JP2021069359A - Antibody for detecting salmonella enteritidis in sample, method for detecting salmonella enteritidis using said antibody, reagent, and kit - Google Patents

Antibody for detecting salmonella enteritidis in sample, method for detecting salmonella enteritidis using said antibody, reagent, and kit Download PDF

Info

Publication number
JP2021069359A
JP2021069359A JP2019200280A JP2019200280A JP2021069359A JP 2021069359 A JP2021069359 A JP 2021069359A JP 2019200280 A JP2019200280 A JP 2019200280A JP 2019200280 A JP2019200280 A JP 2019200280A JP 2021069359 A JP2021069359 A JP 2021069359A
Authority
JP
Japan
Prior art keywords
antibody
amino acid
salmonella
seq
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200280A
Other languages
Japanese (ja)
Other versions
JP7491679B2 (en
Inventor
智康 相沢
Tomoyasu Aizawa
智康 相沢
博之 久米田
Hiroyuki Kumeta
博之 久米田
佳宗 原田
Yoshimune Harada
佳宗 原田
裕一朗 高橋
Yuichiro Takahashi
裕一朗 高橋
康博 橋本
Yasuhiro Hashimoto
康博 橋本
松山 健二
Kenji Matsuyama
健二 松山
浩志 前花
Hiroshi Maehana
浩志 前花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Hokkaido University NUC
Original Assignee
Asahi Kasei Corp
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Hokkaido University NUC filed Critical Asahi Kasei Corp
Priority to JP2019200280A priority Critical patent/JP7491679B2/en
Publication of JP2021069359A publication Critical patent/JP2021069359A/en
Application granted granted Critical
Publication of JP7491679B2 publication Critical patent/JP7491679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide an antibody for detecting Salmonella enteritidis having excellent detection sensitivity and detection accuracy (bacterial strain specificity).SOLUTION: Provided is an antibody capable of causing an antigen-antibody reaction with an epitope located in an N-terminal domain (NTD) of a ribosome protein L7/L12 in Salmonella enteritidis, wherein the N-terminal domain comprises amino acid residues located at position-1 to position-40, or a fragment of the antibody, or a derivative of the antibody or the fragment.SELECTED DRAWING: Figure 1

Description

本発明は、肺炎の原因菌の一つであるサルモネラ菌(Salmonella enteritidis)が検体中に存在するか否かを検出するための抗体、並びに斯かる抗体を用いて検体中のサルモネラ菌を検出するための方法、試薬、及びキットに関する。 The present invention is an antibody for detecting whether or not Salmonella enteritidis, which is one of the causative bacteria of pneumonia, is present in a sample, and an antibody for detecting Salmonella in a sample using such an antibody. With respect to methods, reagents, and kits.

微生物感染症に罹患した患者の治療に当たっては、感染症の迅速な診断が極めて重要である。微生物感染症の診断手法としては、感染症の原因菌を感染部位や血清・体液等から検出する手法や、原因菌に対する抗体を血液・体液等から検出する手法が挙げられるが、診断の確実性・迅速性の観点からは、原因菌を直接検出する手法が好ましい。 Rapid diagnosis of infections is extremely important in the treatment of patients suffering from microbial infections. Examples of diagnostic methods for microbial infections include a method of detecting the causative bacteria of an infectious disease from the infected site, serum, body fluid, etc., and a method of detecting an antibody against the causative bacteria from blood, body fluid, etc. -From the viewpoint of speed, a method of directly detecting the causative bacteria is preferable.

微生物感染症の原因菌の検出手法は、原因菌の分離培養を経て、その生化学的性状を基に菌の同定を行う培養同定法、原因菌特異的遺伝子をポリメラーゼ連鎖反応(polymerase chain reaction:PCR)法等により増幅して菌の同定を行う遺伝子診断法、及び、原因菌の表面抗原マーカーに対する抗体の特異反応を利用して菌の同定を行う免疫的手法に大別される。しかし、培養同定法及び遺伝子診断法は、検出結果を得るまでに時間がかかり、且つ、検出感度の面でも課題がある場合が多い。よって、短時間で高感度に原因菌を検出できる点で、免疫的手法による診断が汎用されている。 The method for detecting the causative bacteria of microbial infections is a culture identification method in which the causative bacteria are isolated and cultured, and then the bacteria are identified based on their biochemical properties. It is roughly divided into a genetic diagnostic method for identifying a bacterium by amplifying it by a PCR) method or the like, and an immunological method for identifying a bacterium by utilizing a specific reaction of an antibody against a surface antigen marker of the causative bacterium. However, the culture identification method and the gene diagnosis method take a long time to obtain a detection result, and often have a problem in terms of detection sensitivity. Therefore, diagnosis by an immunological method is widely used because the causative bacteria can be detected with high sensitivity in a short time.

従来免疫法による感染症原因菌の検出には、菌種によって様々なマーカー抗原と抗体との組み合わせが使われている。 Conventionally, various combinations of marker antigens and antibodies are used to detect infectious disease-causing bacteria by the immunological method, depending on the bacterial species.

サルモネラ菌(Salmonella enteritidis)は、ヒトや動物の消化管に生息するグラム陰性の腸内細菌であり、腸管上皮細胞等に侵入して食中毒)を引き起こす。サルモネラ菌感染の確定診断のためには、糞便、血液、穿刺液、リンパ液等より菌を検出する必要があり、迅速な診断方法は、現在のところ存在しない。症状の悪化や感染の拡大を防ぐためにも、サルモネラ菌の特異的な迅速診断法が求められている。 Salmonella enteritidis is a gram-negative intestinal bacterium that inhabits the gastrointestinal tract of humans and animals, and invades intestinal epithelial cells and causes food poisoning). In order to make a definitive diagnosis of Salmonella infection, it is necessary to detect the bacteria in feces, blood, puncture fluid, lymph fluid, etc., and there is currently no rapid diagnostic method. In order to prevent the worsening of symptoms and the spread of infection, a specific rapid diagnostic method for Salmonella is required.

サルモネラ菌を検出する手法として、通常選択培地等を用いた分離培養により検査、検出される。しかし、同菌の分離培養には常温で1日から2日かかるなど培養法での検出には検査時間を含む課題があった。(特許文献1:特許第6104242号)これに対しDNAプローブを用いたハイブリダイゼーション技術によって培養時間を短縮する方法(特許文献2:特許第2089328号)等が知られていたが、迅速性が不十分であることや操作の煩雑性など課題があり、改善の余地があった。 As a method for detecting Salmonella, it is usually inspected and detected by isolation culture using a selective medium or the like. However, the isolation and culture of the bacterium takes 1 to 2 days at room temperature, and the detection by the culture method has a problem including the inspection time. (Patent Document 1: Patent No. 6104242) On the other hand, a method of shortening the culture time by a hybridization technique using a DNA probe (Patent Document 2: Patent No. 2089328) has been known, but the speed is not high. There were problems such as sufficientness and complicated operation, and there was room for improvement.

本発明者等は、全ての微生物細胞に存在し、しかもそのアミノ酸構造が微生物間である程度の相違点をもつ細胞内分子として、リボソームタンパク質(Ribosomal protein)L7/L12に着目し、斯かるタンパク質に対する抗体を利用することにより、様々な微生物を各々特異的に、且つ、同一菌種内の種々の血清型を網羅的に検出することが可能な手法を見出した(特許文献3:国際公開第2000/006603号)。しかし、斯かる既存の抗体は、その検出精度(菌種特異性)や、その検出精度を担保するためのサルモネラ菌のリボソームタンパク質(Ribosomal protein)L7/L12への特異的抗体の結合パターンが不明であった事など、改善の余地があった。 The present inventors have focused on ribosome proteins L7 / L12 as intracellular molecules that are present in all microbial cells and whose amino acid structures differ to some extent between microorganisms, and have been directed to such proteins. By using an antibody, we have found a method capable of specifically detecting various microorganisms and comprehensively detecting various serotypes within the same bacterial species (Patent Document 3: International Publication No. 2000). / 006603). However, the detection accuracy (species specificity) of such existing antibodies and the binding pattern of specific antibodies to the ribosomal protein L7 / L12 of Salmonella to ensure the detection accuracy are unknown. There was room for improvement, such as what happened.

特許第6104242号公報Japanese Patent No. 6104242 特許第2089328号公報Japanese Patent No. 2089328 国際公開第2000/006603号International Publication No. 2000/006603

本発明は、検出感度及び検出精度(菌種特異性)に優れたサルモネラ菌検出用抗体を提供することを目的とする。 An object of the present invention is to provide an antibody for detecting Salmonella, which is excellent in detection sensitivity and detection accuracy (species specificity).

本発明者等は鋭意検討の結果、サルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基からなるN末端ドメイン(NTD)内に、抗原抗体反応性及び特異性に優れたエピトープとなりうる部分アミノ酸配列が存在することを見出した。その上で、斯かる部分アミノ酸配列と抗原抗体反応を生じる複数の抗体を実際に作製し、これらの抗体を用いることにより、検体中のサルモネラ菌を高い感度且つ精度で検出できることを検証し、本発明に到達した。 As a result of diligent studies, the present inventors may become an epitope having excellent antigen-antibody reactivity and specificity in the N-terminal domain (NTD) consisting of amino acid residues at positions 1 to 40 of the ribosomal protein L7 / L12 of Salmonella. We found that a partial amino acid sequence was present. Then, we actually prepared a plurality of antibodies that generate an antigen-antibody reaction with such a partial amino acid sequence, and verified that Salmonella in a sample can be detected with high sensitivity and accuracy by using these antibodies, and the present invention. Reached.

即ち、本発明の主旨は以下に存する。
[1]サルモネラ菌(Salmonella enteritidis)を検出するための抗体であって、配列番号1に示すサルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基からなるN末端ドメイン(NTD)内に存在するエピトープと抗原抗体反応を生じる、抗体もしくはその断片、又はそれらの誘導体。
[2]前記エピトープが、配列番号1の4〜22位のアミノ酸残基から選択される1又は2以上のアミノ酸残基を含む、項[1]に記載の抗体もしくはその断片、又はそれらの誘導体。
[3]マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、シュードモナス(Pseudomonas)属、ストレプトコッカス(Streptococcus)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びレジオネラ(Legionella)属から選択される1以上の属の細菌と交差反応しない、項[1]又は[2]に記載の抗体、もしくはその断片、又はそれらの誘導体。
[4]重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む、項[1]〜[3]の何れか一項に記載の抗体、もしくはその断片、又はそれらの誘導体。
[5]重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む抗体、もしくはその断片、又はそれらの誘導体。
[6]項[1]〜[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体をコードする核酸分子。
[7]項[6]に記載の核酸分子を含むベクター又はプラスミド。
[8]項[6]に記載の核酸分子又は項[7]に記載のベクター若しくはプラスミドで形質転換された宿主細胞。
[9]宿主細胞が哺乳動物細胞、昆虫細胞、酵母細胞、及び植物細胞から選ばれる真核細胞、又は細菌細胞である、項[8]に記載の宿主細胞。
[10]項[1]〜[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を発現するハイブリドーマ。
[11]検体中のサルモネラ菌の有無を検出するための方法であって、項[1]〜[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を検体と接触させ、抗原抗体反応の有無を検出することを含む方法。
[12]検体中のサルモネラ菌の有無を検出するための試薬であって、項[1]〜[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を含む、試薬。
[13]検体中のサルモネラ菌の有無を検出するためのキットであって、項[1]〜[5]のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体と、前記抗体を用いて検体中のサルモネラ菌の有無を検出するための指示を含む指示書とを含む、キット。
That is, the gist of the present invention is as follows.
[1] An antibody for detecting Salmonella enteritidis, which is present in the N-terminal domain (NTD) consisting of amino acid residues at positions 1 to 40 of the salmonella ribosomal protein L7 / L12 shown in SEQ ID NO: 1. An antibody or fragment thereof, or a derivative thereof, which causes an antigen-antibody reaction with an epitope.
[2] The antibody or fragment thereof according to Item [1], or a derivative thereof, wherein the epitope contains one or more amino acid residues selected from the amino acid residues at positions 4 to 22 of SEQ ID NO: 1. ..
[3] Mycoplasma, Escherichia, Chlamydia, Pseudomonas, Streptococcus, Staphylococcus, Neisseria, Haemophilus The antibody according to item [1] or [2], which does not cross-react with bacteria of one or more genera selected from the genus ), Bordetella, Moraxella, and Legionella. Fragments thereof, or derivatives thereof.
[4] As the heavy chain variable region sequence, an amino acid sequence having 80% or more homology with any one of the amino acid sequences selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13 and an amino acid sequence having 80% or more homology.
Items [1] to [1], wherein the light chain variable region sequence comprises an amino acid sequence having 80% or more homology with any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15. 3] The antibody according to any one of the above, or a fragment thereof, or a derivative thereof.
[5] As the heavy chain variable region sequence, an amino acid sequence having 80% or more homology with any one of the amino acid sequences selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13 and an amino acid sequence having 80% or more homology.
As the light chain variable region sequence, an antibody or a fragment thereof each containing an amino acid sequence having 80% or more homology with any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15 or Derivatives of them.
[6] A nucleic acid molecule encoding the antibody or fragment thereof according to any one of items [1] to [5], or a derivative thereof.
[7] A vector or plasmid containing the nucleic acid molecule according to item [6].
[8] A host cell transformed with the nucleic acid molecule according to item [6] or the vector or plasmid according to item [7].
[9] The host cell according to item [8], wherein the host cell is a eukaryotic cell or a bacterial cell selected from mammalian cells, insect cells, yeast cells, and plant cells.
[10] A hybridoma expressing the antibody or fragment thereof according to any one of items [1] to [5], or a derivative thereof.
[11] A method for detecting the presence or absence of Salmonella in a sample, wherein the antibody or fragment thereof according to any one of items [1] to [5], or a derivative thereof is brought into contact with the sample. A method comprising detecting the presence or absence of an antigen-antibody reaction.
[12] A reagent for detecting the presence or absence of Salmonella in a sample, which comprises the antibody or fragment thereof according to any one of items [1] to [5], or a derivative thereof.
[13] A kit for detecting the presence or absence of Salmonella in a sample, using the antibody or fragment thereof according to any one of items [1] to [5], or a derivative thereof, and the antibody. A kit containing instructions and instructions for detecting the presence or absence of Salmonella in a sample.

本発明の抗体によれば、検体中のサルモネラ菌を高い感度且つ精度で検出することが可能である。 According to the antibody of the present invention, Salmonella in a sample can be detected with high sensitivity and accuracy.

図1は、サルモネラ菌のリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 1 is a diagram schematically showing the three-dimensional structure of the ribosome protein L7 / L12 of Salmonella. 図2は、肺炎マイコプラズマのリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 2 is a diagram schematically showing the three-dimensional structure of the ribosomal proteins L7 / L12 of Mycoplasma pneumoniae. 図3は、インフルエンザ菌のリボソームタンパク質L7/L12の立体構造を模式的に示す図である。FIG. 3 is a diagram schematically showing the three-dimensional structure of Haemophilus influenzae ribosomal proteins L7 / L12. 図4は、サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のN末端ドメイン(NTD)部分の立体構造をそれぞれ模式的に示す図である。FIG. 4 is a diagram schematically showing the three-dimensional structures of the N-terminal domain (NTD) portion of the ribosomal proteins L7 / L12 of Salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae, respectively. 図5は、サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のN末端ドメイン(NTD)部分のアミノ酸配列のアラインメントを示す図である。FIG. 5 shows the alignment of the amino acid sequences of the N-terminal domain (NTD) portion of the ribosomal proteins L7 / L12 of Salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae. 図6Aは、モノクローナル抗体31E2−F5−F9とサルモネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6A is a diagram schematically showing the results of NMR analysis of the interaction between the monoclonal antibody 31E2-F5-F9 and the ribosomal protein L7 / L12 of Salmonella. 図6Bは、モノクローナル抗体33C9−F6−D1とサルモネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6B is a diagram schematically showing the results of NMR analysis of the interaction between the monoclonal antibody 33C9-F6-D1 and the ribosomal proteins L7 / L12 of Salmonella. 図6Cは、モノクローナル抗体36G2−F9−D2とサルモネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析結果を模式的に示す図である。FIG. 6C is a diagram schematically showing the results of NMR analysis of the interaction between the monoclonal antibody 36G2-F9-D2 and the ribosomal proteins L7 / L12 of Salmonella.

以下、本発明を具体的な実施の形態に即して詳細に説明する。但し、本発明は以下の実施の形態に束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。 Hereinafter, the present invention will be described in detail according to specific embodiments. However, the present invention is not bound by the following embodiments, and can be implemented in any embodiment as long as the gist of the present invention is not deviated.

なお、本明細書において引用される特許公報、特許出願公開公報、及び非特許公報を含む全ての文献は、その全体が援用により、あらゆる目的において本明細書に組み込まれる。 All documents including patent gazettes, patent application publication gazettes, and non-patent gazettes cited in this specification are incorporated herein by reference in their entirety.

また、本明細書に記載のアミノ酸配列を表す式では、別途記載のある場合を除き、アミノ酸を1文字コードで表すものとする。 Further, in the formula representing the amino acid sequence described in the present specification, the amino acid is represented by a one-character code unless otherwise described.

1.サルモネラ菌を検出するための抗体:
本発明の第1の態様は、サルモネラ菌を検出するための抗体(以下適宜「本発明の抗体」と称する。)に関する。
1. 1. Antibodies for detecting Salmonella:
The first aspect of the present invention relates to an antibody for detecting Salmonella (hereinafter, appropriately referred to as "antibody of the present invention").

(1)緒言:
本発明において「サルモネラ菌」(Salmonella enteritidis)又は「サルモネラ腸内菌」(Salmonella enterica serovar Enteritidis)は、グラム陰性通性嫌気性桿菌の腸内細菌科のサルモネラ属に属する細菌であり、主にヒトや動物の消化管に生息する。
(1) Introduction:
In the present invention, "Salmonella enteritidis" or "Salmonella enterica serovar Enteritidis" is a bacterium belonging to the genus Salmonella in the family Enterobacteriaceae of Gram-negative anaerobic bacilli, and is mainly human or Inhabits the digestive tract of animals.

サルモネラ菌は、感染した宿主の細胞内と細胞外の両方で増殖を行うことが可能な細胞内寄生体(通性細胞内寄生性細菌、細胞内寄生菌)の一種であり、積極的に細胞に働きかけて、細胞のエンドサイトーシスを活性化させる機能を有する。このため、マクロファージのような貪食活性を有する細胞のみならず、通常ならば貪食活性を持たない腸管上皮細胞等にも侵入できる性質を有する。 Salmonella is a type of intracellular parasite (passive intracellular parasite, intracellular parasite) that can grow both intracellularly and extracellularly of an infected host, and actively becomes a cell. It has the function of working to activate cell endocytosis. Therefore, it has the property of being able to invade not only cells having phagocytic activity such as macrophages but also intestinal epithelial cells that normally do not have phagocytic activity.

サルモネラ菌はヒトに対する病原性を示し、胃腸炎(食中毒)を引き起こす。サルモネラ菌による食中毒は、腹痛、嘔吐、下痢等の消化器症状や、発熱(高熱)等の症状を伴う。抵抗力が低い患者の場合は、菌血症を起こして重症化することがあり、稀ではあるが、内毒素による敗血症を併発し、死に至る場合もある。 Salmonella is pathogenic to humans and causes gastroenteritis (food poisoning). Food poisoning caused by Salmonella is accompanied by gastrointestinal symptoms such as abdominal pain, vomiting and diarrhea, and symptoms such as fever (high fever). Patients with low resistance may develop bloodstream infections and become severe, and in rare cases, may be accompanied by endotoxin-induced sepsis and death.

サルモネラ菌感染の診断は、まずは白血球数やCRP等の炎症反応の増加、トランスアミラーゼの上昇等の検査所見により行われる。確定診断は、糞便、血液、穿刺液、リンパ液等より菌を検出する必要がある。しかし、サルモネラ菌の特異的な迅速診断法は、現在のところ存在しない。 Diagnosis of Salmonella infection is first made by laboratory findings such as an increase in white blood cell count, CRP and other inflammatory reactions, and an increase in transamylase. For a definitive diagnosis, it is necessary to detect bacteria in feces, blood, puncture fluid, lymph fluid, and the like. However, there is currently no specific rapid diagnostic method for Salmonella.

サルモネラ菌感染の治療としては、発熱と下痢による脱水の補正や腹痛等の胃腸炎症状の緩和を中心に、対症療法を行うのが原則である。しかし、症状の悪化や感染の拡大を防ぐためにも、サルモネラ菌の特異的な迅速診断法が求められている。 As a treatment for Salmonella infection, symptomatic treatment is basically performed, focusing on correction of dehydration due to fever and diarrhea and relief of gastroenteritis symptoms such as abdominal pain. However, in order to prevent the worsening of symptoms and the spread of infection, a specific rapid diagnostic method for Salmonella is required.

本発明者等は、サルモネラ菌を検出する抗体を作製するに当たり、そのリボソームタンパク質L7/L12に着目した。本発明において「リボソームタンパク質L7/L12」、或いは単に「L7/L12」とは、微生物のタンパク質合成に必須のリボゾームタンパク質の1種であり、種々の細菌が共通して有するタンパク質である。サルモネラ菌のリボソームタンパク質L7/L12は、121個のアミノ酸残基から構成される単量体分子が2コピー連結された二量体構造を有する。各単量体の一次構造のアミノ酸配列を配列番号1に示す。本発明者等の解析結果によると、サルモネラ菌のリボソームタンパク質L7/L12の単量体は、1〜40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、41〜52位のアミノ酸残基からなる立体構造を形成していないリンカーを経て、更に53〜121位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成している。また、斯かる立体構造を有する単量体分子が2コピー、互いのNTD同士で会合することにより、二量体構造を形成している(後述の実施例1及び図1参照)。 The present inventors paid attention to the ribosomal proteins L7 / L12 in producing an antibody for detecting Salmonella. In the present invention, "ribosome protein L7 / L12" or simply "L7 / L12" is one of the ribosomal proteins essential for protein synthesis of microorganisms, and is a protein commonly possessed by various bacteria. The Salmonella ribosomal protein L7 / L12 has a dimeric structure in which two copies of a monomeric molecule composed of 121 amino acid residues are linked. The amino acid sequence of the primary structure of each monomer is shown in SEQ ID NO: 1. According to the analysis results of the present inventors, the monomer of the ribosomal protein L7 / L12 of Salmonella forms one three-dimensional structure (NTD: N-Terminal Domain) with amino acid residues at positions 1 to 40. After passing through a linker that does not form a three-dimensional structure consisting of amino acid residues at positions 41 to 52, another three-dimensional structure (CTD: C-Terminal Domain) is further formed by amino acid residues at positions 53 to 121. In addition, two copies of monomer molecules having such a three-dimensional structure are associated with each other's NTDs to form a dimer structure (see Examples 1 and FIG. 1 described later).

また、肺炎マイコプラズマ(Mycoplasma pneumoniae)及びインフルエンザ菌(Haemophilus influenzae)のリボソームタンパク質L7/L12も同様に、2分子がNTD(N-Terminal Domain、1〜40位の残基)で会合して二量体を形成し、ランダムコイル構造のリンカー(41〜54位)を経て、更にCTD(C-Terminal Domain、肺炎マイコプラズマの場合は55〜122位、インフルエンザ菌の場合は55〜123位)を形成していることが分かった(後述の実施例2及び実施例3並びに図2及び図3参照)。 Similarly, the ribosome proteins L7 / L12 of Mycoplasma pneumoniae and Haemophilus influenzae are also dimeric with two molecules associated with NTD (N-Terminal Domain, residues 1 to 40). CTD (C-Terminal Domain, 55-122 position in the case of Mycoplasma pneumoniae, 55-123 position in the case of Haemophilus influenzae) is further formed via a linker (41-54 position) having a random coil structure. (See Examples 2 and 3 and FIGS. 2 and 3 described below).

本発明者等は、サルモネラ菌のL7/L12が有するこうした立体構造の中でも、以下の検討に基づき、免疫原性に優れたエピトープの候補として、特にNTDに着目した。 Among these three-dimensional structures of Salmonella L7 / L12, the present inventors have paid particular attention to NTD as a candidate for an epitope having excellent immunogenicity based on the following studies.

インフルエンザ菌、肺炎マイコプラズマ、及びサルモネラ菌のL7/L12のNTDの立体構造を比較すると、表面形状と電荷分布に大きな差があることが分かった(図4)。例えば、インフルエンザ菌(HI)とサルモネラ菌(SE)の場合、二量体のN末端3残基が構造上部に突出しているが、肺炎マイコプラズマ(MP)の場合は突出が見られない。また、この突出部は、インフルエンザ菌の場合は1箇所であるが、サルモネラ菌の場合は2箇所である。NTDの表面電荷を比較すると、肺炎マイコプラズマの場合は、立体構造の中心部を疎水性(白色)〜非電荷親水性領域(薄青、薄赤色)が占めているが、インフルエンザ菌とサルモネラ菌の場合は負電荷(赤色)が占めている。また、インフルエンザ菌の場合は立体構造の右側に負電荷領域(赤色)が、左側に正電荷領域(青色)が位置している。サルモネラ菌の場合は対照的に立体構造の中心部に負電荷(赤色)が集中しており、構造の左右両端は疎水性領域(白色)が優勢である(後述の実施例4及び図4参照)。 Comparing the three-dimensional structures of Haemophilus influenzae, Mycoplasma pneumoniae, and Salmonella L7 / L12 NTDs, it was found that there was a large difference in surface shape and charge distribution (Fig. 4). For example, in the case of Haemophilus influenzae (HI) and Salmonella (SE), the three N-terminal residues of the dimer project to the upper part of the structure, but in the case of Mycoplasma pneumoniae (MP), no protrusion is observed. Further, this protrusion is one place in the case of Haemophilus influenzae, but two places in the case of Salmonella. Comparing the surface charges of NTD, in the case of Mycoplasma pneumoniae, the central part of the three-dimensional structure is occupied by hydrophobic (white) to uncharged hydrophilic regions (light blue, light red), but in the case of Influenza and Salmonella. Is occupied by negative charge (red). In the case of Haemophilus influenzae, the negative charge region (red) is located on the right side of the three-dimensional structure, and the positive charge region (blue) is located on the left side. In the case of Salmonella, in contrast, negative charges (red) are concentrated in the center of the three-dimensional structure, and hydrophobic regions (white) are predominant at the left and right ends of the structure (see Examples 4 and 4 below). ..

さらに、インフルエンザ菌、肺炎マイコプラズマ、及びサルモネラ菌のリボソームタンパク質L7/L12のアミノ酸配列を比較すると、1〜40位の残基において菌種間の差異が大きいことも分かった(図5)。例えば、肺炎マイコプラズマの5〜7位の残基は、インフルエンザ菌及びサルモネラ菌の4〜6位の残基に相当し、肺炎マイコプラズマのアミノ酸配列がD(アスパラギン酸:親水性、負電荷)、K(リジン:親水性、正電荷)、N(アスパラギン:親水性、非電荷)であるのに対し、インフルエンザ菌はT(トレオニン:親水性、非電荷)、N(アスパラギン:親水性、非電荷)、E(グルタミン酸:親水性、負電荷)、サルモネラ菌はT(トレオニン:親水性、非電荷)、K(リジン:親水性、正電荷)、D(アスパラギン酸:親水性、負電荷)であり、アミノ酸の種類及び極性の順序が菌種ごとに異なっている。同様に、肺炎マイコプラズマの14〜16位の残基は、インフルエンザ菌及びサルモネラ菌の13〜15位の残基に相当し、肺炎マイコプラズマのアミノ酸配列はK(リジン:親水性、正電荷)、E(グルタミン酸:親水性、負電荷)、M(メチオニン:疎水性)であるのに対し、インフルエンザ菌はA(アラニン:疎水性)、S(セリン:親水性、非電荷)、K(リジン:親水性、正電荷)、サルモネラ菌はS(セリン:親水性、非電荷)、A(アラニン:疎水性)、M(メチオニン:疎水性)であり、アミノ酸の種類及び極性の順序が菌種ごとに異なっている(後述の実施例4及び図5参照)。 Furthermore, when the amino acid sequences of Haemophilus influenzae, Mycoplasma pneumoniae, and Salmonella ribosomal proteins L7 / L12 were compared, it was also found that there was a large difference between the bacterial species at the residues at positions 1 to 40 (Fig. 5). For example, the residues at positions 5 to 7 of mycoplasma pneumoniae correspond to the residues at positions 4 to 6 of influenza and salmonella, and the amino acid sequences of mycoplasma pneumoniae are D (aspartic acid: hydrophilic, negatively charged), K ( Lysine: hydrophilic, positively charged), N (asparagin: hydrophilic, uncharged), whereas influenza bacteria are T (threonine: hydrophilic, uncharged), N (asparagin: hydrophilic, uncharged), E (glutamic acid: hydrophilic, negatively charged), Salmonella are T (threonine: hydrophilic, uncharged), K (lysine: hydrophilic, positively charged), D (aspartic acid: hydrophilic, negatively charged), amino acids The type and the order of polarity are different for each bacterial species. Similarly, the 14th to 16th residues of pneumonia mycoplasma correspond to the 13th to 15th residues of influenza and salmonella, and the amino acid sequences of pneumonia mycoplasma are K (lysine: hydrophilic, positively charged), E ( Glutamic acid: hydrophilic, negatively charged), M (methionine: hydrophobic), whereas influenza bacteria are A (alanine: hydrophobic), S (serine: hydrophilic, uncharged), K (lysine: hydrophilic). , Positive charge), Salmonella is S (serine: hydrophilic, uncharged), A (alanine: hydrophobic), M (methionine: hydrophobic), and the order of amino acid types and polarities differs depending on the bacterial species. (See Examples 4 and 5 below).

以上のように、サルモネラ菌のリボソームタンパク質L7/L12は、NTDに菌種間差異の大きなアミノ酸配列及び立体構造(表面形状、表面電荷)を有する。こうした知見から、本発明者等は、L7/L12全長ではなく、NTDを標的とした方が、より特異的な抗体を取得できるとの発想に至った。 As described above, the ribosomal proteins L7 / L12 of Salmonella have an amino acid sequence and a three-dimensional structure (surface shape, surface charge) having a large difference between bacterial species in NTD. From these findings, the present inventors have come up with the idea that a more specific antibody can be obtained by targeting NTD rather than the full length of L7 / L12.

そして、NTDと同様のアミノ酸配列を有するペプチドを発現させ、これに特異的に結合する抗体を作製し、スクリーニングを行うことにより、抗体31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2を取得した(後述の実施例5参照)。その上で、これらの抗体が何れも、サルモネラ菌のL7/L12のNTD、特に特定のアミノ酸残基を含んで構成されるエピトープと抗原抗体反応を生じていることを確認した(後述の実施例6及び図6A〜C参照)。更に、これらの抗体が何れも、優れた検出感度及び検出精度(菌種特異性)を有していることを確認し(後述の実施例7参照)、本発明を完成させた。
以下、より具体的に説明する。
Then, by expressing a peptide having an amino acid sequence similar to NTD, preparing an antibody that specifically binds to the peptide, and performing screening, the antibodies 31E2-F5-F9, 33C9-F6-D1, and 36G2-F9 -D2 was obtained (see Example 5 below). Then, it was confirmed that all of these antibodies caused an antigen-antibody reaction with NTD of L7 / L12 of Salmonella, particularly an epitope composed of a specific amino acid residue (Example 6 described later). And FIGS. 6A-C). Furthermore, it was confirmed that all of these antibodies had excellent detection sensitivity and detection accuracy (bacterial species specificity) (see Example 7 described later), and the present invention was completed.
Hereinafter, a more specific description will be given.

(2)抗体の概要:
本発明において「抗体」とは、特定の抗原又は物質を認識しそれに結合するタンパク質で、免疫グロブリン(Ig)という場合もある。一般的な抗体は、通常、ジスルフィド結合により相互結合された2つの軽鎖(軽鎖)及び2つの重鎖(重鎖)を有する。軽鎖にはλ鎖及びκ鎖と呼ばれる2種類が存在し、重鎖にはγ鎖、μ鎖、α鎖、δ鎖及びε鎖と呼ばれる5種類が存在する。その重鎖の種類によって、抗体には、それぞれIgG、IgM、IgA、IgD及びIgEという5種類のアイソタイプが存在する。
(2) Outline of antibody:
In the present invention, the "antibody" is a protein that recognizes and binds to a specific antigen or substance, and may be referred to as immunoglobulin (Ig). Common antibodies usually have two light chains (light chains) and two heavy chains (heavy chains) interconnected by disulfide bonds. There are two types of light chains called λ chains and κ chains, and there are five types of heavy chains called γ chains, μ chains, α chains, δ chains and ε chains. Depending on the type of heavy chain, there are five isotypes of antibody, IgG, IgM, IgA, IgD and IgE, respectively.

重鎖は各々、重鎖定常(CH)領域及び重鎖可変(VH)領域を含む。軽鎖は各々、軽鎖定常(CL)領域及び軽鎖可変(VL)領域を含む。軽鎖定常(CL)領域は単一のドメインから構成される。重鎖定常(CL)領域は、3つのドメイン、即ちCH1、CH2及びCH3から構成される。軽鎖可変(VL)領域及び重鎖可変(VH)領域は各々、フレームワーク領域(FR)と呼ばれる保存性の高い4つの領域(FR−1、FR−2、FR−3、FR−4)と、相補性決定領域(CDR)と呼ばれる超可変性の3つの領域(CDR−1、CDR−2、CDR−3)とから構成される。重鎖定常(CH)領域は、3つのCDR(CDR−H1、CDR−H2、CDR−H3)及び4つのFR(FR−H1、FR−H2、FR−H3、FR−H4)を有し、これらはアミノ末端からカルボキシ末端へと、FR−H1、CDR−H1、FR−H2、CDR−H2、FR−H3、CDR−H3、FR−H4の順番で配列される。軽鎖定常(CL)領域は、3つのCDR(CDR−L1、CDR−L2、CDR−L3)及び4つのFR(FR−L1、FR−L2、FR−L3、FR−L4)を有し、これらはアミノ末端からカルボキシ末端へと、FR−L1、CDR−L1、FR−L2、CDR−L2、FR−L3、CDR−L3、FR−L4の順番で配列される。重鎖及び軽鎖の可変領域は、抗原と相互作用する結合ドメインを含む。 The heavy chains include a heavy chain constant (CH) region and a heavy chain variable (VH) region, respectively. The light chains include a light chain constant (CL) region and a light chain variable (VL) region, respectively. The light chain constant (CL) region is composed of a single domain. The heavy chain constant (CL) region is composed of three domains, namely CH1, CH2 and CH3. The light chain variable (VL) regions and heavy chain variable (VH) regions are four highly conserved regions (FR-1, FR-2, FR-3, FR-4) called framework regions (FR), respectively. And three hypervariable regions (CDR-1, CDR-2, CDR-3) called complementarity determining regions (CDRs). The heavy chain constant (CH) region has three CDRs (CDR-H1, CDR-H2, CDR-H3) and four FRs (FR-H1, FR-H2, FR-H3, FR-H4). These are arranged in the order of FR-H1, CDR-H1, FR-H2, CDR-H2, FR-H3, CDR-H3, FR-H4 from the amino end to the carboxy end. The light chain constant (CL) region has three CDRs (CDR-L1, CDR-L2, CDR-L3) and four FRs (FR-L1, FR-L2, FR-L3, FR-L4). These are arranged in the order of FR-L1, CDR-L1, FR-L2, CDR-L2, FR-L3, CDR-L3, FR-L4 from the amino end to the carboxy end. The variable regions of the heavy and light chains contain binding domains that interact with the antigen.

本発明の抗体は、サルモネラ菌を検出可能な抗体であって、以下の二つの観点から特定することができる。まず、第一の観点として、本発明の抗体は、サルモネラ菌のリボソームタンパク質L7/L12に存在する特定のエピトープを認識して抗原抗体反応を生じるという特徴から規定することができる。また、第二の観点として、本発明の抗体は、その重鎖及び軽鎖の各可変領域が、特定のアミノ酸配列を有するという特徴からも規定することができる。第一の観点については後記[(2)抗体の性質]欄で、第二の観点については後記[(3)抗体の構造]欄で、それぞれ説明する。なお、本発明の抗体は第一の観点又は第二の観点の何れかの特徴を満たしていればよいが、第一の観点及び第二の観点の両方の特徴を満たす抗体も、本発明の抗体に含まれることは言うまでもない。 The antibody of the present invention is an antibody capable of detecting Salmonella and can be specified from the following two viewpoints. First, as a first aspect, the antibody of the present invention can be defined from the feature that it recognizes a specific epitope present in the ribosomal proteins L7 / L12 of Salmonella and causes an antigen-antibody reaction. As a second aspect, the antibody of the present invention can also be defined from the feature that each variable region of the heavy chain and the light chain has a specific amino acid sequence. The first viewpoint will be described later in the [(2) Antibody properties] column, and the second viewpoint will be described later in the [(3) Antibody structure] column. The antibody of the present invention may satisfy the characteristics of either the first aspect or the second aspect, but an antibody satisfying both the characteristics of the first aspect and the second aspect is also present in the present invention. Needless to say, it is contained in the antibody.

なお、本発明の抗体は、ポリクローナル抗体でもモノクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。ポリクローナル抗体は、通常は抗原で免疫した動物の血清から調製される抗体で、構造の異なる種々な抗体分子種の混合物である。一方、モノクローナル抗体とは、特定のアミノ酸配列を有する軽鎖可変(VL)領域及び重鎖可変(VH)領域の組み合わせを含む単一種類の分子からなる抗体をいう。モノクローナル抗体は、抗体産生細胞由来のクローンから産生することも可能であるが、抗体のタンパク質のアミノ酸をコードする遺伝子配列を有する核酸分子を取得し、斯かる核酸分子を用いて遺伝子工学的に作製することも可能である。また、重鎖及び軽鎖、或いはそれらの可変領域やCDR等の遺伝子情報を用いて抗体の結合性や特異性の向上のための改変等を行うことも、この分野での当業者にはよく知られた技術である。 The antibody of the present invention may be a polyclonal antibody or a monoclonal antibody, but is preferably a monoclonal antibody. Polyclonal antibodies are antibodies that are usually prepared from the sera of an animal immunized with an antigen and are a mixture of various antibody molecular species with different structures. On the other hand, a monoclonal antibody refers to an antibody consisting of a single type of molecule containing a combination of a light chain variable (VL) region and a heavy chain variable (VH) region having a specific amino acid sequence. A monoclonal antibody can be produced from a clone derived from an antibody-producing cell, but a nucleic acid molecule having a gene sequence encoding an amino acid of the antibody protein is obtained and genetically engineered using such a nucleic acid molecule. It is also possible to do. In addition, it is also common for those skilled in the art to modify the heavy and light chains, or their variable regions, and genetic information such as CDRs to improve the binding property and specificity of the antibody. It is a known technology.

また、本発明の抗体は、抗体の断片及び/又は誘導体であってもよい。抗体の断片としては、F(ab’)、Fab、Fv等が挙げられる。抗体の誘導体としては、軽鎖及び/又は重鎖の定常領域部分に人工的にアミノ酸変異を導入した抗体、軽鎖及び/又は重鎖の定常領域のドメイン構成を改変した抗体、1分子あたり2つ以上のFc領域を有する抗体、糖鎖改変抗体、二重特異性抗体、抗体又は抗体の断片を抗体以外のタンパク質と結合させた抗体コンジュゲート、抗体酵素、タンデムscFv、二重特異性タンデムscFv、ダイアボディ(Diabody)等が挙げられる。更には、前記の抗体又はその断片若しくは誘導体が非ヒト動物由来の場合、そのCDR以外の配列の一部又は全部をヒト抗体の対応配列に置換したキメラ抗体又はヒト化抗体も、本発明の抗体に含まれる。なお、別途明記しない限り、本発明において単に「抗体」という場合、抗体の断片及び/又は誘導体も含むものとする。 Further, the antibody of the present invention may be a fragment and / or a derivative of the antibody. Examples of the antibody fragment include F (ab') 2 , Fab, Fv and the like. Derivatives of the antibody include an antibody in which an amino acid mutation is artificially introduced into the constant region portion of the light chain and / or heavy chain, and an antibody in which the domain composition of the constant region of the light chain and / or heavy chain is modified, 2 per molecule. Antibodies with one or more Fc regions, sugar chain modified antibodies, bispecific antibodies, antibody conjugates in which an antibody or fragment of an antibody is bound to a protein other than the antibody, antibody enzyme, tandem scFv, bispecific tandem scFv , Diabody and the like. Furthermore, when the antibody or fragment or derivative thereof is derived from a non-human animal, a chimeric antibody or a humanized antibody in which a part or all of the sequence other than the CDR is replaced with the corresponding sequence of the human antibody is also an antibody of the present invention. include. Unless otherwise specified, the term "antibody" in the present invention also includes fragments and / or derivatives of the antibody.

(3)抗体の性質:
本発明の抗体は、第一の観点として、サルモネラ菌のリボソームタンパク質L7/L12内の特定のアミノ酸残基から構成されるエピトープと、抗原抗体反応を生じることを特徴とする。
(3) Properties of antibody:
The antibody of the present invention is characterized in that, as a first aspect, it causes an antigen-antibody reaction with an epitope composed of a specific amino acid residue in the ribosomal protein L7 / L12 of Salmonella.

本発明において「抗原抗体反応」とは、抗体がその抗原の何れかの成分を認識し、これと結合することをいう。 In the present invention, the "antigen-antibody reaction" means that an antibody recognizes and binds to any component of the antigen.

本発明において「エピトープ」とは、抗体が認識する抗原の一部分をいう。 In the present invention, the "epitope" refers to a part of an antigen recognized by an antibody.

サルモネラ菌のリボソームタンパク質L7/L12において、本発明の抗体が結合するエピトープは、配列番号1に示すサルモネラ菌のリボソームタンパク質L7/L12のアミノ酸配列のうち、1〜40位のアミノ酸残基で形成されるNTDに存在する。実施例5〜実施例7において後述する本発明者等の解析結果によると、本発明者等が実施例において実際に取得した高検出感度・高検出精度(高菌種特異性)のサルモネラ菌検出用抗体31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2は、何れもL7/L12の1〜40位のアミノ酸残基で形成されるNTDに結合するものであることが確認されている。 In the salmonella ribosomal protein L7 / L12, the epitope to which the antibody of the present invention binds is NTD formed by the amino acid residues at positions 1 to 40 of the amino acid sequence of the salmonella ribosomal protein L7 / L12 shown in SEQ ID NO: 1. Exists in. According to the analysis results of the present inventors described later in Examples 5 to 7, for detecting Salmonella with high detection sensitivity and high detection accuracy (high bacterial species specificity) actually acquired by the present inventors in the examples. It was confirmed that the antibodies 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 all bind to NTD formed by the amino acid residues 1 to 40 of L7 / L12. ing.

中でも、本発明の抗体が結合するリボソームタンパク質L7/L12のエピトープは、配列番号1の4〜22位のアミノ酸残基から選択される1又は2以上、中でも3以上、又は4以上、又は5以上、又は6以上、又は7以上、又は8以上、又は9以上、又は10以上のアミノ酸残基を含むことが好ましい。特に、本発明の抗体が結合するリボソームタンパク質L7/L12のエピトープは、少なくとも配列番号1の4〜15位から選択される1又は2以上のアミノ酸残基を含むことがより好ましく、4、5、6、13、14、及び15位から選択される1又は2以上のアミノ酸残基を含むことが更に好ましい。実施例において後述する本発明者等の解析結果によると、サルモネラ菌のリボソームタンパク質L7/L12のNTDの立体構造において、これらアミノ酸残基は表面付近に存在することが確認されている。また、これらのアミノ酸残基は、サルモネラ菌のL7/L12を他の細菌種のL7/L12と比較した場合に、特にサルモネラ菌の種特異性が高い場所であることからも、これらのアミノ酸残基が本発明の抗体に対するエピトープを形成していることは確実であると考えられる。 Among them, the epitope of the ribosomal protein L7 / L12 to which the antibody of the present invention binds is 1 or 2 or more selected from the amino acid residues at positions 4 to 22 of SEQ ID NO: 1, especially 3 or more, 4 or more, or 5 or more. , Or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more amino acid residues. In particular, the epitope of the ribosomal protein L7 / L12 to which the antibody of the present invention binds more preferably contains at least one or two or more amino acid residues selected from positions 4 to 15 of SEQ ID NO: 1, 4, 5, It is more preferred to include one or more amino acid residues selected from positions 6, 13, 14, and 15. According to the analysis results of the present inventors described later in Examples, it has been confirmed that these amino acid residues are present near the surface in the three-dimensional structure of NTD of the ribosome protein L7 / L12 of Salmonella. In addition, these amino acid residues are located in places where the species specificity of Salmonella is particularly high when L7 / L12 of Salmonella is compared with L7 / L12 of other bacterial species. It is considered certain that it forms an epitope for the antibody of the present invention.

また、本発明の抗体は、サルモネラ菌以外の細菌やその他の成分と交差反応を生じないことが好ましい。 Further, it is preferable that the antibody of the present invention does not cross-react with bacteria other than Salmonella and other components.

具体的には、本発明の抗体は、マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、シュードモナス(Pseudomonas)属、ストレプトコッカス(Streptococcus)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びレジオネラ(Legionella)属から選択される1以上の属の細菌と、交差反応を生じないことが好ましい。中でも、本発明の抗体は、2以上の属、更には3以上の属、又は4以上の属、又は5以上の属、又は6以上の属、特に全ての属の細菌と交差反応を生じないことが好ましい。 Specifically, the antibodies of the present invention include Mycoplasma, Escherichia, Chlamydia, Pseudomonas, Streptococcus, Staphylococcus, and Neisseria. It is preferable that it does not cross-react with bacteria of one or more genera selected from the genus Neisseria, Haemophilus, Bordetella, Moraxella, and Legionella. Among them, the antibody of the present invention does not cross-react with bacteria of 2 or more genera, further 3 or more genera, 4 or more genera, or 5 or more genera, or 6 or more genera, especially all genera. Is preferable.

なお、抗体とエピトープ・抗原や他の成分との抗原抗体反応の測定は、当業者であれば固相又は液相の系での結合測定を適宜選択して行うことが可能である。そのような方法としては、酵素結合免疫吸着法(enzyme-linked immunosorbent assay:ELISA)、酵素免疫測定法(enzyme immunoassay:EIA)、表面プラズモン共鳴法(surface plasmon resonance:SPR)、蛍光共鳴エネルギー移動法(fluorescence resonance energy transfer:FRET)、発光共鳴エネルギー移動法(luminescence resonance energy transfer:LRET)等が挙げられるが、それらに限定されるものではない。また、そのような抗原抗体結合を測定する際に、抗体及び/又は抗原を酵素、蛍光物質、発光物質、放射性同位元素等で標識を行い、その標識した物質の物理的及び/又は化学的特性に適した測定方法を用いて抗原抗体反応を検出することも可能である。 The measurement of the antigen-antibody reaction between the antibody and the epitope / antigen or other components can be carried out by a person skilled in the art by appropriately selecting the binding measurement in a solid phase or liquid phase system. Such methods include enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), surface plasmon resonance (SPR), and fluorescence resonance energy transfer method. (Fluorescence resonance energy transfer: FRET), luminescence resonance energy transfer (LRET), and the like can be mentioned, but the present invention is not limited thereto. In addition, when measuring such antigen-antibody binding, the antibody and / or antigen is labeled with an enzyme, a fluorescent substance, a luminescent substance, a radioactive isotope, or the like, and the physical and / or chemical properties of the labeled substance are obtained. It is also possible to detect the antigen-antibody reaction by using a measurement method suitable for the above.

中でも、本発明では特に、抗原(エピトープ)と抗体との相互作用を、核磁気共鳴法(Nuclear Magnetic Resonance:NMR)により解析することが好ましい。斯かる手法の詳細については、例えばCavanagh et al., “Protein NMR Spectroscopy, Principles and Practice Protein NMR”, 2nd Edition, Academic Press, 2006や、Vitha et al., “Spectroscopy: Principles and Instrumentation”, Wiley-Blackwell, 2018の記載を参照することができる。具体的な解析条件としては、制限されるものではないが、例えば後述の実施例6で本発明者等が採用した解析条件を参照することができる。 Above all, in the present invention, it is particularly preferable to analyze the interaction between an antigen (epitope) and an antibody by a nuclear magnetic resonance (NMR) method. For more information on such techniques, see, for example, Cavanagh et al., “Protein NMR Spectroscopy, Principles and Practice Protein NMR”, 2nd Edition, Academic Press, 2006, Vitha et al., “Spectroscopy: Principles and Instrumentation”, Wiley- You can refer to the description of Blackwell, 2018. The specific analysis conditions are not limited, but for example, the analysis conditions adopted by the present inventors in Example 6 described later can be referred to.

(4)抗体の構造:
第二の観点として、本発明の抗体は、その重鎖及び軽鎖の各可変領域が、特定のアミノ酸配列を有することを特徴とする。
(4) Antibody structure:
As a second aspect, the antibody of the present invention is characterized in that each variable region of its heavy chain and light chain has a specific amino acid sequence.

具体的に、本発明の抗体は、重鎖及び軽鎖の各可変領域配列として、以下のアミノ酸配列を有することが好ましい。 Specifically, the antibody of the present invention preferably has the following amino acid sequences as the variable region sequences of the heavy chain and the light chain.

重鎖可変領域配列としては、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有することが好ましい。中でも、重鎖可変領域配列としては、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列であることがとりわけ好ましい。 The heavy chain variable region sequence includes 80% or more, particularly 85% or more, further 90% or more, particularly 95% or more, with any one amino acid sequence selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13. , Or 96% or more, or 97% or more, or 99% or more, particularly preferably having an amino acid sequence having 100% homology (preferably identity). Among them, the heavy chain variable region sequence is particularly preferably any one amino acid sequence selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13.

軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有することが好ましい。中でも、軽鎖可変領域配列としては、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列であることがとりわけ好ましい。 As the light chain variable region sequence, 80% or more, particularly 85% or more, further 90% or more, particularly 95% or more, with any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15. Alternatively, it preferably has an amino acid sequence having 96% or more, 97% or more, or 99% or more, particularly 100% homology (preferably identity). Among them, the light chain variable region sequence is particularly preferably any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15.

なお、本発明において、2つのアミノ酸配列の「相同性」とは、両アミノ酸配列をアラインメントした際に各対応箇所に同一又は類似のアミノ酸残基が現れる比率であり、2つのアミノ酸配列の「同一性」とは、両アミノ酸配列をアラインメントした際に各対応箇所に同一のアミノ酸残基が現れる比率である。なお、2つのアミノ酸配列の「相同性」及び「同一性」は、例えばBLAST(Basic Local Alignment Search Tool)プログラム(Altschul et al., J. Mol. Biol., (1990), 215(3):403-10)等を用いて求めることが可能である。 In the present invention, the "homogeneity" of two amino acid sequences is the ratio at which the same or similar amino acid residues appear at each corresponding position when both amino acid sequences are aligned, and the two amino acid sequences are "same". "Sex" is the ratio at which the same amino acid residue appears at each corresponding location when both amino acid sequences are aligned. The "homology" and "identity" of the two amino acid sequences are, for example, BLAST (Basic Local Alignment Search Tool) program (Altschul et al., J. Mol. Biol., (1990), 215 (3) :. It can be obtained by using 403-10) or the like.

また、ある抗体の重鎖及び軽鎖の各可変配列から、各CDRの配列を同定する方法としては、例えばKabat法(Kabat et al., The Journal of Immunology, 1991, Vol.147, No.5, pp.1709-1719)やChothia法(Al-Lazikani et al., Journal of Molecular Biology, 1997, Vol.273, No.4, pp.927-948)が挙げられる。これらの方法は本分野の技術常識であるが、例えばDr. Andrew C.R. Martin’s Groupのウェブサイト(http://www.bioinf.org.uk/abs/)等も参照できる。 Further, as a method for identifying the sequence of each CDR from the variable sequences of the heavy chain and the light chain of a certain antibody, for example, the Kabat method (Kabat et al., The Journal of Immunology, 1991, Vol.147, No. 5) , Pp.1709-1719) and the Chothia method (Al-Lazikani et al., Journal of Molecular Biology, 1997, Vol.273, No.4, pp.927-948). These methods are common general knowledge in this field, but for example, the website of Dr. Andrew C.R. Martin's Group (http://www.bioinf.org.uk/abs/) can be referred to.

なお、あるアミノ酸に類似するアミノ酸としては、例えばアミノ酸の極性、荷電性、及びサイズに基づく以下の分類において、同一の群内に属するアミノ酸が挙げられる(何れも各アミノ酸の種類を一文字コードで表示する。)。
・芳香族アミノ酸:F、H、W、Y;
・脂肪族アミノ酸:I、L、V;
・疎水性アミノ酸:A、C、F、H、I、K、L、M、T、V、W、Y;
・荷電アミノ酸:D、E、H、K、R等:
・正荷電アミノ酸:H、K、R;
・負荷電アミノ酸:D、E;
・極性アミノ酸:C、D、E、H、K、N、Q、R、S、T、W、Y;
・小型アミノ酸:A、C、D、G、N、P、S、T、V等:
・超小型アミノ酸:A、C、G、S。
Examples of amino acids similar to a certain amino acid include amino acids belonging to the same group in the following classifications based on the polarity, chargeability, and size of amino acids (in each case, the type of each amino acid is indicated by a single character code). To do.).
-Aromatic amino acids: F, H, W, Y;
Aliphatic amino acids: I, L, V;
Hydrophobic amino acids: A, C, F, H, I, K, L, M, T, V, W, Y;
-Charged amino acids: D, E, H, K, R, etc .:
-Positively charged amino acids: H, K, R;
・ Loaded amino acids: D, E;
-Polar amino acids: C, D, E, H, K, N, Q, R, S, T, W, Y;
-Small amino acids: A, C, D, G, N, P, S, T, V, etc .:
-Ultra-small amino acids: A, C, G, S.

また、あるアミノ酸に類似するアミノ酸としては、例えばアミノ酸の側鎖の種類に基づく以下の分類において、同一の群内に属するアミノ酸も挙げられる(何れも各アミノ酸の種類を一文字コードで表示する。)。
・脂肪族側鎖を有するアミノ酸:G、A、V、L、I;
・芳香族側鎖を有するアミノ酸:F、Y、W;
・硫黄含有側鎖を有するアミノ酸:C、M;
・脂肪族ヒドロキシル側鎖を有するアミノ酸:S、T;
・塩基性側鎖を有するアミノ酸:K、R、H;
・酸性アミノ酸及びそれらのアミド誘導体:D、E、N、Q。
Further, as an amino acid similar to a certain amino acid, for example, in the following classification based on the type of side chain of the amino acid, an amino acid belonging to the same group can be mentioned (in each case, the type of each amino acid is indicated by a single character code). ..
Amino acids with aliphatic side chains: G, A, V, L, I;
-Amino acids with aromatic side chains: F, Y, W;
-Amino acids with sulfur-containing side chains: C, M;
Amino acids with aliphatic hydroxyl side chains: S, T;
-Amino acids with basic side chains: K, R, H;
-Acid amino acids and their amide derivatives: D, E, N, Q.

(5)抗体の作製方法:
本発明の抗体を作製する方法は、特に制限されないが、例えば以下の手法を挙げることができる。
(5) Method for producing antibody:
The method for producing the antibody of the present invention is not particularly limited, and examples thereof include the following methods.

本発明の抗体がポリクローナル抗体の場合、検出対象となるサルモネラ菌のリボソームタンパク質L7/L12の全部又は一部、好ましくはNTDを構成する配列番号1の1〜40位のアミノ酸残基(配列番号3のアミノ酸残基)からなるポリペプチド、或いはこれと80%以上、中でも85%以上、更には90%以上、とりわけ95%以上、又は96%以上、又は97%以上、又は99%以上、特に100%の相同性(好ましくは同一性)を有するアミノ酸配列を有するポリペプチド(これを以下「エピトープポリペプチド」という)を用いて作製することができる。具体的には、エピトープポリペプチドを用意し、必要に応じてアジュバントとともに動物へ接種せしめ、その血清を回収することで、前記エピトープポリペプチドと抗原抗体反応を生じる抗体(ポリクローナル抗体)を含む抗血清を得ることができる。接種する動物としてはヒツジ、ウマ、ヤギ、ウサギ、マウス、ラット等であり、特にポリクローナル抗体作製にはヒツジ、ウサギなどが好ましい。また、得られた抗血清より抗体を精製・分画し、サルモネラ菌のリボソームタンパク質L7/L12と抗原抗体反応を生じること、及び、他の特定の成分、例えば前記列記の属の細菌と交差反応を生じないことを指標として、公知の手法により適宜スクリーニングを行うことにより、より特異性に優れた所望の抗体を得ることが可能である。更に、所望の抗体分子を産生する抗体産生細胞を単離し、骨髄腫細胞と細胞融合させて自律増殖能を持ったハイブリドーマを作製することにより、モノクローナル抗体を得ることも可能である。また、動物への感作を必要としない方法として、抗体の重鎖可変(VH)領域若しくは軽鎖可変(VL)領域又はそれらの一部を発現するファージライブラリーを用いて、検出対象となるサルモネラ菌のリボソームタンパク質L7/L12と特異的に結合する抗体や特定のアミノ酸配列からなるファージクローンを取得し、その情報から抗体を作製する技術も利用可能である。 When the antibody of the present invention is a polyclonal antibody, all or part of the salmonella ribosome protein L7 / L12 to be detected, preferably the amino acid residues 1 to 40 of SEQ ID NO: 1 constituting NTD (SEQ ID NO: 3). A polypeptide consisting of (amino acid residues), or 80% or more, especially 85% or more, further 90% or more, particularly 95% or more, 96% or more, or 97% or more, or 99% or more, particularly 100%. It can be prepared by using a polypeptide having an amino acid sequence having the homology (preferably the sameness) of (hereinafter referred to as "epitope polypeptide"). Specifically, an antiserum containing an antibody (polyclonal antibody) that causes an antigen-antibody reaction with the epitope polypeptide by preparing an epitope polypeptide, inoculating the animal with an adjuvant as needed, and collecting the serum thereof. Can be obtained. The animals to be inoculated include sheep, horses, goats, rabbits, mice, rats and the like, and sheep, rabbits and the like are particularly preferable for producing polyclonal antibodies. Further, the antibody is purified and fractionated from the obtained antiserum to cause an antigen-antibody reaction with the ribosomal proteins L7 / L12 of Salmonella, and cross-reaction with other specific components, for example, bacteria of the genus listed above. It is possible to obtain a desired antibody having more excellent specificity by appropriately performing screening by a known method using the fact that it does not occur as an index. Furthermore, it is also possible to obtain a monoclonal antibody by isolating an antibody-producing cell that produces a desired antibody molecule and fusing it with myeloma cells to produce a hybridoma having an autonomous proliferation ability. In addition, as a method that does not require sensitization to animals, a phage library that expresses a heavy chain variable (VH) region or a light chain variable (VL) region of an antibody or a part thereof is used as a detection target. It is also possible to obtain an antibody that specifically binds to the ribosomal protein L7 / L12 of Salmonella or a phage clone consisting of a specific amino acid sequence, and to prepare an antibody from the information.

また、上記手順により所望の抗体が得られば、斯かる抗体の構造、具体的には重鎖定常(CH)領域、重鎖可変(VH)領域、軽鎖定常(CL)領域、及び/又は軽鎖可変(VL)領域のアミノ酸配列の一部又は全部を、公知のアミノ酸配列解析法を用いて解析することができる。こうして得られた所望の抗体のアミノ酸配列に対し、抗体の結合性や特異性の向上のための改変等を行う手法も、当業者には公知である。更には、所望の抗体のアミノ酸配列の全部又は一部(特に重鎖可変(VH)領域及び軽鎖可変(VL)領域の全部又は一部、中でも各CDRのアミノ酸配列)を利用し、必要に応じて公知の抗体のアミノ酸配列の一部(特に重鎖定常(CH)領域及び軽鎖定常(CL)領域、並びに場合により重鎖可変(VH)領域及び軽鎖可変(VL)領域の各FRのアミノ酸配列)と組み合わせることにより、同様の抗原特異性を有する蓋然性の高い別の抗体を設計することも可能である。 Further, if a desired antibody is obtained by the above procedure, the structure of such an antibody, specifically, a heavy chain constant (CH) region, a heavy chain variable (VH) region, a light chain constant (CL) region, and / or Part or all of the amino acid sequence of the light chain variable (VL) region can be analyzed using known amino acid sequence analysis methods. Those skilled in the art also know a method for modifying the amino acid sequence of the desired antibody thus obtained in order to improve the binding property and specificity of the antibody. Furthermore, it is necessary to utilize all or part of the amino acid sequence of the desired antibody (particularly all or part of the heavy chain variable (VH) region and the light chain variable (VL) region, especially the amino acid sequence of each CDR). Each FR of a part of the amino acid sequence of a known antibody (particularly the heavy chain constant (CH) region and the light chain constant (CL) region, and optionally the heavy chain variable (VH) region and the light chain variable (VL) region. It is also possible to design another highly probable antibody having similar antigen specificity by combining with (amino acid sequence of).

一方、抗体の一部(CDR又は可変領域)又は全部のアミノ酸配列が特定されれている場合には、公知の手法により、斯かる所望の抗体のアミノ酸配列の全部又は一部をコードする塩基配列を有する核酸分子を作製し、斯かる核酸分子を用いて遺伝子工学的に抗体を作製することも可能である。更には、斯かる塩基配列から所望の抗体の各構成要素を発現するためのベクターやプラスミド等を作製し、宿主細胞(哺乳類細胞、昆虫細胞、植物細胞、酵母細胞、微生物細胞等)に導入して、当該抗体を産生させることも可能である。また、得られた抗体の性能の向上や副作用の回避を目的に、抗体の定常領域の構造に改変を入れることや、糖鎖の部分での改変を行うことも、当業者によく知られた技術によって適宜行うことができる。 On the other hand, when a part (CDR or variable region) or all amino acid sequences of the antibody are specified, a base sequence encoding all or part of the amino acid sequence of such a desired antibody is used by a known method. It is also possible to prepare a nucleic acid molecule having the above, and to prepare an antibody by genetic engineering using such a nucleic acid molecule. Furthermore, vectors and plasmids for expressing each component of the desired antibody are prepared from such a base sequence and introduced into host cells (mammalian cells, insect cells, plant cells, yeast cells, microbial cells, etc.). It is also possible to produce the antibody. It is also well known to those skilled in the art that the structure of the constant region of the antibody is modified and the sugar chain portion is modified for the purpose of improving the performance of the obtained antibody and avoiding side effects. It can be done as appropriate depending on the technique.

なお、以上説明した、本発明の抗体を製造する方法、本発明の抗体をコードする核酸分子、斯かる核酸分子を含むベクター又はプラスミド、斯かる核酸分子やベクター又はプラスミドを含む細胞、更には本発明の抗体を産生するハイブリドーマ等も、本発明の対象となる。 The method for producing an antibody of the present invention described above, a nucleic acid molecule encoding the antibody of the present invention, a vector or plasmid containing such a nucleic acid molecule, a cell containing such a nucleic acid molecule or vector or plasmid, and further, the present invention. A hybridoma or the like that produces the antibody of the present invention is also an object of the present invention.

なお、本明細書に記載の抗体の作製・改変等の技法は、何れも当業者には公知であるが、例えばAntibodies; A laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory Press (2014)等の記載を参照することができる。また、本明細書に記載の分子生物学的技法(例えばアミノ酸配列解析法、核酸分子の設計・作製法、ベクターやプラスミドの設計・作製法等)も、何れも当業者には公知であるが、例えばMolecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, Shambrook, J. et al. (1989)等の記載を参照することができる。 Techniques for producing and modifying antibodies described in the present specification are all known to those skilled in the art, and for example, Antibodies; A laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory Press (2014). ) Etc. can be referred to. Further, all of the molecular biological techniques described in the present specification (for example, amino acid sequence analysis method, nucleic acid molecule design / preparation method, vector / plasmid design / preparation method, etc.) are known to those skilled in the art. , For example, Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, Shambrook, J. et al. (1989) and the like.

2.サルモネラ菌の検出方法・試薬・キット:
本発明の別の態様は、本発明の抗体を用いて、検体中のサルモネラ菌の有無を検出する方法(以下適宜「本発明の検出方法」と呼ぶ)に関する。
2. Salmonella detection method / reagent / kit:
Another aspect of the present invention relates to a method for detecting the presence or absence of Salmonella in a sample using the antibody of the present invention (hereinafter, appropriately referred to as "the detection method of the present invention").

本発明の検出方法は、前記の本発明の抗体もしくはその断片、又はそれらの誘導体を、検体と接触させ、抗原抗体反応の有無を検出することを含む。ここで、本発明の抗体は、前述のようにサルモネラ菌の特定のエピトープと抗原抗体反応を生じることから、斯かる抗原抗体反応の有無を公知の各種の免疫測定法で検出することで、検体中にサルモネラ菌が存在するか否かを検出することができる。 The detection method of the present invention includes contacting the antibody of the present invention or a fragment thereof, or a derivative thereof with a sample to detect the presence or absence of an antigen-antibody reaction. Here, since the antibody of the present invention causes an antigen-antibody reaction with a specific epitope of Salmonella as described above, the presence or absence of such an antigen-antibody reaction can be detected in various known immunoassays in the sample. It is possible to detect the presence or absence of Salmonella in the body.

検体としては、主にヒト又は非ヒト動物由来の生体試料が挙げられる。生体試料の種類は特に制限されないが、例としては血液(全血、血漿、血清)、リンパ液、尿、唾液、涙液、羊水、腹水等の液体試料や、各種組織の生検試料等の固体試料のホモジネート懸濁液や抽出液、更にはこれらの培養上清などが挙げられる。 Examples of the sample mainly include biological samples derived from humans or non-human animals. The type of biological sample is not particularly limited, but examples thereof include liquid samples such as blood (whole blood, plasma, serum), lymph, urine, saliva, tears, sheep's water, and ascites, and solids such as biopsy samples of various tissues. Examples thereof include homogenate suspensions and extracts of samples, and culture supernatants thereof.

なお、本発明の抗体は、前述のようにサルモネラ菌のリボソームタンパク質L7/L12に存在する特定のエピトープを認識して抗原抗体反応を生じることから、サルモネラ菌のリボソームタンパク質L7/L12を細菌の細胞膜外に露出させることで、検出感度を向上させることができる。従って、本発明の抗体を検体に接触させる前に、検体に対して細菌を溶菌させる処理を施してもよい。斯かる細菌の溶菌処理としては、限定されるものではないが、界面活性剤や溶菌酵素等を用いた溶菌処理が挙げられる。溶菌処理に使用可能な界面活性剤としては、例えばTriton X-100、Tween 20、Briji 35、Nonidet P-40、ドデシル−β−D−マルトシド、オクチル−β−D−グルコシド等の非イオン性界面活性剤;Zwittergent 3-12、CHAPS(3−(3−コラミドプロピル)ジメチルアンモニオ−1−プロパンスルホネート)等の両イオン性界面活性剤;SDS(ドデシル硫酸ナトリウム)等の陰イオン性界面活性剤等が挙げられる。溶菌処理に使用可能な溶菌酵素としては、例えばリゾチーム、リゾスタフィン、ペプシン、グルコシダーゼ、ガラクトシダーゼ、アクロモペプチダーゼ、β−N−アセチルグルコサミニダーゼ等が挙げられる。 Since the antibody of the present invention recognizes a specific epitope present in the ribosomal protein L7 / L12 of Salmonella and causes an antigen-antibody reaction as described above, the ribosomal protein L7 / L12 of Salmonella is placed outside the cell membrane of the bacterium. By exposing it, the detection sensitivity can be improved. Therefore, the sample may be treated to lyse the bacteria before the antibody of the present invention is brought into contact with the sample. The lytic treatment of such bacteria includes, but is not limited to, lytic treatment using a surfactant, a lytic enzyme, or the like. Examples of surfactants that can be used for lysis treatment include nonionic surfactants such as Triton X-100, Tween 20, Briji 35, Nonidet P-40, dodecyl-β-D-maltoside, and octyl-β-D-glucoside. Activator; amphoteric surfactant such as Zwittergent 3-12, CHAPS (3- (3-colamidpropyl) dimethylammonio-1-propanesulfonate); anionic surfactant such as SDS (sodium dodecyl sulfate) Agents and the like can be mentioned. Examples of the lytic enzyme that can be used for the lytic treatment include lysozyme, lysostaphin, pepsin, glucosidase, galactosidase, achromopeptidase, β-N-acetylglucosaminidase and the like.

本発明の抗体を検体と接触させる手法や、抗原抗体反応を検出するための免疫測定法は、限定されない。免疫測定法の例としては、限定されるものではないが、抗体を担持させたマイクロタイタープレートを用いるELISA(酵素結合免疫吸着)法;抗体を担持させたラテックス粒子(例えばポリスチレンラテックス粒子等)を用いるラテックス粒子凝集測定法;抗体を担持させたメンブレン等を用いるイムノクロマト法;着色粒子又は発色能を有する粒子、酵素若しくは蛍光体等で標識した検出用抗体と、磁気微粒子等の固相担体に固定化した捕捉用抗体とを用いるサンドイッチアッセイ法等、種々の公知の免疫測定法が挙げられる。なお、サンドイッチアッセイ法等の検出用抗体及び捕捉用抗体を併用する免疫測定法の場合、本発明の抗体は捕捉用抗体として用いてもよく、検出用抗体として用いてもよい。 The method of contacting the antibody of the present invention with a sample and the immunoassay method for detecting an antigen-antibody reaction are not limited. Examples of immunoassays include, but are not limited to, ELISA (enzyme-linked immunosorbent assay) methods using antibody-supported microtiter plates; antibody-supported latex particles (eg, polystyrene latex particles, etc.). Latex particle agglutination measurement method to be used; Immunochromatography method using a membrane or the like carrying an antibody; Fixed to a solid phase carrier such as colored particles or particles having a color-developing ability, an enzyme or a phosphor labeled with a detection antibody, and magnetic fine particles. Various known immunoassays such as a sandwich assay method using a modified capture antibody can be mentioned. In the case of an immunoassay method in which a detection antibody and a capture antibody are used in combination, such as a sandwich assay method, the antibody of the present invention may be used as a capture antibody or as a detection antibody.

本発明の検出方法によれば、検体中のサルモネラ菌の有無を迅速且つ簡便に検出することが可能となる。 According to the detection method of the present invention, the presence or absence of Salmonella in a sample can be detected quickly and easily.

なお、本発明の検出方法に使用するべく、本発明の抗体を含む試薬や、本発明の抗体を用いて検体中のサルモネラ菌の有無を検出するための指示を含む指示書と共に含むキットも、本発明の対象となる。斯かる試薬の溶媒やその他の成分、また、斯かるキットの指示書における操作や用途の指示、更には斯かるキットに含まれるその他の構成要素は、サルモネラ菌の検出に使用される具体的な免疫測定法の種類に応じて適宜決定すればよい。中でも、検体中のサルモネラ菌の有無を簡易に検出可能なキットの具体例としては、ラテラルフロー方式のキットと、フロースルー方式のキットとを挙げることができる。ここで、ラテラルフロー方式とは、捕捉用抗体を表面に固定化させた検出領域を含むメンブレンに対し、検出対象試料及び検出用抗体を順に滴下して平行に展開させ、メンブレンの検出領域に捕捉された目的物質を検出する方法である。一方、フロースルー方式とは、捕捉用抗体を表面に固定化させたメンブレンに、検出対象試料及び検出用抗体を順に滴下して垂直に通過させ、メンブレンの表面に捕捉された目的物質を検出する方法である。本発明の検出方法は、ラテラルフロー方式のキットとフロースルー方式のキットの何れに対しても適用することが可能である。 In addition, for use in the detection method of the present invention, a reagent containing the antibody of the present invention and a kit including an instruction sheet including an instruction for detecting the presence or absence of Salmonella in a sample using the antibody of the present invention are also included in the present invention. It is the subject of the invention. Solvents and other components of such reagents, as well as instructions for operation and use in the instructions for such kits, as well as other components contained in such kits, are specific immunoassays used for the detection of Salmonella. It may be appropriately determined according to the type of measurement method. Among them, specific examples of the kit that can easily detect the presence or absence of Salmonella in the sample include a lateral flow type kit and a flow-through type kit. Here, in the lateral flow method, a detection target sample and a detection antibody are sequentially dropped on a membrane including a detection region in which a capture antibody is immobilized on the surface and developed in parallel, and captured in the detection region of the membrane. This is a method for detecting the target substance. On the other hand, in the flow-through method, the detection target sample and the detection antibody are dropped in order on a membrane on which the capture antibody is immobilized and passed vertically to detect the target substance captured on the surface of the membrane. The method. The detection method of the present invention can be applied to both a lateral flow type kit and a flow-through type kit.

以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は以下の実施例にも束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not bound by the following examples, and can be carried out in any form as long as the gist of the present invention is not deviated.

[実施例1]サルモネラ菌のリボソームタンパク質L7/L12の立体構造解析
<1:サルモネラ菌のリボソームタンパク質L7/L12の取得>
サルモネラ菌のリボソームタンパク質L7/L12遺伝子(配列番号2)をクローニングしたpGEX−6P−1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 1] Three-dimensional structural analysis of salmonella ribosomal proteins L7 / L12
<1: Acquisition of Salmonella ribosome protein L7 / L12>
A pGEX-6P-1 plasmid (manufactured by GE Healthcare) in which the ribosomal protein L7 / L12 gene (SEQ ID NO: 2) of Salmonella was cloned was introduced into Escherichia coli BL21 (DE3) pLysS Escherichia coli strain (manufactured by Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N−NHCl、11.1mM 13C−グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル−β−チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain, M9 medium (47.7mM Na 2 HPO 4 · 12H 2 O, 22mM KH 2 PO 4, 8.6mM NaCl, 2mM MgSO 4, 50μM ZnSO 4, 100μM CaCl 2, 4.1μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM ampicillin sodium, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose), cultured at 37 ° C. until OD 600 reached 0.6, and quenched with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the cells were cultured at 16 ° C. for 36 hours and then centrifuged at 7000 rpm for 15 minutes at 4 ° C. to recover Escherichia coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン−セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン−セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 To 1 g of the obtained E. coli, 5 mL of BugBuster (manufactured by Merck Millipore) and 5 μL of benzoase (registered trademark) endonuclease (manufactured by Merck Millipore) were added, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtering with a 0.45 μm filter, the ribosomal protein L7 / L12 was purified on a glutathione-sepharose column using a Profinia protein purification system (manufactured by Bio-Rad). To 15 mL of the obtained protein solution, 1.5 mL of 10-fold concentration PBS (phosphate buffered saline) and Precision Protease (manufactured by GE Healthcare) were added, and the mixture was shaken at room temperature for 2 hours. The reaction was passed through the glutathione-sepharose column again to obtain a pass-through fraction as ribosomal proteins L7 / L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris−HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris−HCl pH8.0を0〜50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7 / L12 was dialyzed using 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and an ion exchange column RESOURCE Q (manufactured by GE Healthcare) was connected. The protein was flowed through the AKTA protein purification system (manufactured by GE Healthcare) at a flow rate of 2 mL / min. Subsequently, 20 mM Tris-HCl pH 8.0 supplemented with 1 M NaCl was flowed at a flow rate of 2 mL / min so as to linearly increase from 0 to 50%, and the ribosomal protein L7 / L12 was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO−RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。 The obtained ribosome protein L7 / L12 was used as a mobile phase in PBS (phosphate buffered saline), and a gel filtration column HiLoad 16/60 Superdex 75pg (manufactured by GE Healthcare) was connected to the AKTA protein purification system (manufactured by GE Healthcare). ) At a flow rate of 1 mL / min to obtain ribosomal proteins L7 / L12. The obtained ribosomal proteins L7 / L12 were centrifugally concentrated to 1 mM using Protein Assay Kit I (manufactured by BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによるサルモネラ菌のリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4−ジメチル−4−シラペンタン−1−スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: Three-dimensional structural analysis of Salmonella ribosomal proteins L7 / L12 by NMR>
In a Shigemi NMR sample tube, 250 μL of 1 mM ribosomal protein L7 / L12, 20 μL of heavy water, and 1 μL of 5 mg / mL DSS (4,4-dimethyl-4-silappentan-1-sulfonic acid) are placed, degassed with an ejector, and then NMR. Installed in the device.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H−15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H−13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H−13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH−TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH−TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N−edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C−edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C−edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 AVANCE III HD 600MHz NMR device (manufactured by Bruker), HNCO (4 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN (CO) CA (8 integrations, number of data points (8) F1 x F2 x F3) 64 x 128 x 1024), HNCA (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HNCACB (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HBHA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HN (CA) HA (32 totals, number of data points (F1 x F2 x F3) 64 x 128 x 1024), C (CO) NH (16 totals, Using a pulse sequence of the number of data points (F1 x F2 x F3) 128 x 128 x 1024), each FID was subjected to [ 1 H- 15 N] HSQC (integration number 8,) with a Unity INOVA 800 MHz NMR device (manufactured by Agent). Number of data points (F1 x F2) 512 x 2048), [ 1 H- 13 C] HSQC alipatic (number of integrations 8, number of data points (F1 x F2) 868 x 2048), [ 1 H- 13 C] HSQC aromatic ( Number of integrations 32, number of data points (F1 x F2) 204 x 2048), HCCH-TOCSY aliphatic (number of integrations 4, number of data points (F1 x F2 x F3) 96 x 256 x 2048), HCCH-TOCSY aromatic (number of integrations) 8, number of data points (F1 x F2 x F3) 128 x 128 x 2048), 15 N-edited NOESY (mixing time 75 milliseconds, number of integrations 8, number of data points (F1 x F2 x F3) 64 x 256 x 2048) ), 13 C-edited NOESY aliphatic (mixing time 75 milliseconds, total number of times 8, number of data points (F1 x F2 x F3) 96 x 256 x 2048), 13 C-edited NOESY aromatic (mixing time 75 milliseconds, total) Each FID was obtained using a pulse sequence of 8 times and the number of data points (F1 × F2 × F3) 64 × 256 × 2048). Each obtained FID was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖−NH−をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H−15N] HSQCスペクトル上に帰属した。次に、側鎖−CH−、−CH−、−CH−をC(CO)NH、HCCH−TOCSY aliphatic、HCCH−TOCSY aromaticの各スペクトルを用いて、[H−13C] HSQC aliphaticスペクトルと[H−13C] HSQC aromaticスペクトル上に帰属した。最後に、15N−edited NOESY、13C−edited NOESY aliphatic、13C−edited NOESY aromaticの各スペクトルを用いて、5Å以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 Each acquired spectrum was assigned on Sparky software. First, the main chain -NH- of the ribosomal protein L7 / L12 was subjected to the spectra of HNCO, HN (CO) CA, HNCA, CBCA (CO) NH, HNCACB, HBHA (CO) NH, and HN (CA) HA. [ 1 H- 15 N] It was assigned on the HSQC spectrum. Next, the side chain -CH -, - CH 2 -, - CH 3 - a with C (CO) NH, HCCH- TOCSY aliphatic, each spectrum of the HCCH-TOCSY aromatic, [1 H- 13 C] HSQC aliphatic It was assigned on the spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum. Finally, using the 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra, 1 H within a distance of 5 Å was detected and assigned. The details of the attribution method were as follows: PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 Enter a belonging to atomic coordinates and 1 H distance information CYANA conformation automatic calculation software, is converged sufficiently energy values through the 20 times of the three-dimensional structure calculation, the spatial atomic coordinates of ribosomal protein L7 / L12 conformation Obtained.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図1)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1〜40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、およそ12個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に53〜121位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図1)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図1)。 The acquired spatial atomic coordinates were input to Pymol software, and the three-dimensional structure of the ribosomal proteins L7 / L12 was drawn (Fig. 1). When the three-dimensional structure of the main chain of the ribosomal protein L7 / L12 is displayed, one three-dimensional structure (NTD: N-Terminal Domain) is formed by the amino acid residues at positions 1 to 40, and from about 12 amino acid residues. It was found that another three-dimensional structure (CTD: C-Terminal Domain) was further formed by amino acid residues at positions 53 to 121 via a linker that did not form a three-dimensional structure (FIG. 1). It was also found that two ribosomal protein L7 / L12 molecules having such a three-dimensional structure associate with each other's NTDs to form a dimer (FIG. 1).

[実施例2]肺炎マイコプラズマのリボソームタンパク質L7/L12の立体構造解析
<1:肺炎マイコプラズマのリボソームタンパク質L7/L12の取得>
肺炎マイコプラズマのリボソームタンパク質L7/L12遺伝子(配列番号18)をクローニングしたpGEX−6P−1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 2] Three-dimensional structural analysis of ribosomal proteins L7 / L12 of Mycoplasma pneumoniae
<1: Acquisition of ribosomal proteins L7 / L12 from mycoplasma pneumoniae>
The pGEX-6P-1 plasmid (manufactured by GE Healthcare) in which the ribosomal protein L7 / L12 gene (SEQ ID NO: 18) of Mycoplasma pneumoniae was cloned was introduced into Escherichia coli BL21 (DE3) pLysS Escherichia coli strain (manufactured by Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N−NHCl、11.1mM 13C−グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル−β−チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain, M9 medium (47.7mM Na 2 HPO 4 · 12H 2 O, 22mM KH 2 PO 4, 8.6mM NaCl, 2mM MgSO 4, 50μM ZnSO 4, 100μM CaCl 2, 4.1μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM ampicillin sodium, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose), cultured at 37 ° C. until OD 600 reached 0.6, and quenched with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the cells were cultured at 16 ° C. for 36 hours and then centrifuged at 7000 rpm for 15 minutes at 4 ° C. to recover Escherichia coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン−セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン−セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 To 1 g of the obtained E. coli, 5 mL of BugBuster (manufactured by Merck Millipore) and 5 μL of benzoase (registered trademark) endonuclease (manufactured by Merck Millipore) were added, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtering with a 0.45 μm filter, the ribosomal protein L7 / L12 was purified on a glutathione-sepharose column using a Profinia protein purification system (manufactured by Bio-Rad). To 15 mL of the obtained protein solution, 1.5 mL of 10-fold concentration PBS (phosphate buffered saline) and Precision Protease (manufactured by GE Healthcare) were added, and the mixture was shaken at room temperature for 2 hours. The reaction was passed through the glutathione-sepharose column again to obtain a pass-through fraction as ribosomal proteins L7 / L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris−HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris−HCl pH8.0を0〜50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7 / L12 was dialyzed using 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and an ion exchange column RESOURCE Q (manufactured by GE Healthcare) was connected. The protein was flowed through the AKTA protein purification system (manufactured by GE Healthcare) at a flow rate of 2 mL / min. Subsequently, 20 mM Tris-HCl pH 8.0 supplemented with 1 M NaCl was flowed at a flow rate of 2 mL / min so as to linearly increase from 0 to 50%, and the ribosomal protein L7 / L12 was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO−RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。 The obtained ribosome protein L7 / L12 was used as a mobile phase in PBS (phosphate buffered saline), and a gel filtration column HiLoad 16/60 Superdex 75pg (manufactured by GE Healthcare) was connected to the AKTA protein purification system (manufactured by GE Healthcare). ) At a flow rate of 1 mL / min to obtain ribosomal proteins L7 / L12. The obtained ribosomal proteins L7 / L12 were centrifugally concentrated to 1 mM using Protein Assay Kit I (manufactured by BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによる肺炎マイコプラズマのリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4−ジメチル−4−シラペンタン−1−スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: Three-dimensional structural analysis of ribosomal proteins L7 / L12 of mycoplasma pneumoniae by NMR>
In a Shigemi NMR sample tube, 250 μL of 1 mM ribosomal protein L7 / L12, 20 μL of heavy water, and 1 μL of 5 mg / mL DSS (4,4-dimethyl-4-silappentan-1-sulfonic acid) are placed, degassed with an ejector, and then NMR. Installed in the device.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H−15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H−13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H−13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH−TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH−TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N−edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C−edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C−edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 AVANCE III HD 600MHz NMR device (manufactured by Bruker), HNCO (4 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN (CO) CA (8 integrations, number of data points (8) F1 x F2 x F3) 64 x 128 x 1024), HNCA (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HNCACB (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HBHA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HN (CA) HA (32 totals, number of data points (F1 x F2 x F3) 64 x 128 x 1024), C (CO) NH (16 totals, Using a pulse sequence of the number of data points (F1 x F2 x F3) 128 x 128 x 1024), each FID was subjected to [ 1 H- 15 N] HSQC (integration number 8,) with a Unity INOVA 800 MHz NMR device (manufactured by Agent). Number of data points (F1 x F2) 512 x 2048), [ 1 H- 13 C] HSQC alipatic (number of integrations 8, number of data points (F1 x F2) 868 x 2048), [ 1 H- 13 C] HSQC aromatic ( Number of integrations 32, number of data points (F1 x F2) 204 x 2048), HCCH-TOCSY aliphatic (number of integrations 4, number of data points (F1 x F2 x F3) 96 x 256 x 2048), HCCH-TOCSY aromatic (number of integrations) 8, number of data points (F1 x F2 x F3) 128 x 128 x 2048), 15 N-edited NOESY (mixing time 75 milliseconds, number of integrations 8, number of data points (F1 x F2 x F3) 64 x 256 x 2048) ), 13 C-edited NOESY aliphatic (mixing time 75 milliseconds, total number of times 8, number of data points (F1 x F2 x F3) 96 x 256 x 2048), 13 C-edited NOESY aromatic (mixing time 75 milliseconds, total) Each FID was obtained using a pulse sequence of 8 times and the number of data points (F1 × F2 × F3) 64 × 256 × 2048). Each obtained FID was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖−NH−をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H−15N] HSQCスペクトル上に帰属した。次に、側鎖−CH−、−CH−、−CH−をC(CO)NH、HCCH−TOCSY aliphatic、HCCH−TOCSY aromaticの各スペクトルを用いて、[H−13C] HSQC aliphaticスペクトルと[H−13C] HSQC aromaticスペクトル上に帰属した。最後に、15N−edited NOESY、13C−edited NOESY aliphatic、13C−edited NOESY aromaticの各スペクトルを用いて、5Å以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 Each acquired spectrum was assigned on Sparky software. First, the main chain -NH- of the ribosomal protein L7 / L12 was subjected to the spectra of HNCO, HN (CO) CA, HNCA, CBCA (CO) NH, HNCACB, HBHA (CO) NH, and HN (CA) HA. [ 1 H- 15 N] It was assigned on the HSQC spectrum. Next, the side chain -CH -, - CH 2 -, - CH 3 - a with C (CO) NH, HCCH- TOCSY aliphatic, each spectrum of the HCCH-TOCSY aromatic, [1 H- 13 C] HSQC aliphatic It was assigned on the spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum. Finally, using the 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra, 1 H within a distance of 5 Å was detected and assigned. The details of the attribution method were as follows: PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 Enter a belonging to atomic coordinates and 1 H distance information CYANA conformation automatic calculation software, is converged sufficiently energy values through the 20 times of the three-dimensional structure calculation, the spatial atomic coordinates of ribosomal protein L7 / L12 conformation Obtained.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図2)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1〜40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、およそ14個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に55〜122位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図2)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図2)。 The acquired spatial atomic coordinates were input to Pymol software, and the three-dimensional structure of the ribosomal proteins L7 / L12 was drawn (FIG. 2). When the three-dimensional structure of the main chain of the ribosomal protein L7 / L12 is displayed, one three-dimensional structure (NTD: N-Terminal Domain) is formed by the amino acid residues at positions 1 to 40, and from about 14 amino acid residues. It was found that another three-dimensional structure (CTD: C-Terminal Domain) was further formed by the amino acid residues at positions 55 to 122 through the linker that did not form the three-dimensional structure (FIG. 2). It was also found that two ribosomal protein L7 / L12 molecules having such a three-dimensional structure associate with each other's NTDs to form a dimer (FIG. 2).

[実施例3]インフルエンザ菌のリボソームタンパク質L7/L12の立体構造解析
<1:インフルエンザ菌のリボソームタンパク質L7/L12の取得>
インフルエンザ菌のリボソームタンパク質L7/L12遺伝子(配列番号20)をクローニングしたpGEX−6P−1プラスミド(GE Healthcare社製)を大腸菌BL21(DE3)pLysS大腸菌株(Promega社製)に導入した。
[Example 3] Three-dimensional structural analysis of Haemophilus influenzae ribosomal proteins L7 / L12
<1: Acquisition of Haemophilus influenzae ribosomal proteins L7 / L12>
A pGEX-6P-1 plasmid (manufactured by GE Healthcare) in which the ribosomal protein L7 / L12 gene (SEQ ID NO: 20) of Haemophilus influenzae was cloned was introduced into Escherichia coli BL21 (DE3) pLysS Escherichia coli strain (manufactured by Promega).

得られた大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N−NHCl、11.1mM 13C−グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル−β−チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。 The resulting E. coli strain, M9 medium (47.7mM Na 2 HPO 4 · 12H 2 O, 22mM KH 2 PO 4, 8.6mM NaCl, 2mM MgSO 4, 50μM ZnSO 4, 100μM CaCl 2, 4.1μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM ampicillin sodium, 18.7 mM 15 N-NH 4 Cl, 11.1 mM 13 C-glucose), cultured at 37 ° C. until OD 600 reached 0.6, and quenched with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the cells were cultured at 16 ° C. for 36 hours and then centrifuged at 7000 rpm for 15 minutes at 4 ° C. to recover Escherichia coli.

得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ(登録商標)エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン−セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン−セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。 To 1 g of the obtained E. coli, 5 mL of BugBuster (manufactured by Merck Millipore) and 5 μL of benzoase (registered trademark) endonuclease (manufactured by Merck Millipore) were added, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtering with a 0.45 μm filter, the ribosomal protein L7 / L12 was purified on a glutathione-sepharose column using a Profinia protein purification system (manufactured by Bio-Rad). To 15 mL of the obtained protein solution, 1.5 mL of 10-fold concentration PBS (phosphate buffered saline) and Precision Protease (manufactured by GE Healthcare) were added, and the mixture was shaken at room temperature for 2 hours. The reaction was passed through the glutathione-sepharose column again to obtain a pass-through fraction as ribosomal proteins L7 / L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris−HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris−HCl pH8.0を0〜50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7 / L12 was dialyzed using 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and an ion exchange column RESOURCE Q (manufactured by GE Healthcare) was connected. The protein was flowed through the AKTA protein purification system (manufactured by GE Healthcare) at a flow rate of 2 mL / min. Subsequently, 20 mM Tris-HCl pH 8.0 supplemented with 1 M NaCl was flowed at a flow rate of 2 mL / min so as to linearly increase from 0 to 50%, and the ribosomal protein L7 / L12 was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を取得した。取得したリボソームタンパク質L7/L12をプロテインアッセイキットI(BIO−RAD社製、型番5000001JA)を用いて1mMになるように遠心濃縮した後、NMR測定に供した。 The obtained ribosome protein L7 / L12 was used as a mobile phase in PBS (phosphate buffered saline), and a gel filtration column HiLoad 16/60 Superdex 75pg (manufactured by GE Healthcare) was connected to the AKTA protein purification system (manufactured by GE Healthcare). ) At a flow rate of 1 mL / min to obtain ribosomal proteins L7 / L12. The obtained ribosomal proteins L7 / L12 were centrifugally concentrated to 1 mM using Protein Assay Kit I (manufactured by BIO-RAD, model number 5000001JA), and then subjected to NMR measurement.

<2:NMRによるインフルエンザ菌のリボソームタンパク質L7/L12の立体構造解析>
Shigemi NMR試料管に、1mM リボソームタンパク質L7/L12を250μL、重水を20μL、5mg/mL DSS(4,4−ジメチル−4−シラペンタン−1−スルホン酸)を1μL入れ、アスピレーターで脱気後、NMR装置に設置した。
<2: Three-dimensional structural analysis of Haemophilus influenzae ribosomal proteins L7 / L12 by NMR>
In a Shigemi NMR sample tube, 250 μL of 1 mM ribosomal protein L7 / L12, 20 μL of heavy water, and 1 μL of 5 mg / mL DSS (4,4-dimethyl-4-silappentan-1-sulfonic acid) are placed, degassed with an ejector, and then NMR. Installed in the device.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、HNCO(積算回数4、データポイント数(F1×F2×F3)64×128×1024)、HN(CO)CA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HNCA(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、CBCA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HNCACB(積算回数8、データポイント数(F1×F2×F3)64×128×1024)、HBHA(CO)NH(積算回数16、データポイント数(F1×F2×F3)64×128×1024)、HN(CA)HA(積算回数32、データポイント数(F1×F2×F3)64×128×1024)、C(CO)NH(積算回数16、データポイント数(F1×F2×F3)128×128×1024)のパルスシーケンスを用いて各FIDを、Unity INOVA 800MHz NMR装置(Agilent社製)で[H−15N] HSQC(積算回数8、データポイント数(F1×F2)512×2048)、[H−13C] HSQC aliphatic(積算回数8、データポイント数(F1×F2)868×2048)、[H−13C] HSQC aromatic(積算回数32、データポイント数(F1×F2)204×2048)、HCCH−TOCSY aliphatic(積算回数4、データポイント数(F1×F2×F3)96×256×2048)、HCCH−TOCSY aromatic(積算回数8、データポイント数(F1×F2×F3)128×128×2048)、15N−edited NOESY(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)、13C−edited NOESY aliphatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)96×256×2048)、13C−edited NOESY aromatic(ミキシングタイム75ミリ秒、積算回数8、データポイント数(F1×F2×F3)64×256×2048)のパルスシーケンスを用いて各FIDを得た。得られた各FIDをNMR Pipeソフトを用いてフーリエ変換し、各スペクトルを取得した。 AVANCE III HD 600MHz NMR device (manufactured by Bruker), HNCO (4 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HN (CO) CA (8 integrations, number of data points (8) F1 x F2 x F3) 64 x 128 x 1024), HNCA (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), CBCA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HNCACB (8 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024), HBHA (CO) NH (16 integrations, number of data points (F1 x F2 x F3) 64 x 128 x 1024) F1 x F2 x F3) 64 x 128 x 1024), HN (CA) HA (32 totals, number of data points (F1 x F2 x F3) 64 x 128 x 1024), C (CO) NH (16 totals, Using a pulse sequence of the number of data points (F1 x F2 x F3) 128 x 128 x 1024), each FID was subjected to [ 1 H- 15 N] HSQC (integration number 8,) with a Unity INOVA 800 MHz NMR device (manufactured by Agent). Number of data points (F1 x F2) 512 x 2048), [ 1 H- 13 C] HSQC alipatic (number of integrations 8, number of data points (F1 x F2) 868 x 2048), [ 1 H- 13 C] HSQC aromatic ( Number of integrations 32, number of data points (F1 x F2) 204 x 2048), HCCH-TOCSY aliphatic (number of integrations 4, number of data points (F1 x F2 x F3) 96 x 256 x 2048), HCCH-TOCSY aromatic (number of integrations) 8, number of data points (F1 x F2 x F3) 128 x 128 x 2048), 15 N-edited NOESY (mixing time 75 milliseconds, number of integrations 8, number of data points (F1 x F2 x F3) 64 x 256 x 2048) ), 13 C-edited NOESY aliphatic (mixing time 75 milliseconds, total number of times 8, number of data points (F1 x F2 x F3) 96 x 256 x 2048), 13 C-edited NOESY aromatic (mixing time 75 milliseconds, total) Each FID was obtained using a pulse sequence of 8 times and the number of data points (F1 × F2 × F3) 64 × 256 × 2048). Each obtained FID was Fourier transformed using NMR Pipe software to obtain each spectrum.

取得した各スペクトルをSparkyソフト上で帰属した。まず、リボソームタンパク質L7/L12の主鎖−NH−をHNCO、HN(CO)CA、HNCA、CBCA(CO)NH、HNCACB、HBHA(CO)NH、HN(CA)HAの各スペクトルを用いて、[H−15N] HSQCスペクトル上に帰属した。次に、側鎖−CH−、−CH−、−CH−をC(CO)NH、HCCH−TOCSY aliphatic、HCCH−TOCSY aromaticの各スペクトルを用いて、[H−13C] HSQC aliphaticスペクトルと[H−13C] HSQC aromaticスペクトル上に帰属した。最後に、15N−edited NOESY、13C−edited NOESY aliphatic、13C−edited NOESY aromaticの各スペクトルを用いて、5Å以内の距離にあるHを検出、帰属した。帰属方法の詳細は、PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, W.J., Palmer, III, A.G., Rance, M., and Skelton, N.J., Elsevier Academic Press.に従った。 Each acquired spectrum was assigned on Sparky software. First, the main chain -NH- of the ribosomal protein L7 / L12 was subjected to the spectra of HNCO, HN (CO) CA, HNCA, CBCA (CO) NH, HNCACB, HBHA (CO) NH, and HN (CA) HA. [ 1 H- 15 N] It was assigned on the HSQC spectrum. Next, the side chain -CH -, - CH 2 -, - CH 3 - a with C (CO) NH, HCCH- TOCSY aliphatic, each spectrum of the HCCH-TOCSY aromatic, [1 H- 13 C] HSQC aliphatic It was assigned on the spectrum and the [ 1 H- 13 C] HSQC aromatic spectrum. Finally, using the 15 N-edited NOESY, 13 C-edited NOESY aliphatic, and 13 C-edited NOESY aromatic spectra, 1 H within a distance of 5 Å was detected and assigned. The details of the attribution method were as follows: PROTEIN NMR SPECTROSCOPY PRINCIPLES AND PRACTICE SECOND EDITION, 2007, Cavanagh, J., Fairbrother, WJ, Palmer, III, AG, Rance, M., and Skelton, NJ, Elsevier Academic Press.

帰属した原子座標とH間距離情報をCYANA立体構造自動計算ソフトに入力して、20回の立体構造計算を経て充分にエネルギー値を収束させ、リボソームタンパク質L7/L12立体構造の空間原子座標を得た。 Enter a belonging to atomic coordinates and 1 H distance information CYANA conformation automatic calculation software, is converged sufficiently energy values through the 20 times of the three-dimensional structure calculation, the spatial atomic coordinates of ribosomal protein L7 / L12 conformation Obtained.

取得した空間原子座標をPymolソフトに入力し、リボソームタンパク質L7/L12の立体構造を描画した(図3)。リボソームタンパク質L7/L12の主鎖の立体構造を表示すると、1〜40位のアミノ酸残基で一つの立体構造(NTD:N-Terminal Domain)を形成しており、およそ14個のアミノ酸残基からなる、立体構造を形成していないリンカーを経て、更に55〜123位のアミノ酸残基で別の立体構造(CTD:C-Terminal Domain)を形成していることが分かった(図3)。また、斯かる立体構造を有するリボソームタンパク質L7/L12分子が2つ、互いのNTD同士で会合し、二量体を形成していることが分かった(図3)。 The acquired spatial atomic coordinates were input to Pymol software, and the three-dimensional structure of the ribosomal proteins L7 / L12 was drawn (FIG. 3). When the three-dimensional structure of the main chain of the ribosomal protein L7 / L12 is displayed, one three-dimensional structure (NTD: N-Terminal Domain) is formed by the amino acid residues at positions 1 to 40, and from about 14 amino acid residues. It was found that another three-dimensional structure (CTD: C-Terminal Domain) was further formed by the amino acid residues at positions 55 to 123 via the linker that did not form the three-dimensional structure (FIG. 3). It was also found that two ribosomal protein L7 / L12 molecules having such a three-dimensional structure associate with each other's NTDs to form a dimer (FIG. 3).

[実施例4]サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のNTD部分の比較検討
図4は、サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のN末端ドメイン(NTD)部分の立体構造をそれぞれ模式的に示す図である。本図から明らかなように、サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のNTDの立体構造を比較すると、表面形状と電荷分布に大きな差がある領域が認められた(図4の点線部)。この領域の表面電荷分布を3菌種で比較すると、肺炎マイコプラズマの場合は、中心部を疎水性(白色)〜非電荷親水性領域(薄青、薄赤色)が占めている。インフルエンザ菌の場合は、ほぼ全領域を負電荷(赤色)が占め、サルモネラ菌の場合は負電荷領域(赤色)の占める割合が多いものの右側には疎水性(白色)〜非電荷親水性領域(薄青、薄赤色)が位置しており、これら2菌種間で差異が見られた。
[Example 4] Comparative study of NTD portion of salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae ribosomal protein L7 / L12 FIG. 4 shows the N-terminal domain (NTD) of Salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae ribosomal protein L7 / L12. It is a figure which shows typically the three-dimensional structure of each part. As is clear from this figure, when the three-dimensional structures of NTDs of Salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae ribosomal proteins L7 / L12 were compared, a region with a large difference in surface shape and charge distribution was observed (Fig. 4). Dotted part). Comparing the surface charge distribution of this region among the three bacterial species, in the case of Mycoplasma pneumoniae, the central part is occupied by the hydrophobic (white) to uncharged hydrophilic region (light blue, light red). In the case of influenza bacteria, the negative charge (red) occupies almost the entire region, and in the case of Salmonella, the negative charge region (red) occupies a large proportion, but on the right side is a hydrophobic (white) to uncharged hydrophilic region (thin). Blue and light red) are located, and a difference was observed between these two bacterial species.

図5は、サルモネラ菌、肺炎マイコプラズマ、及びインフルエンザ菌のリボソームタンパク質L7/L12のN末端ドメイン(NTD)部分のアミノ酸配列のアラインメントを示す図である。本図から明らかなように、リボソームタンパク質L7/L12のN末端ドメイン(NTD)部分のアミノ酸配列にも、3菌種で大きな差異が認められた。当該領域は、肺炎マイコプラズマのL7/L12の5〜23位のアミノ酸残基であり、インフルエンザ菌及びサルモネラ菌のL7/L12の4〜22位のアミノ酸残基に相当する。肺炎マイコプラズマの5〜7位の残基は、インフルエンザ菌及びサルモネラ菌の4〜6位の残基に相当し、肺炎マイコプラズマのアミノ酸配列がD(アスパラギン酸:親水性、負電荷)、K(リジン:親水性、正電荷)、N(アスパラギン:親水性、非電荷)であるのに対し、インフルエンザ菌はT(トレオニン:親水性、非電荷)、N(アスパラギン:親水性、非電荷)、E(グルタミン酸:親水性、負電荷)、サルモネラ菌はT(トレオニン:親水性、非電荷)、K(リジン:親水性、正電荷)、D(アスパラギン酸:親水性、負電荷)であり、アミノ酸の種類及び極性の順序が菌種ごとに異なっている(図5)。また、肺炎マイコプラズマの14〜16位の残基は、インフルエンザ菌及びサルモネラ菌の13〜15位の残基に相当し、肺炎マイコプラズマのアミノ酸配列はK(リジン:親水性、正電荷)、E(グルタミン酸:親水性、負電荷)、M(メチオニン:疎水性)であるのに対し、インフルエンザ菌はA(アラニン:疎水性)、S(セリン:親水性、非電荷)、K(リジン:親水性、正電荷)、サルモネラ菌はS(セリン:親水性、非電荷)、A(アラニン:疎水性)、M(メチオニン:疎水性)であり、アミノ酸の種類及び極性の順序が菌種ごとに異なっている(図5)。同様に、肺炎マイコプラズマの19位及び22位のアミノ酸残基と、これに相当するインフルエンザ菌及びサルモネラ菌の18位及び21位のアミノ酸残基との間にも、極性の違いが認められた(図5)。 FIG. 5 shows the alignment of the amino acid sequences of the N-terminal domain (NTD) portion of the ribosomal proteins L7 / L12 of Salmonella, Mycoplasma pneumoniae, and Haemophilus influenzae. As is clear from this figure, a large difference was also observed in the amino acid sequences of the N-terminal domain (NTD) portion of the ribosomal proteins L7 / L12 among the three bacterial species. This region is the amino acid residue at positions 5 to 23 of L7 / L12 of Mycoplasma pneumoniae, and corresponds to the amino acid residue at position 4 to 22 of L7 / L12 of Haemophilus influenzae and Salmonella. The residues at positions 5 to 7 of mycoplasma pneumoniae correspond to the residues at positions 4 to 6 of influenza and salmonella, and the amino acid sequences of mycoplasma pneumoniae are D (aspartic acid: hydrophilic, negatively charged), K (lysine: lysine:). Hydrophilic, positively charged), N (asparagine: hydrophilic, uncharged), whereas influenza bacteria are T (threonine: hydrophilic, uncharged), N (asparagine: hydrophilic, uncharged), E ( Glutamic acid: hydrophilic, negatively charged), Salmonella are T (threonine: hydrophilic, uncharged), K (lysine: hydrophilic, positively charged), D (aspartic acid: hydrophilic, negatively charged), and are the types of amino acids. And the order of polarity is different for each bacterial species (Fig. 5). The residues at positions 14 to 16 of mycoplasma pneumoniae correspond to the residues 13 to 15 of mycoplasma pneumoniae, and the amino acid sequences of mycoplasma pneumoniae are K (lysine: hydrophilic, positively charged) and E (glutamic acid). : Hydrophilic, negatively charged), M (methionine: hydrophobic), whereas influenza bacteria are A (alanine: hydrophobic), S (serine: hydrophilic, uncharged), K (lysine: hydrophilic, (Positive charge), Salmonella bacteria are S (serine: hydrophilic, uncharged), A (alanine: hydrophobic), M (methionine: hydrophobic), and the order of amino acid types and polarities differs depending on the bacterial species. (Fig. 5). Similarly, a difference in polarity was observed between the amino acid residues at positions 19 and 22 of Mycoplasma pneumoniae and the corresponding amino acid residues at positions 18 and 21 of Haemophilus influenzae and Salmonella (Fig.). 5).

以上のように、サルモネラ菌のL7/L12の4〜22位の立体構造及びアミノ酸残基の極性は、他2菌種と比較して大きく異なることから、抗体との相互作用の中心部位に近いと予測される(図4及び5)。さらに、3菌種間のアミノ酸極性の違いから、サルモネラ菌のL7/L12のNTDを構成するアミノ酸残基の中でも、好ましくは4〜15位、より好ましくは4〜6位又は13〜15位が、抗体との相互作用の中心であると予測される(図5)。 As described above, the three-dimensional structure of Salmonella L7 / L12 at positions 4 to 22 and the polarity of amino acid residues are significantly different from those of the other two bacterial species. Predicted (FIGS. 4 and 5). Further, due to the difference in amino acid polarity among the three bacterial species, among the amino acid residues constituting the NTD of L7 / L12 of Salmonella, preferably the 4th to 15th positions, more preferably the 4th to 6th positions or the 13th to 15th positions. It is predicted to be the center of interaction with the antibody (Fig. 5).

[実施例5]サルモネラ菌のリボソームタンパク質L7/L12に結合する抗体の取得
以下の手順で、サルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基により形成されるNTDを単独で発現させ、これを抗原抗体反応により認識するモノクローナル抗体として31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2を取得した。
[Example 5] Acquisition of antibody that binds to salmonella ribosomal protein L7 / L12 NTD formed by amino acid residues 1 to 40 of salmonella ribosomal protein L7 / L12 is expressed alone by the following procedure. 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 were obtained as monoclonal antibodies that recognize this by the antigen-antibody reaction.

<1:サルモネラ菌のリボソームタンパク質L7/L12のNTDを単独で発現する大腸菌の調製>
BamHI及びXhoI制限酵素切断部位を追加したサルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基からなるアミノ酸配列(配列番号3)をコードする塩基配列(配列番号4)を含む人工合成遺伝子(GenScript社製)を、前述2種類の制限酵素で切断後、1.5%アガロースゲル中にて電気泳動とエチジウムブロマイドによる染色を行った。ゲルから約400bpのバンドを切り取った。このバンドをQIAquick Gel Extraction Kit(QIAGEN社製)で精製し、一般的なベクターであるpGEX−6P−1(GE Healthcare社製)に挿入した。
<1: Preparation of Escherichia coli expressing NTD of Salmonella ribosomal protein L7 / L12 alone>
An artificial synthetic gene containing a base sequence (SEQ ID NO: 4) encoding an amino acid sequence (SEQ ID NO: 3) consisting of amino acid residues at positions 1 to 40 of the salmonella ribosome protein L7 / L12 to which BamHI and XhoI restriction enzyme cleavage sites have been added. (Manufactured by GenScript) was cleaved with the above-mentioned two types of restriction enzymes, and then electrophoresed and stained with ethidium bromide in a 1.5% agarose gel. A band of about 400 bp was cut from the gel. This band was purified with a QIA quick Gel Extraction Kit (manufactured by QIAGEN) and inserted into a general vector, pGEX-6P-1 (manufactured by GE Healthcare).

具体的には、ベクターpGEX−6P−1と、先のDNA(制限酵素で切断し、ゲルで精製した人工合成遺伝子)とを、そのモル比が1:3となるように混ぜ合わせて、T4 DNAリガーゼ(Invitrogen社製)にてベクターに当該DNAを組み込んだ。前記DNAを組み込んだベクターpGEX6P−1を、BL21(DE3)pLysS大腸菌株(Promega社)に遺伝子学的手法により導入し、ついで50μg/mLのアンピシリン(シグマ社)を含む半固体状の培養プレートであるLB L−ブロス寒天(宝酒造株式会社製)に接種した。プレートを37℃で12時間インキュベートし、成長したコロニーを無差別に選択し、同じ濃度のアンピシリンを含むL−ブロス培養液に接種した。37℃で8時間振盪培養後、遠心分離にて集菌し、QIAprep Spin Miniprep Kit(QIAGEN社)を用い、添付の説明書に従ってプラスミドを分離した。得られたプラスミドを制限酵素BamHI/XhoIにて切断処理し、約370bpのDNAを切断することによって、PCR生成物の挿入を確認した。挿入されたDNAの塩基配列を上記クローンを用いて決定した。 Specifically, the vector pGEX-6P-1 and the above DNA (artificial synthetic gene cleaved with a restriction enzyme and purified with a gel) are mixed so as to have a molar ratio of 1: 3, and T4. The DNA was incorporated into a vector with a DNA ligase (manufactured by Invitrogen). The vector pGEX6P-1 incorporating the DNA was introduced into BL21 (DE3) pLysS Escherichia coli strain (Promega) by a genetic method, and then on a semi-solid culture plate containing 50 μg / mL ampicillin (Sigma). A certain LB L-broth agar (manufactured by Takara Shuzo Co., Ltd.) was inoculated. The plates were incubated at 37 ° C. for 12 hours, the grown colonies were indiscriminately selected and inoculated into L-broth culture medium containing the same concentration of ampicillin. After culturing with shaking at 37 ° C. for 8 hours, the cells were collected by centrifugation, and the plasmid was separated using the QIAprep Spin Miniprep Kit (QIAGEN) according to the attached instructions. The obtained plasmid was cleaved with the restriction enzymes BamHI / XhoI, and the DNA of about 370 bp was cleaved to confirm the insertion of the PCR product. The base sequence of the inserted DNA was determined using the above clone.

具体的に、挿入DNA断片の塩基配列の決定は、蛍光シークエンサー(Applied Biosystems社製)を用いて実施した。シークエンスサンプルの調製は、PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit(Applied Biosystems社製)を用いて行った。まず、9.5μLの制限酵素反応液、4.0μLのT7プロモータープライマー(Gibco BRL社製)(濃度0.8pmol/μL)、及び0.16μg/μLのテンプレートDNA(濃度6.5μL)を、0.5mLのマイクロチューブに加えて混合した。混合物を2層の100μL鉱油で覆ったのち、25サイクルのPCR増幅処理を行った。ここで、1サイクルは、96℃での30秒間の処理、55℃での15秒間の処理、及び60℃での4分間の処理からなる。生成物を4℃で5分間保持した。反応終了後、80μLの無菌精製水を加え、攪拌した。生成物を遠心分離し、水層をフェノールークロロホルム混合液で3回抽出した。10μLの3M酢酸ナトリウムpH5.2と300μLのエタノールを100μLの水層に加え、攪拌した。その後14,000rpm、室温で15分間遠心し、沈殿を回収した。沈殿を75%エタノールで洗浄後、真空下に2分間静置して乾燥させ、シークエンス用サンプルとした。シークエンスサンプルは、4μLの10mMのEDTAを含むホルムアミドに溶解して90℃で2分間変性した。このものは氷中で冷却してシークエンスに供した。 Specifically, the nucleotide sequence of the inserted DNA fragment was determined using a fluorescent sequencer (manufactured by Applied Biosystems). Sequence samples were prepared using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (manufactured by Applied Biosystems). First, 9.5 μL of restriction enzyme reaction solution, 4.0 μL of T7 promoter primer (manufactured by Gibco BRL) (concentration 0.8 pmol / μL), and 0.16 μg / μL of template DNA (concentration 6.5 μL) were added. It was added to a 0.5 mL microtube and mixed. The mixture was covered with two layers of 100 μL mineral oil and then subjected to 25 cycles of PCR amplification. Here, one cycle consists of a treatment at 96 ° C. for 30 seconds, a treatment at 55 ° C. for 15 seconds, and a treatment at 60 ° C. for 4 minutes. The product was held at 4 ° C. for 5 minutes. After completion of the reaction, 80 μL of sterile purified water was added and stirred. The product was centrifuged and the aqueous layer was extracted 3 times with a phenol-chloroform mixture. 10 μL of 3M sodium acetate pH 5.2 and 300 μL of ethanol were added to a 100 μL aqueous layer and stirred. The precipitate was then centrifuged at 14,000 rpm at room temperature for 15 minutes to recover the precipitate. The precipitate was washed with 75% ethanol and then allowed to stand under vacuum for 2 minutes to dry to prepare a sample for sequencing. Sequence samples were dissolved in 4 μL of formamide containing 10 mM EDTA and denatured at 90 ° C. for 2 minutes. This was cooled in ice and served in the sequence.

無差別に選択した5個のクローンのうち2個は、PCRに用いたプローブと配列上の相同性を有していた。また、サルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基の遺伝子配列と一致したDNA配列が明白であった。この遺伝子断片は、明らかにサルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基からなるNTDを遺伝子をコードするものである。 Two of the five indiscriminately selected clones had sequence homology with the probe used for PCR. In addition, a DNA sequence that matched the gene sequence of the amino acid residues at positions 1 to 40 of the Salmonella ribosomal protein L7 / L12 was clear. This gene fragment clearly encodes the NTD consisting of the amino acid residues 1 to 40 of the Salmonella ribosomal protein L7 / L12.

<2:サルモネラ菌のリボソームタンパク質L7/L12のNTDを単独で発現する大腸菌の培養による同NTDの調製>
前述で得られたサルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基により形成されるNTDを単独で発現する大腸菌を用いて、サルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基により形成されるNTDに対応するタンパク質(NTDタンパク質)の調製を行った。
<2: Preparation of NTD by culturing Escherichia coli expressing NTD of Salmonella ribosomal protein L7 / L12 alone>
Using Escherichia coli expressing NTD alone formed by the amino acid residues at positions 1 to 40 of the salmonella ribosomal protein L7 / L12 obtained above, the amino acids at positions 1 to 40 of the salmonella ribosomal protein L7 / L12 were used. A protein corresponding to NTD formed by residues (NTD protein) was prepared.

具体的には、同大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM NHCl、11.1mM グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル−β−チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン−セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン−セファロースカラムに再度通し、素通り画分をNTDタンパク質含有画分として取得した。 Specifically, the same E. coli strain, M9 medium (47.7mM Na 2 HPO 4 · 12H 2 O, 22mM KH 2 PO 4, 8.6mM NaCl, 2mM MgSO 4, 50μM ZnSO 4, 100μM CaCl 2, 4. 1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM ampicillin sodium, 18.7 mM NH It was cultured in 4 Cl (11.1 mM glucose) at 37 ° C. until OD 600 reached 0.6, and rapidly cooled with ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the cells were cultured at 16 ° C. for 36 hours and then centrifuged at 7000 rpm for 15 minutes at 4 ° C. to recover Escherichia coli. To 1 g of the obtained Escherichia coli, 5 mL of BugBuster (manufactured by Merck Millipore) and 5 μL of benzoase endonuclease (manufactured by Merck Millipore) were added, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtering with a 0.45 μm filter, the ribosomal protein L7 / L12 was purified on a glutathione-sepharose column using a Profinia protein purification system (manufactured by Bio-Rad). To 15 mL of the obtained protein solution, 1.5 mL of 10-fold concentration PBS (phosphate buffered saline) and Precision Protease (manufactured by GE Healthcare) were added, and the mixture was shaken at room temperature for 2 hours. The reaction solution was passed through the glutathione-sepharose column again to obtain a pass-through fraction as an NTD protein-containing fraction.

取得したNTDタンパク質含有画分を、50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris−HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris−HCl pH8.0を0%から50%まで直線的に増加するように2mL/分の流速で流し、NTDタンパク質を溶出した。 The obtained NTD protein-containing fraction was dialyzed using 50 mM sodium phosphate pH 6.8 as an external solution, diluted with a 4-fold amount of 20 mM Tris-HCl pH 8.0, and an ion exchange column RESOURCE Q (manufactured by GE Healthcare) was used. It was flowed through a connected AKTA protein purification system (manufactured by GE Healthcare) at a flow rate of 2 mL / min. Subsequently, 20 mM Tris-HCl pH 8.0 supplemented with 1 M NaCl was flowed at a flow rate of 2 mL / min so as to linearly increase from 0% to 50%, and the NTD protein was eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を精製し、プロテインアッセイキットI(BIO−RAD社製、型番5000001JA)を用いて濃度定量し、モノクローナル抗体取得用のサルモネラ菌のリボソームタンパク質L7/L12のNTDタンパク質として供した。 The obtained ribosomal protein L7 / L12 was used as a mobile phase in PBS (phosphate buffered physiological saline), and a gel filtration column HiLoad 16/60 Superdex 75pg (manufactured by GE Healthcare) was connected to the AKTA protein purification system (manufactured by GE Healthcare). ) At a flow rate of 1 mL / min, the ribosomal protein L7 / L12 was purified, and the concentration was quantified using the protein assay kit I (manufactured by BIO-RAD, model number 5000001JA). Served as NTD protein of / L12.

<3:サルモネラ菌のリボソームタンパク質L7/L12のNTDタンパク質を用いたマウスモノクローナル抗体株の取得>
取得したモノクローナル抗体取得用のサルモネラ菌のリボソームタンパク質L7/L12のNTDタンパク質を用いて、国際公開第2001/057199号の実施例3に記載の方法に従って、同NTDタンパク質に対するモノクローナル抗体株31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2の3株を取得した。
<3: Acquisition of mouse monoclonal antibody strain using NTD protein of Salmonella ribosomal protein L7 / L12>
Using the NTD protein of Salmonella ribosomal protein L7 / L12 for obtaining the obtained monoclonal antibody, the monoclonal antibody strain 31E2-F5-F9 against the NTD protein was used according to the method described in Example 3 of International Publication No. 2001/057199. , 33C9-F6-D1 and 36G2-F9-D2 were acquired.

具体的には、前記手順にて得られたサルモネラ菌のリボソームタンパク質L7/L12のNTDタンパク質100μgを抗原として、200μLのPBSに溶解した後、フロイントのコンプリートアジュバント(Freund's Complete Adjuvant)を200μL加え、混合してエマルジョン化した。得られた抗原エマルジョン200μLを、マウスの腹腔内に注射した。また、初回抗原投与から2週間後、4週間後、及び6週間後に、同じ抗原エマルジョンをマウスの腹腔内に注射した。更に、初回抗原投与から10週間後及び14週間後に、2倍濃度の抗原エマルジョンをマウスの腹腔内に注射した。最終抗原投与から3日後に、マウスから脾臓を摘出し、無菌的に脾細胞を採取して、以下の手順にて骨髄腫細胞との細胞融合を行った。 Specifically, 100 μg of NTD protein of Salmonella ribosome protein L7 / L12 obtained in the above procedure was used as an antigen, dissolved in 200 μL of PBS, and then 200 μL of Freund's Complete Adjuvant was added and mixed. Emulsified. 200 μL of the obtained antigen emulsion was injected intraperitoneally into mice. In addition, the same antigen emulsion was injected intraperitoneally into mice 2 weeks, 4 weeks, and 6 weeks after the initial antigen administration. In addition, 10 and 14 weeks after the initial antigen administration, double concentrations of the antigen emulsion were injected intraperitoneally into the mice. Three days after the administration of the final antigen, the spleen was removed from the mouse, the spleen cells were aseptically collected, and cell fusion with myeloma cells was performed according to the following procedure.

骨髄腫細胞としては、NS−1系の細胞株を用いた。当該細胞株を、10%の牛胎児血清を含むRPMI1640培地で培養し、細胞融合の2週間前からは、0.13mMのアザグアニン、0.5μg/mLのMC−210、10%の牛胎児血清を含むRPMI1640培地で1週間培養した後、更に10%の牛胎児血清を含むRPMI1640培地で1週間培養してから用いた。 As myeloma cells, NS-1 cell lines were used. The cell line was cultured in RPMI1640 medium containing 10% fetal bovine serum, and from 2 weeks before cell fusion, 0.13 mM azaguanine, 0.5 μg / mL MC-210, and 10% fetal bovine serum. After culturing in RPMI1640 medium containing 10% of fetal bovine serum for 1 week, it was used after culturing in RPMI1640 medium containing 10% fetal bovine serum.

前記手順により無菌的に採取したマウスの脾細胞10個と、前記培養後の骨髄腫細胞2×10個とを、ガラスチューブ内でよく混合した後、1,500rpmで5分間遠心し、上澄みを廃棄してから、細胞を更によく混合した。この混合細胞試料に、37℃に保持したRPMI1640培養液50mLを加え、1,500rpmで遠心分離した後、上澄み液を除去し、37℃に保持した50%ポリエチレングリコール1mLを加え、1分間攪拌した。この細胞混合液に、37℃に保持したRPMI1640培養液10mLを加え、殺菌したピペットで約5分間吸引・排出することにより激しく攪拌した後、1,000rpmで5分間遠心分離し、上澄み液を除去した後、細胞濃度が5×10/mLとなるように30mLのHAT培養液を加え、均一になるまで攪拌した。この細胞混合液を0.1mLずつ96ウェル培養プレートの各ウェルに注ぎ、7%の炭酸ガス雰囲気下、37℃で培養した。培養開始から第1日、第1週、及び第2週に、HAT培地をそれぞれ0.1mLずつ加え、ELISA法により所望の抗体を産生する融合細胞のスクリーニングを行った。 8 and splenocytes of mice was aseptically collected by the above procedure, the myeloma cells 2 × 10 7 cells after the culture were mixed well in a glass tube, and centrifuged for 5 minutes at 1,500 rpm, After discarding the supernatant, the cells were further mixed. To this mixed cell sample, 50 mL of RPMI1640 culture solution kept at 37 ° C. was added, centrifuged at 1,500 rpm, the supernatant was removed, 1 mL of 50% polyethylene glycol kept at 37 ° C. was added, and the mixture was stirred for 1 minute. .. To this cell mixture, 10 mL of RPMI1640 culture solution maintained at 37 ° C. was added, and the mixture was vigorously stirred by suctioning and discharging with a sterilized pipette for about 5 minutes, and then centrifuged at 1,000 rpm for 5 minutes to remove the supernatant. After that, 30 mL of HAT culture solution was added so that the cell concentration became 5 × 10 6 / mL, and the mixture was stirred until it became uniform. 0.1 mL of this cell mixture was poured into each well of a 96-well culture plate and cultured at 37 ° C. under a 7% carbon dioxide atmosphere. On the 1st day, the 1st week, and the 2nd week from the start of the culture, 0.1 mL each of HAT medium was added, and fusion cells producing the desired antibody were screened by the ELISA method.

ELISA法により所望の抗体を産生する細胞をスクリーニングした。サルモネラ菌のリボソームタンパク質L7/L12のNTDタンパク質に、グルタチオンS−トランスフェラーゼ(GST)タンパク質を融合し、GSTフュージョンL7/L12NTDタンパク質を作製した。得られたGSTフュージョンL7/L12NTDタンパク質及びGSTタンパク質を、0.05%のアジ化ソーダ含むPBSに、それぞれ10μg/mL濃度で溶解した希釈した液を作製した。これらの液を100μLずつ、96穴プレートの各ウェルに別々に分注し、4℃で1晩吸着させた。上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μLを添加し、室温で1時間反応させてブロッキングした。上澄み液を除去し、生成物を洗浄液(0.02%Tween20含有PBS)で洗浄した後、融合細胞の培養液100mLを加え、室温にて2時間反応させた。上澄み液を除去し、沈殿を洗浄液で洗浄した後、ペルオキシダーゼでラベルしたヤギ抗マウスIgG抗体溶液(濃度50ng/mL)100μLを加え、室温にて1時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した後、TMB溶液(KPL社製)を100μLずつ加え、室温にて20分間反応させた。着色したところで、各セルに1N硫酸100μLを加えて反応を停止し、450nmの吸光度を測定した。 Cells producing the desired antibody were screened by ELISA. Glutathione S-transferase (GST) protein was fused with the NTD protein of Salmonella ribosome protein L7 / L12 to prepare GST fusion L7 / L12 NTD protein. A diluted solution of the obtained GST fusion L7 / L12NTD protein and GST protein dissolved in PBS containing 0.05% soda azide at a concentration of 10 μg / mL was prepared. 100 μL of each of these solutions was separately dispensed into each well of a 96-well plate and adsorbed at 4 ° C. overnight. After removing the supernatant, 200 μL of 1% bovine serum albumin solution (in PBS) was added, and the mixture was reacted at room temperature for 1 hour for blocking. The supernatant was removed, the product was washed with a washing solution (PBS containing 0.02% Tween 20), 100 mL of the fusion cell culture solution was added, and the mixture was reacted at room temperature for 2 hours. After removing the supernatant and washing the precipitate with a washing solution, 100 μL of a goat anti-mouse IgG antibody solution (concentration 50 ng / mL) labeled with peroxidase was added, and the mixture was reacted at room temperature for 1 hour. After removing the supernatant and washing the product again with the washing liquid, 100 μL of TMB solution (manufactured by KPL) was added and reacted at room temperature for 20 minutes. After coloring, 100 μL of 1N sulfuric acid was added to each cell to stop the reaction, and the absorbance at 450 nm was measured.

この結果、GSTフュージョンL7/L12NTDタンパク質のみに反応し、GSTタンパク質には反応しない陽性ウェルが見出され、これらのウェルにはL7/L12NTDタンパク質に対する抗体が含まれていることが判明した。そこで、各陽性ウェル中の細胞を回収し、24穴プラスティックプレートに入れ、HAT培地を加えて培養した後、細胞数が約20個/mLになるようにHT培地で希釈し、その50μLを96穴培養プレートの各ウェルに入れた。HT培地に懸濁した6週齢のマウス胸腺細胞10個を加えて混合した後、7%CO条件下、37℃で2週間培養した。培養上澄み中の抗体活性を前述のELISA法にて同様に検定し、L7/L12NTDタンパク質との反応が陽性の細胞を回収した。更に同様の希釈検定及びクローニング操作を繰り返すことにより、L7/L12NTDタンパク質に対するモノクローナル抗体株31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2を産生する各ハイブリドーマを取得した。 As a result, positive wells were found that reacted only with the GST fusion L7 / L12NTD protein but not with the GST protein, and it was found that these wells contained an antibody against the L7 / L12NTD protein. Therefore, the cells in each positive well were collected, placed in a 24-well plastic plate, cultured by adding HAT medium, diluted with HT medium so that the number of cells was about 20 cells / mL, and 50 μL thereof was 96. Placed in each well of a hole culture plate. After mixing suspended 6-week-old mice thymocytes 106 in addition to the HT medium, 7% CO 2 conditions, and cultured for 2 weeks at 37 ° C.. The antibody activity in the culture supernatant was similarly tested by the above-mentioned ELISA method, and cells positive for the reaction with the L7 / L12NTD protein were collected. Further, by repeating the same dilution test and cloning operation, each hybridoma producing the monoclonal antibody strains 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 against the L7 / L12NTD protein was obtained.

前述のようにして取得した陽性クローンモノクローナル抗体株31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2の3株を用いて、定法にしたがってモノクローナル抗体を生産、回収した。 Using the three positive clone monoclonal antibody strains 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 obtained as described above, a monoclonal antibody was produced and recovered according to a conventional method.

<4:得られたマウスモノクローナル抗体株の軽鎖及び重鎖各可変領域のアミノ酸配列の決定>
取得したモノクローナル抗体株31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2の3株について、定法にしたがって軽鎖及び重鎖各可変領域のアミノ酸配列及び対応する塩基配列を決定した。
<4: Determination of amino acid sequences of the light and heavy chain variable regions of the obtained mouse monoclonal antibody strain>
For the obtained monoclonal antibody strains 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2, the amino acid sequences and corresponding base sequences of the light chain and heavy chain variable regions were determined according to a conventional method. ..

モノクローナル抗体株31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2の重鎖及び軽鎖各可変領域のアミノ酸配列及び塩基配列を、それぞれ以下の表1に示す配列番号で示す。 The amino acid sequences and base sequences of the heavy chain and light chain variable regions of the monoclonal antibody strains 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 are shown by the SEQ ID NOs shown in Table 1 below, respectively.

Figure 2021069359
Figure 2021069359

[実施例6]サルモネラ菌のリボソームタンパク質L7/L12と抗体の相互作用解析
実施例5で得られた、サルモネラ菌のリボソームタンパク質L7/L12のNTDを認識するモノクローナル抗体31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2について、以下の手順により、サルモネラ菌のリボソームタンパク質L7/L12との相互作用のNMRによる解析を行った。
[Example 6] Analysis of interaction between salmonella ribosomal protein L7 / L12 and antibody Monoclonal antibodies 31E2-F5-F9, 33C9-F6-that recognize NTD of salmonella ribosomal protein L7 / L12 obtained in Example 5 The interactions of D1 and 36G2-F9-D2 with the ribosomal proteins L7 / L12 of Salmonella were analyzed by NMR according to the following procedure.

<1:サルモネラ菌のリボソームタンパク質L7/L12の取得>
実施例1で作成した大腸菌株を、M9培地(47.7mM NaHPO・12HO、22mM KHPO、8.6mM NaCl、2mM MgSO、50μM ZnSO、100μM CaCl、4.1μM ビオチン、7.2μM 塩化コリン、2.3μM 葉酸、8.2μM ニコチンアミド、4.6μM パントテン酸カルシウム、6μM 塩酸ピリドキサール、0.3μM リボフラビン、16.6μM 塩酸チアミン、27mM アンピシリンナトリウム、18.7mM 15N−NHCl、11.1mM 12C−グルコース)で、37℃でOD600が0.6に達するまで培養し、氷水で急冷した。IPTG(イソプロピル−β−チオガラクトピラノシド)を終濃度1mMになるように加え、16℃で36時間培養した後、7000rpm、15分、4℃で遠心し、大腸菌を回収した。得られた大腸菌1gにつき、BugBuster(Merck Millipore社製)を5mL、ベンゾナーゼ エンドヌクレアーゼ(Merck Millipore社製)を5μL添加し、室温で30分間振盪し、大腸菌を完全に溶解した。0.45μmフィルターで濾過した後、Profiniaタンパク質精製システム(Bio-Rad社製)を用いて、グルタチオン−セファロースカラムでリボソームタンパク質L7/L12を精製した。得られたタンパク質溶液15mLに1.5mLの10倍濃度PBS(リン酸緩衝生理食塩水)及びPrescissionプロテアーゼ(GE Healthcare社製)を加え、室温で2時間振盪した。反応液をグルタチオン−セファロースカラムに再度通し、素通り画分をリボソームタンパク質L7/L12として取得した。
<1: Acquisition of Salmonella ribosome protein L7 / L12>
E. coli strain prepared in Example 1, M9 medium (47.7mM Na 2 HPO 4 · 12H 2 O, 22mM KH 2 PO 4, 8.6mM NaCl, 2mM MgSO 4, 50μM ZnSO 4, 100μM CaCl 2, 4. 1 μM biotin, 7.2 μM choline chloride, 2.3 μM folic acid, 8.2 μM nicotinamide, 4.6 μM calcium pantothenate, 6 μM pyridoxal hydrochloride, 0.3 μM riboflavin, 16.6 μM thiamine hydrochloride, 27 mM ampicillin sodium, 18.7 mM 15 It was cultured in N-NH 4 Cl (11.1 mM 12 C-glucose) at 37 ° C. until OD 600 reached 0.6, and rapidly cooled in ice water. IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 1 mM, and the cells were cultured at 16 ° C. for 36 hours and then centrifuged at 7000 rpm for 15 minutes at 4 ° C. to recover Escherichia coli. To 1 g of the obtained Escherichia coli, 5 mL of BugBuster (manufactured by Merck Millipore) and 5 μL of benzoase endonuclease (manufactured by Merck Millipore) were added, and the mixture was shaken at room temperature for 30 minutes to completely dissolve the E. coli. After filtering with a 0.45 μm filter, the ribosomal protein L7 / L12 was purified on a glutathione-sepharose column using a Profinia protein purification system (manufactured by Bio-Rad). To 15 mL of the obtained protein solution, 1.5 mL of 10-fold concentration PBS (phosphate buffered saline) and Precision Protease (manufactured by GE Healthcare) were added, and the mixture was shaken at room temperature for 2 hours. The reaction was passed through the glutathione-sepharose column again to obtain a pass-through fraction as ribosomal proteins L7 / L12.

取得したリボソームタンパク質L7/L12を50mM リン酸ナトリウムpH6.8を外液として透析し、4倍量の20mM Tris−HCl pH8.0で希釈し、イオン交換カラムRESOURCE Q(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に2mL/分の流速で流した。続いて、1M NaClを添加した20mM Tris−HCl pH8.0を0%から50%まで直線的に増加するように2mL/分の流速で流し、リボソームタンパク質L7/L12を溶出した。 The obtained ribosomal protein L7 / L12 was dialyzed using 50 mM sodium phosphate pH 6.8 as an external solution, diluted with 4 times the amount of 20 mM Tris-HCl pH 8.0, and an ion exchange column RESOURCE Q (manufactured by GE Healthcare) was connected. The protein was flowed through the AKTA protein purification system (manufactured by GE Healthcare) at a flow rate of 2 mL / min. Subsequently, 20 mM Tris-HCl pH 8.0 supplemented with 1 M NaCl was flowed at a flow rate of 2 mL / min so as to linearly increase from 0% to 50%, and the ribosomal proteins L7 / L12 were eluted.

得られたリボソームタンパク質L7/L12をPBS(リン酸緩衝生理食塩水)を移動相として、ゲル濾過カラムHiLoad 16/60 Superdex 75pg(GE Healthcare社製)を接続したAKTAタンパク質精製システム(GE Healthcare社製)に1mL/分の流速で流し、リボソームタンパク質L7/L12を精製し、プロテインアッセイキットI(BIO−RAD社製、型番5000001JA)を用いて濃度定量した後、NMR測定に供した。 The obtained ribosomal protein L7 / L12 was used as a mobile phase in PBS (phosphate buffered saline), and a gel filtration column HiLoad 16/60 Superdex 75pg (manufactured by GE Healthcare) was connected to the AKTA protein purification system (manufactured by GE Healthcare). ) At a flow rate of 1 mL / min to purify the ribosomal proteins L7 / L12, quantify the concentration using Protein Assay Kit I (manufactured by BIO-RAD, model number 5000001JA), and then subject to NMR measurement.

<2:サルモネラ菌のリボソームタンパク質L7/L12の抗体の前処理>
実施例5で得られた、サルモネラ菌のリボソームタンパク質L7/L12のNTDを認識するモノクローナル抗体31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2を、PBS(リン酸緩衝生理食塩水)を外液として透析し、紫外光(波長280nm)の吸光度により濃度定量した後、NMR測定に供した。
<2: Pretreatment of Salmonella ribosomal protein L7 / L12 antibody>
The monoclonal antibodies 31E2-F5-F9, 33C9-F6-D1 and 36G2-F9-D2 obtained in Example 5 that recognize the NTD of the ribosomal proteins L7 / L12 of Salmonella were added to PBS (phosphate buffered saline). ) Was dialyzed as an external solution, the concentration was quantified by the absorbance of ultraviolet light (wavelength 280 nm), and then the mixture was subjected to NMR measurement.

<3:NMRによるサルモネラ菌のリボソームタンパク質L7/L12と抗体の相互作用解析>
サルモネラ菌のリボソームタンパク質L7/L12と、抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−D2を、それぞれ1:0.5(モル比)の比率で混合した。各混合物をPBS(リン酸緩衝生理食塩水)で250μLまでメスアップした後、重水を20μL、5mg/mL DSS(4,4−ジメチル−4−シラペンタン−1−スルホン酸)を1μL入れ、Shigemi NMR試料管に移し、アスピレーターで脱気後、NMR装置に設置した。
<3: Interaction analysis of Salmonella ribosomal proteins L7 / L12 and antibody by NMR>
Salmonella ribosomal proteins L7 / L12 and antibodies 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D2 were mixed at a ratio of 1: 0.5 (molar ratio), respectively. After each mixture is measured up to 250 μL with PBS (phosphate buffered saline), 20 μL of heavy water and 1 μL of 5 mg / mL DSS (4,4-dimethyl-4-silappentan-1-sulfonic acid) are added, and Shigemi NMR is performed. It was transferred to a sample tube, degassed with an aspirator, and then placed in an NMR apparatus.

AVANCE III HD 600MHz NMR装置(Bruker社製)で、[H−15N] HSQC(積算回数128、データポイント数(F1×F2)512×2048)のパルスシーケンスを用いてFIDを得た。得られたFIDをNMR Pipeソフトを用いてフーリエ変換し、スペクトルを取得した。取得したスペクトルに対し、Sparkyソフト上で、実施例1の帰属情報を追記した。 A FID was obtained using a pulse sequence of [1 H- 15 N] HSQC (integration number 128, data point number (F1 × F2) 512 × 2048) with an AVANCE III HD 600MHz NMR apparatus (manufactured by Bruker). The obtained FID was Fourier transformed using NMR Pipe software to obtain a spectrum. The attribution information of Example 1 was added to the acquired spectrum on Sparky software.

NMRでは、リボソームタンパク質L7/L12のように低分子量(13、000)であれば、明瞭(sharp)な信号として観測可能であるが、抗体のような高分子量(150、000)の場合は、非常に幅広く不明瞭(broad)な信号となるため、強度不足により観測不可能である。また、一般的に抗原抗体反応の結合/解離定数は1μM以下であり、結合側に偏った平衡状態にあると考えられている。従って、リボソームタンパク質L7/L12が抗体と相互作用(結合)すると、抗体の影響を受けてリボソームタンパク質L7/L12の信号がbroad化し、その強度が減衰すると考えられる。そこで、リボソームタンパク質L7/L12の[H−15N] HSQCスペクトル(アミノ酸1個につき1信号が観測される)上で、抗体の添加により信号強度が減衰する残基を追跡することで相互作用部位を同定しようと試みた。相互作用解析の詳細は、Williamson, M. P., Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc. 73(2013):1-16に従った。 In NMR, if it has a low molecular weight (13,000) such as ribosomal proteins L7 / L12, it can be observed as a sharp signal, but if it has a high molecular weight (15,000) such as an antibody, it can be observed. The signal is so wide and unclear that it cannot be observed due to insufficient intensity. In addition, the binding / dissociation constant of the antigen-antibody reaction is generally 1 μM or less, and it is considered that the equilibrium state is biased toward the binding side. Therefore, when the ribosomal protein L7 / L12 interacts (binds) with the antibody, it is considered that the signal of the ribosomal protein L7 / L12 is broadened under the influence of the antibody and its intensity is attenuated. Therefore, on the [ 1 H- 15 N] HSQC spectrum of ribosomal proteins L7 / L12 (one signal is observed for each amino acid), the interaction is performed by tracking the residues whose signal intensity is attenuated by the addition of the antibody. An attempt was made to identify the site. For details of the interaction analysis, follow Williamson, MP, Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc. 73 (2013): 1-16.

リボソームタンパク質L7/L12と、抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−Dとをそれぞれ上記比率で混合した場合のリボソームタンパク質L7/L12の各アミノ酸残基の[H−15N] HSQC信号強度を、抗体と混合する前のリボソームタンパク質L7/L12の各アミノ酸残基の[H−15N] HSQC信号強度で除算し、その除算値を縦軸に、リボソームタンパク質L7/L12のアミノ酸配列を横軸に示したグラフを作成した(図6A、B、C)。NTD(1〜40位の残基)の除算値が概ね0.4以下(抗体と相互作用してリボソームタンパク質L7/L12の信号強度が60%以上減衰したことを意味する)であったため、リボソームタンパク質L7/L12はNTD(1〜40位の残基)で抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−D2と相互作用していることが判った(図6A、B、C)。 [1 H] of each amino acid residue of ribosomal protein L7 / L12 when ribosomal protein L7 / L12 and antibody 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D are mixed in the above ratios, respectively. - 15 N] a HSQC signal strength, divided by [1 H- 15 N] HSQC signal strength of each amino acid residue of the previous ribosomal protein L7 / L12 is mixed with the antibody, the vertical axis of the division value, ribosomal protein A graph showing the amino acid sequence of L7 / L12 on the horizontal axis was created (FIGS. 6A, B, C). The division value of NTD (residues at positions 1 to 40) was approximately 0.4 or less (meaning that the signal intensity of ribosomal proteins L7 / L12 was attenuated by 60% or more by interacting with the antibody). Proteins L7 / L12 were found to interact with antibodies 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D2 at NTD (residues at positions 1-40) (FIGS. 6A, B). , C).

[実施例7]サルモネラ菌のリボソームタンパク質L7/L12に結合する抗体の交差反応性の検討
実施例5で得られた、サルモネラ菌のリボソームタンパク質L7/L12のNTDを認識するモノクローナル抗体31E2−F5−F9、33C9−F6−D1、及び36G2−F9−D2について、以下の手順により、サルモネラ菌以外の細菌のリボソームタンパク質L7/L12との交差反応性のELISAによる解析を行った。
[Example 7] Examination of cross-reactivity of antibody binding to salmonella ribosomal protein L7 / L12 Monoclonal antibody 31E2-F5-F9 that recognizes NTD of salmonella ribosomal protein L7 / L12 obtained in Example 5, 33C9-F6-D1 and 36G2-F9-D2 were analyzed by ELISA for cross-reactivity with ribosomal proteins L7 / L12 of bacteria other than Salmonella according to the following procedure.

<1:交差反応性解析用の各細菌種の組換全長リボソームタンパク質L7/L12の調製>
以下の方法により交差反応性試験用の組換え全長リボソームタンパク質L7/L12を調製した。まず、交差反応性解析に用いる対象細菌種として、下記表2に示す各菌種のリボソームタンパク質L7/L12のアミノ酸配列をコードする塩基配列の人工合成遺伝子(GenScript社製)を含むプラスミドベクターpGEX−6P−1を作製した。
<1: Preparation of recombinant full-length ribosomal proteins L7 / L12 of each bacterial species for cross-reactivity analysis>
A recombinant full-length ribosomal protein L7 / L12 for a cross-reactivity test was prepared by the following method. First, as a target bacterial species used for cross-reactivity analysis, a plasmid vector pGEX- containing an artificially synthesized gene (manufactured by GenScript) having a base sequence encoding the amino acid sequence of the ribosomal proteins L7 / L12 of each bacterial species shown in Table 2 below. 6P-1 was prepared.

Figure 2021069359
Figure 2021069359

得られた各菌種のL7/L12遺伝子を担持するプラスミドベクターpGEX−6P−1を、大腸菌One Shot Competent Cells(Invitrogen社製)に導入し、50μg/mLのアンピシリン(Sigma社製)を含むLB培地(宝酒造社製)の半固型培地のプレートに播種し、37℃で12時間程度放置し、生じたコロニーを無作為に選択し、同濃度のアンピシリンを含むLB液体培地2mLに植え付け、8時間程度37℃で振盪培養し、菌体を回収した。得られた菌体からQIAprep Spin Miniprep Kit(QIAGEN社)を用い、添付の説明書に従ってプラスミドを分離した。得られたプラスミドを制限酵素BamHI/XhoIにて切断処理した。約 370bpのDNAを切断することによって、各細菌種のリボソームタンパク質L7/L12人工合成遺伝子の挿入を確認した。当該プラスミドベクターを導入した大腸菌を、50mLのLB培地中で37℃で1晩培養した後、500mLのTB培地に入れ、1時間培養した。その後、100mMのイソプロピルβ−D(−)−チオガラクトピラノシド(IPTG)を550μL加えて、更に4時間培養した。回収後、1/100量のBugBuster(Merck社製)を加えて、室温で20分間振盪した。その後、10,000rpmで30分間遠心分離し、大腸菌を回収した。 The obtained plasmid vector pGEX-6P-1 carrying the L7 / L12 gene of each bacterial strain was introduced into Escherichia coli One Shot Competent Cells (manufactured by Invitrogen), and LB containing 50 μg / mL ampicillin (manufactured by Sigma). Seed on a plate of semi-solid medium (manufactured by Takara Shuzo Co., Ltd.), left at 37 ° C. for about 12 hours, randomly selected the resulting colonies, and planted in 2 mL of LB liquid medium containing the same concentration of ampicillin, 8 The cells were collected by shaking and culturing at 37 ° C. for about an hour. The plasmid was isolated from the obtained cells using the QIAprep Spin Miniprep Kit (QIAGEN) according to the attached instructions. The obtained plasmid was cleaved with the restriction enzymes BamHI / XhoI. Insertion of the ribosomal protein L7 / L12 artificial synthetic gene of each bacterial species was confirmed by cleaving about 370 bp of DNA. Escherichia coli into which the plasmid vector was introduced was cultured overnight at 37 ° C. in 50 mL of LB medium, then placed in 500 mL of TB medium and cultured for 1 hour. Then, 550 μL of 100 mM isopropyl β-D (-)-thiogalactopyranoside (IPTG) was added, and the cells were further cultured for 4 hours. After recovery, 1/100 amount of BugBuster (manufactured by Merck) was added, and the mixture was shaken at room temperature for 20 minutes. Then, the Escherichia coli was collected by centrifugation at 10,000 rpm for 30 minutes.

前記実施例1と同様の方法により、組換全長リボソームタンパク質L7/L12の採取・精製を行い、各菌種の組換全長リボソームタンパク質L7/L12を得た。 The recombinant full-length ribosomal protein L7 / L12 was collected and purified by the same method as in Example 1 to obtain a recombinant full-length ribosomal protein L7 / L12 of each bacterial species.

<2:交差反応性解析用ELISAの実施>
前記各菌種の組換えリボゾームタンパク質L7/L12を、それぞれELISAプレートに固相化し、前記モノクローナル抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−D2の各々を反応させ、洗浄した後、固相化された各菌種のL7/L12に結合したモノクローナル抗体をパーオキシダーゼ標識抗マウスIgG抗体と反応させ、各モノクローナル抗体と各菌種のL7/L12との交差反応性を評価した。
<2: Implementation of ELISA for cross-reactivity analysis>
The recombinant ribosome proteins L7 / L12 of each bacterial species were immobilized on an ELISA plate, and each of the monoclonal antibodies 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D2 was reacted and washed. After that, the monoclonal antibody bound to L7 / L12 of each immobilized bacterial species was reacted with a peroxidase-labeled anti-mouse IgG antibody, and the cross-reactivity of each monoclonal antibody with L7 / L12 of each bacterial species was evaluated. did.

具体的には、サルモネラ菌及び前記各菌種の組換え全長リボゾームタンパク質L7/L12それぞれ0.01μg/mL、0.1μg/mL又は1μg/mLの濃度で含むPBS溶液各100μLを、96穴ELISAプレート(Nunc社製Maxsorp ELISA plate)に分注し、4℃で一晩吸着させた。上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μLを添加し、室温で1時間反応させてプロッキングした。上澄み除去後、洗浄液(0.02%Tween20含有PBS)で数回洗浄し、抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−D2を1μg/mLになるように0.5%TritonX−100/PBSで希釈した抗体溶液、又は、約1×PBSそのもの(陰性コントロール)をそれぞれ100μL添加し、室温にて1時間反応させた。上澄みを除去した後、パーオキシダーゼ標識抗マウスIgG抗体試薬を2次抗体として、0.02%Tween20/PBSにて最終濃度1μg/mLになるように希釈した液を100μLずつ添加し、室温にて1時間反応させた。上澄み除去後、さらに洗浄液で数回洗浄し、TMB(3,3’,5,5’−テトラメチルベンジジン)溶液(KPL社製)を100μLずつ加え、室温で10分間反応させた後、1mol/Lの塩酸を100μL添加して反応を停止させた。得られた溶液の450nmの吸光度を測定し、陰性コントロールの450nmの吸光度との差を求めることにより、各モノクローナル抗体と各菌種のL7/L12との交差反応性を評価した。 Specifically, a 96-well ELISA plate containing 100 μL of PBS solution containing each of Salmonella and the recombinant full-length ribosome protein L7 / L12 of each of the above strains at a concentration of 0.01 μg / mL, 0.1 μg / mL, or 1 μg / mL, respectively. It was dispensed into (Maxsorp ELISA plate manufactured by Nunc) and adsorbed overnight at 4 ° C. After removing the supernatant, 200 μL of 1% bovine serum albumin solution (in PBS) was added, and the mixture was reacted at room temperature for 1 hour for procking. After removing the supernatant, wash with a washing solution (PBS containing 0.02% Tween 20) several times, and 0.5 to 1 μg / mL of antibody 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D2. An antibody solution diluted with% TritonX-100 / PBS or about 1 × PBS itself (negative control) was added in an amount of 100 μL, and the mixture was reacted at room temperature for 1 hour. After removing the supernatant, 100 μL of a solution diluted with 0.02% Tween 20 / PBS to a final concentration of 1 μg / mL was added as a secondary antibody using a peroxidase-labeled anti-mouse IgG antibody reagent at room temperature. It was allowed to react for 1 hour. After removing the supernatant, wash with a washing solution several times, add 100 μL of TMB (3,3', 5,5'-tetramethylbenzidine) solution (manufactured by KPL), react at room temperature for 10 minutes, and then 1 mol / mol /. The reaction was stopped by adding 100 μL of L hydrochloric acid. The cross-reactivity of each monoclonal antibody with L7 / L12 of each bacterial species was evaluated by measuring the absorbance at 450 nm of the obtained solution and determining the difference from the absorbance at 450 nm of the negative control.

結果として得られた、抗体31E2−F5−F9、33C9−F6−D1、又は36G2−F9−D2と、サルモネラ菌又は他の各菌種の組換え全長リボゾームタンパク質L7/L12との反応性の評価結果を、下記の表3に示す。下記表中、陽性(+)は、陰性コントロールに対する吸光度の差が0.5以上のもの、陰性(−)は、陰性コントロールに対する吸光度の差が0.1以下の値のものをそれぞれ示す。 Evaluation result of the reactivity of the antibody 31E2-F5-F9, 33C9-F6-D1 or 36G2-F9-D2 obtained as a result with the recombinant full-length ribosome protein L7 / L12 of Salmonella or other bacterial species. Is shown in Table 3 below. In the table below, positive (+) indicates that the difference in absorbance with respect to the negative control is 0.5 or more, and negative (-) indicates that the difference in absorbance with respect to the negative control is 0.1 or less.

Figure 2021069359
Figure 2021069359

本発明は、検体中のサルモネラ菌の検出が求められる分野、主に医療の分野に幅広く利用でき、その産業上の有用性は極めて高い。 The present invention can be widely used in fields where detection of Salmonella in a sample is required, mainly in the medical field, and its industrial usefulness is extremely high.

Claims (13)

サルモネラ菌(Salmonella enteritidis)を検出するための抗体であって、配列番号1に示すサルモネラ菌のリボソームタンパク質L7/L12の1〜40位のアミノ酸残基からなるN末端ドメイン(NTD)内に存在するエピトープと抗原抗体反応を生じる、抗体もしくはその断片、又はそれらの誘導体。 An antibody for detecting Salmonella enteritidis, which is an epitope present in the N-terminal domain (NTD) consisting of amino acid residues 1 to 40 of Salmonella ribosomal protein L7 / L12 shown in SEQ ID NO: 1. Antibodies or fragments thereof, or derivatives thereof, that cause an antibody reaction. 前記エピトープが、配列番号1の4〜22位のアミノ酸残基から選択される1又は2以上のアミノ酸残基を含む、請求項1に記載の抗体もしくはその断片、又はそれらの誘導体。 The antibody or fragment thereof according to claim 1, or a derivative thereof, wherein the epitope contains one or more amino acid residues selected from the amino acid residues at positions 4 to 22 of SEQ ID NO: 1. マイコプラズマ(Mycoplasma)属、エシェリキア(Escherichia)属、クラミジア(Chlamydia)属、シュードモナス(Pseudomonas)属、ストレプトコッカス(Streptococcus)属、スタフィロコッカス(Staphylococcus)属、ナイセリア(Neisseria)属、ヘモフィルス(Haemophilus)属、ボルデテラ(Bordetella)属、モラクセラ(Moraxella)属、及びレジオネラ(Legionella)属から選択される1以上の属の細菌と交差反応しない、請求項1又は2に記載の抗体、もしくはその断片、又はそれらの誘導体。 Mycoplasma, Escherichia, Chlamydia, Pseudomonas, Streptococcus, Staphylococcus, Neisseria, Haemophilus The antibody according to claim 1 or 2, or a fragment thereof, or a fragment thereof, which does not cross-react with bacteria of one or more genera selected from the genus Bordetella, Moraxella, and Legionella. Derivative. 重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む、請求項1〜3の何れか一項に記載の抗体、もしくはその断片、又はそれらの誘導体。
As the heavy chain variable region sequence, an amino acid sequence having 80% or more homology with any one of the amino acid sequences selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13 and an amino acid sequence having 80% or more homology.
13. Of claims 1-3, the light chain variable region sequence comprises an amino acid sequence having 80% or more homology with any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15. The antibody according to any one of the above, a fragment thereof, or a derivative thereof.
重鎖可変領域配列として、配列番号5、配列番号9、及び配列番号13から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列、及び、
軽鎖可変領域配列として、配列番号7、配列番号11、及び配列番号15から選択される何れか1つのアミノ酸配列と80%以上の相同性を有するアミノ酸配列
をそれぞれ含む抗体、もしくはその断片、又はそれらの誘導体。
As the heavy chain variable region sequence, an amino acid sequence having 80% or more homology with any one of the amino acid sequences selected from SEQ ID NO: 5, SEQ ID NO: 9, and SEQ ID NO: 13 and an amino acid sequence having 80% or more homology.
As the light chain variable region sequence, an antibody or a fragment thereof each containing an amino acid sequence having 80% or more homology with any one amino acid sequence selected from SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 15 or Derivatives of them.
請求項1〜5のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体をコードする核酸分子。 A nucleic acid molecule encoding the antibody or fragment thereof according to any one of claims 1 to 5, or a derivative thereof. 請求項6に記載の核酸分子を含むベクター又はプラスミド。 A vector or plasmid containing the nucleic acid molecule according to claim 6. 請求項6に記載の核酸分子又は請求項7に記載のベクター若しくはプラスミドで形質転換された宿主細胞。 A host cell transformed with the nucleic acid molecule according to claim 6 or the vector or plasmid according to claim 7. 宿主細胞が哺乳動物細胞、昆虫細胞、酵母細胞、及び植物細胞から選ばれる真核細胞、又は細菌細胞である、請求項8に記載の宿主細胞。 The host cell according to claim 8, wherein the host cell is a eukaryotic cell selected from a mammalian cell, an insect cell, a yeast cell, and a plant cell, or a bacterial cell. 請求項1〜5のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を発現するハイブリドーマ。 A hybridoma expressing the antibody or fragment thereof according to any one of claims 1 to 5, or a derivative thereof. 検体中のサルモネラ菌の有無を検出するための方法であって、請求項1〜5のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を検体と接触させ、抗原抗体反応の有無を検出することを含む方法。 A method for detecting the presence or absence of Salmonella in a sample, wherein the antibody or fragment thereof according to any one of claims 1 to 5 or a derivative thereof is brought into contact with the sample to determine the presence or absence of an antigen-antibody reaction. Methods involving detection. 検体中のサルモネラ菌の有無を検出するための試薬であって、請求項1〜5のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体を含む、試薬。 A reagent for detecting the presence or absence of Salmonella in a sample, which comprises the antibody or fragment thereof according to any one of claims 1 to 5, or a derivative thereof. 検体中のサルモネラ菌の有無を検出するためのキットであって、請求項1〜5のいずれか一項に記載の抗体もしくはその断片、又はそれらの誘導体と、前記抗体を用いて検体中のサルモネラ菌の有無を検出するための指示を含む指示書とを含む、キット。 A kit for detecting the presence or absence of Salmonella in a sample, wherein the antibody or fragment thereof according to any one of claims 1 to 5, or a derivative thereof, and the Salmonella in the sample are used. A kit that includes instructions, including instructions for detecting the presence or absence.
JP2019200280A 2019-11-01 2019-11-01 Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody Active JP7491679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200280A JP7491679B2 (en) 2019-11-01 2019-11-01 Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200280A JP7491679B2 (en) 2019-11-01 2019-11-01 Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody

Publications (2)

Publication Number Publication Date
JP2021069359A true JP2021069359A (en) 2021-05-06
JP7491679B2 JP7491679B2 (en) 2024-05-28

Family

ID=75711789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200280A Active JP7491679B2 (en) 2019-11-01 2019-11-01 Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody

Country Status (1)

Country Link
JP (1) JP7491679B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006603A1 (en) 1998-07-31 2000-02-10 Asahi Kasei Kogyo Kabushiki Kaisha Antibody for detecting microorganism

Also Published As

Publication number Publication date
JP7491679B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
JP5219057B2 (en) Antibodies for detecting microorganisms
JP6466397B2 (en) Protocol for identification and isolation of antigen-specific B cells and production of antibodies against the desired antigen
KR101192130B1 (en) Antibody against OMPU of Vibrio and method of detecting Vibro using the same
US9052314B2 (en) Biomarkers for detecting the presence of bacteria
WO2009124068A1 (en) Iterative screening and subtractive process for marker discovery
Yan et al. Generation of mycobacterial lipoarabinomannan-specific monoclonal antibodies and their ability to identify mycobacterium isolates
JP7200375B2 (en) Specific antibody against human anti-Müllerian hormone and use thereof
JP7402659B2 (en) Antibodies for detecting Mycoplasma pneumoniae in a specimen, and methods, reagents, and kits for detecting Mycoplasma pneumoniae using such antibodies
JP6964704B2 (en) Antibodies for detecting E. coli in specimens, and methods, reagents, and kits for detecting E. coli using such antibodies.
JP6964161B2 (en) Antibodies for detecting Moraxella catarrhalis in specimens, and methods, reagents, and kits for detecting Moraxella catarrhalis using such antibodies.
JP6964645B2 (en) Antibodies for detecting Pseudomonas aeruginosa in specimens, and methods, reagents, and kits for detecting Pseudomonas aeruginosa using such antibodies.
JP6964117B2 (en) Antibodies for detecting Haemophilus influenzae in specimens, and methods, reagents, and kits for detecting Haemophilus influenzae using such antibodies.
JP7491679B2 (en) Antibody for detecting Salmonella in a sample, and method, reagent, and kit for detecting Salmonella using the antibody
JP6964118B2 (en) Antibodies for detecting Staphylococcus aureus in specimens, and methods, reagents, and kits for detecting Staphylococcus aureus using such antibodies.
JP6964644B2 (en) Antibodies for detecting Streptococcus pneumoniae in specimens, and methods, reagents, and kits for detecting Streptococcus pneumoniae using such antibodies.
KR20210118808A (en) Anti-pandemic-specific antimalarial lactate dehydrogenase antibody
JP2021164414A (en) Antibody for detecting legionella pneumophila in sample, and method, reagent, and kit for detecting legionella pneumophila with the antibody
JP2021164417A (en) Antibody for detecting neisseria gonorrhoeae in sample, and method, reagent, and kit for detecting neisseria gonorrhoeae with the antibody
JP5331284B2 (en) Antibodies for Chlamydia pneumonia detection
WO2022210594A1 (en) Neisseria gonorrhoeae detection kit and neisseria gonorrhoeae detection method
KR101851332B1 (en) Staphylococcus aureus-Specific Novel Monoclonal Antibody, Hybridoma For Producing The Antibody, Method For Detecting The Same Comprising The Antibody And Kit For Detecting The Same
JP2022109630A (en) Test method and test kit for determining whether or not infectious disease of subject is of bacterial origin
EP0915158A2 (en) Improvements in or relating to detection of salmonella
CN115057927B (en) Peanut allergen Ara h1 specific nano-antibody and application thereof
KR102212636B1 (en) An antibody specific for f1 capsule protein of yersinia pestis, hybridoma cell line 1h4 producing the same, and a kit for detecting yersinia pestis using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240516