JP2021068510A - Method for producing electrode sheet - Google Patents

Method for producing electrode sheet Download PDF

Info

Publication number
JP2021068510A
JP2021068510A JP2019190694A JP2019190694A JP2021068510A JP 2021068510 A JP2021068510 A JP 2021068510A JP 2019190694 A JP2019190694 A JP 2019190694A JP 2019190694 A JP2019190694 A JP 2019190694A JP 2021068510 A JP2021068510 A JP 2021068510A
Authority
JP
Japan
Prior art keywords
mixture
roll
film
electrode mixture
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019190694A
Other languages
Japanese (ja)
Inventor
哲矢 三村
Tetsuya Mimura
哲矢 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019190694A priority Critical patent/JP2021068510A/en
Publication of JP2021068510A publication Critical patent/JP2021068510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method for producing an electrode sheet, with which the binding strength between both ends of a mixture and a current collector foil can be increased.SOLUTION: A method for producing an electrode sheet includes: a film formation step (S2) of forming a current collector foil 9 with a membrane electrode mixture having a membrane electrode mixture 8 on the surface of a current collector foil 7; and a drying step (S3) of drying the membrane electrode mixture 8 of the current collector foil 9 with a membrane electrode mixture, thereby forming an electrode mixture layer 18 on the surface of the current collector foil 7. In the method for producing an electrode sheet, the film formation step (S2) includes a densification step of making the density of mixture both ends 8c, 8d that are located at both ends of the membrane electrode mixture 8 in a width direction WD higher than the density of a mixture intermediate part 8b that is located between the mixture both ends 8c, 8d in the width direction WD, in the membrane electrode mixture 8.SELECTED DRAWING: Figure 3

Description

本発明は、電池を構成する電極シートを製造する方法に関する。詳細には、集電箔の表面上に電極合材層を有する電極シートを製造する方法に関する。 The present invention relates to a method for manufacturing an electrode sheet constituting a battery. More specifically, the present invention relates to a method for producing an electrode sheet having an electrode mixture layer on the surface of a current collector foil.

従来、電極シート(正極シートまたは負極シート)として、集電箔の表面上に電極合材層を有する電極シートが知られている。このような電極シートの製造方法としては、例えば、特許文献1,2に開示されているような方法が知られている。具体的には、まず、電極活物質と結着材と溶媒とを混合して造粒した複数の湿潤造粒体からなる電極合材を作製する。 Conventionally, as an electrode sheet (positive electrode sheet or negative electrode sheet), an electrode sheet having an electrode mixture layer on the surface of a current collector foil is known. As a method for producing such an electrode sheet, for example, a method disclosed in Patent Documents 1 and 2 is known. Specifically, first, an electrode mixture composed of a plurality of wet granulated materials obtained by mixing an electrode active material, a binder, and a solvent is produced.

特開2013−052353号公報Japanese Unexamined Patent Publication No. 2013-052353 特開2016−207340号公報Japanese Unexamined Patent Publication No. 2016-20740

次いで、成膜工程において、対向して回転する第1ロールと第2ロールとの間隙に電極合材を通すことによって電極合材を圧縮しつつ膜状にして、膜状にした電極合材を第2ロールの表面に付着させる。さらに、第2ロールと対向して回転する第3ロールによって搬送される集電箔を、第2ロールと第3ロールとの間隙に通すことによって、第2ロールの表面に付着している膜状の電極合材を、集電箔の表面に対し加圧しつつ接触させて、集電箔の表面上に転写する。これにより、集電箔の表面上に膜状電極合材を有する膜状電極合材付き集電箔を作製する。 Next, in the film forming step, the electrode mixture is made into a film while being compressed by passing the electrode mixture through the gap between the first roll and the second roll that rotate opposite to each other, and the electrode mixture is formed into a film. Adhere to the surface of the second roll. Further, the current collecting foil conveyed by the third roll, which rotates facing the second roll, is passed through the gap between the second roll and the third roll, so that the film is attached to the surface of the second roll. The electrode mixture of No. 1 is brought into contact with the surface of the current collector foil while being pressurized, and transferred onto the surface of the current collector foil. As a result, a current collector foil with a film-like electrode mixture having a film-like electrode mixture on the surface of the current collector foil is produced.

その後、乾燥工程において、膜状電極合材付き集電箔の膜状電極合材を乾燥させることで、集電箔の表面上に電極合材層を形成する。これにより、集電箔の表面上に電極合材層が形成された電極シートが作製される。 Then, in the drying step, the film-like electrode mixture of the current collector foil with the film-like electrode mixture is dried to form an electrode mixture layer on the surface of the current collector foil. As a result, an electrode sheet in which an electrode mixture layer is formed on the surface of the current collector foil is produced.

ところで、前述のようにして作製した電極シート(膜状電極合材付き集電箔を乾燥させたもの)では、電極合材層(膜状電極合材を乾燥させたもの)の幅方向の両端部に位置する合材両端部と集電箔の表面との間の結着力が弱く(幅方向について合材両端部の間に位置する合材中間部と集電箔の表面との間の結着力よりも弱く)、合材両端部が集電箔の表面から剥がれ易くなっていた。このため、合材両端部と集電箔との間の結着力を高めることができる電極シートの製造方法が求められていた。 By the way, in the electrode sheet produced as described above (dried current collector foil with film-like electrode mixture), both ends in the width direction of the electrode mixture layer (dried film-like electrode mixture). The binding force between both ends of the mixture located at the portion and the surface of the current collector foil is weak (the bond between the intermediate portion of the mixture located between both ends of the mixture in the width direction and the surface of the current collector foil). It was weaker than the force of application), and both ends of the mixture were easily peeled off from the surface of the current collector foil. Therefore, there has been a demand for a method for manufacturing an electrode sheet capable of increasing the binding force between both ends of the mixture and the current collector foil.

本発明は、かかる現状に鑑みてなされたものであって、合材両端部と集電箔との間の結着力を高めることができる電極シートの製造方法を提供することを目的とする。 The present invention has been made in view of the present situation, and an object of the present invention is to provide a method for manufacturing an electrode sheet capable of enhancing the binding force between both ends of a mixture and a current collector foil.

本発明の一態様は、集電箔の表面上に電極合材層を有する電極シートを製造する電極シートの製造方法であって、電極活物質と結着材と溶媒とを混合して造粒した複数の湿潤造粒体からなる電極合材を、対向して回転する第1ロールと第2ロールとの間隙に通すことによって、前記電極合材を圧縮しつつ膜状にして、膜状にした前記電極合材を前記第2ロールの表面に付着させると共に、前記第2ロールと対向して回転する第3ロールによって搬送される前記集電箔を、前記第2ロールと前記第3ロールとの間隙に通すことによって、前記第2ロールの表面に付着している膜状の前記電極合材である膜状電極合材を、前記集電箔の前記表面に対し加圧しつつ接触させることで前記集電箔の前記表面上に転写して、前記集電箔の前記表面上に前記膜状電極合材を有する膜状電極合材付き集電箔を作製する成膜工程と、前記膜状電極合材付き集電箔の前記膜状電極合材を乾燥させることで、前記集電箔の前記表面上に前記電極合材層を形成する乾燥工程と、を備える電極シートの製造方法において、前記成膜工程は、前記膜状電極合材において、当該膜状電極合材の幅方向の両端部に位置する合材両端部の密度を、前記幅方向について前記合材両端部の間に位置する合材中間部の密度よりも高くする高密化工程を含む電極シートの製造方法である。 One aspect of the present invention is a method for producing an electrode sheet having an electrode mixture layer on the surface of a current collector foil, in which an electrode active material, a binder, and a solvent are mixed and granulated. By passing the electrode mixture composed of the plurality of wet granulated bodies in the gap between the first roll and the second roll rotating in opposition to each other, the electrode mixture is compressed and formed into a film to form a film. The electrode mixture is attached to the surface of the second roll, and the current collecting foil conveyed by the third roll that rotates in opposition to the second roll is combined with the second roll and the third roll. By passing it through the gap between the two rolls, the film-like electrode mixture, which is the film-like electrode mixture adhering to the surface of the second roll, is brought into contact with the surface of the current collector foil while being pressed. A film forming step of transferring onto the surface of the current collector foil to prepare a current collector foil with a film-like electrode mixture having the film-like electrode mixture on the surface of the current collector foil, and the film-like film. In a method for manufacturing an electrode sheet, which comprises a drying step of forming the electrode mixture layer on the surface of the current collector foil by drying the film-shaped electrode mixture of the current collector foil with the electrode mixture. In the film forming step, in the film-like electrode mixture, the densities of both ends of the mixture located at both ends of the film-like electrode mixture in the width direction are located between both ends of the mixture in the width direction. This is a method for manufacturing an electrode sheet, which includes a densification step in which the density is higher than the density of the intermediate portion of the mixed material.

上述の電極シートの製造方法では、成膜工程において、電極活物質と結着材と溶媒とを混合して造粒した複数の湿潤造粒体からなる電極合材を、対向して回転する第1ロールと第2ロールとの間隙に通すことによって、電極合材を圧縮しつつ膜状にして、膜状にした電極合材を第2ロールの表面に付着させると共に、第2ロールと対向して回転する第3ロールによって搬送される集電箔を、第2ロールと第3ロールとの間隙に通すことによって、第2ロールの表面に付着している膜状の電極合材(膜状電極合材とする)を、集電箔の表面に対し加圧しつつ接触させて、集電箔の表面上に転写する。これにより、集電箔の表面上に膜状電極合材を有する膜状電極合材付き集電箔を作製する。 In the above-mentioned method for producing an electrode sheet, in the film forming step, an electrode mixture composed of a plurality of wet granulated bodies obtained by mixing an electrode active material, a binder and a solvent is rotated to face each other. By passing it through the gap between the 1st roll and the 2nd roll, the electrode mixture is compressed and formed into a film, and the film-shaped electrode mixture is attached to the surface of the 2nd roll and faces the 2nd roll. By passing the current collecting foil conveyed by the rotating third roll through the gap between the second roll and the third roll, a film-like electrode mixture (film-like electrode) adhering to the surface of the second roll The mixture material) is brought into contact with the surface of the current collector foil while being pressurized, and transferred onto the surface of the current collector foil. As a result, a current collector foil with a film-like electrode mixture having a film-like electrode mixture on the surface of the current collector foil is produced.

その後、乾燥工程において、膜状電極合材付き集電箔の膜状電極合材を乾燥させることで、集電箔の表面上に電極合材層を形成する。これにより、集電箔の表面上に電極合材層が形成された電極シートが作製される。 Then, in the drying step, the film-like electrode mixture of the current collector foil with the film-like electrode mixture is dried to form an electrode mixture layer on the surface of the current collector foil. As a result, an electrode sheet in which an electrode mixture layer is formed on the surface of the current collector foil is produced.

このように作製した電極シート(膜状電極合材付き集電箔を乾燥させたもの)では、電極合材層(膜状電極合材を乾燥させたもの)の幅方向の両端部に位置する合材両端部と集電箔の表面との間の結着力が弱く(幅方向について合材両端部の間に位置する合材中間部と集電箔の表面との間の結着力よりも弱く)、合材両端部が集電箔の表面から剥がれ易くなっていた。 In the electrode sheet thus produced (dried current collector foil with film-like electrode mixture), it is located at both ends in the width direction of the electrode mixture layer (dried film-like electrode mixture). The binding force between both ends of the mixture and the surface of the current collector foil is weak (weaker than the binding force between the intermediate portion of the mixture located between both ends of the mixture and the surface of the current collector foil in the width direction). ), Both ends of the mixture were easily peeled off from the surface of the collector foil.

これに対し、上述の電極シートの製造方法では、成膜工程は、膜状電極合材において、当該膜状電極合材の幅方向の両端部に位置する合材両端部の密度(単位体積あたりの質量)を、幅方向について合材両端部の間に位置する合材中間部の密度(単位体積あたりの質量)よりも高くする高密化工程を含む。この高密化工程を行うことで、合材両端部における結着材の密度(例えば、合材両端部のうち集電箔に接触する部位における結着材の密度)を高めることができるので、合材両端部において集電箔に接触(結着)する結着材の数を増大させることができる。従って、結着材による合材両端部と集電箔との結着面積を増大させることができる。 On the other hand, in the above-mentioned method for manufacturing an electrode sheet, in the film forming step, in the film-like electrode mixture, the density (per unit volume) of both ends of the mixture located at both ends in the width direction of the film-like electrode mixture. Includes a densification step that increases the density of the mixture in the width direction higher than the density (mass per unit volume) of the intermediate portion of the mixture located between both ends of the mixture. By performing this densification step, the density of the binder at both ends of the mixture (for example, the density of the binder at both ends of the mixture in contact with the current collector foil) can be increased. It is possible to increase the number of binders that come into contact with (bond) the current collector foil at both ends of the material. Therefore, it is possible to increase the bonding area between both ends of the mixture by the binder and the current collector foil.

これにより、膜状電極合材付き集電箔において、合材両端部と集電箔との間の結着力を高めることができる。従って、膜状電極合材付き集電箔を乾燥させた電極シートにおいても、合材両端部と集電箔との間の結着力を高めることができる。このため、合材両端部が集電箔の表面から剥がれ難くなる。さらには、合材両端部内においても、結着材を介した電極活物質同士の結着力も高めることができる(合材両端部内において電極活物質が結着材に結着し易くなる)ので、合材両端部の一部(例えば、合材両端部のうち表面側の部位)が脱離(脱落)することも低減することができる。 As a result, in the current collector foil with the film-like electrode mixture, the binding force between both ends of the mixture and the current collector foil can be enhanced. Therefore, even in the electrode sheet obtained by drying the current collector foil with the film-like electrode mixture, the binding force between both ends of the mixture and the current collector foil can be enhanced. Therefore, both ends of the mixture are less likely to be peeled off from the surface of the current collector foil. Furthermore, the binding force between the electrode active materials via the binder can be increased even in both ends of the mixture (the electrode active material can be easily bound to the binder in both ends of the mixture). It is also possible to reduce the detachment (falling off) of a part of both ends of the mixture (for example, a portion of both ends of the mixture on the surface side).

なお、高密化工程としては、例えば、膜状電極合材のうち、幅方向の両端部に位置する合材両端部を、幅方向について合材両端部の間に位置する合材中間部よりも、厚み方向に大きく圧縮(圧縮率を高く)して、合材両端部の密度を合材中間部の密度よりも高くする工程を挙げることができる。この例の高密化工程は、合材中間部を圧縮することなく、合材両端部のみを厚み方向に圧縮(圧密化)する場合も含む。 As a step of increasing the density, for example, in the film-like electrode mixture, both ends of the mixture located at both ends in the width direction are more than the middle portion of the mixture located between both ends of the mixture in the width direction. A step of making the density of both ends of the mixture higher than the density of the middle portion of the mixture by compressing the material significantly in the thickness direction (increasing the compression ratio) can be mentioned. The densification step of this example also includes a case where only both ends of the mixture are compressed (consolidated) in the thickness direction without compressing the intermediate portion of the mixture.

また、高密化工程としては、例えば、膜状電極合材を集電箔の表面に転写すると同時に、合材両端部の密度を合材中間部の密度よりも高くする工程を挙げることができる。具体的には、膜状電極合材について合材両端部の厚みが合材中間部の厚みよりも厚くなるように、第2ロールの表面に膜状電極合材を付着させ、その後、この膜状電極合材が、第2ロールと第3ロールとの間隙を通過することによって、厚み方向に圧縮されつつ集電箔の表面に転写されるときに(転写されると同時に)、膜状電極合材のうち合材中間部よりも厚みの厚い合材両端部が、合材中間部よりも大きく厚み方向に圧縮されることで(高い圧縮率で圧縮されることで)、合材両端部の密度を合材中間部の密度よりも高くする工程を挙げることができる。 Further, as the step of increasing the density, for example, a step of transferring the film-shaped electrode mixture to the surface of the current collector foil and at the same time increasing the density of both ends of the mixture to be higher than the density of the middle portion of the mixture can be mentioned. Specifically, the film-like electrode mixture is adhered to the surface of the second roll so that the thickness of both ends of the mixture is thicker than the thickness of the middle part of the mixture, and then this film is formed. When the shape electrode mixture passes through the gap between the second roll and the third roll and is transferred to the surface of the current collector foil while being compressed in the thickness direction (at the same time as the transfer), the film-like electrode Both ends of the mixture, which are thicker than the middle part of the mixture, are compressed in the thickness direction larger than the middle part of the mixture (by being compressed at a high compression ratio), so that both ends of the mixture are compressed. The step of making the density of the mixture higher than the density of the intermediate portion of the mixture can be mentioned.

また、他の高密化工程として、膜状電極合材が第2ロールと第3ロールとの間隙において集電箔の表面に転写される前に、合材両端部の密度を合材中間部の密度よりも高くする工程を挙げることができる。具体的には、膜状電極合材の搬送方向について、第2ロールと第3ロールとが間隙を空けて対向する位置よりも上流側の位置に、第2ロールに対向する第4ロール(圧密化を行うロール)を設ける。この第4ロールは、膜状電極合材のうち合材両端部と対向する部位(外周面)の外径が、合材中間部と対向する部位(外周面)の外径よりも大きくされている。従って、第2ロールと第4ロールとの間隙は、膜状電極合材のうち合材両端部が通過する位置の間隙寸法が、合材中間部が通過する位置の間隙寸法よりも小さくなっている。これにより、第2ロールの表面(外周面)に付着して搬送される膜状電極合材が、第2ロールと第4ロールとの間隙を通過するときに、膜状電極合材のうち合材両端部が、合材中間部よりも大きく厚み方向に圧縮される(高い圧縮率で圧縮される)ことで、合材両端部の密度を合材中間部の密度よりも高くする工程を挙げることができる。 In addition, as another step of increasing the density, before the film-like electrode mixture is transferred to the surface of the current collecting foil in the gap between the second roll and the third roll, the density of both ends of the mixture is adjusted to the intermediate portion of the mixture. The process of making the density higher than the density can be mentioned. Specifically, regarding the transport direction of the film-like electrode mixture, the fourth roll (consolidation) facing the second roll is located at a position upstream of the position where the second roll and the third roll face each other with a gap. A roll to perform the conversion) is provided. In this fourth roll, the outer diameter of the portion (outer peripheral surface) of the film-like electrode mixture facing both ends of the mixture is made larger than the outer diameter of the portion (outer peripheral surface) facing the intermediate portion of the mixture. There is. Therefore, in the gap between the second roll and the fourth roll, the gap dimension of the film-like electrode mixture at the position where both ends of the mixture pass is smaller than the gap dimension at the position where the intermediate portion of the mixture passes. There is. As a result, when the film-like electrode mixture that adheres to the surface (outer peripheral surface) of the second roll and is conveyed passes through the gap between the second roll and the fourth roll, the film-like electrode mixture is mixed. A step of increasing the density of both ends of the mixture to be higher than the density of the intermediate part of the mixture by compressing both ends of the material in the thickness direction (compressed at a high compression rate) larger than the middle part of the mixture. be able to.

また、湿潤造粒体とは、溶媒が電極活物質の粒子と結着材に保持(吸収)された状態で、これらが集合(結合)した物質(粒状体)をいう。 The wet granulated material refers to a substance (granular material) in which the solvent is held (absorbed) by the particles of the electrode active material and the binder, and these are aggregated (bonded).

実施形態にかかる電極シート製造装置の側面視概略図である。It is a side view schematic diagram of the electrode sheet manufacturing apparatus which concerns on embodiment. 図1のC−C断面図である。FIG. 5 is a sectional view taken along the line CC of FIG. 実施形態にかかる電極シートの製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the electrode sheet which concerns on embodiment. 電極シート(負極シート)の断面図である。It is sectional drawing of the electrode sheet (negative electrode sheet). 電極シート(負極シート)の平面図である。It is a top view of the electrode sheet (negative electrode sheet). 変形形態にかかる電極シート製造装置の側面視概略図である。It is a side view schematic diagram of the electrode sheet manufacturing apparatus which concerns on a deformed form. 図6のD−D断面図である。FIG. 6 is a cross-sectional view taken along the line DD of FIG. 図6のH視平面図である。FIG. 6 is an H perspective plan view of FIG. 密度比B/Aと合材両端部の結着力との関係を示す図である。It is a figure which shows the relationship between the density ratio B / A and the binding force of both ends of a mixture. 密度比B/Aと合材両端部の残留溶媒量との関係を示す図である。It is a figure which shows the relationship between the density ratio B / A and the amount of the residual solvent at both ends of a mixture. 合材両端部の結着力を比較する図である。It is a figure which compares the binding force of both ends of a mixture.

<実施形態>
以下、本発明を具体化した実施形態について、図面を参照しつつ詳細に説明する。本実施形態は、リチウムイオン二次電池の負極シート(電極シート)の製造に、本発明を適用したものである。本実施形態では、負極シートの負極活物質層(電極合材層)を形成するための負極合材(電極合材)の材料として、負極活物質(電極活物質)と、結着材と、溶媒とを使用する。
<Embodiment>
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to the production of a negative electrode sheet (electrode sheet) of a lithium ion secondary battery. In the present embodiment, as the material of the negative electrode mixture (electrode mixture) for forming the negative electrode active material layer (electrode mixture layer) of the negative electrode sheet, a negative electrode active material (electrode active material), a binder, and a binder are used. Use with a solvent.

なお、本実施形態では、負極活物質として、粉末状の炭素材料(例えば、黒鉛)を使用する。また、溶媒として、水を使用する。また、結着材として、CMC(カルボキシメチルセルロース)を使用する。 In this embodiment, a powdered carbon material (for example, graphite) is used as the negative electrode active material. Moreover, water is used as a solvent. Moreover, CMC (carboxymethyl cellulose) is used as a binder.

本実施形態では、まず、電極合材作製工程において、上記の各材料を混練しつつ造粒して多数の湿潤造粒体16を作製すると共に、多数の湿潤造粒体16からなる負極合材6を作製する。次いで、成膜工程において、この負極合材6を、集電箔7の表面上に膜状に付着させる(塗布する)ことで、集電箔7の表面上に膜状負極合材8(膜状電極合材)を形成する。但し、この成膜工程には、膜状負極合材8(膜状電極合材)において、膜状負極合材8の幅方向WDの両端部に位置する合材両端部8c,8dの密度(単位体積あたりの質量)を、幅方向WDについて合材両端部8c,8dの間に位置する合材中間部8bの密度(単位体積あたりの質量)よりも高くする高密化工程が含まれている。 In the present embodiment, first, in the electrode mixture manufacturing step, each of the above materials is kneaded and granulated to produce a large number of wet granulated bodies 16, and a negative electrode mixture composed of a large number of wet granulated bodies 16. 6 is made. Next, in the film forming step, the negative electrode mixture 6 is adhered (coated) on the surface of the current collector foil 7 in the form of a film, so that the film-like negative electrode mixture 8 (film) is formed on the surface of the current collector foil 7. Form electrode mixture) is formed. However, in this film forming step, in the film-like negative electrode mixture 8 (film-like electrode mixture), the densities of both ends 8c and 8d of the mixture located at both ends of the film-like negative mixture 8 in the width direction WD ( A densification step is included in which the mass per unit volume) is made higher than the density (mass per unit volume) of the intermediate portion 8b of the mixture located between both ends 8c and 8d of the mixture in the width direction WD. ..

次に、乾燥工程において、集電箔7の表面上の膜状負極合材8(負極合材6の膜)を乾燥させて、集電箔7の表面上に負極合材層18(電極合材層)を形成する。これにより、集電箔7の表面上に負極合材層18を有する負極シート19が製造される。 Next, in the drying step, the film-like negative electrode mixture 8 (film of the negative electrode mixture 6) on the surface of the current collector foil 7 is dried, and the negative electrode mixture layer 18 (electrode combination) is placed on the surface of the current collector foil 7. Material layer) is formed. As a result, the negative electrode sheet 19 having the negative electrode mixture layer 18 on the surface of the current collector foil 7 is manufactured.

ここで、本実施形態にかかる電極シート(負極シート19)の製造方法について、詳細に説明する。図1は、実施形態にかかる電極シート製造装置10の側面視概略図である。図2は、図1のC−C断面図である。図3は、実施形態にかかる電極シート(負極シート19)の製造方法の流れを示すフローチャートである。 Here, the method of manufacturing the electrode sheet (negative electrode sheet 19) according to the present embodiment will be described in detail. FIG. 1 is a schematic side view of the electrode sheet manufacturing apparatus 10 according to the embodiment. FIG. 2 is a cross-sectional view taken along the line CC of FIG. FIG. 3 is a flowchart showing the flow of the manufacturing method of the electrode sheet (negative electrode sheet 19) according to the embodiment.

本実施形態で使用する電極シート製造装置10は、図1に示すように、ロール成膜装置20と、図示しない乾燥装置と、図示しない巻き取り装置とを備えている。なお、図1には、乾燥装置及び巻き取り装置の図示を省略しているが、乾燥装置は、膜状負極合材付き集電箔9の搬送方向CDについて、ロール成膜装置20よりも下流に配置されている。さらに、巻き取り装置は、膜状負極合材付き集電箔9(負極シート19)の搬送方向CDについて、乾燥装置よりも下流に配置されており、製造された負極シート19を巻き取る装置である。 As shown in FIG. 1, the electrode sheet manufacturing apparatus 10 used in the present embodiment includes a roll film forming apparatus 20, a drying apparatus (not shown), and a winding apparatus (not shown). Although the drying device and the winding device are not shown in FIG. 1, the drying device is downstream of the roll film forming device 20 with respect to the transport direction CD of the current collector foil 9 with the film-like negative electrode mixture. Is located in. Further, the winding device is a device that winds the manufactured negative electrode sheet 19 by arranging the collecting foil 9 (negative electrode sheet 19) with the film-like negative electrode mixture in the transport direction CD downstream from the drying device. is there.

図3に示すように、まず、ステップS1(電極合材作製工程)において、負極活物質(炭素材料)と結着材(CMC)と溶媒(水)とを混合しつつ造粒して多数の湿潤造粒体16を作製すると共に、多数の湿潤造粒体16からなる負極合材6を作製する。本実施形態では、公知の攪拌造粒機(図示なし)内に、負極活物質と結着材と溶媒を投入し、攪拌することで、負極活物質と結着材と溶媒を混合(分散)しつつ造粒して、多数の湿潤造粒体16にする。これにより、多数の湿潤造粒体16からなる負極合材6が得られる。 As shown in FIG. 3, first, in step S1 (electrode mixture manufacturing step), a large number of particles are granulated while mixing the negative electrode active material (carbon material), the binder (CMC), and the solvent (water). A wet granulated body 16 is produced, and a negative electrode mixture 6 composed of a large number of wet granulated bodies 16 is produced. In the present embodiment, the negative electrode active material, the binder and the solvent are mixed (dispersed) by putting the negative electrode active material, the binder and the solvent into a known stirring granulator (not shown) and stirring the mixture. While granulating, a large number of wet granulated bodies 16 are formed. As a result, the negative electrode mixture 6 composed of a large number of wet granulated materials 16 can be obtained.

なお、湿潤造粒体16は、溶媒である水が、複数の負極活物質の粒子と結着材に保持(吸収)された状態で、これらが集合(結合)した物質(粒状体)である。負極合材6は、このような湿潤造粒体16の集合体である。また、本実施形態では、負極合材6(湿潤造粒体16)の固形分率が70wt%以上(例えば78wt%)となるように、負極活物質と結着材と溶媒とを混合している。 The wet granulated material 16 is a substance (granular material) in which water, which is a solvent, is held (absorbed) by a plurality of negative electrode active material particles and a binder, and these are aggregated (bonded). .. The negative electrode mixture 6 is an aggregate of such wet granulated materials 16. Further, in the present embodiment, the negative electrode active material, the binder, and the solvent are mixed so that the solid content of the negative electrode mixture 6 (wet granulated material 16) is 70 wt% or more (for example, 78 wt%). There is.

次に、ステップS2(成膜工程)に進み、ステップS1(電極合材作製工程)で作製した負極合材6を膜状にし、膜状にされた負極合材6を集電箔7の表面上に付着させる。なお、本実施形態では、図1及び図2に示すロール成膜装置20を用いて、ステップS2(成膜工程)を行う。 Next, the process proceeds to step S2 (deposition step), the negative electrode mixture 6 produced in step S1 (electrode mixture production step) is made into a film, and the film-like negative electrode mixture 6 is formed on the surface of the current collector foil 7. Adhere on top. In this embodiment, step S2 (deposition step) is performed using the roll film forming apparatus 20 shown in FIGS. 1 and 2.

ロール成膜装置20は、図1に示すように、第1ロール1と第2ロール2と第3ロール3の、3つのロールを有している。第1ロール1と第2ロール2とは水平方向(図1において左右方向)に並んで配置されている。一方、第2ロール2と第3ロール3とは、垂直方向(図1において上下方向)に並んで配置されている。また、第1ロール1と第2ロール2とは、わずかな間隔を挟んで対面(対向)している。同様に、第2ロール2と第3ロール3とも、わずかな間隔を挟んで対面(対向)している。さらに、第1ロール1と第2ロール2との対面箇所の上側には、仕切り板4と5が、ロールの幅方向(軸方向、図1において紙面に直交する方向)に離間して配置されている。 As shown in FIG. 1, the roll film forming apparatus 20 has three rolls, a first roll 1, a second roll 2, and a third roll 3. The first roll 1 and the second roll 2 are arranged side by side in the horizontal direction (horizontal direction in FIG. 1). On the other hand, the second roll 2 and the third roll 3 are arranged side by side in the vertical direction (vertical direction in FIG. 1). Further, the first roll 1 and the second roll 2 face each other (opposite) with a slight interval between them. Similarly, both the second roll 2 and the third roll 3 face each other with a slight interval. Further, partition plates 4 and 5 are arranged on the upper side of the facing portion between the first roll 1 and the second roll 2 so as to be separated from each other in the width direction of the roll (axial direction, direction orthogonal to the paper surface in FIG. 1). ing.

また、これら3つのロール1〜3の回転方向は、図1において矢印で示すように、隣り合う(対面する)2つのロールの回転方向が互いに逆方向となるように、すなわち、対面する2つのロールが互いに順方向回転となるように設定されている。そして、第1ロール1と第2ロール2との対面箇所では、これらのロールの表面が回転により下向きに移動するように設定されている。また、第2ロール2と第3ロール3との対面箇所では、これらのロールの表面が回転により右向きに移動するように設定されている。また、回転速度に関して、回転によるロールの表面の移動速度が、第1ロール1において最も遅く、第3ロール3において最も速く、第2ロール2ではそれらの中間となるように設定されている。 Further, the rotation directions of these three rolls 1 to 3 are such that the rotation directions of the two adjacent (facing) rolls are opposite to each other, that is, the two facing each other, as shown by the arrows in FIG. The rolls are set to rotate forward with each other. Then, at the points where the first roll 1 and the second roll 2 face each other, the surfaces of these rolls are set to move downward by rotation. Further, at the points where the second roll 2 and the third roll 3 face each other, the surfaces of these rolls are set to move to the right by rotation. Further, regarding the rotation speed, the moving speed of the surface of the roll due to rotation is set to be the slowest in the first roll 1, the fastest in the third roll 3, and intermediate between them in the second roll 2.

このようなロール成膜装置20では、第1ロール1と第2ロール2との対面箇所の上に位置する仕切り板4と5の間の収容空間内に、ステップS1(電極合材作製工程)で作製した負極合材6が投入される。また、第3ロール3には、集電箔7が掛け渡されている。 In such a roll film forming apparatus 20, step S1 (electrode mixture manufacturing step) is performed in the accommodation space between the partition plates 4 and 5 located above the facing portions of the first roll 1 and the second roll 2. The negative electrode mixture 6 produced in 1 above is charged. Further, a current collecting foil 7 is hung on the third roll 3.

集電箔7は、金属箔(銅箔)であり、その厚みは約10μmである。この集電箔7は、第3ロール3の回転と共に、第2ロール2と第3ロール3との対面箇所(間隙G2)を通って、第3ロール3の右下から右上へと搬送されるようになっている。また、第2ロール2と第3ロール3との対面箇所(間隙G2)には、集電箔7が通されている状態で、さらに第2ロール2と集電箔7との間に若干の隙間があるようにされている。すなわち、第2ロール2と第3ロール3との間の隙間(集電箔7が存在していない状態での隙間)は、集電箔7の厚さより少し広い。 The current collector foil 7 is a metal foil (copper foil) and has a thickness of about 10 μm. The current collecting foil 7 is conveyed from the lower right to the upper right of the third roll 3 through the facing portion (gap G2) between the second roll 2 and the third roll 3 together with the rotation of the third roll 3. It has become like. Further, in a state where the current collecting foil 7 is passed through the facing portion (gap G2) between the second roll 2 and the third roll 3, a slight amount of space is further between the second roll 2 and the current collecting foil 7. There is a gap. That is, the gap between the second roll 2 and the third roll 3 (the gap in the absence of the current collector foil 7) is slightly wider than the thickness of the current collector foil 7.

このステップS2(成膜工程)では、対向して回転する第1ロール1と第2ロール2との間隙G1に負極合材6を通すことによって負極合材6を圧縮しつつ膜状にし、この膜状にした負極合材6を第2ロール2の表面に付着させる。これと共に、第2ロール2と対向して回転する第3ロール3によって搬送される集電箔7を、第2ロール2と第3ロール3との間隙G2に通すことによって、第2ロール2の表面に付着している膜状の負極合材6を、集電箔7の表面に対し加圧しつつ接触させて、集電箔7の表面上に転写する。 In this step S2 (deposition step), the negative electrode mixture 6 is passed through the gap G1 between the first roll 1 and the second roll 2 which rotate opposite to each other to form a film while compressing the negative electrode mixture 6. The film-shaped negative electrode mixture 6 is attached to the surface of the second roll 2. At the same time, the current collecting foil 7 conveyed by the third roll 3 that rotates in opposition to the second roll 2 is passed through the gap G2 between the second roll 2 and the third roll 3 to form the second roll 2. The film-like negative electrode mixture 6 adhering to the surface is brought into contact with the surface of the current collector foil 7 while being pressed, and transferred onto the surface of the current collector foil 7.

より具体的には、まず、ロール成膜装置20の仕切り板4と5の間の収容空間内に、ステップS1(電極合材作製工程)で作製した負極合材6を投入する。投入された負極合材6は、対向して回転する第1ロール1と第2ロール2との対面箇所の間隙G1内に供給され、第1ロール1及び第2ロール2の回転により、両ロール1,2の間の間隙G1を通過して膜状となる(図1,図2参照)。このとき、第1ロール1よりも第2ロール2のほうが回転速度が速いので、負極合材6(湿潤造粒体16)は、膜状となって第2ロール2の表面に担持される(付着する)。ここで、第2ロール2の表面に担持された(付着した)膜状の負極合材6を、膜状負極合材8とする。 More specifically, first, the negative electrode mixture 6 produced in step S1 (electrode mixture production step) is put into the accommodation space between the partition plates 4 and 5 of the roll film forming apparatus 20. The charged negative electrode mixture 6 is supplied into the gap G1 at the position where the first roll 1 and the second roll 2 rotate so as to face each other, and both rolls are rotated by the rotation of the first roll 1 and the second roll 2. It passes through the gap G1 between 1 and 2 to form a film (see FIGS. 1 and 2). At this time, since the rotation speed of the second roll 2 is faster than that of the first roll 1, the negative electrode mixture 6 (wet granulated material 16) is supported on the surface of the second roll 2 in the form of a film (the surface of the second roll 2). Adhere to). Here, the film-like negative electrode mixture 6 supported (attached) on the surface of the second roll 2 is referred to as the film-like negative electrode mixture 8.

但し、本実施形態では、第1ロール1のうち負極合材6と接触する部位について、幅方向(ロール軸線方向、図2において上下方向、幅方向WDと同一方向)の両端部1c,1dの外径を、両端部1c,1dの間に位置する中間部1bの外径よりも小さくしている(図2参照)。なお、第1ロール1の両端部1c,1dは、第2ロール2との間で、膜状負極合材8の両端部に位置する合材両端部8c,8dを形成する部位である。一方、第1ロール1の中間部1bは、第2ロール2との間で、膜状負極合材8の合材中間部8b(膜状負極合材8のうち、合材両端部8c,8dの間に位置する部位)を形成する部位である。一方、第2ロール2のうち負極合材6と接触する部位については、外径を一定にしている(すなわち、直円筒形状としている、図2参照)。 However, in the present embodiment, the portions of the first roll 1 that come into contact with the negative electrode mixture 6 are located at both ends 1c and 1d in the width direction (roll axis direction, vertical direction in FIG. 2, and the same direction as the width direction WD). The outer diameter is made smaller than the outer diameter of the intermediate portion 1b located between the both end portions 1c and 1d (see FIG. 2). The both end portions 1c and 1d of the first roll 1 are the portions forming the mixture end portions 8c and 8d located at both end portions of the film-like negative electrode mixture 8 with the second roll 2. On the other hand, the intermediate portion 1b of the first roll 1 is connected to the second roll 2 with the intermediate portion 8b of the mixed material of the film-like negative electrode mixture 8 (of the film-like negative electrode mixture 8, both ends 8c and 8d of the mixture). It is a part that forms (a part located between). On the other hand, the outer diameter of the portion of the second roll 2 that comes into contact with the negative electrode mixture 6 is constant (that is, it has a right cylindrical shape, see FIG. 2).

従って、第1ロール1と第2ロール2との間隙G1では、図2に示すように、膜状負極合材8の両端部に位置する合材両端部8c,8dを形成する箇所の間隙G12,G13の寸法(径方向寸法、図2において左右方向の寸法)が、膜状負極合材8の合材中間部8bを形成する箇所の間隙G11の寸法(径方向寸法、図2において左右方向の寸法)よりも大きくなっている。これにより、本実施形態では、第2ロール2の表面(外周面)に付着する膜状負極合材8において、合材両端部8c,8dの厚みが合材中間部8bの厚みよりも厚くなる(図2参照)。このように、本実施形態では、膜状負極合材8について合材両端部8c,8dの厚みが合材中間部8bの厚みよりも厚くなるように、第2ロール2の表面に膜状負極合材8を付着させる。 Therefore, in the gap G1 between the first roll 1 and the second roll 2, as shown in FIG. 2, the gap G12 at the portion where both ends 8c and 8d of the mixture located at both ends of the film-like negative electrode mixture 8 is formed. , G13 (radial dimension, left-right dimension in FIG. 2) is the dimension of the gap G11 (diametrical dimension, left-right direction in FIG. 2) at the portion forming the mixture intermediate portion 8b of the film-like negative electrode mixture 8. Dimension) is larger than. As a result, in the present embodiment, in the film-like negative electrode mixture 8 adhering to the surface (outer peripheral surface) of the second roll 2, the thickness of both ends 8c and 8d of the mixture becomes thicker than the thickness of the intermediate portion 8b of the mixture. (See FIG. 2). As described above, in the present embodiment, the film-like negative electrode is formed on the surface of the second roll 2 so that the thickness of both ends 8c and 8d of the film-like negative electrode mixture 8 is thicker than the thickness of the intermediate portion 8b of the mixture. The mixture 8 is attached.

そして、第2ロール2の表面に担持された(付着した)膜状負極合材8は、第2ロール2の回転と共に搬送されていく(図1参照)。すると、第2ロール2と第3ロール3との対面箇所において、集電箔7の表面と膜状負極合材8とが出会い、第2ロール2と第3ロール3との間に集電箔7と膜状負極合材8とが挟まれる。なお、第2ロール2と第3ロール3と対面箇所における間隙G2の寸法(最小間隙寸法)は、集電箔7の厚みと膜状負極合材8の厚み(詳細には、後述する合材中間部8bの厚み)との和よりも小さくされている。 Then, the film-like negative electrode mixture 8 supported (attached) on the surface of the second roll 2 is conveyed with the rotation of the second roll 2 (see FIG. 1). Then, at the point where the second roll 2 and the third roll 3 face each other, the surface of the current collector foil 7 and the film-like negative electrode mixture 8 meet, and the current collector foil is between the second roll 2 and the third roll 3. 7 and the film-like negative electrode mixture 8 are sandwiched. The dimensions (minimum gap dimensions) of the gap G2 at the positions facing the second roll 2 and the third roll 3 are the thickness of the current collector foil 7 and the thickness of the film-like negative electrode mixture 8 (details will be described later). It is made smaller than the sum with the thickness of the intermediate portion 8b).

このため、第2ロール2と第3ロール3との間に集電箔7と膜状負極合材8とが挟まれたとき、膜状負極合材8に対し第2ロール2の表面から集電箔7の表面に向けて押付荷重がかかる。これにより、第2ロール2の表面に付着している膜状負極合材8を、集電箔7の表面に対し加圧しつつ接触させることができるので、膜状負極合材8が、第2ロール2から、第3ロール3と共に回転している集電箔7の表面上に転写される(付着する)。これにより、集電箔7の表面上に膜状負極合材8が成膜された、膜状負極合材付き集電箔9が得られる。 Therefore, when the current collector foil 7 and the film-like negative electrode mixture 8 are sandwiched between the second roll 2 and the third roll 3, the film-like negative electrode mixture 8 is collected from the surface of the second roll 2. A pressing load is applied toward the surface of the electric foil 7. As a result, the film-like negative electrode mixture 8 adhering to the surface of the second roll 2 can be brought into contact with the surface of the current collector foil 7 while being pressed, so that the film-like negative electrode mixture 8 is the second. It is transferred (adhered) from the roll 2 onto the surface of the current collector foil 7 that is rotating together with the third roll 3. As a result, the current collector foil 9 with the film-like negative electrode mixture is obtained, in which the film-like negative electrode mixture 8 is formed on the surface of the current collector foil 7.

なお、本実施形態では、前述のように、第2ロール2の表面に付着して間隙G2に向けて搬送される膜状負極合材8について、合材両端部8c,8dの厚みを、合材中間部8bの厚みよりも厚くしている(図2参照)。また、第2ロール2と第3ロール3との間隙G2の寸法は一定とされている。このため、膜状負極合材8が、第2ロール2と第3ロール3との間に挟まれて、厚み方向に圧縮されつつ集電箔7の表面に転写されるときに(転写されると同時に)、膜状負極合材8のうち合材中間部8bよりも厚みの厚い合材両端部8c,8dが、合材中間部8bよりも大きく厚み方向に圧縮される(高い圧縮率で圧縮される)。これにより、合材両端部8c,8dの密度(単位体積あたりの質量)を、合材中間部8bの密度(単位体積あたりの質量)よりも高くすることができる。 In the present embodiment, as described above, with respect to the film-like negative electrode mixture 8 that adheres to the surface of the second roll 2 and is conveyed toward the gap G2, the thicknesses of both ends 8c and 8d of the mixture are combined. It is thicker than the thickness of the material intermediate portion 8b (see FIG. 2). Further, the dimension of the gap G2 between the second roll 2 and the third roll 3 is constant. Therefore, when the film-like negative electrode mixture 8 is sandwiched between the second roll 2 and the third roll 3 and transferred to the surface of the current collector foil 7 while being compressed in the thickness direction (transferred). (At the same time), of the film-like negative electrode mixture 8, both ends 8c and 8d of the mixture, which are thicker than the intermediate portion 8b of the mixture, are compressed in the thickness direction more than the intermediate portion 8b of the mixture (at a high compression ratio). To be compressed). As a result, the density of both ends 8c and 8d of the mixture (mass per unit volume) can be made higher than the density of the intermediate portion 8b of the mixture (mass per unit volume).

このように、合材両端部8c,8dの密度を合材中間部8bの密度よりも高くする工程を、高密化工程という。以上説明したように、本実施形態では、成膜工程(ステップS2)に、高密化工程が含まれている。本実施形態の成膜工程(ステップS2)では、膜状負極合材8を集電箔7の表面に転写する(成膜する)と同時に、合材両端部8c,8dの密度を合材中間部8bの密度よりも高く(高密化)している。これにより、本実施形態の成膜工程では、合材両端部8c,8dの密度が合材中間部8bの密度よりも高くされた膜状負極合材8を有する膜状負極合材付き集電箔9が形成される。 The step of increasing the density of both ends 8c and 8d of the mixed material to be higher than the density of the intermediate portion 8b of the mixed material is called a densification step. As described above, in the present embodiment, the film forming step (step S2) includes a densification step. In the film forming step (step S2) of the present embodiment, the film-like negative electrode mixture 8 is transferred (formed) to the surface of the current collecting foil 7, and at the same time, the densities of both ends 8c and 8d of the mixture are set in the middle of the mixture. It is higher (higher density) than the density of part 8b. As a result, in the film forming step of the present embodiment, the current collection with the film-like negative electrode mixture having the film-like negative electrode mixture 8 in which the densities of both ends 8c and 8d of the mixture are higher than the density of the mixture intermediate 8b. The foil 9 is formed.

なお、本実施形態では、集電箔7のうち幅方向WDの両端部(第1端部7b及び第2端部7c)の表面には、膜状負極合材8を形成しないようにしている(図2参照)。集電箔7の第1端部7b及び第2端部7cは、電池の端子部材と接続するための部位として使用する。 In the present embodiment, the film-like negative electrode mixture 8 is not formed on the surfaces of both ends (first end 7b and second end 7c) of the current collector foil 7 in the width direction WD. (See FIG. 2). The first end portion 7b and the second end portion 7c of the current collector foil 7 are used as parts for connecting to the terminal member of the battery.

その後、図3に示すように、ステップS3(乾燥工程)に進み、膜状負極合材付き集電箔9を乾燥させる(膜状負極合材8を乾燥させる)。具体的には、膜状負極合材付き集電箔9を、図示しない乾燥装置(乾燥炉)の内部を通過させることにより、集電箔7の表面に転写した膜状負極合材8(膜状の負極合材6)を乾燥させる。これにより、膜状負極合材8(湿潤造粒体16)に吸収(保持)されている溶媒(水)が除去されて(蒸発して)、膜状負極合材8が負極合材層18(電極合材層)になる。これにより、集電箔7の表面上に負極合材層18が形成された負極シート19(図4参照)が作製される。なお、負極合材層18のうち、幅方向WDの両端部に位置する部位を合材両端部18c,18d(合材両端部8c,8dを乾燥させたもの)とし、幅方向WDについて合材両端部18c,18dの間に位置する部位を合材中間部18b(合材中間部8bを乾燥させたもの)とする(図5参照)。 Then, as shown in FIG. 3, the process proceeds to step S3 (drying step), and the current collecting foil 9 with the film-like negative electrode mixture is dried (the film-like negative electrode mixture 8 is dried). Specifically, the film-shaped negative electrode mixture 8 (membrane) transferred to the surface of the current collecting foil 7 by passing the current collecting foil 9 with the film-shaped negative electrode mixture through the inside of a drying device (drying furnace) (not shown). The negative electrode mixture 6) is dried. As a result, the solvent (water) absorbed (retained) in the film-like negative electrode mixture 8 (wet granulated body 16) is removed (evaporated), and the film-like negative electrode mixture 8 becomes the negative electrode mixture layer 18. (Electrode mixture layer). As a result, the negative electrode sheet 19 (see FIG. 4) in which the negative electrode mixture layer 18 is formed on the surface of the current collector foil 7 is produced. Of the negative electrode mixture layer 18, the portions located at both ends of the WD in the width direction are defined as the ends 18c and 18d of the mixture (the ends 8c and 8d of the mixture are dried), and the mixture is WD in the width direction. The portion located between the both end portions 18c and 18d is defined as the mixed material intermediate portion 18b (the mixed material intermediate portion 8b is dried) (see FIG. 5).

ところで、従来(例えば、特許文献1,2)の製造方法により製造された電極シート(例えば、負極シート)では、電極合材層(例えば、負極合材層)の幅方向の両端部に位置する合材両端部と集電箔の表面との間の結着力が弱く(幅方向について合材両端部の間に位置する合材中間部と集電箔の表面との間の結着力よりも弱く)、合材両端部が集電箔の表面から剥がれ易くなっていた。このため、例えば、電極シート(例えば、負極シート)に端子部材を接合(例えば、超音波溶接)するとき、接合時に発生する振動の影響で、合材両端部が集電箔の表面から剥がれて脱落する虞があった。 By the way, in the electrode sheet (for example, the negative electrode sheet) manufactured by the conventional manufacturing method (for example, Patent Documents 1 and 2), the electrode sheet is located at both ends in the width direction of the electrode mixture layer (for example, the negative electrode mixture layer). The binding force between both ends of the mixture and the surface of the current collector foil is weak (weaker than the binding force between the intermediate portion of the mixture located between both ends of the mixture and the surface of the current collector foil in the width direction). ), Both ends of the mixture were easily peeled off from the surface of the collector foil. Therefore, for example, when a terminal member is bonded (for example, ultrasonic welding) to an electrode sheet (for example, a negative electrode sheet), both ends of the mixture are peeled off from the surface of the current collector foil due to the influence of vibration generated during bonding. There was a risk of dropping out.

これに対し、本実施形態の製造方法では、前述のように、成膜工程(ステップS2)が、膜状負極合材8(膜状電極合材)の幅方向WDの両端部に位置する合材両端部8c,8dの密度を、幅方向WDについて合材両端部8c,8dの間に位置する合材中間部8bの密度よりも高くする高密化工程を含んでいる。この高密化工程を行うことで、合材両端部8c,8dにおける結着材の密度を高めることができるので、合材両端部8c,8dにおいて、集電箔7の表面に接触(結着)する結着材の数を増大させることができる。従って、結着材による合材両端部8c,8dと集電箔7の表面との結着面積を増大させることができる。 On the other hand, in the manufacturing method of the present embodiment, as described above, the film forming step (step S2) is located at both ends of the film-like negative electrode mixture 8 (film-like electrode mixture) in the width direction WD. It includes a densification step of increasing the density of both ends 8c and 8d of the material to be higher than the density of the intermediate portion 8b of the mixture located between both ends 8c and 8d of the mixture in the width direction WD. By performing this densification step, the density of the binder at both ends 8c and 8d of the mixture can be increased, so that the surfaces of the current collector foil 7 are contacted (bonded) at both ends 8c and 8d of the mixture. The number of binders to be used can be increased. Therefore, it is possible to increase the bonding area between both ends 8c and 8d of the mixture by the binder and the surface of the current collector foil 7.

これにより、膜状負極合材付き集電箔9(膜状電極合材付き集電箔)において、合材両端部8c,8d(合材第1端部8cと合材第2端部8d)と集電箔7の表面との間の結着力を高めることができる。このため、膜状電極合材付き集電箔9において、合材両端部8c,8dが集電箔7の表面から剥がれ難くなる。さらには、膜状負極合材付き集電箔9を乾燥させた負極シート19(電極シート)においても、合材両端部18c,18d(合材第1端部18cと合材第2端部18d)と集電箔7の表面との間の結着力を高めることができる。このため、負極シート19(電極シート)において、合材両端部18c,18dが集電箔7の表面から剥がれ難くなる。 As a result, in the current collector foil 9 with the film-like negative electrode mixture (the current collector foil with the film-like electrode mixture), both ends 8c and 8d of the mixture (the first end 8c of the mixture and the second end 8d of the mixture). It is possible to increase the binding force between the current collector foil 7 and the surface of the current collector foil 7. Therefore, in the current collector foil 9 with the film-like electrode mixture, both ends 8c and 8d of the mixture are less likely to be peeled off from the surface of the current collector foil 7. Further, also in the negative electrode sheet 19 (electrode sheet) obtained by drying the current collector foil 9 with the film-like negative electrode mixture, both ends 18c and 18d of the mixture (the first end 18c of the mixture and the second end 18d of the mixture 18d). ) And the surface of the current collector foil 7 can be enhanced. Therefore, in the negative electrode sheet 19 (electrode sheet), both ends 18c and 18d of the mixture material are less likely to be peeled off from the surface of the current collector foil 7.

さらには、合材両端部8c,8d,18c,18d内において、結着材を介した負極活物質(電極活物質)同士の結着力も高めることができる(合材両端部8c,8d,18c,18d内において負極活物質が結着材に結着し易くなる)。これにより、合材両端部8c,8d,18c,18dの一部(例えば、合材両端部8c,8d,18c,18dのうち表面側の部位)が脱離(脱落)することも低減することができる。 Further, the binding force between the negative electrode active materials (electrode active materials) via the binder can be enhanced in both ends 8c, 8d, 18c, 18d of the mixture (both ends 8c, 8d, 18c of the mixture). , The negative electrode active material tends to bind to the binder within 18d). As a result, it is possible to reduce the detachment (falling off) of a part of both ends 8c, 8d, 18c, 18d of the mixture (for example, the surface side portion of the ends 8c, 8d, 18c, 18d of the mixture). Can be done.

なお、負極合材層18は、集電箔7の片面のみに形成する(すなわち、片面塗工負極シートを製造する)ようにしても良いし、両面に形成する(すなわち、両面塗工負極シートを製造する)ようにしても良い。集電箔7の両面に負極合材層18を形成する場合は、集電箔7の片面に負極合材層18を形成した片面塗工負極シートを製造した後、当該片面塗工負極シートの集電箔7のうち負極合材層18を形成していない面に対し、ステップS2,S3の処理を順に行うようにすれば良い。 The negative electrode mixture layer 18 may be formed on only one side of the current collector foil 7 (that is, a single-sided coated negative electrode sheet is manufactured), or may be formed on both sides (that is, a double-sided coated negative electrode sheet). May be manufactured). When the negative electrode mixture layer 18 is formed on both sides of the current collector foil 7, a single-sided coated negative electrode sheet having the negative electrode mixture layer 18 formed on one side of the current collector foil 7 is manufactured, and then the single-sided coated negative electrode sheet is used. The treatments of steps S2 and S3 may be sequentially performed on the surface of the current collector foil 7 on which the negative electrode mixture layer 18 is not formed.

作製した負極シート19は、例えば、リチウムイオン二次電池の負極シートとして用いることができる。具体的には、例えば、負極シート19は、その幅方向WDの中心位置で切断された後、所定の長さに切断されて、合材第1端部18cまたは合材第2端部18dを有する所定形状の負極シートとされる。この負極シートは、正極シート及びセパレータと組み合わされて、電極体を形成する。次いで、この電極体の正極シートと負極シートにそれぞれ端子部材を取り付けた後、電池ケース内に電極体及び電解液を収容する。これにより、リチウムイオン二次電池が完成する。 The produced negative electrode sheet 19 can be used, for example, as a negative electrode sheet for a lithium ion secondary battery. Specifically, for example, the negative electrode sheet 19 is cut at the center position in the width direction of the negative electrode sheet 19 and then cut to a predetermined length to form the first end portion 18c of the mixture or the second end 18d of the mixture. It is a negative electrode sheet having a predetermined shape. This negative electrode sheet is combined with the positive electrode sheet and the separator to form an electrode body. Next, after attaching the terminal members to the positive electrode sheet and the negative electrode sheet of the electrode body, respectively, the electrode body and the electrolytic solution are housed in the battery case. This completes the lithium ion secondary battery.

ところで、電極体のうち負極シートに端子部材を取り付ける方法として、超音波溶接を用いることがある。超音波溶接によって負極シートに端子部材を接合するとき、負極シートの合材第1端部18cまたは合材第2端部18dに振動が伝わるが、本実施形態では、前述のように、合材両端部18c,18d(合材第1端部18c及び合材第2端部18d)と集電箔7の表面との間の結着力を高めているので、超音波溶接時の伝播振動の影響で、合材第1端部18cまたは合材第2端部18dが集電箔7の表面から剥がれて脱落するのを抑制できる。 By the way, ultrasonic welding may be used as a method of attaching a terminal member to a negative electrode sheet of an electrode body. When a terminal member is bonded to a negative electrode sheet by ultrasonic welding, vibration is transmitted to the first end portion 18c of the mixture material or the second end portion 18d of the mixture material of the negative electrode sheet. Since the bonding force between both ends 18c and 18d (first end 18c of the composite material and 18d of the second end of the mixture) and the surface of the current collector foil 7 is enhanced, the influence of propagated vibration during ultrasonic welding is increased. Therefore, it is possible to prevent the first end portion 18c of the mixed material or the second end portion 18d of the mixed material from peeling off from the surface of the current collecting foil 7 and falling off.

(実施例1〜4)
第1ロール1として、中間部1bの外径は同等であるが、両端部1c,1dの外径が異なる4種類(実施例1〜4)の第1ロール1を用意し、それぞれの第1ロール1を設けた4種類(実施例1〜4)の電極シート製造装置10を用いて、4種類(実施例1〜4)の負極シート19を作製した。実施例1〜4の電極シート製造装置10(ロール成膜装置20)では、第1ロール1の両端部1c,1dの外径が異なるため、第1ロール1と第2ロール2との間隙G1のうち、膜状負極合材8の合材両端部8c,8dを形成する箇所の間隙G12,G13の寸法(図2参照)が異なっている。
(Examples 1 to 4)
As the first roll 1, four types of first rolls 1 (Examples 1 to 4) having the same outer diameter of the intermediate portion 1b but different outer diameters of both end portions 1c and 1d are prepared, and the first rolls 1 of each are prepared. Four types (Examples 1 to 4) of negative electrode sheets 19 were produced using four types of electrode sheet manufacturing devices 10 provided with rolls 1 (Examples 1 to 4). In the electrode sheet manufacturing apparatus 10 (roll film forming apparatus 20) of Examples 1 to 4, since the outer diameters of both ends 1c and 1d of the first roll 1 are different, the gap G1 between the first roll 1 and the second roll 2 is different. Of these, the dimensions (see FIG. 2) of the gaps G12 and G13 at the locations where both ends 8c and 8d of the film-like negative electrode mixture 8 are formed are different.

このため、実施例1〜4では、第2ロール2の表面に付着して間隙G2に向かって搬送される膜状負極合材8について、合材両端部8c,8dの厚みが異なっている。一方、実施例1〜4では、第2ロール2と第3ロール3との間隙G2の寸法は同一とされている。このため、実施例1〜4では、膜状負極合材8が第2ロール2と第3ロール3との間に挟まれて、厚み方向に圧縮されつつ集電箔7の表面に転写されるとき、合材中間部8bの圧縮率は同等になるが、合材両端部8c,8dの圧縮率が異なることになる。従って、実施例1〜4では、膜状負極合材付き集電箔9において、合材中間部8bの密度と合材両端部8c,8dの密度との比率が異なり、さらには、負極シート19における合材中間部18bの密度Aと合材両端部18c,18dの密度Bとの比率(B/A)の値も異なることになる。このようにして、密度比B/Aの値が異なる実施例1〜4の負極シート19を作製した。 Therefore, in Examples 1 to 4, the thicknesses of both ends 8c and 8d of the mixed material are different with respect to the film-like negative electrode mixed material 8 that adheres to the surface of the second roll 2 and is conveyed toward the gap G2. On the other hand, in Examples 1 to 4, the dimensions of the gap G2 between the second roll 2 and the third roll 3 are the same. Therefore, in Examples 1 to 4, the film-like negative electrode mixture 8 is sandwiched between the second roll 2 and the third roll 3, and is transferred to the surface of the current collector foil 7 while being compressed in the thickness direction. At this time, the compression rates of the intermediate parts 8b of the mixed material are the same, but the compression rates of both ends 8c and 8d of the mixed material are different. Therefore, in Examples 1 to 4, in the current collector foil 9 with the film-like negative electrode mixture, the ratio of the density of the mixture intermediate portion 8b to the density of both ends 8c and 8d of the mixture is different, and further, the negative electrode sheet 19 The value of the ratio (B / A) of the density A of the intermediate portion 18b of the mixed material and the density B of both ends 18c and 18d of the mixed material is also different. In this way, the negative electrode sheets 19 of Examples 1 to 4 having different density ratio B / A values were produced.

各実施例の負極シート19の負極合材層18について、合材中間部18bの密度と合材両端部18c,18dの密度を測定し、各実施例の密度比B/Aの値を算出した。その結果、実施例1では、B/A=1.02となった。また、実施例2では、B/A=1.06となった。また、実施例3では、B/A=1.12となった。また、実施例4では、B/A=1.17となった。 For the negative electrode mixture layer 18 of the negative electrode sheet 19 of each example, the density of the mixture intermediate portion 18b and the densities of both ends 18c and 18d of the mixture were measured, and the value of the density ratio B / A of each example was calculated. .. As a result, in Example 1, B / A = 1.02. Further, in Example 2, B / A = 1.06. Further, in Example 3, B / A = 1.12. Further, in Example 4, B / A = 1.17.

なお、成膜工程によって作製した膜状負極合材付き集電箔9の膜状負極合材8における合材中間部8bの密度Eと合材両端部8c,8dの密度Fとの比率(F/E)は、その後の乾燥工程を行って作製された負極シート19の負極合材層18における合材中間部18bの密度Aと合材両端部18c,18dの密度Bとの比率(B/A)と同等であるとみなすことができる。 The ratio of the density E of the intermediate portion 8b of the mixed material to the density F of both ends 8c and 8d of the mixed material in the film-shaped negative electrode mixture 8 of the current collector foil 9 with the film-like negative electrode mixture produced by the film forming step (F). / E) is the ratio (B / E) of the density A of the intermediate portion 18b of the mixed material and the density B of both ends 18c and 18d of the mixed material in the negative electrode mixture layer 18 of the negative electrode sheet 19 produced by performing the subsequent drying step. It can be regarded as equivalent to A).

従って、実施例1では、密度比F/Eの値が1.02となるように成膜工程(詳細には、高密化工程)を行っているといえる。また、実施例2では、密度比F/Eの値が1.06となるように成膜工程(詳細には、高密化工程)を行っているといえる。また、実施例3では、密度比F/Eの値が1.12となるように成膜工程(詳細には、高密化工程)を行っているといえる。また、実施例4では、密度比F/Eの値が1.17となるように成膜工程(詳細には、高密化工程)を行っているといえる。 Therefore, in Example 1, it can be said that the film forming step (specifically, the densifying step) is performed so that the value of the density ratio F / E is 1.02. Further, in Example 2, it can be said that the film forming step (specifically, the densifying step) is performed so that the value of the density ratio F / E is 1.06. Further, in Example 3, it can be said that the film forming step (specifically, the densifying step) is performed so that the value of the density ratio F / E is 1.12. Further, in Example 4, it can be said that the film forming step (specifically, the densifying step) is performed so that the value of the density ratio F / E is 1.17.

その後、実施例1〜4の負極シート19について、公知の90°剥離試験機を用いて、集電箔7から合材両端部18c,18dを引き剥がして、合材両端部18c,18dの結着力(N/cm)を測定した。なお、本試験は、JIS K6854−1:1999に準拠して行っている。その結果、実施例1では、合材両端部18c,18dの結着力が、1.38N/cmとなった。また、実施例2では、合材両端部18c,18dの結着力が、1.50N/cmとなった。また、実施例3では、合材両端部18c,18dの結着力が、1.53N/cmとなった。また、実施例4では、合材両端部18c,18dの結着力が、1.54N/cmとなった。 Then, with respect to the negative electrode sheets 19 of Examples 1 to 4, the both ends 18c and 18d of the mixture were peeled off from the current collector foil 7 using a known 90 ° peeling tester, and the ends 18c and 18d of the mixture were tied. The adhesive force (N / cm) was measured. This test is conducted in accordance with JIS K6854-1: 1999. As a result, in Example 1, the binding force of both ends 18c and 18d of the mixed material was 1.38 N / cm. Further, in Example 2, the binding force of both ends 18c and 18d of the mixed material was 1.50 N / cm. Further, in Example 3, the binding force of both ends 18c and 18d of the mixed material was 1.53 N / cm. Further, in Example 4, the binding force of both ends 18c and 18d of the mixed material was 1.54 N / cm.

また、比較形態として、従来と同様に、高密化工程を含まない成膜工程を行って、膜状負極合材付き集電箔を作製した。具体的には、実施形態の電極シート製造装置10と比較して、第1ロール1の外径を一定にした(両端部1c,1dの外径を、実施形態の第1ロール1の中間部1bの外径と同等にした)点のみが異なる電極シート製造装置を用いて、膜状負極合材付き集電箔、及び、負極シートを作製した。従って、比較形態では、膜状電極合材の合材両端部の密度を合材中間部の密度よりも高くする高密化工程を行っていないので、密度比B/A=F/E=1.0となった。 Further, as a comparative form, a current collecting foil with a film-like negative electrode mixture was produced by performing a film forming step not including a densification step as in the conventional case. Specifically, the outer diameter of the first roll 1 is made constant as compared with the electrode sheet manufacturing apparatus 10 of the embodiment (the outer diameters of both ends 1c and 1d are set to the intermediate portion of the first roll 1 of the embodiment. A current collecting foil with a film-like negative electrode mixture and a negative electrode sheet were produced using an electrode sheet manufacturing apparatus different only in the points (equal to the outer diameter of 1b). Therefore, in the comparative form, the density ratio B / A = F / E = 1. It became 0.

以上説明した実施例1〜4及び比較形態の結果を、密度比B/Aの値と合材両端部18c,18dの結着力との関係として、図9に示す。図9から、密度比B/Aの値が大きくなるほど、合材両端部18c,18dの結着力が高まることがわかる。この結果より、成膜工程(ステップS2)が、合材両端部8c,8dの密度を合材中間部8bの密度よりも高くする高密化工程を含んでいることで、膜状負極合材付き集電箔9において、合材両端部8c,8dと集電箔7の表面との間の結着力を高めることができ、その結果、負極シート19において、合材両端部18c,18dと集電箔7の表面との間の結着力を高めることができるといえる。 The results of Examples 1 to 4 and the comparative embodiments described above are shown in FIG. 9 as the relationship between the value of the density ratio B / A and the binding force of both ends 18c and 18d of the mixture. From FIG. 9, it can be seen that as the value of the density ratio B / A increases, the binding force of both ends 18c and 18d of the mixed material increases. From this result, the film forming step (step S2) includes a densification step of increasing the density of both ends 8c and 8d of the mixture to be higher than the density of the intermediate portion 8b of the mixture, so that the film-like negative electrode mixture is attached. In the current collector foil 9, the binding force between both ends 8c and 8d of the mixture and the surface of the current collector foil 7 can be enhanced, and as a result, in the negative electrode sheet 19, both ends 18c and 18d of the mixture and current collection. It can be said that the binding force with the surface of the foil 7 can be enhanced.

なお、図9に示すように、B/Aの値を1.0より大きくすることで、合材両端部18c,18dと集電箔7の表面との間の結着力を高めることができるが、B/Aの値を1.1より大きくしても、合材両端部18c,18dと集電箔7の表面との間の結着力はあまり大きくならないことがわかる。B/Aの値を1.1より大きくしても、合材両端部18c,18dと集電箔7の表面との間の結着力を高める効果は小さいので、1.0<(B/A)≦1.1の範囲内にするのがより好ましいといえる。 As shown in FIG. 9, by making the B / A value larger than 1.0, the binding force between both ends 18c and 18d of the mixture and the surface of the current collector foil 7 can be enhanced. It can be seen that even if the value of B / A is made larger than 1.1, the binding force between both ends 18c and 18d of the mixture and the surface of the current collector foil 7 is not so large. Even if the B / A value is made larger than 1.1, the effect of increasing the binding force between both ends 18c and 18d of the mixture and the surface of the current collector foil 7 is small, so 1.0 <(B / A). ) It can be said that it is more preferable to set it within the range of ≦ 1.1.

また、実施例1〜4の負極シート19及び比較形態の負極シートについて、合材両端部18c,18dにおける残留溶媒量(ppm)を測定した。その結果、実施例1では、残留溶媒量が240ppmとなった。また、実施例2では、残留溶媒量が250ppmとなった。また、実施例3では、残留溶媒量が320ppmとなった。また、実施例4では、残留溶媒量が490ppmとなった。また、比較形態では、残留溶媒量が235ppmとなった。これらの結果を、密度比B/Aの値と残留溶媒量との関係として、図10に示す。 Further, with respect to the negative electrode sheets 19 of Examples 1 to 4 and the negative electrode sheets of the comparative form, the residual solvent amounts (ppm) at both ends 18c and 18d of the mixture were measured. As a result, in Example 1, the amount of residual solvent was 240 ppm. Further, in Example 2, the amount of residual solvent was 250 ppm. Further, in Example 3, the amount of residual solvent was 320 ppm. Further, in Example 4, the amount of residual solvent was 490 ppm. In the comparative form, the amount of residual solvent was 235 ppm. These results are shown in FIG. 10 as the relationship between the value of the density ratio B / A and the amount of residual solvent.

図10に示すように、密度比B/Aの値が大きくなるほど、負極合材層18の合材両端部18c,18dにおける残留溶媒量が多くなる傾向にある。特に、密度比B/Aの値が1.1よりも大きくなると、残留溶媒量が急激に多くなる傾向にある。残留溶媒量が多いほど、電池の内部抵抗が大きくなる傾向にある。従って、残留溶媒量の観点から、密度比B/Aの値は、1.1以下にするのが好ましいといえる。従って、1.0<(B/A)≦1.1の範囲内にするのが好ましいといえる。 As shown in FIG. 10, as the value of the density ratio B / A increases, the amount of residual solvent at both ends 18c and 18d of the negative electrode mixture layer 18 tends to increase. In particular, when the value of the density ratio B / A is larger than 1.1, the amount of residual solvent tends to increase sharply. The larger the amount of residual solvent, the higher the internal resistance of the battery tends to be. Therefore, from the viewpoint of the amount of residual solvent, it can be said that the value of the density ratio B / A is preferably 1.1 or less. Therefore, it can be said that it is preferable to set it within the range of 1.0 <(B / A) ≦ 1.1.

前述のように、実施形態の成膜工程(ステップS2)によって作製した膜状負極合材付き集電箔9の膜状負極合材8における合材中間部8bの密度Eと合材両端部8c,8dの密度Fとの比率(F/E)は、その後の乾燥工程を行って作製された負極シート19の負極合材層18における合材中間部18bの密度Aと合材両端部18c,18dの密度Bとの比率(B/A)と同等であるとみなすことができる。従って、実施形態の成膜工程では、1.0<(F/E)≦1.1の関係を満たすように、膜状電極合材付き集電箔を作製するのが好ましいといえる。詳細には、実施形態の高密化工程では、1.0<(F/E)≦1.1の関係を満たすように、合材両端部8c,8dの密度Fを合材中間部8bの密度Eよりも高くするのが好ましいといえる。 As described above, the density E of the intermediate portion 8b of the mixed material and the ends 8c of the mixed material in the film-like negative electrode mixture 8 of the current collector foil 9 with the film-like negative electrode mixture produced by the film forming step (step S2) of the embodiment. The ratio (F / E) of 8d to the density F is the density A of the mixture intermediate portion 18b and both ends 18c of the mixture in the negative electrode mixture layer 18 of the negative electrode sheet 19 produced by performing the subsequent drying step. It can be considered to be equivalent to the ratio (B / A) of 18d to the density B. Therefore, in the film forming step of the embodiment, it can be said that it is preferable to prepare the current collector foil with the film-like electrode mixture so as to satisfy the relationship of 1.0 <(F / E) ≦ 1.1. Specifically, in the densification step of the embodiment, the density F of both ends 8c and 8d of the mixture is set to the density of the intermediate portion 8b of the mixture so as to satisfy the relationship of 1.0 <(F / E) ≤ 1.1. It can be said that it is preferable to make it higher than E.

<変形形態>
次に、本発明の変形形態について説明する。本変形形態の製造方法は、実施形態の製造方法と比較して、成膜工程(ステップS2)のみが異なり、その他は同様である。また、本変形形態の電極シート製造装置110(図6参照)は、実施形態の電極シート製造装置10と比較して、ロール成膜装置が異なり、その他は同等である。従って、ここでは、実施形態と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
<Transformation form>
Next, a modified form of the present invention will be described. The manufacturing method of this modified embodiment is different from the manufacturing method of the embodiment only in the film forming step (step S2), and is the same except for the manufacturing method. Further, the electrode sheet manufacturing apparatus 110 (see FIG. 6) of the present modified embodiment has a different roll film forming apparatus as compared with the electrode sheet manufacturing apparatus 10 of the embodiment, and the others are the same. Therefore, here, the points different from those of the embodiment will be mainly described, and the description of the same points will be omitted or simplified.

本変形形態のロール成膜装置120は、実施形態のロール成膜装置20とは異なり、外径が一定の(詳細には、両端部の外径を、実施形態の第1ロール1の中間部1bの外径と同等にした)第1ロール101を有している(図6参照)。このため、本変形形態のロール成膜装置120では、第1ロール101と第2ロール2との間隙G101は、幅方向WD(図6において紙面に直交する方向)について一定である。従って、本変形形態のロール成膜装置120では、第2ロール2の表面(外周面)に付着する膜状負極合材108の厚みは、幅方向WDについて一定となる。 Unlike the roll film forming apparatus 20 of the embodiment, the roll film forming apparatus 120 of the present modification has a constant outer diameter (specifically, the outer diameters of both ends are set to the intermediate portion of the first roll 1 of the embodiment. It has a first roll 101 (similar to the outer diameter of 1b) (see FIG. 6). Therefore, in the roll film forming apparatus 120 of the present modified form, the gap G101 between the first roll 101 and the second roll 2 is constant in the width direction WD (the direction orthogonal to the paper surface in FIG. 6). Therefore, in the roll film forming apparatus 120 of this modified form, the thickness of the film-like negative electrode mixture 108 adhering to the surface (outer peripheral surface) of the second roll 2 is constant in the width direction WD.

また、本変形形態のロール成膜装置120は、実施形態のロール成膜装置20とは異なり、膜状負極合材108の搬送方向について、第1ロール101と第2ロール2とが間隙G101を空けて対向する位置と、第2ロール2と第3ロール3とが間隙G2を空けて対向する位置との間(間隙G101の位置より下流側で間隙G2の位置よりも上流側の位置)に、間隙G103を空けて第2ロール2に対向する第4ロール40(圧密化を行うロール)を設けている(図6参照)。この第4ロール40は、図7に示すように、膜状負極合材108のうち合材両端部108c,108d(合材第1端部108cと合材第2端部108d)と対向する部位(両端部40c,40d)の外径が、合材中間部108bと対向する部位(中間部40b)の外径よりも大きくされている。なお、図7は、図6のD−D断面図であって、D−D切断面のみを示した図である。 Further, unlike the roll film forming apparatus 20 of the embodiment, the roll film forming apparatus 120 of this modified form has a gap G101 between the first roll 101 and the second roll 2 in the transport direction of the film-like negative electrode mixture 108. Between the position where the second roll 2 and the third roll 3 face each other with a gap G2 (the position on the downstream side of the gap G101 and the position on the upstream side of the gap G2). A fourth roll 40 (a roll for compaction) facing the second roll 2 is provided with a gap G103 (see FIG. 6). As shown in FIG. 7, the fourth roll 40 is a portion of the film-like negative electrode mixture 108 facing both ends 108c and 108d of the mixture (the first end 108c of the mixture and the second end 108d of the mixture). The outer diameter of (both ends 40c and 40d) is made larger than the outer diameter of the portion (intermediate portion 40b) facing the intermediate portion 108b of the mixed material. Note that FIG. 7 is a cross-sectional view taken along the line DD of FIG. 6 showing only the cut surface of the DD.

従って、第2ロール2と第4ロール40との間隙G103は、膜状負極合材108のうち合材両端部108c,108dが通過する(挟まれる)位置の間隙G1032,G1033の寸法(径方向寸法、図7において左右方向の寸法)が、合材中間部108bが通過する位置の間隙G1031の寸法(径方向寸法、図7において左右方向の寸法)よりも小さくなっている。これにより、成膜工程において、第2ロール2の表面(外周面)に付着して搬送される膜状負極合材108が、第2ロール2と第4ロール40との間隙G103を通過するときに、膜状負極合材108のうち合材両端部108c,108dが、合材中間部108bよりも大きく厚み方向に圧縮される(高い圧縮率で圧縮される)。これにより、合材両端部108c,108dの密度を、合材中間部108bの密度よりも高くすることができる。 Therefore, the gap G103 between the second roll 2 and the fourth roll 40 is the dimension (diametrical direction) of the gaps G1032 and G1033 at positions where both ends 108c and 108d of the film-like negative electrode mixture 108 pass (sandwich). The dimension (the dimension in the left-right direction in FIG. 7) is smaller than the dimension of the gap G1031 (the dimension in the radial direction, the dimension in the left-right direction in FIG. 7) at the position where the intermediate portion 108b of the mixture passes. As a result, when the film-like negative electrode mixture 108 adhering to the surface (outer peripheral surface) of the second roll 2 and being conveyed passes through the gap G103 between the second roll 2 and the fourth roll 40 in the film forming step. In addition, of the film-like negative electrode mixture 108, both ends 108c and 108d of the mixture are compressed in the thickness direction more than the intermediate portion 108b of the mixture (compressed at a high compression rate). As a result, the densities of both ends 108c and 108d of the mixture can be made higher than the density of the intermediate portion 108b of the mixture.

本変形形態では、第2ロール2の表面(外周面)に付着して間隙G2に向けて搬送される膜状負極合材108について、上述のように、第4ロール40によって、合材両端部108c,108dの密度を合材中間部108bの密度よりも高くする工程が、高密化工程となる。本変形形態では、膜状負極合材108が第2ロール2と第3ロール3との間隙において集電箔7の表面に転写される前に、高密化工程を行って、合材両端部108c,108dの密度を合材中間部108bの密度よりも高くする。 In this modified form, with respect to the film-like negative electrode mixture 108 that adheres to the surface (outer peripheral surface) of the second roll 2 and is conveyed toward the gap G2, both ends of the mixture are formed by the fourth roll 40 as described above. The step of increasing the density of 108c and 108d to be higher than the density of the intermediate portion 108b of the mixture is the step of increasing the density. In this modified form, the film-like negative electrode mixture 108 is subjected to a densification step before being transferred to the surface of the current collecting foil 7 in the gap between the second roll 2 and the third roll 3, and both ends of the mixture 108c. , 108d is made higher than the density of the intermediate portion 108b of the mixture.

その後、膜状負極合材108が第2ロール2と第3ロール3との間隙G2を通るとき、膜状負極合材108が、第2ロール2から、第3ロール3と共に回転している集電箔7の表面上に転写される(付着する)。これにより、集電箔7の表面上に膜状負極合材108が成膜された、膜状負極合材付き集電箔109が得られる。その後、乾燥工程において膜状負極合材付き集電箔9を乾燥させる(膜状負極合材8を乾燥させる)ことで、集電箔7の表面上に負極合材層118が形成された負極シート119(図5参照)が作製される。なお、負極合材層118のうち、幅方向WDの両端部に位置する部位を合材両端部118c,118d(合材第1端部118cと合材第2端部118d)とし、幅方向WDについて合材両端部118c,118dの間に位置する部位を合材中間部118bとする(図5参照)。 After that, when the film-like negative electrode mixture 108 passes through the gap G2 between the second roll 2 and the third roll 3, the film-like negative electrode mixture 108 is rotated from the second roll 2 together with the third roll 3. It is transferred (adhered) to the surface of the electric foil 7. As a result, the current collector foil 109 with the film-like negative electrode mixture is obtained, in which the film-like negative electrode mixture 108 is formed on the surface of the current collector foil 7. Then, in the drying step, the current collecting foil 9 with the film-like negative electrode mixture is dried (the film-like negative electrode mixture 8 is dried), so that the negative electrode mixture layer 118 is formed on the surface of the current collector foil 7. Sheet 119 (see FIG. 5) is made. Of the negative electrode mixture layer 118, the portions located at both ends of the WD in the width direction are the ends 118c and 118d of the mixture (the first end 118c of the mixture and the second end 118d of the mixture), and the WD in the width direction. The portion located between both ends 118c and 118d of the mixed material is referred to as the intermediate part 118b of the mixed material (see FIG. 5).

以上説明したように、本変形形態の製造方法でも、成膜工程が、膜状負極合材108(膜状電極合材)の幅方向WDの両端部に位置する合材両端部108c,108dの密度を、幅方向WDについて合材両端部108c,108dの間に位置する合材中間部108bの密度よりも高くする高密化工程を含んでいる。この高密化工程を行うことで、合材両端部108c,108dにおける結着材の密度を高めることができるので、膜状負極合材108が集電箔7の表面に転写されるとき、合材両端部108c,108dにおいて、集電箔7の表面に接触(結着)する結着材の数を増大させることができる。従って、結着材による合材両端部8c,8dと集電箔7の表面との結着面積を増大させることができる。 As described above, also in the manufacturing method of this modified form, the film forming step is performed on both ends 108c and 108d of the mixture located at both ends of the film-like negative electrode mixture 108 (film-like electrode mixture) in the width direction WD. It includes a densification step in which the density is made higher than the density of the mixture intermediate portion 108b located between the both ends 108c and 108d of the mixture in the width direction WD. By performing this densification step, the density of the binder at both ends 108c and 108d of the mixture can be increased, so that when the film-like negative electrode mixture 108 is transferred to the surface of the current collector foil 7, the mixture is used. At both ends 108c and 108d, the number of binders that come into contact with (bond) to the surface of the current collector foil 7 can be increased. Therefore, it is possible to increase the bonding area between both ends 8c and 8d of the mixture by the binder and the surface of the current collector foil 7.

これにより、本変形形態の製造方法によって製造された膜状負極合材付き集電箔109(膜状電極合材付き集電箔、図8参照)においても、合材両端部108c,108dと集電箔7の表面との間の結着力を高めることができる。このため、膜状電極合材付き集電箔109において、合材両端部108c,108dが集電箔7の表面から剥がれ難くなる。
さらには、膜状負極合材付き集電箔109を乾燥させた負極シート119(電極シート、図5参照)においても、負極合材層118(電極合材層)の合材両端部118c,118dと集電箔7の表面との間の結着力を高めることができるので、負極シート119(電極シート)において、合材両端部118c,118dが集電箔7の表面から剥がれ難くなる。
As a result, even in the current collector foil 109 with the film-like negative electrode mixture (collection foil with the film-like electrode mixture, see FIG. 8) manufactured by the manufacturing method of this modified form, both ends 108c and 108d of the mixture are collected. The binding force between the electric foil 7 and the surface of the electric foil 7 can be enhanced. Therefore, in the current collector foil 109 with the film-like electrode mixture, both ends 108c and 108d of the mixture are less likely to be peeled off from the surface of the current collector foil 7.
Further, also in the negative electrode sheet 119 (electrode sheet, see FIG. 5) obtained by drying the current collector foil 109 with the film-like negative electrode mixture, both ends of the mixture of the negative electrode mixture layer 118 (electrode mixture layer) 118c, 118d. Since the binding force between the collector foil 7 and the surface of the current collector foil 7 can be increased, in the negative electrode sheet 119 (electrode sheet), both ends 118c and 118d of the mixture material are less likely to be peeled off from the surface of the current collector foil 7.

さらには、合材両端部108c,108d,118c,118d内において、結着材を介した負極活物質(電極活物質)同士の結着力も高めることができる(合材両端部108c,108d,118c,118d内において負極活物質が結着材に結着し易くなる)。これにより、合材両端部108c,108d,118c,118dの一部(例えば、合材両端部108c,108d,118c,118dのうち表面側の部位)が脱離(脱落)することも低減することができる。 Further, the binding force between the negative electrode active materials (electrode active materials) via the binder can be enhanced in both ends 108c, 108d, 118c, 118d of the mixture (both ends 108c, 108d, 118c of the mixture). , 118d makes it easier for the negative electrode active material to bind to the binder). As a result, it is possible to reduce the detachment (falling off) of a part of both ends 108c, 108d, 118c, 118d of the mixture (for example, the surface side portion of the ends 108c, 108d, 118c, 118d of the mixture). Can be done.

本変形形態の製造方法によって製造された負極シート119について、実施形態及び比較形態と同様に、公知の90°剥離試験機を用いて、集電箔7から合材両端部118c,118dを引き剥がして、合材両端部118c,118dの結着力(N/cm)を測定した。なお、本試験は、JIS K6854−1:1999に準拠して行っている。その結果、本変形形態の負極シート119では、合材両端部118c,118dと集電箔7の表面との間の結着力が、1.4N/cmとなった。ここで、本変形形態と実施形態(実施例2)と比較形態の負極シートにおける合材両端部と集電箔の表面との間の結着力を、図11に比較して示す。 With respect to the negative electrode sheet 119 manufactured by the manufacturing method of this modified form, both ends 118c and 118d of the mixture are peeled off from the current collector foil 7 using a known 90 ° peeling tester as in the embodiment and the comparative embodiment. Then, the binding force (N / cm) of both ends 118c and 118d of the mixed material was measured. This test is conducted in accordance with JIS K6854-1: 1999. As a result, in the negative electrode sheet 119 of the present modified form, the binding force between both ends 118c and 118d of the mixture and the surface of the current collector foil 7 was 1.4 N / cm. Here, the binding force between both ends of the mixture and the surface of the current collector foil in the negative electrode sheets of the present modification, the embodiment (Example 2), and the comparative embodiment is shown in comparison with FIG.

図11に示すように、実施形態及び変形形態では、比較形態に比べて、合材両端部と集電箔の表面との間の結着力が大きくなった。なお、前述のように、比較形態では、高密化工程を含まない成膜工程を行って膜状負極合材付き集電箔を作製しており、合材両端部の密度と合材中間部の密度とが同等になっている。一方、実施形態及び変形形態では、高密化工程を含む成膜工程を行って膜状負極合材付き集電箔9,109を作製しており、合材両端部8c,8d,108c,108dの密度を合材中間部8b,108bの密度よりも高くしている。 As shown in FIG. 11, in the embodiment and the modified form, the binding force between both ends of the mixture and the surface of the current collector foil is larger than that in the comparative form. As described above, in the comparative form, a film-forming step that does not include the densification step is performed to produce a current collecting foil with a film-like negative electrode mixture, and the density of both ends of the mixture and the intermediate portion of the mixture are obtained. The density is equivalent. On the other hand, in the embodiment and the modified form, the current collecting foils 9 and 109 with the film-like negative electrode mixture are produced by performing the film forming process including the densification step, and the both ends 8c, 8d, 108c and 108d of the mixture are produced. The density is made higher than the densities of the intermediate parts 8b and 108b of the mixture.

この結果より、成膜工程が、合材両端部の密度を合材中間部の密度よりも高くする高密化工程を含んでいることで、膜状負極合材付き集電箔において、合材両端部と集電箔の表面との間の結着力を高めることができ、その結果、負極シートにおいて、合材両端部と集電箔の表面との間の結着力を高めることができるといえる。これにより、負極シート(電極シート)において、合材両端部が集電箔の表面から剥がれ難くなるといえる。 From this result, the film forming process includes a high density step of increasing the density of both ends of the mixture to be higher than the density of the middle part of the mixture. It can be said that the binding force between the portion and the surface of the current collecting foil can be increased, and as a result, the binding force between both ends of the mixture and the surface of the current collecting foil can be enhanced in the negative electrode sheet. As a result, in the negative electrode sheet (electrode sheet), it can be said that both ends of the mixture are less likely to peel off from the surface of the current collector foil.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は前記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、実施形態では、本発明にかかる電極シートの製造方法として、負極シートを製造する方法を例示した。しかしながら、本発明を、正極シートの製造方法に適用するようにしても良い。 In the above, the present invention has been described in accordance with the embodiments and modifications, but the present invention is not limited to the above-described embodiments and the like, and it is said that the present invention can be appropriately modified and applied without departing from the gist thereof. Not to mention. For example, in the embodiment, as a method for manufacturing an electrode sheet according to the present invention, a method for manufacturing a negative electrode sheet has been exemplified. However, the present invention may be applied to a method for producing a positive electrode sheet.

1,101 第1ロール
2 第2ロール
3 第3ロール
6 負極合材(電極合材)
7 集電箔
8,108 膜状負極合材(膜状電極合材)
8c,8d,108c,108d 合材両端部
8b,108b 合材中間部
9,109 膜状負極合材付き集電箔(膜状電極合材付き集電箔)
10,110 電極シート製造装置
16 湿潤造粒体
18,118 負極合材層(電極合材層)
18c,18d,118c,118d 合材両端部
18b,118b 合材中間部
19,119 負極シート(電極シート)
20,120 ロール成膜装置
CD 搬送方向
WD 幅方向
S1 電極合材作製工程
S2 成膜工程
S3 乾燥工程
1,101 1st roll 2 2nd roll 3 3rd roll 6 Negative electrode mixture (electrode mixture)
7 Current collector foil 8,108 Membrane-like negative electrode mixture (film-like electrode mixture)
8c, 8d, 108c, 108d Both ends of the mixture 8b, 108b Intermediate part of the mixture 9,109 Current collector foil with film-like negative electrode mixture (current collector foil with film-like electrode mixture)
10,110 Electrode sheet manufacturing equipment 16 Wet granulated material 18,118 Negative electrode mixture layer (electrode mixture layer)
18c, 18d, 118c, 118d Both ends of the mixture 18b, 118b Intermediate part 19,119 Negative sheet (electrode sheet)
20,120 Roll film forming apparatus CD Transport direction WD Width direction S1 Electrode mixture manufacturing process S2 Film forming process S3 Drying process

Claims (1)

集電箔の表面上に電極合材層を有する電極シートを製造する電極シートの製造方法であって、
電極活物質と結着材と溶媒とを混合して造粒した複数の湿潤造粒体からなる電極合材を、対向して回転する第1ロールと第2ロールとの間隙に通すことによって、前記電極合材を圧縮しつつ膜状にして、膜状にした前記電極合材を前記第2ロールの表面に付着させると共に、前記第2ロールと対向して回転する第3ロールによって搬送される前記集電箔を、前記第2ロールと前記第3ロールとの間隙に通すことによって、前記第2ロールの表面に付着している膜状の前記電極合材である膜状電極合材を、前記集電箔の前記表面に対し加圧しつつ接触させることで前記集電箔の前記表面上に転写して、前記集電箔の前記表面上に前記膜状電極合材を有する膜状電極合材付き集電箔を作製する成膜工程と、
前記膜状電極合材付き集電箔の前記膜状電極合材を乾燥させることで、前記集電箔の前記表面上に前記電極合材層を形成する乾燥工程と、を備える
電極シートの製造方法において、
前記成膜工程は、前記膜状電極合材において、当該膜状電極合材の幅方向の両端部に位置する合材両端部の密度を、前記幅方向について前記合材両端部の間に位置する合材中間部の密度よりも高くする高密化工程を含む
電極シートの製造方法。
It is a method of manufacturing an electrode sheet for manufacturing an electrode sheet having an electrode mixture layer on the surface of a current collector foil.
An electrode mixture composed of a plurality of wet granulated bodies obtained by mixing an electrode active material, a binder, and a solvent is passed through a gap between a first roll and a second roll that rotate in opposition to each other. The electrode mixture is compressed into a film, and the film-shaped electrode mixture is attached to the surface of the second roll and is conveyed by a third roll that rotates in opposition to the second roll. By passing the current collecting foil through the gap between the second roll and the third roll, the film-like electrode mixture, which is the film-like electrode mixture adhering to the surface of the second roll, is formed. A film-like electrode combination having the film-like electrode mixture on the surface of the current-collecting foil is transferred onto the surface of the current-collecting foil by contacting the surface of the current-collecting foil with pressure. The film formation process for producing the current collector foil with material, and
Manufacture of an electrode sheet comprising a drying step of forming the electrode mixture layer on the surface of the current collector foil by drying the film-like electrode mixture of the current collector foil with the film-like electrode mixture. In the method
In the film forming step, in the film-like electrode mixture, the densities of both ends of the mixture located at both ends of the film-like electrode mixture in the width direction are located between both ends of the mixture in the width direction. A method for manufacturing an electrode sheet, which includes a densification step in which the density is higher than the density of the intermediate portion of the mixed material.
JP2019190694A 2019-10-18 2019-10-18 Method for producing electrode sheet Pending JP2021068510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190694A JP2021068510A (en) 2019-10-18 2019-10-18 Method for producing electrode sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190694A JP2021068510A (en) 2019-10-18 2019-10-18 Method for producing electrode sheet

Publications (1)

Publication Number Publication Date
JP2021068510A true JP2021068510A (en) 2021-04-30

Family

ID=75637464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190694A Pending JP2021068510A (en) 2019-10-18 2019-10-18 Method for producing electrode sheet

Country Status (1)

Country Link
JP (1) JP2021068510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022136859A (en) * 2021-03-08 2022-09-21 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022136859A (en) * 2021-03-08 2022-09-21 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP7301082B2 (en) 2021-03-08 2023-06-30 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP6780601B2 (en) Electrode sheet manufacturing method
JP6791077B2 (en) Electrode sheet manufacturing method
TWI441375B (en) Electrode for lithium ion cell
JP6354698B2 (en) Electrode plate manufacturing method
CN103187572B (en) Film lithium ion battery
TW202121460A (en) An electrode material and components therefrom for use in an electrochemical device and processes for the manufacture thereof
CN103187586A (en) Lithium-ion battery
TWI445234B (en) Method for making electrode for lithium ion cell
JP2021068510A (en) Method for producing electrode sheet
CN111200106B (en) Method for manufacturing densified strip-shaped electrode plate, and battery
JP6583165B2 (en) Electrode sheet manufacturing method
JP6570850B2 (en) Method for producing molded film and method for producing all solid-state lithium ion battery
CN219144219U (en) Electrode diaphragm processingequipment and pole piece processing equipment
KR20180000307A (en) Method of producing negative electrode plate
JP7197267B2 (en) Electrode sheet manufacturing method
EP4131458A1 (en) Electrode for secondary batteries and method for producing same
JP2001076712A (en) Coating method of electrode paste for battery
JP7202348B2 (en) Electrode sheet manufacturing method
JP6919606B2 (en) Manufacturing method of electrode sheet for sulfide all-solid-state battery
JP2022158238A (en) Manufacturing method of electrode for secondary battery and wet powder
US11929489B2 (en) Electrode plate and manufacturing method for electrode plate
JP2019083147A (en) Method for manufacturing electrode sheet with separator
JP7205426B2 (en) Electrode sheet manufacturing method
KR20200028903A (en) Method for manufacturing laminate for electrochemical device and member for electrochemical device
JP6100681B2 (en) Non-aqueous electrolyte secondary battery electrode manufacturing method and non-aqueous electrolyte secondary battery manufacturing method