JP2021070865A - Aluminum metal material excellent in thermal resistance and method for producing the same - Google Patents

Aluminum metal material excellent in thermal resistance and method for producing the same Download PDF

Info

Publication number
JP2021070865A
JP2021070865A JP2019207463A JP2019207463A JP2021070865A JP 2021070865 A JP2021070865 A JP 2021070865A JP 2019207463 A JP2019207463 A JP 2019207463A JP 2019207463 A JP2019207463 A JP 2019207463A JP 2021070865 A JP2021070865 A JP 2021070865A
Authority
JP
Japan
Prior art keywords
less
heat resistance
aluminum
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019207463A
Other languages
Japanese (ja)
Inventor
成憲 田中
Shigenori Tanaka
成憲 田中
政弘 秋本
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ART FIRST CO Ltd
Original Assignee
ART FIRST CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ART FIRST CO Ltd filed Critical ART FIRST CO Ltd
Priority to JP2019207463A priority Critical patent/JP2021070865A/en
Publication of JP2021070865A publication Critical patent/JP2021070865A/en
Pending legal-status Critical Current

Links

Images

Abstract

To develop a material in which a black film surface is kept untarnished under high temperature environment in a processed product of an aluminum alloy.SOLUTION: This invention relates to a material comprising aluminum or its alloy and excellent in thermal resistance, the material having 2% or less of a content of manganese or silicon excellent in thermal resistance and having an anodic oxidation film in which the color difference (ΔE) between before and after heating, when a heat resistance test is executed at 300°C for two weeks, is 2.0 or less and the occurrence of cracks are not visually confirmed. This invention further relates to a method for producing such a material. The material has the anodic oxidation film having hardness, measured by a Vickers hardness test, of HV400 or more, and abrasion resistance, measured by a reciprocating flat surface abrasion test, of 120% or more in comparison with a reference test specimen. The material can be producing by forming the anodic oxidation film under an electrolytic coloring condition by using an electrolytic solution mainly comprising an organic acid.SELECTED DRAWING: Figure 1

Description

本発明は、耐熱性に優れたアルミニウム金属材料及びその製造法に関するものである。The present invention relates to an aluminum metal material having excellent heat resistance and a method for producing the same.

アルミニウム材料は軽量金属材料として各種製品に多用されているが、腐食され易いため、通常アルマイト処理(陽極酸化処理)や化成処理または塗装処理等による表面処理がなされている。Aluminum materials are often used in various products as lightweight metal materials, but since they are easily corroded, they are usually surface-treated by alumite treatment (anodizing treatment), chemical conversion treatment, painting treatment, or the like.

着色された材料は、化成処理や塗装処理における染色や、陽極酸化処理における電解発色などが開発されている。陽極酸化における電解着色によって黒のアルミニウム材料、いわゆる黒アルマイトが開発されているが、電解着色は2種類の電解液が必要で処理工程が増えるのと同時に処理場所のより広い確保が必要となり、また得られる陽極酸化皮膜の硬さに不足があるので更に改良された材料の開発が望まれている。アルミニウム又はその合金の加工製品において黒い皮膜表面が維持されることはその用途によって大変重要であり、多少の高温環境に曝されただけで変色が生じる材料では使用環境が制限されてしまうので、さらに耐熱性に優れ、退色性のない材料開発が望まれている。
一方アルミニウム合金の陽極酸化皮膜(アルマイト)に二次電解処理を施す電解着色法で黒色の皮膜を形成した良好な遠赤外線放射体を形成する方法が提案されている(特許文献1)。ここで得られた陽極酸化皮膜は黒系で耐熱性はかなり良好であるが表面硬さが不十分で、耐摩耗性、耐擦過性の改良が必要である。
Colored materials have been developed for dyeing in chemical conversion treatment and painting treatment, and electrolytic coloring in anodizing treatment. Black aluminum material, so-called black alumite, has been developed by electrolytic coloring in anodic oxidation, but electrolytic coloring requires two types of electrolytic solutions, which increases the number of processing steps and at the same time requires a wider treatment area. Since the hardness of the obtained anodized film is insufficient, the development of further improved materials is desired. Maintaining a black film surface in processed products of aluminum or its alloys is very important depending on the application, and materials that discolor even when exposed to a slight high temperature environment limit the usage environment. It is desired to develop a material having excellent heat resistance and no fading property.
On the other hand, a method of forming a good far-infrared radiator in which a black film is formed by an electrolytic coloring method in which an anodized film (anodized) of an aluminum alloy is subjected to a secondary electrolytic treatment has been proposed (Patent Document 1). The anodic oxide film obtained here is black and has fairly good heat resistance, but its surface hardness is insufficient, and it is necessary to improve wear resistance and scratch resistance.

再公表特許(A1) WO 01/090447号公報Republished Patent (A1) WO 01/090447

本発明は、従来から使用されているアルミニウム材料の耐熱性を改善し、作業が面倒な二次電解を伴ういわゆる電解着色を行わなくても黒系に発色した陽極酸化皮膜の高温における茶褐色系への退色を最少にした材料の提供とその製造法の提供を目的とする。The present invention improves the heat resistance of a conventionally used aluminum material, and changes the anodic oxide film to a brownish color at high temperature, which develops a blackish color without performing so-called electrolytic coloring accompanied by secondary electrolysis, which is troublesome to work. The purpose is to provide a material with minimal fading and a method for producing the same.

本発明は、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、クラック発生が目視では見られない陽極酸化皮膜を有する、耐熱性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料及びその製造法である。The present invention has a color difference (ΔE) of 2.0 or less before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks, and has an anodized film in which cracks are not visually observed. A material made of aluminum or an alloy thereof having an excellent manganese or silicon content of 2% or less, and a method for producing the same.

本発明はまた、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下であり、且つ硬さをJIS‐Z2244(ビッカース硬さ試験)方法にて荷重0.098N(10grf)、保持時間15秒で計測定するとHV400以上の硬さがあり、クラック発生が目視では見られない陽極酸化皮膜を有する、耐熱性と表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料及びその製造法である。The present invention also has a color difference (ΔE) of 2.0 or less before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks, and the hardness is changed to the JIS-Z2244 (Vickers hardness test) method. Manganese or manganese with excellent heat resistance and surface hardness, having a hardness of HV400 or higher when measured with a load of 0.098 N (10 grf) and a holding time of 15 seconds, and having an anodized film in which cracks are not visually observed. A material made of aluminum or an alloy thereof having a silicon content of 2% or less, and a method for producing the same.

本発明はまた、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下、特に好ましくは1.8以下であり、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られず、更に陽極酸化皮膜の耐摩耗性は、基準片との比較試験でありその作成方法は、JIS‐H8603‐付属書1(規定)(耐摩耗性基準試験片(硬質皮膜用))に規定され、試験方法はJIS‐H8682−1(往復運動平面摩耗試験)にて行い、試験条件はJIS‐H8603(硬質陽極酸化皮膜)の硬質皮膜を適用し、耐摩耗性基準試験片の耐摩耗性を100とした時の割合をパーセントで表示し、本発明の皮膜は120%以上の耐摩耗性がある陽極酸化皮膜を有し、耐熱性、表面硬さおよび耐摩耗性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料及びその製造法である。The present invention also has a color difference (ΔE) of 2.0 or less, particularly preferably 1.8 or less, when a heat resistance test is carried out at 300 ° C. for 2 weeks, and an HV of 400 or more in a Vickers hardness test. The hardness of the film is such that cracks are not visually observed, and the wear resistance of the anodic oxide film is a comparative test with the reference piece. Abrasion standard test piece (for hard film)), the test method is JIS-H8682-1 (reciprocating plane wear test), and the test condition is JIS-H8603 (hard anodic oxide film) hard film. Applicable, the ratio when the wear resistance of the wear resistance standard test piece is set to 100 is displayed as a percentage, and the film of the present invention has an anodized film having a wear resistance of 120% or more, and has heat resistance. A material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less, which is excellent in surface hardness and abrasion resistance, and a method for producing the same.

本発明はまた、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下であり、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られず、更に赤外線放射率を被測定物質の測定温度を100℃とし、黒体の放射率を100%(1.00)としたときの全放射率が波長3〜6μmの中赤外線領域において85%(0.85)以上であり、波長3〜25μmの中〜遠赤外線領域において80%(0.8)以上である陽極酸化皮膜を有する耐熱性、表面硬さ及び熱放射性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料及びその製造法である。The present invention also has a color difference (ΔE) of 2.0 or less before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks, has a hardness of HV400 or more in a Vickers hardness test, and cracks occur. Is not visible visually, and when the infrared emissivity is 100 ° C. and the emissivity of the black body is 100% (1.00), the total emissivity is within a wavelength of 3 to 6 μm. For heat resistance, surface hardness and thermal emissivity having an anodized film of 85% (0.85) or more in the infrared region and 80% (0.8) or more in the medium to far infrared region with a wavelength of 3 to 25 μm. A material made of aluminum or an alloy thereof having an excellent manganese or silicon content of 2% or less, and a method for producing the same.

本発明の材料における陽極酸化皮膜は特に高温における黒色系皮膜の退色を少なくし、且つ300℃高温に加熱処理しても表面のクラックが目視では観察できない程度に少なくした皮膜であり、陽極酸化皮膜の厚さをJIS‐H8680‐2(渦電流式測定法)を用い校正用標準板(プラスチックフィルム)にて校正後計測をすると6〜50μmで、好ましくは10〜30μm、特に好ましくは20〜30μmである。アルマイトの皮膜は、一般的に皮膜厚さを厚くすると褐色から黒になる傾向にあり、80μmを越えると黒となるが、300℃に加熱するとクラックで全面が網目模様となってしまう。本発明の皮膜は従来よりも薄膜で黒系になっており、且つ硬さがあり、クラック発生が目視では観察できない特性を併せ持っている。ここで退色とは加熱によって順次茶褐色から白っぽい茶色系に変化する状態を示す。The anodic oxide film in the material of the present invention is a film that reduces the fading of the black film particularly at a high temperature and reduces the surface cracks to the extent that it cannot be visually observed even when heat-treated at a high temperature of 300 ° C. The thickness is 6 to 50 μm, preferably 10 to 30 μm, particularly preferably 20 to 30 μm, when measured after calibration with a calibration standard plate (plastic film) using JIS-H8680-2 (eddy current measurement method). Is. Generally, the alumite film tends to change from brown to black when the film thickness is increased, and becomes black when the film thickness exceeds 80 μm, but when heated to 300 ° C., the entire surface becomes a mesh pattern due to cracks. The film of the present invention is thinner and blacker than the conventional film, has hardness, and has the characteristics that crack generation cannot be visually observed. Here, fading refers to a state in which the color gradually changes from brown to whitish brown due to heating.

本発明の材料は、マンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料を有機酸の溶液を主とし、これに主として用いた有機酸の使用量より少ない添加剤を加えた電解液中で、1サイクルでの正電流の平均電流密度0.1〜10A/dm、負電流の平均電流0.0〜10A/dm、液温−10〜60℃で、直流波形、交直重畳波形、パルス波形、PRパルス波形の単独又は2つ以上の組合せた電流または電圧波形を用いて陽極酸化処理して、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下であり、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られない、濃い褐色形〜黒系の色調を持つ陽極酸化皮膜を形成することが出来る。また、硬さHV400以上を達成すると同時に耐摩耗性が120%以上である陽極酸化皮膜を製造することも出来る。または熱放射性に関し全放射率が波長3〜6μmの中赤外線領域において85%以上であり、波長3〜25μmの中〜遠赤外線領域において80%以上の熱放射性を同時に達成することも出来る。The material of the present invention is mainly composed of an aluminum or an alloy thereof having a manganese or silicon content of 2% or less as a solution of an organic acid, to which an additive smaller than the amount of the organic acid used is added. In the electrolytic solution, the average current density of the positive current in one cycle is 0.1 to 10 A / dm 2 , the average current of the negative current is 0.0 to 10 A / dm 2 , and the liquid temperature is -10 to 60 ° C. Before and after heating when anodization treatment is performed using a direct current superimposed waveform, a pulse waveform, or a PR pulse waveform alone or in combination of two or more current or voltage waveforms, and a heat resistance test is performed at 300 ° C. for 2 weeks. A anodic oxide film having a color difference (ΔE) of 2.0 or less, a hardness of HV400 or more in the Vickers hardness test, and a dark brown to black color tone in which cracks are not visually observed is formed. Can be done. Further, it is also possible to produce an anodized film having a hardness of HV400 or more and at the same time having a wear resistance of 120% or more. Alternatively, regarding thermal radioactivity, it is possible to simultaneously achieve thermal radioactivity of 85% or more in the mid-infrared region having a wavelength of 3 to 6 μm and 80% or more in the mid-far infrared region having a wavelength of 3 to 25 μm.

電解液として用いる有機酸としては、脂肪族または芳香族のスルホン酸、カルボン酸もしくはこれらの無水物または塩の1種又は2種以上を用い、添加剤としては無機酸系もしくは電解液として用いた有機酸とは異なる有機酸系の1種又は2種以上の化合物を用い、溶媒として水および/又は多価アルコールを用いた溶液を電解液とすることが出来る。As the organic acid used as the electrolytic solution, one or more of aliphatic or aromatic sulfonic acid, carboxylic acid or an anhydride or salt thereof was used, and as an additive, an inorganic acid system or an electrolytic solution was used. A solution using one or more organic acid-based compounds different from the organic acid and using water and / or a polyhydric alcohol as a solvent can be used as the electrolytic solution.

ここで陽極酸化皮膜(アルマイト)の構造と加色方法について説明する。この皮膜は蜂の巣状に無数の微細孔が開いている皮膜であり、微細孔が存在している部分を多孔質層、多孔質層と素材との境目をバリアー層と呼び、この両者を併せて陽極酸化皮膜と呼んでいる。この陽極酸化皮膜に色を付ける方法には着色の部位により孔の上面、底部、壁部の3種類があり、これは一般に染色法、電解着色法(二次電解着色を含む)、電解発色法、及び自然発色法、に分けられる。染色法は有機又は無機の染料や顔料の溶液・分散液に皮膜を浸漬することにより多孔質層の孔に上面(外側)より浸透させていく手法であり、皮膜上面部位が着色される。電解着色法はメッキ手法と同様の方法で多孔質層の孔の底の部分に金属を析出させて発色させる手法で二次電解による着色法を含んでいる。電解発色および自然発色は図1(壁部の発色図)に示す様に多孔質層の壁に相当する部分が発色する方法であり、これには電解液の組成及び使用する電流もしくは電圧など電解条件によって電解発色させる方法と、合金材料に含まれる金属の種類によって自然発色させる方法とがある。Here, the structure of the anodized film (anodized) and the coloring method will be described. This film is a honeycomb-shaped film with innumerable micropores. The part where the micropores exist is called the porous layer, and the boundary between the porous layer and the material is called the barrier layer. It is called an anodized film. There are three types of methods for coloring this anodic oxide film: the top surface, bottom, and wall of the hole, depending on the part to be colored. Generally, this is a dyeing method, an electrolytic coloring method (including secondary electrolytic coloring), and an electrolytic coloring method. , And the natural coloring method. The dyeing method is a method of immersing the film in a solution / dispersion of an organic or inorganic dye or pigment to allow the film to penetrate into the pores of the porous layer from the upper surface (outside), and the upper surface portion of the film is colored. The electrolytic coloring method is a method similar to the plating method in which metal is deposited on the bottom of the pores of the porous layer to develop color, and includes a coloring method by secondary electrolysis. Electrolytic color development and natural color development are methods in which the portion corresponding to the wall of the porous layer is colored as shown in FIG. 1 (color development diagram of the wall portion), and this is an electrolysis such as the composition of the electrolytic solution and the current or voltage used. There are a method of electrolyzing color development depending on the conditions and a method of spontaneous color development depending on the type of metal contained in the alloy material.

本発明のマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料は、厚さ6〜50μm、特に10〜30μmの皮膜においても濃い褐色系〜黒系の陽極酸化皮膜が形成されているが、この黒色系皮膜は染料または顔料などで着色されたものではなく、また使用材料中の合金成分に大きく影響される自然発色ではなく、陽極酸化処理の過程において電解液組成及び電解条件に大きく影響を受ける電解発色単独又は電解発色と電解着色の両方を施して形成されたものである。この皮膜は300℃に2週間加熱処理しても表面に目視で観察されるクラックが生じず、変色が殆ど認められない。一方、従来法の硫酸系または硫酸+混酸系の電解液で硬質アルマイトを製造すると、純アルミニウム系材料では厚さ80μm以上になる様に皮膜処理を行うと黒系の皮膜を形成することが出来るが、凡そ100℃に加熱しただけで表面にクラックが発生し、色調は若干白系に移っていく。The material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less of the present invention forms a dark brown to black anodized film even in a film having a thickness of 6 to 50 μm, particularly 10 to 30 μm. However, this black film is not colored with dyes or pigments, and is not a natural color that is greatly affected by the alloy components in the materials used. It is formed by subjecting electrolytic coloring alone or both electrolytic coloring and electrolytic coloring, which are greatly affected by the above. Even if this film is heat-treated at 300 ° C. for 2 weeks, no visually observable cracks occur on the surface, and almost no discoloration is observed. On the other hand, when hard alumite is produced with a conventional sulfuric acid-based or sulfuric acid + mixed acid-based electrolytic solution, a black-based film can be formed by performing a film treatment so that the thickness of a pure aluminum-based material is 80 μm or more. However, cracks occur on the surface just by heating to about 100 ° C., and the color tone shifts to a slightly white color.

また、染色系の黒アルマイトを200℃で加熱すると短時間の内に変色が始まり、200℃を越えた使用環境下で変色無く長時間使用できる染色系の黒アルマイト製品は殆どないのが現状である。In addition, when dyeing black alumite is heated at 200 ° C, discoloration begins within a short time, and there are almost no dyeing black alumite products that can be used for a long time without discoloration in a usage environment exceeding 200 ° C. is there.

本発明において退色の指標を示す色差ΔEを検知するために300℃という温度を使用した理由は次のようなところにある。アルミニウムには再結晶化温度が凡そ250℃であり、この温度を境にアルミニウム加工品内に残る加工硬化(常温で圧延など変形加工を施した際に生ずる加工ひずみ)の原因である粗結晶が250℃以上で軟化し、再結晶化して生成した結晶粒は内部ひずみを持たない安定したものとなる。実用上は凡そ350℃で軟化させて内部応力を下げる作業、いわゆる焼きなまし(焼鈍)が必要となる。アルミニウムを加工する場合に再結晶温度以下で行なう場合を冷間加工というが、この加工法の場合は常に加工硬化が起こるので、焼きなましが必要になるが、加工製品を使用時に長時間再結晶温度以上で使用することはまれであるので、軟化の起点である300℃での耐熱試験で色の退色性に異常がなければ、実用面においての退色に関しても問題なく使用することができる、というところから選んだ試験温度である。The reason why the temperature of 300 ° C. is used to detect the color difference ΔE indicating the index of fading in the present invention is as follows. The recrystallization temperature of aluminum is about 250 ° C, and at this temperature, coarse crystals that are the cause of work hardening (work strain generated when deformation processing such as rolling at room temperature) remain in the processed aluminum product are present. The crystal grains produced by softening at 250 ° C. or higher and recrystallizing become stable without internal strain. Practically, the work of softening at about 350 ° C. to reduce the internal stress, so-called annealing (annealing), is required. When processing aluminum, the case where it is performed below the recrystallization temperature is called cold processing, but in the case of this processing method, work hardening always occurs, so annealing is required, but when using the processed product, the recrystallization temperature is long. Since it is rare to use it as described above, if there is no abnormality in the color fading property in the heat resistance test at 300 ° C, which is the starting point of softening, it can be used without any problem in terms of practical fading. The test temperature selected from.

本発明では有機酸を主とする電解液が用いられるがその有機酸は、脂肪族又は芳香族のスルホン酸および/又はカルボン酸系の単独又は混合系で、具体的にはシュウ酸、マロン酸、コハク酸、リンゴ酸、マレイン酸、クエン酸、酒石酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸など、スルホン酸系ではスルホサリチル酸、スルホフタル酸、スルホ酢酸などで、これらを1種又は2種以上組合せて陽極酸化の際の電解液として用いる。これらの液濃度は0.1〜4.5mol/Lが好ましい。電解条件は、正電流の平均電流密度0.1〜10A/dm、負電流の平均電流密度0.0〜10A/dm、液温−10〜60℃で、陽極酸化処理して陽極酸化皮膜の厚さを6〜50μmに製造する。In the present invention, an electrolytic solution mainly composed of an organic acid is used, and the organic acid is an aliphatic or aromatic sulfonic acid and / or a carboxylic acid-based single or mixed system, specifically, oxalic acid and malonic acid. , Succinic acid, malic acid, maleic acid, citric acid, tartaric acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, etc. Then, one kind or a combination of two or more kinds of these is used as an electrolytic solution at the time of anodization. The concentration of these liquids is preferably 0.1 to 4.5 mol / L. The electrolysis conditions are positive current average current density 0.1 to 10 A / dm 2 , negative current average current density 0.0 to 10 A / dm 2 , liquid temperature -10 to 60 ° C, and anodic oxidation treatment. The film thickness is manufactured to 6 to 50 μm.

通常使用される直流電解の電流密度とは電気量(A・秒)を電解時間(秒)と被処理物の表面積(dm)で割った値をいい、直流定電流電解(通常直流電解という)では被処理物に対して時間によって電流変化がないので電流密度と平均電流密度は同意語として使われており、その単位はA/dmで表される。しかし、パルス、PRパルス波形の様な場合には時間によって「正電流」、「0(電流の流れない時間)」または極性が反転した「負電流」が流れるので波形における平均電流密度は電流波形の1周期(サイクル)において、正電流部分と負電流部分に分けてそれぞれの電気量(A・秒)を電解時間と被処理物の表面積で割った値を、正電流平均電流密度、負電流平均電流密度として表示することが必要になる。例として、PR波形で、電解面積2dmの被処理物を電解した際に、波形の1サイクルを10秒として正電流2Aで4秒流した後に負電流を1Aで6秒流す場合、正電流及び負電流の平均電流密度はそれぞれ0.4A/dm、0.3A/dmとなる。なお、正電流のみを使用する場合には負電流の平均電流密度は0.0A/dmになる。The current density of DC electrolysis that is normally used is the value obtained by dividing the amount of electricity (A · second) by the electrolysis time (second) and the surface area (dm 2 ) of the object to be processed, and is called DC constant current electrolysis (usually called DC electrolysis). In), the current density and the average current density are used as synonyms because the current does not change with time with respect to the object to be processed, and the unit is A / dm 2 . However, in the case of a pulse or PR pulse waveform, a "positive current", "0 (time when no current flows)" or a "negative current" whose polarity is reversed flows depending on the time, so the average current density in the waveform is the current waveform. In one cycle (cycle), the positive current part and the negative current part are divided, and the respective electric amounts (A · second) divided by the electrolytic time and the surface area of the object to be processed are divided into the positive current average current density and the negative current. It is necessary to display it as the average current density. As an example, when an object to be processed with an electrolytic area of 2 dm 2 is electrolyzed with a PR waveform, when one cycle of the waveform is 10 seconds and a positive current of 2 A is applied for 4 seconds and then a negative current is applied at 1 A for 6 seconds, the positive current is applied. and the average current, respectively density 0.4 a / dm 2 of the negative current and 0.3 a / dm 2. When only the positive current is used, the average current density of the negative current is 0.0 A / dm 2 .

有機酸を主とする電解液に添加剤として添加できるものは、無機酸系もしくは有機酸系の1種又は2種以上の化合物である。有機酸系の化合物としては上記した脂肪族又芳香族のスルホン酸および/又はカルボン酸系の化合物であるが、有機酸を主とする電解液に用いた有機酸とは異なるものを添加剤として用いる。他にまたエチレングリコール、ジエチレングリコール、グリセリン等のアルコール系化合物も溶媒として使用でき、その量は60%までとし、これらアルコール系化合物は水と共に溶媒の一部として使用することも可能である。無機酸系の化合物としてはホウ酸、ケイ酸、フッ酸、硫酸、リン酸、硝酸もしくはこれらの塩類、ピロリン酸、スルファミン酸もしくはこれらの塩類、又はフッ化物塩、重フッ化物塩、過マンガン酸塩などの1種または2種以上を使用することが出来る。これら添加剤の使用量は、電解液に主として使用した有機酸の使用量より少ない量で、0.001〜0.9mol/Lの液濃度とすることが好ましい。Those that can be added as an additive to an electrolytic solution containing an organic acid as a main component are one or more compounds of an inorganic acid type or an organic acid type. The organic acid-based compound is the above-mentioned aliphatic or aromatic sulfonic acid and / or carboxylic acid-based compound, but an additive different from the organic acid used in the electrolytic solution mainly composed of the organic acid is used as an additive. Use. In addition, alcohol compounds such as ethylene glycol, diethylene glycol, and glycerin can be used as a solvent, and the amount thereof is up to 60%, and these alcohol compounds can be used together with water as a part of the solvent. Examples of the inorganic acid-based compound include boric acid, silicic acid, hydrofluoric acid, sulfuric acid, phosphoric acid, nitrate or salts thereof, pyrophosphate, sulfamic acid or salts thereof, or fluoride salt, bicarbonate salt, permanganate. One kind or two or more kinds such as salt can be used. The amount of these additives used is less than the amount of the organic acid mainly used in the electrolytic solution, and the liquid concentration is preferably 0.001 to 0.9 mol / L.

電解発色単独又は電解発色と電解着色によって濃い褐色系〜黒系色調の陽極酸化皮膜を形成する電解条件は、直流、パルス、PRパルス電流を組合せて行い、正電流の平均電流密度0.1〜10A/dmで、好ましくは0.8〜3.5A/dm、負電流の平均電流密度0.0〜10A/dm、好ましくは0.0〜3.5A/dm、液温−10〜60℃で、好ましくは−5〜30℃で有機酸を主とし、この有機酸とは異なる有機酸又は無機酸を添加剤として少量加えた電解液で電解処理を行い、処理後直ちに液中より取出さずに皮膜形成に要した時間の0.5〜20%に相当する時間を通電遮断の状態に置いた後取り出し、水洗などの次工程に進む。形成する皮膜厚さは6〜50μmであるが、作業性、性能、コスト等の面から好ましくは10〜30μmがよい。電解処理の終了後の通電遮断浸漬時間が皮膜形成に要した時間の20%以上では皮膜が表面より溶解されて硬さが軟らかくなり、溶解残渣が表面に残る状態となり皮膜として不適格となる。また、0.5%以下では次工程の加色において色むらが出やすくなるために好ましくない。The electrolytic conditions for forming a dark brown to black anodic oxide film by electrolytic coloring alone or by electrolytic coloring and electrolytic coloring are a combination of DC, pulse, and PR pulse current, and the average current density of positive current is 0.1 to 1. 10 A / dm 2 , preferably 0.8 to 3.5 A / dm 2 , average current density of negative current 0.0 to 10 A / dm 2 , preferably 0.0 to 3.5 A / dm 2 , liquid temperature- Electrolytic treatment is performed with an electrolytic solution containing mainly an organic acid at 10 to 60 ° C., preferably -5 to 30 ° C., and a small amount of an organic acid or an inorganic acid different from this organic acid is added as an additive, and the solution is immediately after the treatment. The time corresponding to 0.5 to 20% of the time required for film formation without being taken out from the inside is left in a state where the current is cut off, and then taken out, and the process proceeds to the next step such as washing with water. The thickness of the film to be formed is 6 to 50 μm, but preferably 10 to 30 μm from the viewpoints of workability, performance, cost and the like. If the energization cutoff immersion time after the completion of the electrolytic treatment is 20% or more of the time required for film formation, the film is dissolved from the surface and the hardness becomes soft, and the dissolved residue remains on the surface, making the film unsuitable. Further, if it is 0.5% or less, color unevenness is likely to occur in the color addition in the next step, which is not preferable.

本発明で用いる陽極酸化処理の電流もしくは電圧波形として、直流波形、交流波形、交直重畳波形、パルス波形、PRパルス波形の単独又は2つ以上の組合せた波形を用いることが好ましい。特にパルス波形、PRパルス波を用いると好ましい結果が得られる。電解手法は、通常の方法では電流密度が1A/dm前後の低い電圧・電流からスタートして時間の経過に伴ない電圧又は電流が上昇するが、本発明では付きまわりをよくするために、初期の状態で、高電流密度で一定時間流し、時間経過に従って電流密度を落としていく手法が好ましい。As the current or voltage waveform of the anodic oxidation treatment used in the present invention, it is preferable to use a waveform of a DC waveform, an AC waveform, an AC / DC superimposition waveform, a pulse waveform, or a PR pulse waveform alone or in combination of two or more. Particularly preferable results can be obtained by using a pulse waveform or a PR pulse wave. In the electrolytic method, the current density starts from a low voltage / current of about 1 A / dm 2 in the usual method, and the voltage or current increases with the passage of time. In the initial state, a method of flowing a high current density for a certain period of time and decreasing the current density with the passage of time is preferable.

本発明においては電解発色のみで黒系の退色性に優れ、優れた表面硬度を持つ陽極酸化皮膜を製造することが出来るが、これに加えて電解着色を施すことも出来る。その場合の電解着色の電解条件は、電流もしくは電圧波形として交流、直流、パルス、PRパルス波形を単独または2つ以上を組合せて行い、電圧は1〜40V、時間は1〜30分、液温は−10〜40℃、好ましくは10〜25V、5〜15分、16〜30℃で行い、電源に極性がある場合は(被処理部材を)陰極側にセットし、陽極側は炭素板電極を用いて電解を行い、電解着色前後の水洗は脱イオン水又は純水で十分に行う。電解液としては添加金属を溶解可能な液で、代表的なものとして硫酸化合物、シュウ酸化合物を主とし、添加剤としてカルボン酸系の有機酸、ホウ酸等を加える。電解着色で沈着金属となる金属化合物は、金、銀、銅、白金、錫、コバルト、ニッケル、鉄、タングステン、モリブデン、クロム、亜鉛、パラジウム、ジルコニウム、バナジウム、チタン、マンガンなどが用いられる。In the present invention, it is possible to produce an anodic oxide film having excellent black fading property and excellent surface hardness only by electrolytic coloring, but in addition to this, electrolytic coloring can also be applied. In that case, the electrolytic conditions for electrolytic coloring are AC, DC, pulse, and PR pulse waveforms as current or voltage waveforms, either alone or in combination, with a voltage of 1 to 40 V, a time of 1 to 30 minutes, and a liquid temperature. Is performed at -10 to 40 ° C, preferably 10 to 25 V, 5 to 15 minutes, 16 to 30 ° C. If the power supply has polarity, set the (member to be processed) on the cathode side, and the anode side is a carbon plate electrode. Electrolysis is performed using the above, and washing with water before and after electrolytic coloring is sufficiently performed with deionized water or pure water. The electrolytic solution is a solution capable of dissolving the added metal, and typical examples thereof are a sulfuric acid compound and an oxalic acid compound, and a carboxylic acid-based organic acid, boric acid and the like are added as additives. As the metal compound that becomes a deposited metal by electrolytic coloring, gold, silver, copper, platinum, tin, cobalt, nickel, iron, tungsten, molybdenum, chromium, zinc, palladium, zirconium, vanadium, titanium, manganese and the like are used.

本発明で退色性の少なさを示す尺度として用いている色差(ΔE)とは、従来官能評価することしかできなかった「色の差」を定量的に表すようにしたものである。例えば人間の目には同じに見えても測色器を用いて、基準色の点の色相、彩度、明度を三次元測定し、サンプル色の点についても同様に測定し、この三次元2点間の距離を色差として表す手法である。本発明では耐熱試験を実施する際に、加熱前の色を基準点とし、加熱後の色を分光測色計で測定し、三次元2点間の距離をΔEで表示したもので、現在では分光測色計で自動的に数値が表示できるようになっている。一般的に色差ΔE=1程度は二つの色を横に並べて見比べたときに違いが判別できる程度の差、ΔE=2〜3程度は二つの色を離して見比べたときに違いが判る程度を示している。The color difference (ΔE) used as a measure of the low fading property in the present invention is a quantitative expression of a “color difference” that could only be evaluated by sensory analysis in the past. For example, even if they look the same to the human eye, the hue, saturation, and brightness of the reference color points are measured three-dimensionally using a colorimeter, and the sample color points are also measured in the same way. This is a method of expressing the distance between points as a color difference. In the present invention, when performing a heat resistance test, the color before heating is used as a reference point, the color after heating is measured with a spectrophotometer, and the distance between two three-dimensional points is indicated by ΔE. The spectrophotometer can automatically display the numerical value. In general, a color difference of about ΔE = 1 is a difference that makes a difference when two colors are placed side by side and compared, and a color difference of about ΔE = 2 to 3 is a difference that can be seen when two colors are separated and compared. Shown.

退色性を示す尺度としてハンター法と称される方法があるが、これは古い規格でJIS規格には載っていない。色についての表現方法にはマンセル(1905年)法があり、色相、明度、彩度で表されている。これを数値化する過程で国際照明委員会(CIE)が1931年にXYZ表色系、1976年にL*a*b*色空間が制定され、日本でもJISZ8781−4に採用された。更にL*C*h色空間ができ、今日ではXYZ表色系がCIE標準表色系として各表色系の基礎となっている。ハンター法は1948にLab色空間の色度図を用いて数値化したものであるがその後L*a*b*色空間に改良され、JIS規格になっている。Lab色空間に基づくハンター法と,L*a*b*色空間に基づく色差の関係を特定の関数、または式をもって表すことは困難で、このため二つの方法による測定数値を比較するには同一試料を各表色系で測定して色表記、色差を出すことが必要となる。本発明の色差(ΔE)は試料の同一面をコニカミノルタ社製の分光測色計(CM−700d)を用いて、L*a*b*色空間法と、ハンターLab色空間法(以下HLabと呼ぶ)で測定し、その各色差を算出した。ここでの測定結果の色差の比較ではΔE(L*a*b*)>HΔE(HLab)となっている。There is a method called the Hunter method as a measure of fading property, but this is an old standard and is not listed in the JIS standard. There is a Munsell (1905) method for expressing color, which is expressed in hue, lightness, and saturation. In the process of quantifying this, the International Commission on Illumination (CIE) established the XYZ color system in 1931 and the L * a * b * color space in 1976, and it was adopted in JISZ8781-4 in Japan as well. Furthermore, an L * C * h color space has been created, and today the XYZ color system is the basis of each color system as the CIE standard color system. The Hunter method was quantified in 1948 using a chromaticity diagram of the Lab color space, but was later improved to the L * a * b * color space and became a JIS standard. It is difficult to express the relationship between the hunter method based on the Lab color space and the color difference based on the L * a * b * color space with a specific function or formula, so it is the same to compare the measured values by the two methods. It is necessary to measure the sample in each color system to obtain color notation and color difference. The color difference (ΔE) of the present invention uses the L * a * b * color space method and the Hunter Lab color space method (hereinafter referred to as HLab) on the same surface of the sample using a spectrocolorimeter (CM-700d) manufactured by Konica Minolta. The color difference was calculated. In the comparison of the color difference of the measurement results here, ΔE (L * a * b *)> HΔE (HLab).

本発明の陽極酸化皮膜は、従来品ならば200℃を超える温度での加熱で茶褐色系へ退色し始め、300℃では凡そ1時間程度で色差ΔEが2.0を越えてしまうが、本発明品では同温度で2週間耐熱試験してもΔEは2.0以下を保つことが出来る。また、電解着色皮膜の場合、ニッケル又はコバルトを多孔質細孔内に沈着させた皮膜では400℃で100時間(4日間)、褪色性に変化がない皮膜の提案もあるが、黒系の陽極酸化皮膜の300℃で2週間もの加熱処理で、比較例3に示される様にΔEが2.0以下であるような材料はまだ見出されていない。更に表面硬度もHV320程度で実用上は更なる改良が望まれている。In the case of the conventional product, the anodized film of the present invention begins to fade to a brownish brown color when heated at a temperature exceeding 200 ° C., and at 300 ° C., the color difference ΔE exceeds 2.0 in about 1 hour. The ΔE of the product can be maintained at 2.0 or less even after a heat resistance test at the same temperature for 2 weeks. Further, in the case of an electrolytically colored film, there is a proposal of a film in which nickel or cobalt is deposited in the porous pores, and the fading property does not change for 100 hours (4 days) at 400 ° C., but a black anode No material having a ΔE of 2.0 or less has been found as shown in Comparative Example 3 by heat-treating the oxide film at 300 ° C. for as long as 2 weeks. Further, the surface hardness is about HV320, and further improvement is desired in practical use.

また、本発明の陽極酸化皮膜は、優れた退色性と同時にビッカース硬さ試験でHV400以上の硬さを有するものである。さらに、往復運動平面摩耗試験での耐摩耗性が120%以上という耐摩耗性に優れた皮膜であり、この優れた特徴を殆どの場合に同時に有している。また、先に記した熱放射性も同時に達成させることも出来る。Further, the anodic oxide film of the present invention has excellent fading property and a hardness of HV400 or more in the Vickers hardness test. Further, it is a film having excellent wear resistance of 120% or more in the reciprocating plane wear test, and has this excellent feature at the same time in most cases. In addition, the above-mentioned thermal radioactivity can be achieved at the same time.

本発明において必要に応じて添加剤を単独又は混合系で用いても良い。特に有機酸化合物と無機酸化合物とを組み合わせて使用するときは液管理が容易となり好ましい。これら添加剤の使用量は電解液中、0.001〜0.9モル/リットルの範囲で、電解液に主成分として用いた有機酸より少ない量で用いられる。この様に調整された電解液中でのマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料の陽極酸化処理は、浴温を−10〜60℃で行うのが特に好ましい。In the present invention, the additive may be used alone or in a mixed system as needed. In particular, when an organic acid compound and an inorganic acid compound are used in combination, liquid management becomes easy, which is preferable. The amount of these additives used is in the range of 0.001 to 0.9 mol / liter in the electrolytic solution, which is smaller than the organic acid used as the main component in the electrolytic solution. The anodizing treatment of a material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less in the electrolytic solution adjusted in this way is particularly preferably performed at a bath temperature of −10 to 60 ° C.

本発明の耐熱性に優れたアルミニウム系材料はまた、ケイ素及び/またはマンガンの含有量が2%以下の材料において、赤外線放射率を被測定物質の測定温度を100℃として測定したときの全放射率が波長3〜6μmの中赤外線領域において85%(0.85)以上であり、波長3〜25μmの中〜遠赤外線領域において80%(0.8)である陽極酸化皮膜を有する熱放射性に優れたものであることが判明した。The aluminum-based material having excellent heat resistance of the present invention is also a material having a silicon and / or manganese content of 2% or less, and the total radiation when the infrared emissivity is measured at the measurement temperature of the substance to be measured at 100 ° C. Thermal emissivity with an anodized film having a rate of 85% (0.85) or more in the mid-infrared region with a wavelength of 3 to 6 μm and 80% (0.8) in the mid to far infrared region with a wavelength of 3 to 25 μm. It turned out to be excellent.

本発明で陽極酸化に処するアルミニウム金属材料は純アルミニウム系など広範囲に適用可能であるが、ケイ素及び/またはマンガンを2%以上含む展伸材などの合金は特殊材料であるために入手が困難でかつ高価になるうえに、このような金属成分が多くなるに従い電解作業が難しくなる欠点が出てくるので本発明においては使用が不適当である。In the present invention, the aluminum metal material to be anodized can be widely applied to pure aluminum, but alloys such as wrought material containing 2% or more of silicon and / or manganese are difficult to obtain because they are special materials. In addition to being expensive, it is not suitable for use in the present invention because it has a drawback that the electrolysis work becomes difficult as the amount of such metal components increases.

アルミニウムの高温使用には再結晶温度(250℃前後)が影響してくるので通常この温度以下で使用することが多い。しかし特に黒アルマイトの場合においては、ときとしてこの近傍〜軟化温度である300℃近くで使用することがある。これは軽量、低コスト等の内燃機関、高温時の熱吸収装置等へ使用する際には再結晶化温度〜軟化初期に耐える耐熱性の皮膜を要求されるが、塗装などによる塗膜では耐熱性が不足する上に耐摩耗性もなく、使用がさらに限定されるので、これらをクリアーする皮膜が待望されていた。本発明の材料は耐熱温度が300℃で2週間の加熱処理前後のL*a*b*色空間における色表記で色差ΔE2.0以下の耐熱性を持ち、さらにHV400以上の硬さを有するので高温時使用の材料として、熱発電の際の材料として或いは熱サイクルシステムに利用する材料として使用されることが期待される。Since the recrystallization temperature (around 250 ° C.) affects the high-temperature use of aluminum, it is usually used below this temperature. However, especially in the case of black alumite, it is sometimes used in the vicinity of this to the softening temperature of around 300 ° C. This requires a heat-resistant film that can withstand the recrystallization temperature to the initial stage of softening when used in internal combustion engines such as light weight and low cost, heat absorbers at high temperatures, etc. Since the properties are insufficient and there is no wear resistance, and the use is further limited, a film that clears these has been long-awaited. Since the material of the present invention has a heat resistance of 300 ° C. and a color difference of ΔE2.0 or less in the color notation in the L * a * b * color space before and after heat treatment for 2 weeks, and further has a hardness of HV400 or more. It is expected to be used as a material for use at high temperatures, as a material for thermal power generation, or as a material for a thermal cycle system.

以下、本発明の実施の形態を具体的に説明する。
なお、実施例において、ビッカース硬さ試験は顕微鏡断面測定法により(株)島津製作所社製の微小硬度計(HMV−G−XY−D)を用いて荷重10gfで15秒行って測定した平均皮膜硬さを示す。但し、皮膜厚さが20μm以下の場合にはヌープ式の圧子を用いて同一荷重、同一時間にて測定したものである。皮膜厚さは(株)ケット科学研究所社製渦電流膜厚計(LH−373)で計測した平均厚さを示す。加熱前後の色差(ΔE)は耐熱試験として300℃で2週間加熱処理を行い、コニカミノルタ社製の分光測色計(CM−700d)で計測し、加熱前後の色差をL*a*b*色空間法における色差(ΔE)と、ハンターLab色空間法における色差(HΔE)で表した。耐摩耗性は(株)スガ試験機社製の往復運動半面磨耗試験機にて硬質皮膜試験条件にて基準試験片を行った数値を100とした時の割合(パーセント)を表記する。熱放射率は赤外線放射率測定器として(株)島津製作所製の分光放射率測定システム(IRTracer−100)を用いて被測定物温度を100℃とし、黒体の放射率を100%としたときの中赤外線波長3〜6の全放射率及び波長3〜25μmの中〜遠赤外線領域の全放射率をそれぞれ測定し、%で表示する。
Hereinafter, embodiments of the present invention will be specifically described.
In the examples, the Vickers hardness test was performed by a microscopic cross-sectional measurement method using a micro-hardness meter (HMV-G-XY-D) manufactured by Shimadzu Corporation at a load of 10 gf for 15 seconds to measure an average film. Indicates hardness. However, when the film thickness is 20 μm or less, it is measured with the same load and the same time using a noup type indenter. The film thickness indicates the average thickness measured by an eddy current film thickness meter (LH-373) manufactured by Kett Science Institute Headquarters. The color difference (ΔE) before and after heating is heat-treated at 300 ° C. for 2 weeks as a heat resistance test, measured with a spectrocolorimeter (CM-700d) manufactured by Konica Minolta, and the color difference before and after heating is L * a * b *. It was represented by the color difference (ΔE) in the color space method and the color difference (HΔE) in the Hunter Lab color space method. Abrasion resistance is the percentage (percentage) when the value obtained by performing a reference test piece under hard film test conditions with a reciprocating half-sided wear tester manufactured by Suga Test Instruments Co., Ltd. is set to 100. The thermal emissivity is when the temperature of the object to be measured is 100 ° C and the emissivity of the black body is 100% using a spectral emissivity measurement system (IRTracer-100) manufactured by Shimadzu Corporation as an infrared emissivity measuring device. The total emissivity of the mid-infrared wavelengths 3 to 6 and the total emissivity of the medium to far infrared region having a wavelength of 3 to 25 μm are measured and displayed in%.

アルミニウムA1050材(Si 0.25%、Mn0.05%以下)で50×100×t1.0mmのテストピースを前処理として、エマルジョン脱脂・45℃×5分―5%硝酸・室温×3分−エッチング20%水酸化ナトリウム・室温×1分―脱スマット・10%硫酸・室温×3分を行い、電解液をマロン酸0.7mol/Lに、添加剤としてシュウ酸0.02mol/L+硫酸0.05mol/Lを加えたものとし、液温20℃、電源は直流波形を用い、電流密度1.5A/dmで60分行い、通電遮断時間を2分とした。皮膜の色調は電解発色した濃い茶系の黒で、平均皮膜厚さは29μmであった。300℃加熱前後のL*a*b*色空間の色差(ΔE)は1.6で、ハンター法Lab(HLab)による色差HΔEは1.4であった。顕微鏡断面測定法による平均皮膜硬さはHV480であった。耐摩耗性は142.9%となった。赤外線放射率は黒体の放射率を100%としたときの中赤外線波長3〜6μmの全放射率は91.3%、波長3〜25μmの中〜遠赤外線領域の全放射率は88.4%が得られ、クラックの発生は見られなかった。Emulsion degreasing, 45 ° C x 5 minutes-5% nitric acid, room temperature x 3 minutes-with a test piece of 50 x 100 x t1.0 mm as a pretreatment with aluminum A1050 material (Si 0.25%, Mn 0.05% or less) Etching 20% sodium hydroxide, room temperature x 1 minute-de-smut, 10% sulfuric acid, room temperature x 3 minutes, the electrolyte is 0.7 mol / L of malonic acid, and 0.02 mol / L of oxalic acid + 0 sulfuric acid as an additive. It was assumed that 0.05 mol / L was added, the liquid temperature was 20 ° C., the power source was a DC waveform, the current density was 1.5 A / dm 2 for 60 minutes, and the energization cutoff time was 2 minutes. The color tone of the film was a dark brownish black electrolyzed, and the average film thickness was 29 μm. The color difference (ΔE) in the L * a * b * color space before and after heating at 300 ° C. was 1.6, and the color difference HΔE by the Hunter process Lab (HLab) was 1.4. The average film hardness by the microscopic cross-section measurement method was HV480. The wear resistance was 142.9%. As for the infrared emissivity, when the emissivity of the blackbody is 100%, the total emissivity of the mid-infrared wavelength 3 to 6 μm is 91.3%, and the total emissivity of the medium to far infrared region of the wavelength 3 to 25 μm is 88.4. % Was obtained, and no cracks were observed.

比較例1Comparative Example 1

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液を硫酸15%、電流密度1.0〜1.1A/dm、電解電圧14V、浴温20±1℃、電解時間60分、電解終了後十分水洗をし、染色工程として有機染料アルファスト・ブラック(オリエント化学社製)SW5804を20g/L、50℃、25分浸漬―水洗3回―封孔処理としてトップシール―100(奥野製薬(株)社製)7g/L、94℃、15分−水洗3回−純水水洗−乾燥を行い、均一な黒となった。実施例1の計測方法の結果、平均皮膜厚さは20μm、ヌープ式の断面平均硬さHV290、耐熱試験は300℃で1日で加熱処理前後のL*a*b*色空間での色差(ΔE)は31.0、HLabでは色差(HΔE)26.6となり試験を中止した。耐摩耗性は素地露出により中止、赤外線放射率は中赤外線領域(3〜6μm)の全放射率は64.8%、中〜遠赤外線領域(3〜25μm)の全放射率は83%で、クラックは全面に網目状に発生した。この比較例の黒アルマイト製法はJIS規格(H8601−AA20)に従ったものであるが、この製法では本発明が目的とする材料が得られない。The material, pretreatment, and film were measured in the same manner as in Example 1. The electrolytic solution was 15% sulfuric acid, current density 1.0 to 1.1 A / dm 2 , electrolytic voltage 14 V, bath temperature 20 ± 1 ° C, electrolysis. After the electrolysis is completed for 60 minutes, it is thoroughly washed with water, and as a dyeing process, the organic dye Alphast Black (manufactured by Orient Chemical Co., Ltd.) SW5804 is immersed at 20 g / L at 50 ° C. for 25 minutes. -100 (manufactured by Okuno Pharmaceutical Co., Ltd.) 7 g / L, 94 ° C., 15 minutes-washing with water 3 times-washing with pure water-drying, and a uniform black color was obtained. As a result of the measurement method of Example 1, the average film thickness was 20 μm, the average cross-sectional hardness of the Knoop type was HV290, and the heat resistance test was at 300 ° C. in one day, and the color difference in the L * a * b * color space before and after the heat treatment ( ΔE) was 31.0, and in HLab, the color difference (HΔE) was 26.6, and the test was discontinued. Abrasion resistance was discontinued due to substrate exposure, the total emissivity of the mid-infrared region (3 to 6 μm) was 64.8%, and the total emissivity of the mid to far infrared region (3 to 25 μm) was 83%. The cracks were generated in a mesh pattern on the entire surface. The black alumite production method of this comparative example conforms to the JIS standard (H8601-AA20), but the material intended by the present invention cannot be obtained by this production method.

比較例2Comparative Example 2

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液ならびに条件はJIS−H8603:アルミニウム及びアルミニウム合金の硬質陽極酸化皮膜の付属書Iの耐摩耗性基準試験片(硬質用)の記載を参考に、電解液は遊離硫酸濃度180±1g/L、溶存アルミニウム濃度3g/L、浴温0〜1℃、電流密度1.7A/dm、処理時間60分、電解終了後の通電遮断時間を2分とし、染色工程、封孔工程を常温で行なった。結果は、色調は茶褐色系の黒、平均皮膜厚さは31μm、断面平均硬さはHV408、耐熱試験は300℃―4日目で色差(ΔE)は7.3、HΔEは6.1となったので試験を中止した。耐摩耗性は102%、赤外線放射率は中赤外線領域で全放射率60.3%、中〜遠赤外線領域で81%であり、クラックが全面に網目状に発生し、本発明の目的とする材料は得られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, and the electrolyte and conditions were JIS-H8603: Abrasion resistance standard test piece of Annex I of hard anodized film of aluminum and aluminum alloy (for hard). ), The electrolytic solution has a free sulfuric acid concentration of 180 ± 1 g / L, a dissolved aluminum concentration of 3 g / L, a bath temperature of 0 to 1 ° C., a current density of 1.7 A / dm 2 , a treatment time of 60 minutes, and after electrolysis is completed. The energization cutoff time was set to 2 minutes, and the dyeing step and the sealing step were carried out at room temperature. As a result, the color tone was brownish black, the average film thickness was 31 μm, the average cross-sectional hardness was HV408, the heat resistance test was 300 ° C.-4 days, the color difference (ΔE) was 7.3, and the HΔE was 6.1. So I stopped the test. Abrasion resistance is 102%, infrared emissivity is 60.3% in the mid-infrared region, 81% in the mid-to-far infrared region, and cracks are generated in a mesh pattern on the entire surface, which is the object of the present invention. No material was obtained.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液組成も同一とし、電解条件としてPRパルス波形の電源を用い、プラス(正電流)側電流密度を2.5A/dm―100ms、マイナス(負電流)側の電流密度を0.5A/dm―40msで、このときのプラス側平均電流密度は1.79A/dm、マイナス側平均電流密度は0.14A/dmとなる。液温20±1℃、電解時間60分処理し、電解後の通電遮断時間を5分とした結果、皮膜の色調は濃い茶系の黒、平均皮膜厚さ33μm、断面平均硬さはHV476、耐熱試験300℃×2週間の試験前後の色差(ΔE)は1.5、HΔEは1.3、耐摩耗性は131%、赤外線放射率は中赤外線領域で全放射率89.3%、中〜遠赤外線領域では91.4%であり、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, the electrolyte composition was the same, a power supply with a PR pulse waveform was used as the electrolytic condition, and the positive (positive current) side current density was 2.5 A / dm. 2 -100ms, the current density of the negative (negative current) side 0.5A / dm 2 -40ms, average current density positive average current density is 1.79A / dm 2, the negative side at this time is 0.14 a / It becomes dm 2. The liquid temperature was 20 ± 1 ° C., the electrolysis time was 60 minutes, and the energization cutoff time after electrolysis was 5 minutes. As a result, the color tone of the film was dark brown black, the average film thickness was 33 μm, the cross-sectional average hardness was HV476, and heat resistance. Color difference (ΔE) before and after the test at 300 ° C for 2 weeks is 1.5, HΔE is 1.3, wear resistance is 131%, infrared emissivity is 89.3% in the mid-infrared region, medium to medium to In the far-infrared region, it was 91.4%, and no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液をマレイン酸2.5mol/L、添加剤として硫酸0.04mol/L加え、電解条件は直流波形を用い、電流密度を1.2A/dm、液温20℃、70分電解を行なった。電解後の通電遮断時間は8分とした。皮膜の色調は茶褐色系の黒で、平均厚さは27μm、断面平均硬さHV460、耐熱試験は300℃×2週間で、色差ΔEは1.9、HΔEは1.6、耐摩耗性は125%、赤外線放射率は中赤外線領域で全放射率88.6%、中〜遠赤外線領域では90.4%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, 2.5 mol / L of maleic acid was added as the electrolytic solution, 0.04 mol / L of sulfuric acid was added as an additive, and the electrolytic conditions were DC waveforms and current density. Was electrolyzed at 1.2 A / dm 2 at a liquid temperature of 20 ° C. for 70 minutes. The energization cutoff time after electrolysis was 8 minutes. The color of the film is brownish black, the average thickness is 27 μm, the cross-sectional average hardness is HV460, the heat resistance test is 300 ° C x 2 weeks, the color difference ΔE is 1.9, HΔE is 1.6, and the wear resistance is 125. The total infrared emissivity was 88.6% in the mid-infrared region and 90.4% in the mid-to-far infrared region, and no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液をスルホサリチル酸0.8mol/Lに添加剤として硫酸0.05mol/Lを加えた液とし、電解条件としてパルス波形を用いた電解を行ない、電流密度を2.5A/dm―200ms、休止50msで、平均電流密度2.0A/dm、液温20℃で、50分電解し、通電遮断時間を3分にした結果、皮膜の色調は濃いグレー系の黒で、皮膜厚さ30μm、硬さはHV470、耐熱試験は300℃×2週間の試験前後の色差(ΔE)は1.8、HΔEは1.5、耐摩耗性は130%、赤外線放射率は中赤外線領域で全放射率89.1%、中〜遠赤外線領域では91.8%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, and the electrolytic solution was 0.8 mol / L of sulfosalicylic acid plus 0.05 mol / L of sulfuric acid as an additive, and a pulse waveform was used as the electrolytic condition. performs electrolysis using a current density of 2.5A / dm 2 -200ms, at rest 50 ms, the average current density of 2.0A / dm 2, a liquid temperature 20 ° C., and electrolyte 50 minutes, three minutes energization interruption time As a result, the color tone of the film was dark grayish black, the film thickness was 30 μm, the hardness was HV470, the heat resistance test was 300 ° C. × the color difference (ΔE) before and after the test for 2 weeks was 1.8, and the HΔE was 1.5. The wear resistance was 130%, the infrared radiation rate was 89.1% in the mid-infrared region, and 91.8% in the mid-to-far infrared region, and no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液を酒石酸1.0mol/Lに添加剤として硫酸0.05mol/Lを加えた液とし、電解条件としてパルス波形を用いた電解を行い、電流密度を2.5A/dm、―200ms、休止50ms、平均電流密度2.0A/dmで、液温20℃で、50分電解を行い、電解終了後の通電遮断時間を3分にした結果、皮膜の色調は濃いグレー系の黒で、平均皮膜厚さは30μm、HV475であった。耐熱試験は300℃×2週間の試験前後の色差(ΔE)は1.8、HΔEは1.5、耐摩耗性は138%、赤外線放射率は中赤外線領域で全放射率89.1%、中〜遠赤外線領域では91.8%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, the electrolytic solution was 1.0 mol / L of tartrate acid plus 0.05 mol / L of sulfuric acid as an additive, and a pulse waveform was used as the electrolytic condition. The current electrolysis was performed at a current density of 2.5 A / dm 2 , -200 ms, a pause of 50 ms, an average current density of 2.0 A / dm 2 , and a liquid temperature of 20 ° C. for 50 minutes. As a result of setting the time to 3 minutes, the color tone of the film was dark grayish black, the average film thickness was 30 μm, and HV475. In the heat resistance test, the color difference (ΔE) before and after the test at 300 ° C for 2 weeks was 1.8, HΔE was 1.5, abrasion resistance was 138%, and the infrared emissivity was 89.1% in the mid-infrared region. In the mid to far infrared region, it was 91.8%, and no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液組成も同一とし、電解条件としてパルス波形の電源を用い、液温18℃、電流密度を3.5A/dmで、パルス波形を200ms、休止100msの平均電流密度2.3A/dmで15分行い、次に電流密度を2.0A/dmでパルス波形を150ms、休止50msの平均電流密度1.5A/dmで15分処理し、更に直流定電流電解にて電流密度1.0A/dm2で20分電解し、電解終了後の通電遮断時間を3分にした結果、合計通電時間が50分で皮膜の色調は濃い褐色系の黒で、皮膜厚さは30μm、硬さはHV495、耐熱試験300℃×2週間の試験前後の色差(ΔE)は1.7、HΔEは1.4、耐摩耗性は146%、赤外線放射率は中赤外線領域で全放射率88.3%、中〜遠赤外線領域では90.7%であり、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, the electrolyte composition was the same, a pulsed power source was used as the electrolytic conditions, the liquid temperature was 18 ° C, and the current density was 3.5 A / dm 2 . , Pulse waveform is performed at 200 ms and 100 ms average current density 2.3 A / dm 2 for 15 minutes, then pulse waveform is 150 ms and 50 ms average current density 1.5 A / dm at 2.0 A / dm 2. Treatment with dm 2 for 15 minutes, further electrolysis with DC constant current electrolysis at a current density of 1.0 A / dm 2 for 20 minutes, and the energization cutoff time after electrolysis was set to 3 minutes. As a result, the total energization time was 50 minutes. The color tone is dark brownish black, the film thickness is 30 μm, the hardness is HV495, the color difference (ΔE) before and after the heat resistance test 300 ° C x 2 weeks is 1.7, HΔE is 1.4, and abrasion resistance. Was 146%, the infrared radiation rate was 88.3% in the mid-infrared region, and 90.7% in the mid-to-far infrared region, and no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液を酒石酸1.0mol/Lに添加剤として硫酸0.05mol/Lを加えた液とし、電解条件として直流法で、液温20±1℃で、電流密度を1.5A/dm、40分電解を行い、通電遮断時間を3分とした。この試料を取り出し後純水で十分に水洗を行ったところ色調は茶褐色系であった。次いでこの試料を、2次電解として交流電解で、液組成は硫酸第一錫10g/L、硫酸ニッケル6水和物15g/L、硫酸15g/L、酒石酸8g/Lの液で、PH=1、浴温23℃、電解電圧16Vで20分2次電解し、更に封孔処理として95℃で20分沸騰水封孔を行った。色調は2次電解による電解着色で褐色系の黒であり、平均皮膜厚さは18μm、硬さはヌープ式でHV460であった。300℃耐熱試験前後の色差(ΔE)は1.7、HΔEは1.4、耐摩耗性は124%、赤外線放射率は中赤外線領域で全放射率87.3%、中〜遠赤外線領域では89.3%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1, and the electrolytic solution was 1.0 mol / L of tartaric acid plus 0.05 mol / L of sulfuric acid as an additive, and the electrolytic conditions were the direct current method. At a liquid temperature of 20 ± 1 ° C., electrolysis was performed at a current density of 1.5 A / dm 2 for 40 minutes, and the energization cutoff time was set to 3 minutes. When this sample was taken out and washed thoroughly with pure water, the color tone was brownish. Next, this sample was subjected to AC electrolysis as secondary electrolysis, and the liquid composition was a liquid of stannous sulfate 10 g / L, nickel sulfate hexahydrate 15 g / L, sulfuric acid 15 g / L, and tartrate acid 8 g / L, PH = 1. Secondary electrolysis was performed for 20 minutes at a bath temperature of 23 ° C. and an electrolysis voltage of 16 V, and boiling water was further sealed at 95 ° C. for 20 minutes as a sealing treatment. The color tone was brownish black due to electrolytic coloring by secondary electrolysis, the average film thickness was 18 μm, and the hardness was HV460 in the noup type. The color difference (ΔE) before and after the 300 ° C heat resistance test is 1.7, HΔE is 1.4, abrasion resistance is 124%, infrared emissivity is 87.3% in the mid-infrared region, and in the mid to far infrared region. At 89.3%, no cracks were visually observed.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解時の条件は液温20℃、電源は直流波形を用い、電流密度1.5A/dmで40分電解を行い、通電遮断時間を1.5分とし、この試料を取り出し後純水で十分に水洗を行ったところ色調は茶褐色系であった。更に2次電解として交流電解で、液組成は硫酸第一錫10g/L、硫酸ニッケル6水和物15g/L、硫酸15g/L、酒石酸8g/Lの液で、PH=1、浴温23℃、電解電圧16Vで10分2次電解し、更に封孔処理として95℃で15分沸騰水封孔を行った。色調は2次電解による電解着色で褐色系の黒であり、平均皮膜厚さは13μm、硬さはヌープ式でHV475であった。300℃耐熱試験前後の色差(ΔE)は1.9、HΔEは1.6、耐摩耗性は136%、赤外線放射率は中赤外線領域で全放射率86.8%、中〜遠赤外線領域では87.1%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1. The conditions for electrolysis were a liquid temperature of 20 ° C., a DC waveform was used as the power source, and electrolysis was performed at a current density of 1.5 A / dm 2 for 40 minutes. The energization cutoff time was set to 1.5 minutes, and when this sample was taken out and thoroughly washed with pure water, the color tone was brownish. Further, as secondary electrolysis, AC electrolysis is performed, and the liquid composition is a liquid of stannous sulfate 10 g / L, nickel sulfate hexahydrate 15 g / L, sulfuric acid 15 g / L, and tartrate acid 8 g / L, PH = 1, bath temperature 23. Secondary electrolysis was performed at ° C. and an electrolysis voltage of 16 V for 10 minutes, and boiling water was further sealed at 95 ° C. for 15 minutes as a sealing treatment. The color tone was brownish black due to electrolytic coloring by secondary electrolysis, the average film thickness was 13 μm, and the hardness was HV475 with a noup type. The color difference (ΔE) before and after the 300 ° C heat resistance test is 1.9, HΔE is 1.6, abrasion resistance is 136%, infrared emissivity is 86.8% in the mid-infrared region, and in the mid to far infrared region. At 87.1%, no cracks were visually observed.

比較例3Comparative Example 3

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液を硫酸15%とし、電流密度1.5A/dm、浴温15±1℃で45分電解を行い、電解終了後十分水洗し、2次電解として交流電解で、液組成は硫酸第一錫10g/L、硫酸ニッケル6水和物15g/L、硫酸15g/L、酒石酸8g/Lの液で、PH=1、浴温23℃、電解電圧16Vで20分2次電解し、更に封孔処理を95〜98℃で20分沸騰水封孔を行った。色調は褐色系の黒であり、平均皮膜厚さは20μm、硬さは皮膜が薄いためヌープ式にて荷重10gfで15秒行った結果、HV320であった。耐熱試験は300℃×2週間の試験前後の色差(ΔE)は2.2、耐摩耗性は素地露出により中止、赤外線放射率は中赤外線領域で全放射率78.0%、中〜遠赤外線領域では86.3%であり、クラックの発生が見られた。電解着色のみでL*a*b*色空間での色差(ΔE)を2.0以下にすることは困難であることが分かる。The material, pretreatment, and film were measured in the same manner as in Example 1, the electrolytic solution was 15% sulfuric acid, electrolysis was performed at a current density of 1.5 A / dm 2 and a bath temperature of 15 ± 1 ° C. for 45 minutes, and electrolysis was completed. After that, it was thoroughly washed with water and used as secondary electrolysis by AC electrolysis. The liquid composition was 10 g / L of stannous sulfate, 15 g / L of nickel sulfate hexahydrate, 15 g / L of sulfuric acid, and 8 g / L of tartrate, PH = 1. The second electrolysis was performed at a bath temperature of 23 ° C. and an electrolysis voltage of 16 V for 20 minutes, and the hole was further sealed with boiling water at 95 to 98 ° C. for 20 minutes. The color tone was brownish black, the average film thickness was 20 μm, and the hardness was HV320 as a result of performing a noup method with a load of 10 gf for 15 seconds because the film was thin. In the heat resistance test, the color difference (ΔE) before and after the test at 300 ° C for 2 weeks was 2.2, the wear resistance was stopped due to the exposure of the substrate, the infrared emissivity was 78.0% in the mid-infrared region, and the mid to far infrared rays. In the region, it was 86.3%, and cracks were observed. It can be seen that it is difficult to reduce the color difference (ΔE) in the L * a * b * color space to 2.0 or less only by electrolytic coloring.

材料、前処理、及び皮膜の計測は実施例1と同様に行い、電解液は実施例1の電解液に溶媒としてエチレングリコールを30%加え、液温30℃、電源は直流波形を用い、電流密度2.0A/dm、で40分電解を行ない、通電遮断時間を0.5分とし、この試料を取り出し後純水で十分に水洗を行ったところ、色調は濃い褐色系であった。更に封孔処理として95℃で15分沸騰水封孔を行なった。平均皮膜厚さは24μm、硬さはヌープ式でHV453であった。300℃耐熱試験前後の色差(ΔE)は1.9、HΔEは1.6、耐摩耗性は137%、赤外線放射率は中赤外線領域で全放射率83.7%、中〜遠赤外線領域では85.3%で、クラックの発生は目視では見られなかった。The material, pretreatment, and film were measured in the same manner as in Example 1. As for the electrolytic solution, 30% ethylene glycol was added as a solvent to the electrolytic solution of Example 1, the liquid temperature was 30 ° C., the power source was a DC waveform, and the current was used. Electrolysis was performed at a density of 2.0 A / dm 2 for 40 minutes, the energization cutoff time was set to 0.5 minutes, and when this sample was taken out and thoroughly washed with pure water, the color tone was dark brown. Further, as a sealing treatment, boiling water was sealed at 95 ° C. for 15 minutes. The average film thickness was 24 μm, and the hardness was HV453 of the Noup type. The color difference (ΔE) before and after the 300 ° C heat resistance test is 1.9, HΔE is 1.6, abrasion resistance is 137%, infrared emissivity is 83.7% in the mid-infrared region, and in the mid to far infrared region. At 85.3%, no cracks were observed visually.

本発明の材料は耐熱温度が300℃で2週間の加熱処理で色差ΔE2.0以下の耐熱性を持ち、さらにHV400以上の硬さを有するので高温時使用の材料として、熱発電の際の材料として或いは熱サイクルシステムに利用する材料として使用されることが期待される。The material of the present invention has a heat resistance of 300 ° C. and a heat treatment of 2 weeks for a color difference of ΔE2.0 or less, and further has a hardness of HV400 or more. It is expected to be used as a material for thermal cycle systems.

陽極酸化皮膜の多孔質の孔の壁に相当する部分を発色させた断面模式図 Schematic cross-sectional view of the part corresponding to the wall of the porous pores of the anodic oxide film.

1.微細孔 2.壁
3.素材(アルミニウム) 4.多孔質層
5.バリヤー層
1. 1. Micropores 2. Wall 3. Material (aluminum) 4. Porous layer 5. Barrier layer

Claims (10)

300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、クラック発生が目視では見られない陽極酸化皮膜を有する、耐熱性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。Manganese with excellent heat resistance has a color difference (ΔE) of 2.0 or less before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks, and has an anodized film in which cracks are not visually observed. A material made of aluminum or an alloy thereof having a silicon content of 2% or less. 300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られない陽極酸化皮膜を有する、耐熱性と表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。The color difference (ΔE) before and after heating when the heat resistance test was carried out at 300 ° C. for 2 weeks was 2.0 or less, the hardness was HV400 or more in the Vickers hardness test, and cracks were not visually observed. A material having an anodic oxide film and having an excellent heat resistance and surface hardness, and an aluminum having a content of manganese or silicon of 2% or less or an alloy thereof. 300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られず、往復運動平面摩耗試験での耐摩耗性が120%以上である陽極酸化皮膜を有する、耐熱性、表面硬さ、耐摩耗性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。The color difference (ΔE) before and after heating when the heat resistance test was carried out at 300 ° C. for 2 weeks was 2.0 or less, the hardness was HV400 or more in the Vickers hardness test, and no cracks were visually observed. Aluminum or aluminum having an anodized film having an abrasion resistance of 120% or more in a reciprocating plane wear test and having an excellent heat resistance, surface hardness, and abrasion resistance, and a manganese or silicon content of 2% or less. A material made of alloy. 300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られず、赤外線放射率を被測定物質の測定温度を100℃とし、黒体の放射率を100%(1.00)としたときの全放射率が波長3〜6μmの中赤外線領域において85%(0.85)以上であり、波長3〜25μmの中〜遠赤外線領域において80%(0.8)以上である陽極酸化皮膜を有する耐熱性、表面硬さ及び熱放射性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。The color difference (ΔE) before and after heating when the heat resistance test was carried out at 300 ° C. for 2 weeks was 2.0 or less, and the Vickers hardness test showed a hardness of HV400 or more, and no cracks were visually observed. When the measured temperature of the substance to be measured is 100 ° C and the emissivity of the black body is 100% (1.00), the total emissivity is 85% (0) in the mid-infrared region with a wavelength of 3 to 6 μm. .85) or more, and contains manganese or silicon having an anodized film having an anodized film of 80% (0.8) or more in the medium to far infrared region having a wavelength of 3 to 25 μm and having excellent heat resistance, surface hardness and thermal emissivity A material consisting of aluminum or an alloy thereof in an amount of 2% or less. 300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、陽極酸化皮膜の皮膜厚さが6〜50μmであることを特徴とする請求項1乃至4のいずれか一つの少なくとも耐熱性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。Claim 1 is characterized in that the color difference (ΔE) before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks is 2.0 or less, and the film thickness of the anodized film is 6 to 50 μm. A material made of aluminum or an alloy thereof having a content of manganese or silicon having at least excellent heat resistance of any one of 4 to 4 of 2% or less. 300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下で、陽極酸化皮膜が濃い褐色系〜黒系の色調であることを特徴とする請求項1乃至5のいずれか一つの少なくとも耐熱性に優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料。A claim characterized in that the color difference (ΔE) before and after heating when a heat resistance test is carried out at 300 ° C. for 2 weeks is 2.0 or less, and the anodized film has a dark brown to black color tone. A material made of aluminum or an alloy thereof having a content of manganese or silicon excellent in at least heat resistance of any one of 1 to 5 of 2% or less. マンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料を、有機酸の溶媒として水および/またはアルコール溶液に、添加剤を加えた電解液中で陽極酸化処理し、300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が2.0以下であり、ビッカース硬さ試験でHV400以上の硬さがあり、クラック発生が目視では見られず、厚さ6〜50μmの電解発色単独又は電解発色と電解着色の両方による濃い褐色系〜黒系の色調の陽極酸化皮膜を形成することを特徴とする、耐熱性、表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料の製造法。A material composed of aluminum or an alloy thereof having a manganese or silicon content of 2% or less is anodized in an electrolytic solution containing an additive in water and / or an alcohol solution as an organic acid solvent, and at 300 ° C. The color difference (ΔE) before and after heating when the heat resistance test was carried out for 2 weeks was 2.0 or less, the hardness was HV400 or more in the Vickers hardness test, cracks were not visually observed, and the thickness was high. Manganese or silicon having excellent heat resistance and surface hardness, which is characterized by forming an anodized film having a dark brown to black color tone by electrolytic coloring alone or both electrolytic coloring and electrolytic coloring of 6 to 50 μm. A method for producing a material made of aluminum or an alloy thereof having a content of 2% or less. 電解液として用いる有機酸としては、脂肪族または芳香族のスルホン酸、カルボン酸もしくはその無水物またはそれらの塩の1種又は2種以上であり、添加剤としては無機酸系もしくは電解液として用いた有機酸とは異なる有機酸系の1種又は2種以上の化合物であり、溶媒として水および/または多価アルコールを用いた溶液を電解液とすることを特徴とする請求項7の耐熱性、表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料の製造法。The organic acid used as the electrolytic solution is one or more of an aliphatic or aromatic sulfonic acid, a carboxylic acid or an anhydride thereof, or a salt thereof, and is used as an inorganic acid-based or electrolytic solution as an additive. The heat resistance of claim 7, which is one or more organic acid-based compounds different from the existing organic acid, and uses a solution using water and / or a polyhydric alcohol as a solvent as an electrolytic solution. A method for producing a material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less, which is excellent in surface hardness. アルミニウムまたはその合金の陽極酸化処理の電流もしくは電圧波形を、直流波形、交流波形、交直重畳波形、パルス波形、PRパルス波形の単独又は2つ以上の組合せた波形とすることを特徴とする請求項7または8の耐熱性、表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料の製造法。A claim characterized in that the current or voltage waveform of the anodic oxidation treatment of aluminum or an alloy thereof is a waveform of a DC waveform, an AC waveform, an AC / DC superimposition waveform, a pulse waveform, or a PR pulse waveform alone or in combination of two or more. A method for producing a material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less, which is excellent in heat resistance and surface hardness of 7 or 8. 電解発色単独又は電解発色と電解着色による濃い褐色系〜黒系の色調の陽極酸化皮膜を形成する電解条件として、1サイクルにおける正電流の平均電流密度0.1〜10A/dm、負電流の平均電流密度0.0〜10A/dm、液温−10〜60℃で、有機酸の溶液を主とし、これに主たる有機酸より少量の添加剤を加えた電解液中で陽極酸化処理し、処理後直ちに液中より取り出さずに、皮膜形成に要した時間の0.5〜20%の時間を通電遮断して浸漬状態に置いた後に取り出して皮膜厚さ6〜50μmに製造することを特徴とする請求項7乃至9のいずれか一つの耐熱性、表面硬さに優れたマンガンもしくはケイ素の含有量が2%以下のアルミニウム又はその合金からなる材料の製造法。As electrolytic conditions for forming an anodized film with a dark brown to black color tone by electrolytic coloring alone or by electrolytic coloring and electrolytic coloring, the average current density of positive current in one cycle is 0.1 to 10 A / dm 2 , and negative current. Anodized in an electrolytic solution containing an organic acid solution as the main component and a smaller amount of additives than the main organic acid at an average current density of 0.0 to 10 A / dm 2 and a liquid temperature of -10 to 60 ° C. Instead of taking it out of the solution immediately after the treatment, it is necessary to cut off the current for 0.5 to 20% of the time required for film formation, leave it in an immersed state, and then take it out to produce a film thickness of 6 to 50 μm. A method for producing a material made of aluminum or an alloy thereof having a manganese or silicon content of 2% or less, which is excellent in heat resistance and surface hardness according to any one of claims 7 to 9.
JP2019207463A 2019-10-29 2019-10-29 Aluminum metal material excellent in thermal resistance and method for producing the same Pending JP2021070865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207463A JP2021070865A (en) 2019-10-29 2019-10-29 Aluminum metal material excellent in thermal resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207463A JP2021070865A (en) 2019-10-29 2019-10-29 Aluminum metal material excellent in thermal resistance and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021070865A true JP2021070865A (en) 2021-05-06

Family

ID=75712536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207463A Pending JP2021070865A (en) 2019-10-29 2019-10-29 Aluminum metal material excellent in thermal resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021070865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165462B1 (en) * 2021-11-05 2022-11-04 株式会社アート1 ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491369B1 (en) * 1965-11-04 1974-01-12
JPS4920463B1 (en) * 1963-10-07 1974-05-24
JPS5364635A (en) * 1976-11-22 1978-06-09 Kagaku Gijutsucho Mukizai Polychromic electrolytic coloring method of aluminium or aluminium alloy
JPS56146895A (en) * 1980-04-14 1981-11-14 Furukawa Alum Co Ltd Aluminum alloy which colors to pure black color
JPS60128288A (en) * 1983-12-13 1985-07-09 Nippon Alum Mfg Co Ltd:The Formation of black film on aluminum and aluminum alloy
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920463B1 (en) * 1963-10-07 1974-05-24
JPS491369B1 (en) * 1965-11-04 1974-01-12
JPS5364635A (en) * 1976-11-22 1978-06-09 Kagaku Gijutsucho Mukizai Polychromic electrolytic coloring method of aluminium or aluminium alloy
JPS56146895A (en) * 1980-04-14 1981-11-14 Furukawa Alum Co Ltd Aluminum alloy which colors to pure black color
JPS60128288A (en) * 1983-12-13 1985-07-09 Nippon Alum Mfg Co Ltd:The Formation of black film on aluminum and aluminum alloy
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165462B1 (en) * 2021-11-05 2022-11-04 株式会社アート1 ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF
WO2023079671A1 (en) * 2021-11-05 2023-05-11 株式会社アート1 Aluminum metal material having excellent conductivity, and production method therefor

Similar Documents

Publication Publication Date Title
US5674371A (en) Process for electrolytically treating aluminum and compositions therefor
US9139926B2 (en) Process for making heat stable color anodized aluminum and articles formed thereby
US20050045487A1 (en) Color stablization of anodized aluminum alloys
JP2021070865A (en) Aluminum metal material excellent in thermal resistance and method for producing the same
JPH0313596A (en) Colored surface formation of member composed of aluminum or aluminum alloy
Zemanova et al. Nickel electrolytic colouring of anodic alumina for selective solar absorbing films
US3616311A (en) Integral hard coat anodizing system
JP2021181609A (en) Aluminum metal material with excellent electrical conductivity and its production method
Regone et al. Influence of the anodization electrical mode on the final properties of electrocolored and sealed anodic films prepared on 1050 aluminum alloy
US11578420B2 (en) Surface hardening method using post heat treatment of aluminum alloy oxide layer
Alves et al. Application of experimental design for AA6351 aluminum alloy anodization and coloring
CN112522757A (en) Preparation method of film-coated colored aluminum alloy
JP2017222892A (en) Titanium material and manufacturing method of titanium material
JP2953474B2 (en) Electrolytic treatment of aluminum and aluminum alloy
JP2024034989A (en) A material made of aluminum or an alloy thereof, in which the thickness of the barrier layer is 10 to 80% of the thickness of the hole wall, and a method for producing the same.
JP7165462B1 (en) ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF
EP0936288A2 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
Zemanová et al. A new approach to nickel electrolytic colouring of anodised aluminium
JPH09241888A (en) Method for coloring aluminum material yellowish brown
JP2023106241A (en) White aluminum member and production method thereof
RU2548873C1 (en) Electrochemical method of obtaining oxide coloured coating on aluminium and its alloys
JP3609348B2 (en) Electrolytic coloring method of aluminum alloy
JPH10130886A (en) Production of color-developing titanium excellent in corrosion resistance and that color developing titanium
JPH1018086A (en) Electrolytically colored aluminum material and its production
SU802409A1 (en) Method of dyeing aluminium and its alloy articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240129