2の制御部50でラスタライズ処理(RIP処理)が施されたビットマップ形式の画像である。この出力対象画像603bは、画像形成装置2が用紙Shに形成する画像の元となる。なお、オペレーターにより事前に正しいと判断された画像であって、読取部45によって予め読取られた画像が出力対象画像603bとして用いられてもよい。
The
出力対象画像603bは、画像形成装置2で用紙Shに画像形成するために用いられるのでCMYKのカラーモードが設定されている。そこで、画像変換部615は、出力対象画像603bのカラーモードを、読取画像603aのカラーモードに合わせる画像変換を行う。ここで、読取画像603aのカラーモードは、RGBである。このため、画像変換部615は、出力対象画像603bのカラーモードをCMYKからRGBに変換する。以下の説明では、出力対象画像603bを、カラーモードがRGBに変換済みであるものとして説明する。
Since the
位置合わせ部616は、出力対象画像603bと、画像が形成された用紙Shから読み取られた読取画像603aとの印字位置を合わせる(「位置合わせ」と呼ぶ)。この時、位置合わせ部616は、RAM603から読み出した読取画像603aを、RAM603に予め保存されている出力対象画像603bの位置に合わせる。
The
そして、変化量算出部611は、位置合わせ部616が位置合わせした読取画像603aと出力対象画像603bとの差分をとって差分画像603c2を生成する。差分画像603c2は、第1の実施の形態で説明した、読取画像603aのシフト画像と、シフト前の読取画像603aとの差分をとった差分画像603c1と共にRAM603に保存される。
Then, the change
また、変化量算出部611は、差分画像603c2に基づいて、分類結果603dを作るために参照する閾値画像603fを生成する。この際、変化量算出部611は、位置合わせ部616により位置合わせされた読取画像603aの画素値の変動に合わせて、分類閾値を変動させる。閾値画像603fは、後述する図12に示す第1分類閾値A、第2分類閾値Bで規定される2種類の画像であり、RAM603に保存される。変化量算出部611は、生成した閾値画像603fに基づいて、差分画像603c1を3値化して、分類結果603dを得る。
Further, the change
図12は、読取画像603aの平坦領域と非平坦領域における画素の画素値と差分値、及び分類閾値の例を示すグラフである。このグラフの横軸は主走査位置を表し、縦軸は、3種類の値(画素値、差分値及び分類閾値)を表す。また、平坦領域及び非平坦領域は、図12の上側にある差分値のグラフで規定される。
FIG. 12 is a graph showing an example of pixel values, difference values, and classification thresholds of pixels in the flat region and the non-flat region of the scanned
図12の下側にあるグラフは、RIP処理が施された出力対象画像603bの画素値の変動を表す。また、図12の上側にあるグラフは、図12の下側にあるグラフにおいて、図5と同様に、注目画素と、注目画素から水平方向(検出対象とするスジと直交方向)に3画素シフトした比較画素との差分をとって得た差分画像603c2の差分値の変動を表す。図中では、第1分類閾値A、第2分類閾値Bを、それぞれ「閾値A」、「閾値B」と記載する。
The graph on the lower side of FIG. 12 shows the fluctuation of the pixel value of the
出力対象画像603bの画素値は、折れ線L1のグラフで表される。折れ線L1のグラフより、主走査位置の“1”から“7”までの間が平坦領域であるので、画素値と差分値は共に変化していないことが示される。一方で、主走査位置の“7”から“33”までの間は非平坦領域であるので、画素値と差分値が変化する。例えば、非平坦領域における画素値は、主走査位置の“11”から“21”にかけて緩やかに高くなって一定値を保った後、“23”から“33”にかけて緩やかに低くなって元の値“128”に戻る。
The pixel value of the
例えば、差分値は、折れ線L10のグラフで表される。折れ線L10のグラフに示すように、非平坦領域における差分値は、主走査位置の“7”から“9”にかけて緩やかに低くなり、“9”から“17”にかけて一定のマイナス値をとり、“17”から“23”にかけて緩やかに高くなる。そして、主走査位置の“23”から“30”にかけて一定のプラス値をとり、“30”から“33”にかけて緩やかに低くなって元の値“0”に戻る。 For example, the difference value is represented by a graph of a polygonal line L10. As shown in the graph of the polygonal line L10, the difference value in the non-flat region gradually decreases from "7" to "9" at the main scanning position, takes a constant negative value from "9" to "17", and becomes " It gradually increases from 17 "to" 23 ". Then, it takes a constant positive value from "23" to "30" of the main scanning position, gradually decreases from "30" to "33", and returns to the original value "0".
ここで、差分値に対して所定値(例えば、“8”)をプラスした値を、第1分類閾値Aと呼び、差分値に対して所定値(例えば、“8”)をマイナスした値を、第2分類閾値Bと呼ぶ。第1分類閾値Aは、折れ線L11のグラフで表され、第2分類閾値Bは、折れ線L12のグラフで表される。 Here, a value obtained by adding a predetermined value (for example, "8") to the difference value is called a first classification threshold value A, and a value obtained by subtracting a predetermined value (for example, "8") from the difference value is called. , Called the second classification threshold B. The first classification threshold value A is represented by the graph of the polygonal line L11, and the second classification threshold value B is represented by the graph of the polygonal line L12.
以下の説明で、第1分類閾値A及び第2分類閾値Bを区別しない場合は、「分類閾値」と総称する。分類閾値は、パラメータ603eに記憶されている。分類閾値は、いずれも変化量算出部611が、読取画像603aの主走査位置で特定される画素を3値化するために参照される。
In the following description, when the first classification threshold value A and the second classification threshold value B are not distinguished, they are collectively referred to as “classification threshold value”. The classification threshold is stored in
図13は、第2の実施の形態に係る検査処理装置5Aで行われる処理の例を示すフローチャートである。本処理において、ステップS11,S12の処理は、図9のステップS1、S2の処理と同様である。このため、ステップS21以降の処理について説明した後、ステップS13以降の処理を説明する。
FIG. 13 is a flowchart showing an example of processing performed by the
始めに、画像変換部615は、RAM603から読み出した出力対象画像603bのカラーモードを、CMYKからRGBに変換する(S21)。この処理により、画像変換部615は、画像検査装置3が画像形成装置2から受信した出力対象画像603b(RIP画像)のカラーモードを、読取画像603aのカラーモードに合わせる。
First, the
次に、位置合わせ部616は、RGBに変換された出力対象画像603bを、読取画像603aに対して位置が合うように位置合わせ処理を行う(S22)。次に、変化量算出部611は、出力対象画像603bを第1画素数だけ画像シフトする(S23)。本実施の形態では、水平方向に3画素分だけ出力対象画像603bの画像シフトが行われる。
Next, the
次に、変化量算出部611は、ステップS23より得たシフト画像と、ステップS23の処理を行っていない出力対象画像603bとに基づいて差分画像603c2(例えば、図6と同様の画像)を生成する(S24)。
Next, the change
次に、変化量算出部611は、差分画像603c2に含まれる各画素の画素値ごとに所定値をプラスした値を第1分類閾値Aとし、所定値をマイナスした値を第2分類閾値Bとした閾値画像603fを生成する(S25)。閾値画像603fは、RAM603に一時保存される。
Next, the change
ステップS12、S25の後、変化量算出部611は、RAM603から読み出した閾値画像603fに基づいて、ステップS2で生成された差分画像603c1の3値化処理を行う(S13)。次に、欠陥特徴量抽出部612は、分類結果603dに基づいて、スジ特徴量(例えば、図8)を検出する(S14)。
After steps S12 and S25, the change
そして、品質判断部613は、スジ特徴量を、パラメータ603eから読み出した欠陥検出閾値と比較して、スジを検出する(S15)。品質判断部613は、スジ検出結果631を記憶部63に書き込む。その後、検査処理装置5Aは、本処理を終了する。
Then, the
以上説明した第2の実施の形態に係る検査処理装置5Aでは、差分値に対して分類閾値で規定される閾値画像603fを生成する。そして、閾値画像603fに基づいて3値化処理が行われる。このため、読取画像603aの非平坦領域に発生したスジについても、3値化処理により3値化されて特徴量が抽出されるので、スジの検出精度を向上することができる。
The
[変形例]
上述した各実施の形態では、画像検査装置3に検査処理装置5,5Aを組み合わせた構成としたが、検査処理装置5,5Aの機能を、例えば、PC6に組み込み、検査処理装置5,5Aを画像検査装置3から分離してもよい。また、画像形成装置2が、検査処理装置5,5Aの機能を有し、画像形成装置2が単体で画像検査を行ってもよい。また、検査処理装置5,5Aの機能を有するサーバーを設けて画像形成システムを構成することにより、画像検査装置3が用紙Shから読取った読取画像603a及び出力対象画像603bをサーバーが蓄積してもよい。そして、サーバーが画像検査装置3と通信することで、画像検査装置3から受信した読取画像603aのスジ検出を行い、スジ検出結果を画像検査装置3やPC6に送信してもよい。
[Modification example]
In each of the above-described embodiments, the
また、本発明は上述した各実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
例えば、上述した各実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Further, the present invention is not limited to the above-described embodiments, and it goes without saying that various other application examples and modifications can be taken as long as the gist of the present invention described in the claims is not deviated.
For example, each of the above-described embodiments describes in detail and concretely the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment described here with the configuration of another embodiment, and further, it is possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
1…画像検査システム、2…画像形成装置、3…画像検査装置、5…検査処理装置、30…画像形成部、45…読取部、60…制御部、603a…読取画像、603b…出力対象画像、603c1,603c2…差分画像、603d…分類結果、603e…パラメータ、603f…閾値画像、611…変化量算出部、612…欠陥特徴量抽出部、613…品質判断部、615…画像変換部、616…位置合わせ部、631…スジ検出結果 1 ... Image inspection system, 2 ... Image forming device, 3 ... Image inspection device, 5 ... Inspection processing device, 30 ... Image forming unit, 45 ... Reading unit, 60 ... Control unit, 603a ... Scanned image, 603b ... Output target image , 603c1, 603c2 ... Difference image, 603d ... Classification result, 603e ... Parameter, 603f ... Threshold image, 611 ... Change amount calculation unit, 612 ... Defect feature amount extraction unit, 613 ... Quality judgment unit, 615 ... Image conversion unit, 616 … Alignment part, 631… Streak detection result
Claims (8)
前記分類結果の前記第1の方向に対して交差する第2の方向ごとに同じ前記第1の分類値の個数をカウントした第1のカウント結果、及び前記第2の分類値の個数をカウントした第2のカウント結果を得て、前記第1のカウント結果に含まれる第1の分類値の個数と、前記第1の方向に第2画素数だけ離れた、前記第2のカウント結果に含まれる第2の分類値の個数とを加算した値を、前記記録材に形成された前記画像に発生するスジ状欠陥の複数の特徴量として抽出する特徴量抽出部と、
前記第1の方向の同じ位置ごとに、複数の前記特徴量から算出した値と、予め設定された欠陥検出閾値とを比較してスジ状欠陥を検出し、前記記録材に形成された前記画像の品質を判断する品質判断部と、を備える
画像検査装置。 Of the plurality of pixels included in the scanned image read from the recording material on which the image is formed, the comparative pixels that are separated by the first pixel number in the first direction with respect to the pixel value of the pixel of interest with respect to the pixel value of interest. A change amount calculation unit that calculates the difference value of the pixel value and classifies the difference value into the first and second classification values by the classification threshold as the change amount of the pixel value.
The number of the same first classification value was counted for each second direction intersecting with the first direction of the classification result, and the number of the first count result and the number of the second classification value were counted. The second count result is obtained and included in the second count result, which is separated from the number of the first classification values included in the first count result by the number of second pixels in the first direction. A feature amount extraction unit that extracts a value obtained by adding the number of second classification values as a plurality of feature amounts of streaky defects generated in the image formed on the recording material, and a feature amount extraction unit.
A streak-like defect is detected by comparing a value calculated from a plurality of the feature amounts at the same position in the first direction with a preset defect detection threshold value, and the image formed on the recording material. An image inspection device equipped with a quality judgment unit that judges the quality of the image.
請求項1に記載の画像検査装置。 When the ratio of the first feature amount and the second feature amount at the same position in the first direction is equal to or more than the defect detection threshold value, the quality determination unit determines the streak-like defect. The image inspection apparatus according to claim 1.
請求項2に記載の画像検査装置。 The feature amount extraction unit is separated from the first count result at the position of the attention pixel in the first direction of the classification result by the second pixel number from the position of the attention pixel. The value obtained by adding the count result is extracted as the first feature amount, and the second count result at the position of the attention pixel in the first direction of the classification result and the position of the attention pixel are used as described above. The image inspection apparatus according to claim 2, wherein a value obtained by adding the first count result, which is separated by the number of second pixels, is extracted as the second feature amount.
請求項1〜3のいずれか一項に記載の画像検査装置。 The image inspection apparatus according to any one of claims 1 to 3, wherein the change amount calculation unit generates the classification result of classifying the difference value based on the magnitude and the code of the difference value.
請求項1〜4のいずれか一項に記載の画像検査装置。 The image inspection apparatus according to any one of claims 1 to 4, wherein the first direction is either a horizontal direction parallel to the printing direction or a vertical direction perpendicular to the printing direction.
前記画像変換部により画像変換された前記出力対象画像と、前記読取画像との位置を合わせる位置合わせ部を備え、
前記変化量算出部は、前記位置合わせ部により位置合わせされた前記読取画像の画素値の変動に合わせて、前記分類閾値を変動させる
請求項1〜5のいずれか一項に記載の画像検査装置。 An image conversion unit that converts the color mode of the output target image, which is the source of the image formed by the image forming apparatus on the recording material, according to the color mode of the scanned image.
A positioning unit for aligning the position of the output target image converted by the image conversion unit with the read image is provided.
The image inspection apparatus according to any one of claims 1 to 5, wherein the change amount calculation unit changes the classification threshold value according to a change in the pixel value of the read image aligned by the alignment unit. ..
請求項1〜6のいずれか一項に記載の画像検査装置。 The image inspection apparatus according to any one of claims 1 to 6, further comprising a reading unit that reads the image from the recording material and generates the read image.
前記画像検査装置は、
前記記録材から読み取られた読取画像に含まれる複数の画素のうち、注目画素の画素値に対する、前記注目画素を基準として第1の方向に第1画素数だけ離れた比較画素の画素値の差分値を算出し、前記差分値を分類閾値で第1及び第2の分類値に分類した分類結果を前記画素値の変化量として算出する変化量算出部と、
前記分類結果の前記第1の方向に対して交差する第2の方向ごとに同じ前記第1の分類値の個数をカウントした第1のカウント結果、及び前記第2の分類値の個数をカウントした第2のカウント結果を得て、前記第1のカウント結果に含まれる第1の分類値の個数と、前記第1の方向に第2画素数だけ離れた、前記第2のカウント結果に含まれる第2の分類値の個数とを加算した値を、前記記録材に形成された前記画像に発生するスジ状欠陥の複数の特徴量として抽出する特徴量抽出部と、
前記第1の方向の同じ位置ごとに、複数の前記特徴量から算出した値と、予め設定された欠陥検出閾値とを比較してスジ状欠陥を検出し、前記記録材に形成された前記画像の品質を判断する品質判断部と、を備える
画像検査システム。 An image forming apparatus for forming an image on a recording material and an image inspection apparatus for inspecting the image formed on the recording material are provided.
The image inspection device is
Of the plurality of pixels included in the scanned image read from the recording material, the difference between the pixel values of the pixels of interest and the pixel values of the comparison pixels separated by the number of first pixels in the first direction with respect to the pixels of interest. A change amount calculation unit that calculates a value and calculates the classification result of classifying the difference value into the first and second classification values by the classification threshold as the change amount of the pixel value.
The number of the same first classification value was counted for each second direction intersecting with the first direction of the classification result, and the number of the first count result and the number of the second classification value were counted. The second count result is obtained and included in the second count result, which is separated from the number of the first classification values included in the first count result by the number of second pixels in the first direction. A feature amount extraction unit that extracts a value obtained by adding the number of second classification values as a plurality of feature amounts of streaky defects generated in the image formed on the recording material, and a feature amount extraction unit.
A streak-like defect is detected by comparing a value calculated from a plurality of the feature amounts at the same position in the first direction with a preset defect detection threshold value, and the image formed on the recording material. An image inspection system equipped with a quality judgment unit that judges the quality of the product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019196051A JP7367461B2 (en) | 2019-10-29 | 2019-10-29 | Image inspection equipment and image inspection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019196051A JP7367461B2 (en) | 2019-10-29 | 2019-10-29 | Image inspection equipment and image inspection system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021071300A true JP2021071300A (en) | 2021-05-06 |
JP7367461B2 JP7367461B2 (en) | 2023-10-24 |
Family
ID=75712869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019196051A Active JP7367461B2 (en) | 2019-10-29 | 2019-10-29 | Image inspection equipment and image inspection system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7367461B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666731A (en) * | 1992-08-24 | 1994-03-11 | Dainippon Printing Co Ltd | Image inspecting apparatus |
US6366358B1 (en) * | 1996-10-09 | 2002-04-02 | Dai Nippon Printing Co., Ltd. | Method and apparatus for detecting stripe defects of printed matter |
JP2004093338A (en) * | 2002-08-30 | 2004-03-25 | Nec Corp | Appearance inspection device and appearance inspection method |
JP2011045072A (en) * | 2009-08-19 | 2011-03-03 | Toshiba Corp | Image reading apparatus and image reading method |
JP2017173000A (en) * | 2016-03-18 | 2017-09-28 | 株式会社リコー | Inspection device, inspection method, and program |
-
2019
- 2019-10-29 JP JP2019196051A patent/JP7367461B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666731A (en) * | 1992-08-24 | 1994-03-11 | Dainippon Printing Co Ltd | Image inspecting apparatus |
US6366358B1 (en) * | 1996-10-09 | 2002-04-02 | Dai Nippon Printing Co., Ltd. | Method and apparatus for detecting stripe defects of printed matter |
JP2004093338A (en) * | 2002-08-30 | 2004-03-25 | Nec Corp | Appearance inspection device and appearance inspection method |
JP2011045072A (en) * | 2009-08-19 | 2011-03-03 | Toshiba Corp | Image reading apparatus and image reading method |
JP2017173000A (en) * | 2016-03-18 | 2017-09-28 | 株式会社リコー | Inspection device, inspection method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP7367461B2 (en) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7363035B2 (en) | Image inspection equipment, programs, image processing equipment, and image forming equipment | |
JP6642161B2 (en) | Inspection device, inspection method and program | |
US10326916B2 (en) | Inspection apparatus, inspection method and storage medium | |
US8208183B2 (en) | Detecting image quality defects by measuring images printed on image bearing surfaces of printing devices | |
JP6357786B2 (en) | Image inspection apparatus, image inspection system, and image inspection method | |
US20170134612A1 (en) | Image processing apparatus and computer-readable recording medium storing program | |
JP2016178477A (en) | Color patch defect determination device, color processing apparatus, image inspection device, color patch defect determination program and color patch defect determination method | |
JP7363231B2 (en) | Image inspection device, image forming device, image inspection method and program | |
JP6229480B2 (en) | Image inspection apparatus, image forming system, and image inspection program | |
JP2019164033A (en) | Image inspection device, image formation system and program | |
JP6705305B2 (en) | Inspection device, inspection method and program | |
JP6665544B2 (en) | Inspection device, inspection system, inspection method and program | |
JP2016035418A (en) | Image processing device, output object inspection method, and program | |
JP2017053673A (en) | Inspection device, inspection method, and program | |
JP2016177669A (en) | Image inspection device, image inspection system and image inspection method | |
JP7367461B2 (en) | Image inspection equipment and image inspection system | |
JP7367460B2 (en) | Image inspection equipment and image inspection system | |
JP7367462B2 (en) | Image inspection equipment and image inspection system | |
JP7443719B2 (en) | Image inspection equipment and image inspection system | |
US10761446B2 (en) | Image forming apparatus and computer-readable recording medium storing program | |
JP6277803B2 (en) | Image inspection apparatus, image forming system, and image inspection program | |
JP2021096535A (en) | Image inspection device and image inspection system | |
JP2021111117A (en) | Image inspection device and image formation device and program | |
JP6477076B2 (en) | Image inspection apparatus, image forming system, image inspection method, and image inspection program | |
JP7435102B2 (en) | Inspection equipment, inspection systems and programs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7367461 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |