JP2021065825A - Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst - Google Patents

Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst Download PDF

Info

Publication number
JP2021065825A
JP2021065825A JP2019191968A JP2019191968A JP2021065825A JP 2021065825 A JP2021065825 A JP 2021065825A JP 2019191968 A JP2019191968 A JP 2019191968A JP 2019191968 A JP2019191968 A JP 2019191968A JP 2021065825 A JP2021065825 A JP 2021065825A
Authority
JP
Japan
Prior art keywords
fine particles
particle
silica fine
catalyst
organic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019191968A
Other languages
Japanese (ja)
Inventor
中山 和洋
Kazuhiro Nakayama
和洋 中山
真也 碓田
Masaya Usuda
真也 碓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2019191968A priority Critical patent/JP2021065825A/en
Publication of JP2021065825A publication Critical patent/JP2021065825A/en
Pending legal-status Critical Current

Links

Abstract

To provide an organic reaction catalyst capable of preferably using as a catalyst of various organic reactions (for example, a decomposition reaction of an organic compound, a synthesis reaction of an organic compound and the like) and a carrier particle dispersion for an organic reaction catalyst used for obtaining the organic reaction catalyst.SOLUTION: A carrier particle dispersion for organic reaction catalysts satisfying the following 1) to 5) and containing particles linkage type silica fine particles formed by binding a plurality of silica fine particles. 1) An average particle diameter (D1) due to a dynamic light scattering method is in the range of 20 to 300 nm. 2) A specific surface area is in the range of 100 to 900 m2/g. 3) A dry fine pore volume is in the range of 0.3 to 1.0 ml/g. 4) A value of [average particle diameter (D1) obtained according to the dynamic light scattering method]/[a specific surface area converted particle diameter (D2) obtained according to NaOH titration method] is in the range of 2.2 to 150. 5) The density of surface silanol groups is in the range of 0.5 to 5.0 pieces/nm2.SELECTED DRAWING: None

Description

本発明は、種々の有機反応触媒等として有用な特定の有機反応触媒用担体粒子分散液および有機反応触媒に関する。 The present invention relates to a specific carrier particle dispersion for an organic reaction catalyst and an organic reaction catalyst that are useful as various organic reaction catalysts and the like.

触媒は、例えば種々の有機反応の他、燃料電池における反応促進、自動車排ガスの浄化等、各種の分野で使用されている。この様な触媒については、その多くはシリカ、アルミナ等の酸化物やカーボンといった多孔質体を担体とし、これに白金、ロジウム等の活性金属又は金属化合物を担持したものや、複数の金属が担持された多元系触媒が知られている。また、担体物質については、シリカ、ゼオライト、シリカ−アルミナ複合体、セリアなどが用いられている。 In addition to various organic reactions, catalysts are used in various fields such as reaction promotion in fuel cells and purification of automobile exhaust gas. Most of such catalysts have a porous body such as an oxide such as silica or alumina or carbon as a carrier, and an active metal such as platinum or rhodium or a metal compound is supported on the catalyst, or a plurality of metals are supported. Multiple catalysts have been known. As the carrier substance, silica, zeolite, silica-alumina complex, ceria and the like are used.

例えば特許文献1には、多孔性無機酸化物微小球状粒子の表面部分だけに酸化バナジウムが担持された触媒であって、該表面部分の少なくとも一部分に酸化バナジウムが担持されていることを特徴とする接触分解ガソリン用脱硫触媒が開示されている。 For example, Patent Document 1 is a catalyst in which vanadium oxide is supported only on the surface portion of porous inorganic oxide microspherical particles, and vanadium oxide is supported on at least a part of the surface portion. A desulfurization catalyst for catalytically cracked gasoline is disclosed.

例えば特許文献2には、酸化物担体に金を担持した酸化物担持金触媒であって、前記酸化物担体表面に酸化金AuOxからなる境界層を介して金クラスターが担持されていることを特徴とする酸化物担持金触媒が開示されている。 For example, Patent Document 2 describes an oxide-supported gold catalyst in which gold is supported on an oxide carrier, wherein gold clusters are supported on the surface of the oxide carrier via a boundary layer made of gold oxide AuOx. The oxide-supported gold catalyst is disclosed.

例えば特許文献3には、多孔質シリカに白金又は白金含有化合物を担持させてなるエチレン分解剤であって、酸素の存在下、−1〜−40℃の雰囲気下で、エチレンを二酸化炭素と水に分解するための、エチレン分解剤が開示されている。 For example, Patent Document 3 describes an ethylene decomposing agent obtained by supporting platinum or a platinum-containing compound on porous silica, and ethylene is carbon dioxide and water in an atmosphere of -1 to -40 ° C in the presence of oxygen. An ethylene degrading agent for decomposing into is disclosed.

特開2007−000748号公報JP-A-2007-000748 特開2005−219004号公報Japanese Unexamined Patent Publication No. 2005-219004 特開2017−023889号公報Japanese Unexamined Patent Publication No. 2017-023889

本発明は、各種有機反応(例えば、有機化合物の分解反応、有機化合物の合成反応等)の触媒として好ましく用いることができる有機反応触媒およびそれを得るために用いる担体粒子分散液を提供することを目的とする。 The present invention provides an organic reaction catalyst that can be preferably used as a catalyst for various organic reactions (for example, decomposition reaction of an organic compound, synthesis reaction of an organic compound, etc.) and a carrier particle dispersion used for obtaining the organic reaction catalyst. The purpose.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(6)である。
(1)下記1)〜5)を満たし、複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液。
1)動的光散乱法による平均粒子径(D1)が20〜300nmの範囲。
2)比表面積が100〜900m2/gの範囲。
3)乾燥時細孔容積が0.3〜1.0ml/gの範囲。
4)前記粒子連結型シリカ微粒子の[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]の値が2.2〜150の範囲。
5)表面シラノール基密度が0.5〜5.0個/nm2の範囲。
(2)前記粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数が8〜1,000個の範囲にある、上記(1)に記載の有機反応触媒用担体粒子分散液。
(3)前記粒子連結型シリカ微粒子のうち分岐構造を有するもの割合が10%以上である、上記(1)又は(2)に記載の有機反応触媒用担体粒子分散液。
(4)前記有機反応触媒用担体粒子に含まれるナトリウム含有量が30ppm以下であることを特徴とする上記(1)〜(3)の何れかに記載の有機反応触媒用担体粒子分散液。
(5)上記(1)〜(4)のいずれかに記載の有機反応触媒用担体粒子分散液に含まれる前記粒子連結型シリカ微粒子の焼結体であって、金属又は金属化合物が担持している有機反応触媒。
(6)前記粒子連結型シリカ微粒子と、担持した前記金属および金属化合物(金属換算)の合計との質量比が100:1〜100:400の範囲にあることを特徴とする、上記(5)に記載の有機反応触媒。
The present inventor has made diligent studies to solve the above problems and completed the present invention.
The present invention is the following (1) to (6).
(1) A carrier particle dispersion for an organic reaction catalyst, which satisfies the following 1) to 5) and contains particle-linked silica fine particles in which a plurality of silica fine particles are bonded.
1) The average particle size (D1) by the dynamic light scattering method is in the range of 20 to 300 nm.
2) The specific surface area is in the range of 100 to 900 m 2 / g.
3) The pore volume at the time of drying is in the range of 0.3 to 1.0 ml / g.
4) The value of [average particle size (D1) determined by dynamic light scattering method] / [specific surface area equivalent particle size (D2) determined by NaOH titration] of the particle-connected silica fine particles is 2.2 to 150. range.
5) The surface silanol group density is in the range of 0.5 to 5.0 pieces / nm 2.
(2) The carrier particle dispersion for an organic reaction catalyst according to (1) above, wherein the average number of the silica fine particles contained in one particle of the particle-connected silica fine particles is in the range of 8 to 1,000.
(3) The carrier particle dispersion for an organic reaction catalyst according to (1) or (2) above, wherein the proportion of the particle-connected silica fine particles having a branched structure is 10% or more.
(4) The carrier particle dispersion for an organic reaction catalyst according to any one of (1) to (3) above, wherein the sodium content in the carrier particles for an organic reaction catalyst is 30 ppm or less.
(5) A sintered body of the particle-linked silica fine particles contained in the carrier particle dispersion for an organic reaction catalyst according to any one of (1) to (4) above, on which a metal or a metal compound is supported. Organic reaction catalyst.
(6) The above (5), wherein the mass ratio of the particle-connected silica fine particles to the total of the metal and the metal compound (metal equivalent) supported is in the range of 100: 1 to 100: 400. The organic reaction catalyst according to.

本発明によれば、各種有機反応(例えば、有機化合物の分解反応、有機化合物の合成反応等)の触媒として好ましく用いることができる有機反応触媒およびそれを得るために用いる担体粒子分散液を提供することができる。 According to the present invention, there is provided an organic reaction catalyst that can be preferably used as a catalyst for various organic reactions (for example, decomposition reaction of an organic compound, synthesis reaction of an organic compound, etc.) and a carrier particle dispersion used for obtaining the organic reaction catalyst. be able to.

本発明について説明する。
本発明は、下記1)〜5)を満たし、複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液である。
1)動的光散乱法による平均粒子径(D1)が20〜300nmの範囲。
2)比表面積が100〜900m2/gの範囲。
3)乾燥時細孔容積が0.3〜1.0ml/gの範囲。
4)前記粒子連結型シリカ微粒子の[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]の値が2.2〜150の範囲。
5)表面シラノール基密度が0.5〜5.0個/nm2の範囲。
上記1)〜5)を満たし、複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を、以下では「本発明の連結型微粒子」ともいう。また、このような有機反応触媒用担体粒子分散液を、以下では「本発明の分散液」ともいう。
The present invention will be described.
The present invention is a carrier particle dispersion for an organic reaction catalyst, which satisfies the following 1) to 5) and contains particle-linked silica fine particles in which a plurality of silica fine particles are bonded.
1) The average particle size (D1) by the dynamic light scattering method is in the range of 20 to 300 nm.
2) The specific surface area is in the range of 100 to 900 m 2 / g.
3) The pore volume at the time of drying is in the range of 0.3 to 1.0 ml / g.
4) The value of [average particle size (D1) determined by dynamic light scattering method] / [specific surface area equivalent particle size (D2) determined by NaOH titration] of the particle-connected silica fine particles is 2.2 to 150. range.
5) The surface silanol group density is in the range of 0.5 to 5.0 pieces / nm 2.
Particle-linked silica fine particles that satisfy the above 1) to 5) and in which a plurality of silica fine particles are bonded are also hereinafter referred to as "connected fine particles of the present invention". Further, such a carrier particle dispersion for an organic reaction catalyst is hereinafter also referred to as a "dispersion of the present invention".

また、本発明は、本発明の連結型微粒子の焼結体であって、金属または金属化合物が担持している有機反応触媒である。
このような有機反応触媒を、以下では「本発明の触媒」ともいう。
Further, the present invention is a sintered body of the articulated fine particles of the present invention, which is an organic reaction catalyst supported by a metal or a metal compound.
Such an organic reaction catalyst will also be referred to as "the catalyst of the present invention" below.

<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、複数のシリカ微粒子が結合している本発明の連結型微粒子を含む。
一般に粒子連結型シリカ微粒子は、直鎖状に結合している場合も、分岐状に結合している場合もあるが、本発明の連結型微粒子は、これら両方を含んでいることが望ましい。
このような本発明の連結型微粒子の焼結体であって、金属または金属化合物が担持している有機反応触媒(すなわち、本発明の触媒)は、担体である粒子連結型シリカ微粒子が、必要な触媒活性を維持できるレベル(範囲)の細孔容積を備えるので、触媒活性に優れる。
また、例えば、一般的な触媒を流動床にて使用する場合、触媒粒子同士がぶつかるため破損や崩壊が進みやすい。そこで、担持触媒自体が高強度であることが求められる。本発明の分散液を用いて得られる本発明の触媒は強度に優れ、破損や崩壊が進み難い。また、その結果、触媒活性の経時安定化が得られる。
<Dispersion liquid of the present invention>
The dispersion liquid of the present invention will be described.
The dispersion liquid of the present invention contains the articulated fine particles of the present invention in which a plurality of silica fine particles are bonded.
Generally, the particle-linked silica fine particles may be linearly bonded or branched, but it is desirable that the linked silica fine particles of the present invention contain both of them.
The organic reaction catalyst (that is, the catalyst of the present invention) supported by a metal or a metal compound in such a sintered body of the articulated fine particles of the present invention requires particle-linked silica fine particles as a carrier. Since it has a pore volume at a level (range) that can maintain a high level of catalytic activity, it is excellent in catalytic activity.
Further, for example, when a general catalyst is used in a fluidized bed, the catalyst particles collide with each other, so that the catalyst particles are likely to be damaged or disintegrated. Therefore, the supported catalyst itself is required to have high strength. The catalyst of the present invention obtained by using the dispersion liquid of the present invention has excellent strength and is unlikely to be damaged or disintegrated. As a result, the catalytic activity is stabilized over time.

本発明における粒子連結型シリカ微粒子の動的光散乱法による平均粒子径(D1)は20〜300nmであり、25〜200nmであることが好ましく、30〜180nmであることがより好ましい。
粒子連結型シリカ微粒子の平均粒子径が20〜300nmであると、係る粒子連結型シリカ微粒子を原料として使用して得た本発明の触媒は、好適な乾燥時細孔容積範囲(0.30〜1.00ml/g)を維持し易く、優れた触媒活性を得易くなる。
粒子連結型シリカ微粒子の平均粒子径(D1)が20nm未満の場合、後述する細孔容積が得られず、所望の触媒性能を得られない。同じく粒子連結型シリカ微粒子の平均粒子径(D1)が300nmを超えると、後述する大きな細孔容積を得られるが、触媒が嵩高くなることで飛散が生じ易く、触媒のロス等の実使用上の恐れが生じる場合がある。
The average particle size (D1) of the particle-connected silica fine particles in the present invention by the dynamic light scattering method is 20 to 300 nm, preferably 25 to 200 nm, and more preferably 30 to 180 nm.
When the average particle size of the particle-linked silica fine particles is 20 to 300 nm, the catalyst of the present invention obtained by using the particle-linked silica fine particles as a raw material has a suitable pore volume range (0.30 to 0) when dried. 1.00 ml / g) can be easily maintained, and excellent catalytic activity can be easily obtained.
When the average particle size (D1) of the particle-connected silica fine particles is less than 20 nm, the pore volume described later cannot be obtained, and the desired catalytic performance cannot be obtained. Similarly, when the average particle size (D1) of the particle-connected silica fine particles exceeds 300 nm, a large pore volume, which will be described later, can be obtained. May occur.

動的光散乱法による粒子連結型シリカ微粒子の平均粒子径(D1)の測定方法は次のとおりである。
試料(粒子連結型シリカ微粒子を含む分散液)を0.58%アンモニア水にて希釈して、シリカ濃度1質量%に調整し、レーザーパーティクルアナライザー(例えば粒径測定装置(1))を用いて測定する。
[粒径測定装置(1)の概要]
大塚電子株式会社製、型番「ゼータ電位・粒径測定システム ELSZ−1000」(測定原理:動的光散乱法、光源波長:665.70nm、温度調整範囲:10〜90℃、セル:10mm角のプラスチックセル)
The method for measuring the average particle size (D1) of the particle-connected silica fine particles by the dynamic light scattering method is as follows.
A sample (dispersion liquid containing particle-linked silica fine particles) is diluted with 0.58% aqueous ammonia to adjust the silica concentration to 1% by mass, and a laser particle analyzer (for example, a particle size measuring device (1)) is used. Measure.
[Overview of particle size measuring device (1)]
Otsuka Electronics Co., Ltd., model number "Zeta potential / particle size measurement system ELSZ-1000" (Measurement principle: dynamic light scattering method, light source wavelength: 665.70 nm, temperature adjustment range: 10 to 90 ° C, cell: 10 mm square plastic cell)

本発明における粒子連結型シリカ微粒子の比表面積は、100〜900m2/gであり、200〜500m2/gであることが好ましく、220〜400m2/gであることがより好ましい。
粒子連結型シリカ微粒子の比表面積が100〜900m2/gの範囲にある場合、該粒子連結型シリカ微粒子を担体とする本発明の触媒は、実用的に使用する担持金属量で優れた触媒性能を示すことができるので好適である。
粒子連結型シリカ微粒子の比表面積が100m2/g未満の場合、そのような粒子連結型シリカ微粒子を担体とする有機反応触媒においては、十分な触媒活性を得るには、多量の担持金属を必要とする場合があり、コスト的に見合わない場合がある。
また、同じく粒子連結型シリカ微粒子の比表面積が900m2/gを超える場合は、そのような粒子連結型シリカ微粒子を担体とする有機反応触媒において担持金属どうしが接触する確率が高くなり、触媒性能が低下する場合がある。
The specific surface area of the particle-linked silica particles in the invention is a 100~900m 2 / g, is preferably 200 to 500 m 2 / g, more preferably 220~400m 2 / g.
When the specific surface area of the particle-linked silica fine particles is in the range of 100 to 900 m 2 / g, the catalyst of the present invention using the particle-linked silica fine particles as a carrier has excellent catalytic performance in terms of the amount of supported metal used practically. It is suitable because it can show.
When the specific surface area of the particle-linked silica fine particles is less than 100 m 2 / g, a large amount of supported metal is required to obtain sufficient catalytic activity in an organic reaction catalyst using such particle-linked silica fine particles as a carrier. In some cases, it may not be worth the cost.
Similarly, when the specific surface area of the particle-linked silica fine particles exceeds 900 m 2 / g, the probability that the supported metals come into contact with each other in an organic reaction catalyst using such particle-linked silica fine particles as a carrier increases, and the catalytic performance May decrease.

ここで比表面積は、下記のNaOH滴定(シアーズ法)によって測定する。なお、後述する比表面積換算粒子径(D2)の測定方法についても合わせて説明する。
1)SiO2固形分として1.5gに相当する試料(粒子連結型シリカ微粒子を含む分散液)をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにする。(以下の操作は、25℃に保持した恒温反応槽中にて行った。)
2)3.6になるように陽イオン交換水又は0.1モル/L塩酸水溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)次の式(2)からSiO21.5g当たりのpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、後記式(3)に従って比表面積[m2/g]を求める。
また、比表面積換算粒子径(D2)(nm)は、式(4)から求める。
V=(A×f×100×1.5)/(W×C) ・・・ (2)
SA=29.0V−28 ・・・ (3)
比表面積換算粒子径(D2)=6000/(ρ×SA) ・・・ (4)
(ここで、ρは粒子の密度(g/cm3)を表す。シリカの場合は2.2を代入する。)
但し、上記式(2)における記号の意味は次の通りである。
A:SiO21.5g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)
f:0.1モル/L水酸化ナトリウム溶液の力価
C:試料のSiO2濃度(%)
W:試料採取量(g)
Here, the specific surface area is measured by the following NaOH titration (Sears method). A method for measuring the specific surface area equivalent particle size (D2), which will be described later, will also be described.
1) After collecting a sample (dispersion liquid containing particle-connected silica fine particles) corresponding to 1.5 g of SiO 2 solid content in a beaker, transfer it to a constant temperature reaction tank (25 ° C.), add pure water, and the amount of liquid. To 90 ml. (The following operation was performed in a constant temperature reaction vessel kept at 25 ° C.)
2) Add cation-exchanged water or 0.1 mol / L hydrochloric acid aqueous solution so as to be 3.6.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water, and stir for 10 minutes.
4) Set the pH electrode and add 0.1 mol / L sodium hydroxide solution while stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with a 0.1 mol / L sodium hydroxide solution, and the titration amount in the range of pH 8.7 to 9.3 and the pH value were recorded at 4 points or more, and 0. A titration line is prepared by setting the titration amount of 1 mol / L sodium hydroxide solution to X and the pH value at that time to Y.
6) From the following formula (2), the consumption V (ml) of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 was determined, and the following formula (3) ) To determine the specific surface area [m 2 / g].
The specific surface area equivalent particle diameter (D2) (nm) is calculated from the formula (4).
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (2)
SA = 29.0V-28 ... (3)
Specific surface area equivalent particle size (D2) = 6000 / (ρ × SA) ・ ・ ・ (4)
(Here, ρ represents the density of particles (g / cm 3 ). In the case of silica, 2.2 is substituted.)
However, the meanings of the symbols in the above formula (2) are as follows.
A: Titration of 0.1 mol / L sodium hydroxide solution required from pH 4.0 to 9.0 per 1.5 g of SiO 2 (ml)
f: Titer of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration (%) of sample
W: Sampling amount (g)

本発明の粒子連結型シリカ微粒子の乾燥時細孔容積は0.30〜1.00ml/gであり、0.35〜0.75ml/gであることが好ましく、0.40〜0.60ml/gであることがより好ましい。
本発明の触媒は、実施例で明らかなように、高い触媒活性を示している。これは担体である粒子連結型シリカ微粒子の乾燥時細孔容積(0.30〜1.00ml/g)と、粒子連結型シリカ微粒子の構造(直鎖状または分岐状)の相乗効果により、係る触媒を製造する際の焼成処理を経ても、必要な細孔容積を維持することが影響しているものと推察される。具体的には、焼成処理により焼結しても、必要な細孔容積が維持されるため、担持金属の拡散による担持金属どうしの接触が抑制され、また、触媒使用時の反応物あるいは反応生成物による触媒細孔の閉塞にも有効に対応したものと思われる。
The dry pore volume of the particle-linked silica fine particles of the present invention is 0.30 to 1.00 ml / g, preferably 0.35 to 0.75 ml / g, and 0.40 to 0.60 ml / g. It is more preferably g.
The catalyst of the present invention exhibits high catalytic activity, as is clear from the examples. This is due to the synergistic effect of the dry pore volume (0.30 to 1.00 ml / g) of the particle-linked silica fine particles as a carrier and the structure (linear or branched) of the particle-linked silica fine particles. It is presumed that the maintenance of the required pore volume has an effect even after the firing treatment during the production of the catalyst. Specifically, since the required pore volume is maintained even after sintering by firing treatment, contact between the supported metals due to diffusion of the supported metals is suppressed, and a reactant or reaction generation when the catalyst is used. It seems that it effectively corresponded to the clogging of the catalyst pores by an object.

前記乾燥時細孔容積は0.30〜1.00ml/gの範囲にあれば、そのような粒子連結型シリカ微粒子を担体とした有機反応触媒は、係る性能が発揮し易くなる。乾燥時細孔容積が0.30ml/g未満の場合、そのような粒子連結型シリカ微粒子を担体とした有機反応触媒は、例えば、担持金属どうしの接触が生じ易くなり、触媒性能を低下するなどの影響がある。また、乾燥時細孔容積が1.0ml/gを超える場合は、そのような粒子連結型シリカ微粒子を担体とした有機反応触媒は、担体の強度が脆弱になる場合があり、触媒として寿命に影響する場合がある。 When the pore volume at the time of drying is in the range of 0.30 to 1.00 ml / g, the organic reaction catalyst using such particle-linked silica fine particles as a carrier tends to exhibit such performance. When the pore volume at the time of drying is less than 0.30 ml / g, the organic reaction catalyst using such particle-linked silica fine particles as a carrier tends to cause contact between the supported metals, and the catalyst performance is deteriorated. There is an influence of. Further, when the pore volume at the time of drying exceeds 1.0 ml / g, the organic reaction catalyst using such particle-linked silica fine particles as a carrier may have a weak carrier strength and may have a long life as a catalyst. May affect.

なお、本発明の粒子連結型シリカ微粒子は細孔容積が大きいため、これより得られる有機反応触媒(すなわち、本発明の触媒)では担持金属同士の拡散による接触が防止され、焼成工程や触媒使用時の金属成分接触、焼結も抑制され、さらに反応物及び生成物による触媒細孔の閉塞も抑制されるものと見られる。 Since the particle-connected silica fine particles of the present invention have a large pore volume, the organic reaction catalyst (that is, the catalyst of the present invention) obtained from this prevents contact between the supported metals due to diffusion, and is used in the firing step and the catalyst. It is considered that the contact and sintering of metal components at the time are suppressed, and the clogging of the catalyst pores by the reactants and products is also suppressed.

本発明の連結型微粒子の[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]の値は2.2〜150であり、2.5〜50であることが好ましく、3.0〜18であることがより好ましい。 The values of [average particle size (D1) obtained by dynamic light scattering method] / [specific surface area equivalent particle size (D2) obtained by NaOH titration] of the articulated fine particles of the present invention are 2.2 to 150. It is preferably 2.5 to 50, more preferably 3.0 to 18.

本発明の粒子連結型シリカ微粒子の表面シラノール基密度は0.5〜5.0個/nm2であり、1.0〜3.0個/nm2であることが好ましく、1.0〜2.5個/nm2であることがより好ましい。
粒子連結型シリカ微粒子の表面シラノール基密度が0.5〜5.0個/nm2の範囲にあるとシラノール基と担持金属との相互作用のためか触媒活性低下の抑制が助長され好ましい。該表面シラノール基密度が0.5個/nm2未満の場合は、活性低下の抑制が不十分である。該表面シラノール基密度が5.0個/nm2を超える場合は触媒調製時又は触媒使用時におけるシリカ微粒子同士の焼結が促進されるためか、活性の低下を招き望ましくない。
The surface silanol group density of the particle-linked silica fine particles of the present invention is 0.5 to 5.0 elements / nm 2 , preferably 1.0 to 3.0 elements / nm 2 , and 1.0 to 2 More preferably, it is 5 pieces / nm 2.
It is preferable that the surface silanol group density of the particle-linked silica fine particles is in the range of 0.5 to 5.0 elements / nm 2 because the interaction between the silanol groups and the supported metal promotes the suppression of the decrease in catalytic activity. When the surface silanol group density is less than 0.5 elements / nm 2 , the suppression of the decrease in activity is insufficient. If the surface silanol group density exceeds 5.0 elements / nm 2 , it is not desirable because the sintering of silica fine particles during catalyst preparation or catalyst use is promoted, resulting in a decrease in activity.

ここで本発明の連結型微粒子の表面シラノール基密度は、次のように測定するものとする。
初めに、前述の比表面積を測定するシアーズ法の手順((1)〜(6))によって、NaOH滴定量を求める。次に、下記式に基づきシラノール基密度を算出することができる。
ρ=(a×b×NA)÷(c×d)
上記式中、ρ:シラノール基密度(個/nm2)、a:滴定に用いたNaOH溶液の濃度(mol/L)、b:pH4〜9のNaOH溶液の滴下量(mL)、NA:アボガドロ数、c:シリカ質量(g)、d:画像解析により求めた平均短径を球換算した比表面積(nm2/g)をそれぞれ表す。
ここで画像解析による平均短径は、試料(粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液 固形分濃度1質量%)の透過型電子顕微鏡により写真撮影(倍率30万倍)して得られる写真投影図における任意の50個の粒子について、シリカ微粒子の一次元方向に連結する部分に対して垂直な線分のうち、最も短い線分を短径とする。
このようにして50個の微粒子について短径を測定し、これを単純平均して得た値を平均短径とする。
Here, the surface silanol group density of the articulated fine particles of the present invention shall be measured as follows.
First, the NaOH titration amount is determined by the procedure ((1) to (6)) of the Sears method for measuring the specific surface area described above. Next, the silanol group density can be calculated based on the following formula.
ρ = (a × b × NA) ÷ (c × d)
In the above formula, ρ: silanol group density (pieces / nm 2 ), a: concentration of NaOH solution used for titration (mol / L), b: dropping amount of NaOH solution of pH 4 to 9 (mL), NA: avocadro. Number, c: silica mass (g), d: specific surface area (nm 2 / g) obtained by converting the average minor axis obtained by image analysis into a sphere.
Here, the average minor axis by image analysis was photographed (magnification: 300,000 times) by a transmission electron microscope of a sample (carrier particle dispersion for organic reaction catalyst containing particle-linked silica fine particles, solid content concentration: 1% by mass). For any 50 particles in the obtained photographic projection drawing, the shortest line segment among the line segments perpendicular to the portion connected in the one-dimensional direction of the silica fine particles is defined as the minor axis.
In this way, the minor axis is measured for 50 fine particles, and the value obtained by simple averaging them is taken as the average minor axis.

本発明に係る粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数は8〜1000個であることが好ましく、8〜900個であることがより好ましく、8〜800個であることがさらに好ましい。
粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数が8以上であれば、通常、該粒子連結型シリカ微粒子は鎖状構造をとる。本発明の有機反応触媒は、鎖状触媒であることで、球状触媒に比べて、その充填構造に異方性が生じる場合があり、異方性を有することで大きな細孔容積を得られやすく、触媒活性に優れ、また、有機反応触媒どうしが絡まり合ったりすることで、触媒どうしの衝突による破損が抑制されるものと推察される。
粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数が8未満の場合は、そのような粒子連結型シリカ微粒子を担体とした有機反応触媒は、球状に近いので、本発明の有機反応触媒で見られるような効果を得難くなる。
粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数が1000を超える場合、そのような粒子連結型シリカ微粒子を担体とした有機反応触媒は、触媒が嵩高くなることで飛散が生じ易く、触媒のロス等の恐れが生じる場合があり好ましくない。
なお、粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子(一次粒子)の平均個数の測定方法は、実施例に記したとおりである。
The average number of the silica fine particles contained in one particle of the particle-connected silica fine particles according to the present invention is preferably 8 to 1000, more preferably 8 to 900, and 8 to 800. Is even more preferable.
When the average number of the silica fine particles contained in one particle of the particle-linked silica fine particles is 8 or more, the particle-linked silica fine particles usually have a chain structure. Since the organic reaction catalyst of the present invention is a chain catalyst, an anisotropy may occur in its packed structure as compared with a spherical catalyst, and it is easy to obtain a large pore volume due to the anisotropy. It is presumed that the catalyst activity is excellent, and that the organic reaction catalysts are entangled with each other to suppress the damage caused by the collision between the catalysts.
When the average number of the silica fine particles contained in one particle of the particle-linked silica fine particles is less than 8, the organic reaction catalyst using such particle-linked silica fine particles as a carrier is close to spherical, and therefore, according to the present invention. It becomes difficult to obtain the effects seen with organic reaction catalysts.
When the average number of the silica fine particles contained in one particle of the particle-linked silica fine particles exceeds 1000, the organic reaction catalyst using such particle-linked silica fine particles as a carrier is scattered due to the bulkiness of the catalyst. It is not preferable because it is likely to occur and there is a risk of catalyst loss or the like.
The method for measuring the average number of the silica fine particles (primary particles) contained in one particle of the particle-connected silica fine particles is as described in the examples.

前述のように本発明の連結型微粒子は、通常、直鎖状の粒子連結型シリカ微粒子と、分岐状の粒子連結型シリカ微粒子との集合体である。本発明に係る粒子連結型シリカ微粒子において、分岐状の粒子連結型シリカ微粒子の割合は制限されるものではないが、分岐構造を有する粒子連結型シリカ微粒子の割合が10〜95%であることが好ましく、15〜93%であることがより好ましく、25〜90%であることがさらに好ましい。
これは分岐構造をより多く有するシリカ微粒子を触媒担体に用いた場合、より大きな細孔容積を得る事が出来、より高い触媒性能を得やすいものと推察される。
本発明の粒子連結型シリカ微粒子は、その100%が分岐状の粒子連結型シリカ微粒子になることはないが、合成上は通常は95%が上限となる。
これは、分岐構造をより多く有するシリカ微粒子を触媒担体に用いた場合、より大きな細孔容積を得る事が出来るので、より高い触媒性能を得やすいものと推察される。
連結型シリカ微粒子の割合が多くなりすぎると、触媒が嵩高くなることで飛散が生じ易く、触媒のロス等の恐れが生じる場合があり好ましくない。
As described above, the articulated fine particles of the present invention are usually an aggregate of linear particle-linked silica fine particles and branched particle-linked silica fine particles. In the particle-linked silica fine particles according to the present invention, the proportion of the branched particle-linked silica fine particles is not limited, but the proportion of the particle-linked silica fine particles having a branched structure is 10 to 95%. It is preferably 15 to 93%, more preferably 25 to 90%.
It is presumed that when silica fine particles having more branched structures are used as the catalyst carrier, a larger pore volume can be obtained and higher catalytic performance can be easily obtained.
Although 100% of the particle-linked silica fine particles of the present invention does not become branched particle-linked silica fine particles, 95% is usually the upper limit in synthesis.
This is presumed to be because when silica fine particles having more branched structures are used as the catalyst carrier, a larger pore volume can be obtained, so that higher catalyst performance can be easily obtained.
If the proportion of the linked silica fine particles is too large, the catalyst becomes bulky and tends to scatter, which may cause loss of the catalyst, which is not preferable.

ここで本発明の連結型微粒子に含まれる分岐構造を有するシリカ微粒子の割合は、次のように測定する。
試料(粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液 固形分濃度1質量%)の透過型電子顕微鏡により写真撮影(倍率10万倍)して得られる写真投影図における任意の50個の粒子について、分岐構造を有する粒子の個数(N)を計測し、N/50×100の値を粒子連結型シリカ微粒子のうち分岐構造を有するものの割合(%)とした。なお、本願では、粒子連結型シリカ微粒子の分岐構造とは、4個以上の一次粒子が結合してなり、かつ直鎖方向(長さ方向)以外にも一次粒子が結合してなる構造を意味する。
Here, the proportion of silica fine particles having a branched structure contained in the articulated fine particles of the present invention is measured as follows.
Arbitrary 50 in a photographic projection obtained by taking a photograph (magnification: 100,000 times) of a sample (carrier particle dispersion for an organic reaction catalyst containing particle-linked silica fine particles, solid content concentration: 1% by mass) with a transmission electron microscope. For the individual particles, the number of particles having a branched structure (N) was measured, and the value of N / 50 × 100 was defined as the ratio (%) of the particle-connected silica fine particles having a branched structure. In the present application, the branched structure of the particle-connected silica fine particles means a structure in which four or more primary particles are bonded and primary particles are bonded in a direction other than the linear direction (length direction). To do.

本発明の連結型微粒子は、さらに担持金属および/または担持金属化合物を含むことが好ましい。担持金属として、例えばPd、Cu、Pt、Au、Ag、Ru、Ni、W、V、Mo、Fe、Ce等が挙げられる。担持金属化合物として、上記の担持金属のうちの少なくとも1つを含む化合物が挙げられる。 The articulated fine particles of the present invention preferably further contain a supported metal and / or a supported metal compound. Examples of the supported metal include Pd, Cu, Pt, Au, Ag, Ru, Ni, W, V, Mo, Fe, Ce and the like. Examples of the supported metal compound include compounds containing at least one of the above-mentioned supported metals.

なお、後述する本発明の触媒が有する金属(担持金属)および金属化合物は同様のものであってよい。 The metal (supporting metal) and the metal compound contained in the catalyst of the present invention, which will be described later, may be the same.

本発明の連結型微粒子が担持金属または担持金属化合物を含む場合、前記粒子連結型シリカ微粒子と、前記担持金属および前記担持金属化合物(金属換算)の合計との質量比が100:1〜100:400の範囲にあることが好ましく、100:5〜100:300の範囲にあることがより好ましく、100:10〜100:200の範囲にあることがさらに好ましい。 When the linked fine particles of the present invention contain a supported metal or a supported metal compound, the mass ratio of the particle linked silica fine particles to the total of the supported metal and the supported metal compound (metal equivalent) is 100: 1 to 100: It is preferably in the range of 400, more preferably in the range of 100: 5 to 100: 300, and even more preferably in the range of 100: 10 to 100: 200.

なお、後述する本発明の触媒における前記粒子連結型シリカ微粒子と、担持した前記金属および金属化合物(金属換算)の合計との質量比も、同様であってよい。 The mass ratio of the particle-linked silica fine particles in the catalyst of the present invention, which will be described later, and the total of the supported metal and metal compound (metal equivalent) may be the same.

本発明の連結型微粒子が担持金属および/または担持金属化合物を含む場合、前記担持金属および/または前記担持金属化合物(金属換算)の含有量は、次のように測定する。
試料(粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液)約1g(固形分20質量%に調整したもの)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。
次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Pd、Cu、Pt、Au、Ag、Ru、Ni、W、V、Mo、Fe及びCeについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。そして、前述の方法で求めた固形分の質量に基づいて、dry量に対する各成分の含有率を求めた。
When the articulated fine particles of the present invention contain a supported metal and / or a supported metal compound, the content of the supported metal and / or the supported metal compound (in terms of metal) is measured as follows.
Approximately 1 g (adjusted to a solid content of 20% by mass) of a sample (carrier particle dispersion for an organic reaction catalyst containing particle-linked silica fine particles) is collected in a platinum dish. Add 3 ml of phosphoric acid, 5 ml of nitric acid, and 10 ml of hydrofluoric acid, and heat on a sand bath. After drying, add a small amount of water and 50 ml of nitric acid to dissolve it, put it in a 100 ml volumetric flask, and add water to make 100 ml.
Next, the operation of collecting 10 ml of the separated solution in a 20 ml volumetric flask from the solution contained in 100 ml is repeated 5 times to obtain 5 10 ml separated solutions. Then, using this, Pd, Cu, Pt, Au, Ag, Ru, Ni, W, V, Mo, Fe and Ce are measured by an ICP plasma emission spectrometer (for example, SII, SPS5520) by a standard addition method. I do. Here, the blank is also measured by the same method, and the blank is subtracted and adjusted to obtain the measured value for each element. Then, based on the mass of the solid content obtained by the above-mentioned method, the content ratio of each component with respect to the dry amount was determined.

なお、本発明の触媒における前記担持金属および/または前記担持金属化合物(金属換算)の含有量は、同様に測定するものとする。 The content of the supported metal and / or the supported metal compound (in terms of metal) in the catalyst of the present invention shall be measured in the same manner.

本発明の分散液では、分散媒に本発明の連結型微粒子が分散している。
ここで分散液は特に限定されないが、水を分散媒とした水分散液であってよい。
また、有機反応触媒用担体粒子分散液含まれるナトリウム含有量は、シリカ固形分あたり30ppm以下であることが好ましく、15ppm以下であることがより好ましい。理由は有機反応触媒用担体粒子がNaを30ppmを超えて含む場合は本発明の製造工程において、連結型微粒子の焼結が促進され、所望の細孔容積を得られない場合があるためである。含む場合は、必要な触媒性能を得難くなる。これは、その製造工程において、Naの存在により、連結型微粒子の焼結が過剰に促進され、所望の細孔容積範囲に至らないことが原因するものと見られる。
In the dispersion liquid of the present invention, the linked fine particles of the present invention are dispersed in the dispersion medium.
Here, the dispersion liquid is not particularly limited, but may be an aqueous dispersion liquid using water as a dispersion medium.
The sodium content contained in the carrier particle dispersion for the organic reaction catalyst is preferably 30 ppm or less, more preferably 15 ppm or less per silica solid content. The reason is that when the carrier particles for an organic reaction catalyst contain Na in an amount of more than 30 ppm, sintering of the articulated fine particles is promoted in the production process of the present invention, and a desired pore volume may not be obtained. .. If it is included, it becomes difficult to obtain the required catalytic performance. It is considered that this is because the presence of Na excessively promotes the sintering of the articulated fine particles in the manufacturing process and does not reach the desired pore volume range.

本発明の分散液は、上記のような本発明の連結型微粒子を固形分濃度で1〜40質量%含むことが好ましく、5〜30質量%含むことがより好ましい。
ここで固形分濃度は1000℃灼熱減量を行って秤量により求めることができる
The dispersion liquid of the present invention preferably contains the above-mentioned articulated fine particles of the present invention in a solid content concentration of 1 to 40% by mass, more preferably 5 to 30% by mass.
Here, the solid content concentration can be determined by weighing after performing a burning weight loss of 1000 ° C.

<本発明の触媒>
本発明の触媒について説明する。
本発明の触媒は、前記担持金属または前記担持金属化合物を含む本発明の分散液を乾燥し、150℃〜700℃程度の温度で焼成することで得られる焼成体である。金属がシリカ微粒子に担持した態様である。
このような本発明の触媒は、構造的に安定であり、強度が高い。例えば、一般的な触媒を流動床にて使用する場合、触媒粒子同士がぶつかることで破損や崩壊が進みやすいため、担持触媒自体が高強度であることが求められる。本発明の触媒は、その担体が直鎖状又は分岐状の粒子連結型シリカ微粒子が絡み合った焼結体を構成しており、強度が高く、破損や崩壊が進み難い。また、その結果、触媒活性の経時安定化が得られる。
<Catalyst of the present invention>
The catalyst of the present invention will be described.
The catalyst of the present invention is a fired body obtained by drying the dispersion liquid of the present invention containing the supported metal or the supported metal compound and firing at a temperature of about 150 ° C. to 700 ° C. This is an embodiment in which the metal is supported on the silica fine particles.
Such a catalyst of the present invention is structurally stable and has high strength. For example, when a general catalyst is used in a fluidized bed, the supported catalyst itself is required to have high strength because the catalyst particles collide with each other and easily break or disintegrate. In the catalyst of the present invention, the carrier constitutes a sintered body in which linear or branched particle-connected silica fine particles are entangled, and the catalyst has high strength and is unlikely to break or disintegrate. As a result, the catalytic activity is stabilized over time.

本発明の触媒は、前記のとおり、直鎖状又は分岐状の粒子連結型シリカ微粒子からなる担体が絡み合ってなり、その形状は、球状ないし略球状である。
本発明の触媒の平均粒子径は5〜200μmであることが好ましく、10〜150μmであることがより好ましい。
なお、本発明の触媒の平均粒子径は、本発明の触媒を水等の分散媒に分散させて得られた分散液について、レーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて得られた値とする。
本発明の触媒の平均粒子径が5〜200μmの範囲であれば、流動床型の触媒反応に用いる場合は触媒の流動性が良好な状態にあり、また飛散によるロスを抑制でき好ましい。
該触媒の平均粒子径が5μm未満の場合は、飛散によるロスが著しく発生し好ましくない。該触媒の平均粒子径が200μmを超える場合、触媒の流動性が良好で無くなり、十分な触媒活性が得られなくなり望ましくない。
As described above, the catalyst of the present invention is formed by entwining carriers composed of linear or branched particle-connected silica fine particles, and the shape thereof is spherical or substantially spherical.
The average particle size of the catalyst of the present invention is preferably 5 to 200 μm, more preferably 10 to 150 μm.
The average particle size of the catalyst of the present invention is measured by a laser diffraction / scattering method for a dispersion obtained by dispersing the catalyst of the present invention in a dispersion medium such as water (for example, LA-950 manufactured by HORIBA). Let it be the value obtained by using.
When the average particle size of the catalyst of the present invention is in the range of 5 to 200 μm, the fluidity of the catalyst is in a good state when used for a fluidized bed type catalytic reaction, and loss due to scattering can be suppressed, which is preferable.
When the average particle size of the catalyst is less than 5 μm, a loss due to scattering occurs remarkably, which is not preferable. When the average particle size of the catalyst exceeds 200 μm, the fluidity of the catalyst becomes poor and sufficient catalytic activity cannot be obtained, which is not desirable.

本発明の触媒は、例えば次のように製造することができる。
初めに、担体となる粒子連結型シリカ微粒子に担持させる金属を含有する金属化合物の溶液又は懸濁液を用意する。
これについては既成品であってもよく、調製したものであっても構わない。金属化合物の溶液又は懸濁液の溶媒としては、一般に水が使用されるが、アルコール類、エステル類、エーテル類、カルボン酸類等の有機溶媒を用いることもできる。
金属化合物の溶液又は懸濁液の調製方法は特に制限はなく、目的とする組成に応じた原料を所定量準備して、水等の溶媒に混合すればよい。また、溶媒として水を用いた場合、金属原料が水に難溶性の場合は、酸あるいはアルカリを使用して溶解させてもよいし、50〜90℃程度に加熱して溶解させてもよい。
金属化合物の溶液又は懸濁液の固形分濃度は、有機反応触媒用担体粒子分散液との混合に支障ない限り限定されないが、通常は5〜30質量%の範囲が推奨される。
The catalyst of the present invention can be produced, for example, as follows.
First, a solution or suspension of a metal compound containing a metal to be supported on particle-linked silica fine particles as a carrier is prepared.
This may be an off-the-shelf product or a prepared product. Water is generally used as the solvent for the solution or suspension of the metal compound, but organic solvents such as alcohols, esters, ethers, and carboxylic acids can also be used.
The method for preparing the solution or suspension of the metal compound is not particularly limited, and a predetermined amount of the raw material according to the target composition may be prepared and mixed with a solvent such as water. When water is used as the solvent and the metal raw material is poorly soluble in water, it may be dissolved by using an acid or an alkali, or may be dissolved by heating to about 50 to 90 ° C.
The solid content concentration of the solution or suspension of the metal compound is not limited as long as it does not interfere with mixing with the carrier particle dispersion for the organic reaction catalyst, but is usually recommended in the range of 5 to 30% by mass.

次いで、所定の複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液と、前記金属化合物の溶液又は懸濁液とを混合して、混合液を調製する。ここで混合方法は、特に制限されるものではなく、たとえば、ミキサー、スターラーなどの公知の手法が挙げられる。所定の複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液に、前記金属化合物の溶液又は懸濁液を加えて混合してもよく、その逆であっても構わない。なお、混合するにあたっては、必要に応じて、酸添加又はアルカリ添加してもよく、30℃〜90℃程度に加温しても構わない。 Next, a carrier particle dispersion for an organic reaction catalyst containing particle-linked silica fine particles formed by binding a plurality of predetermined silica fine particles is mixed with a solution or suspension of the metal compound to prepare a mixed solution. To do. Here, the mixing method is not particularly limited, and examples thereof include known methods such as a mixer and a stirrer. A solution or suspension of the metal compound may be added to and mixed with a carrier particle dispersion for an organic reaction catalyst containing particle-linked silica fine particles formed by binding a plurality of predetermined silica fine particles, and vice versa. It doesn't matter if there is. When mixing, if necessary, acid or alkali may be added, or the mixture may be heated to about 30 ° C. to 90 ° C.

混合液の調製に次いで、前記混合液を乾燥し、乾燥物を調製する。また、乾燥方法としては、公知の方法を使用できる。具体的には、ロータリーエバポレーターによる減圧乾燥法、蒸発皿上での熱処理法や噴霧乾燥機を用いた噴霧乾燥法などを用いても良い。
前記乾燥物は、次に、加熱処理に供される。加熱処理の方法は、その乾燥物の性状や規模により任意の方法を設定することが可能であるが、蒸発皿上での熱処理、あるいは、回転炉、流動焼成炉等の加熱炉による加熱処理が一般的である。また、これらの加熱処理操作を複数種組み合わせてもよい。加熱処理方法については大気中で行ってもよいが、水素、窒素、アルゴン等のガス又は真空中で行ってもよい。加熱温度は、金属種などにもよるが、通常は300〜700℃の範囲で行う。加熱時間は、金属種及び金属の担持量にもよるものであり、限定されるものではないが、通常は10分〜10時間で加熱する。
Following the preparation of the mixed solution, the mixed solution is dried to prepare a dried product. Moreover, as a drying method, a known method can be used. Specifically, a vacuum drying method using a rotary evaporator, a heat treatment method on an evaporating dish, a spray drying method using a spray dryer, or the like may be used.
The dried product is then subjected to heat treatment. As the heat treatment method, any method can be set depending on the properties and scale of the dried product, but heat treatment on an evaporating dish or heat treatment using a heating furnace such as a rotary furnace or a fluidized baking furnace is possible. It is common. Further, a plurality of types of these heat treatment operations may be combined. The heat treatment method may be carried out in the atmosphere, but may be carried out in a gas such as hydrogen, nitrogen or argon or in a vacuum. The heating temperature depends on the metal type and the like, but is usually in the range of 300 to 700 ° C. The heating time depends on the metal type and the amount of the metal supported, and is not limited, but is usually heated in 10 minutes to 10 hours.

本発明の触媒の製造方法は、典型的には、次の工程1〜工程3を含む。
工程1 下記1)〜5)を満たし、複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液と、金属化合物を含む溶液を混合し、混合液を調製する。
1)動的光散乱法による平均粒子径(D1)が20〜300nmの範囲。
2)比表面積が100〜900m2/gの範囲。
3)乾燥時細孔容積が0.3〜1.0ml/gの範囲。
4)前記粒子連結型シリカ微粒子の[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]の値が2.2〜150の範囲。
5)表面シラノール基密度が0.5~5.0個/nm2の範囲。
工程2 前工程で得られた混合液を乾燥し、乾燥体を調製する。
工程3 前工程で得られた乾燥体を、150〜700℃で加熱して触媒を調製する。
なお、前記有機反応触媒用担体粒子分散液に含まれる粒子連結型シリカ微粒子は、1粒子中に含まれる前記シリカ微粒子の平均個数が8〜1,000個の範囲にあるものが好ましい。
また、前記粒子連結型シリカ微粒子は、分岐構造を有するもの割合が10%以上であることが好ましい。
The method for producing a catalyst of the present invention typically includes the following steps 1 to 3.
Step 1 A carrier particle dispersion for an organic reaction catalyst containing particle-linked silica fine particles in which a plurality of silica fine particles are bonded to each other satisfying the following 1) to 5) and a solution containing a metal compound are mixed to prepare a mixed solution. Prepare.
1) The average particle size (D1) by the dynamic light scattering method is in the range of 20 to 300 nm.
2) The specific surface area is in the range of 100 to 900 m 2 / g.
3) The pore volume at the time of drying is in the range of 0.3 to 1.0 ml / g.
4) The value of [average particle size (D1) determined by dynamic light scattering method] / [specific surface area equivalent particle size (D2) determined by NaOH titration] of the particle-connected silica fine particles is 2.2 to 150. range.
5) The surface silanol group density is in the range of 0.5 to 5.0 pieces / nm 2.
Step 2 The mixed solution obtained in the previous step is dried to prepare a dried product.
Step 3 The dried product obtained in the previous step is heated at 150 to 700 ° C. to prepare a catalyst.
The particle-linked silica fine particles contained in the carrier particle dispersion for an organic reaction catalyst preferably have an average number of silica fine particles contained in one particle in the range of 8 to 1,000.
Further, it is preferable that the proportion of the particle-connected silica fine particles having a branched structure is 10% or more.

以下、本発明の実施例を示す。
なお、実施例および比較例において、平均粒子径(D1)、比表面積、乾燥時細孔容積、1粒子中に含まれる前記シリカ微粒子の平均個数の測定・算出は以下のように行った。
Hereinafter, examples of the present invention will be shown.
In the examples and comparative examples, the average particle size (D1), the specific surface area, the pore volume at the time of drying, and the average number of the silica fine particles contained in one particle were measured and calculated as follows.

<平均粒子径(D1)>
前述の通り、動的光散乱法によって平均粒子径(D1)を求めた。ここで粒子径測定装置として大塚電子株式会社製、型番「ゼータ電位・粒径測定システム ELSZ−1000」(測定原理:動的光散乱法、光源波長:665.70nm、温度調整範囲:10〜90℃、セル:10mm角のプラスチックセル)を用いた。
<Average particle size (D1)>
As described above, the average particle size (D1) was determined by the dynamic light scattering method. Here, as a particle size measuring device, manufactured by Otsuka Electronics Co., Ltd., model number "Zeta potential / particle size measuring system ELSZ-1000" (measurement principle: dynamic light scattering method, light source wavelength: 665.70 nm, temperature adjustment range: 10 to 90 ° C. , Cell: 10 mm square plastic cell) was used.

<比表面積>
前述の通り、シアーズ法によって比表面積を求めた。
<Specific surface area>
As described above, the specific surface area was determined by the Sears method.

<乾燥時細孔容積>
乾燥時細孔容積は、次のように測定するものとする。
500℃で1時間焼成した試料0.03gを測定セルに採取し、300℃で3時間真空脱気する。マイクロトラック・ベル社製細孔分布測定装置BELSORP−mini(定容法)を使用し、窒素を試料に吸着させて吸着等温線を得る。
この吸着等温線からBET解析法により相対圧0.990での細孔容積を求める。
<Pore volume when dried>
The dry pore volume shall be measured as follows.
0.03 g of a sample calcined at 500 ° C. for 1 hour is collected in a measurement cell and vacuum degassed at 300 ° C. for 3 hours. Using a pore distribution measuring device BELSORP-mini (constant volume method) manufactured by Microtrac Bell, nitrogen is adsorbed on the sample to obtain an adsorption isotherm.
From this adsorption isotherm, the pore volume at a relative pressure of 0.990 is obtained by the BET analysis method.

<粒子連結型シリカ微粒子1粒子中に含まれる前記シリカ微粒子(一次粒子)の平均個数>
粒子連結型シリカ微粒子1粒子中に含まれるシリカ微粒子(一次粒子)の平均個数を求めた。試料(粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液 固形分濃度1質量%)の透過型電子顕微鏡により写真撮影(倍率10万倍)して得られる写真投影図における任意の50個の粒子連結型シリカ微粒子のそれぞれについて、一次粒子の直径(x)と粒子連結型シリカ微粒子の長さ(y)を測定し、y/xの値を算定し、50個の粒子連結型シリカ微粒子の平均値を算定し、その値を粒子連結型シリカ微粒子1粒子中に含まれる前記シリカ微粒子(一次粒子)の平均個数とした。
なお、前述のとおり、粒子連結型シリカ微粒子は、その1粒子中にシリカ微粒子を平均で8〜1,000個含む粒子であり、このようなシリカ微粒子のそれぞれが一次粒子に相当する。係る一次粒子は連結して粒子連結型シリカ微粒子を構成する。
<Average number of the silica fine particles (primary particles) contained in one particle-connected silica fine particle>
The average number of silica fine particles (primary particles) contained in one particle-linked silica fine particle was determined. Arbitrary 50 in a photographic projection obtained by taking a photograph (magnification: 100,000 times) of a sample (carrier particle dispersion for organic reaction catalyst containing particle-linked silica fine particles, solid content concentration: 1% by mass) with a transmission electron microscope. For each of the particle-linked silica fine particles, the diameter (x) of the primary particles and the length (y) of the particle-linked silica fine particles were measured, the value of y / x was calculated, and 50 particle-linked silica fine particles were calculated. The average value of the fine particles was calculated, and the value was taken as the average number of the silica fine particles (primary particles) contained in one particle-connected silica fine particle.
As described above, the particle-linked silica fine particles are particles containing 8 to 1,000 silica fine particles on average in one particle, and each of such silica fine particles corresponds to a primary particle. Such primary particles are linked to form particle-linked silica fine particles.

また、「表面シラノール基密度」、「比表面積換算粒子径(D2)」及び「粒子連結型シリカ微粒子のうち分岐構造を有する粒子連結型シリカ微粒子の割合」の測定方法は先述のとおりである。 The methods for measuring "surface silanol group density", "specific surface area equivalent particle diameter (D2)", and "ratio of particle-linked silica fine particles having a branched structure among particle-linked silica fine particles" are as described above.

その他の特性の測定方法は次のとおりである。 The measurement method of other characteristics is as follows.

<粒子連結型シリカ微粒子と担持金属(金属換算)の質量比>
前述の方法で粒子連結型シリカ微粒子と担持金属(金属換算)の質量比を求めた。
<Mass ratio of particle-connected silica fine particles and supported metal (metal equivalent)>
The mass ratio of the particle-connected silica fine particles and the supported metal (metal equivalent) was determined by the above method.

<有機反応触媒用担体粒子分散液のpH測定>
試料50mlを入れたセルに、25℃の温度に保たれた恒温槽中で、pH4、7および9の標準液で更正が完了したpHメータ(堀場製作所製、F22)のガラス電極を挿入して、pH値を測定した。
<pH measurement of carrier particle dispersion for organic reaction catalyst>
Insert the glass electrode of a pH meter (F22, manufactured by HORIBA, Ltd.), which has been rectified with standard solutions of pH 4, 7 and 9, in a cell containing 50 ml of sample in a constant temperature bath kept at a temperature of 25 ° C. , The pH value was measured.

<有機反応触媒用担体粒子分散液に含まれるナトリウム量の測定>
最初に有機反応触媒用担体粒子分散液(固形分濃度5質量%)のSiO2重量について、1000℃灼熱減量を行って秤量により求めた。
次に有機反応触媒用担体粒子に含まれるナトリウムの含有量は、以下の方法によって測定した。
本発明の有機反応触媒用担体粒子分散液(固形分濃度5質量%)からなる試料約10gを白金皿に採取する。硝酸5ml、弗化水素酸20mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸2mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液を原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定し、ナトリウム含有量を求めた。
以上の結果から有機反応触媒用担体粒子に含まれるナトリウムの含有率を求めた。
<Measurement of sodium content in carrier particle dispersion for organic reaction catalyst>
First, the weight of SiO 2 of the carrier particle dispersion for an organic reaction catalyst (solid content concentration: 5% by mass) was determined by weighing after performing a burning weight loss of 1000 ° C.
Next, the content of sodium contained in the carrier particles for the organic reaction catalyst was measured by the following method.
Approximately 10 g of a sample consisting of the carrier particle dispersion for an organic reaction catalyst (solid content concentration: 5% by mass) of the present invention is collected in a platinum dish. Add 5 ml of nitric acid and 20 ml of hydrofluoric acid and heat on a sand bath. After drying, add a small amount of water and 2 ml of nitric acid to dissolve, put in a 100 ml volumetric flask, and add water to make 100 ml. This solution was measured with an atomic absorption spectrophotometer (for example, Z-2310 manufactured by Hitachi, Ltd.) to determine the sodium content.
From the above results, the content of sodium contained in the carrier particles for the organic reaction catalyst was determined.

<実施例1>
[シリカゾルの製造]
1-1)珪酸液の調製
水硝子(JIS・K1408・珪酸ソーダ3号)をシリカ濃度7質量%に希釈した珪酸アルカリ水溶液7,000gを限外モジュール(旭化成社製SIP−1013)に通液し濾水を回収し精製水硝子を得た。この精製水硝子のシリカ濃度が5%になるように純水を添加した。そして、このシリカ濃度5%の水硝子6,500gを強酸性陽イオン交換樹脂SK1BH(三菱化学社製)2.2Lに空間速度3.1で通液させることで珪酸液6,650gを得た。得られた珪酸液のシリカ濃度は4.7%であった。
<Example 1>
[Manufacturing of silica sol]
1-1) Preparation of silicic acid solution 7,000 g of an alkaline silicate aqueous solution obtained by diluting water glass (JIS, K1408, sodium silicate No. 3) to a silica concentration of 7% by mass is passed through an extra module (SIP-1013 manufactured by Asahi Kasei). The filtered water was collected to obtain purified water glass. Pure water was added so that the silica concentration of the purified water glass was 5%. Then, 6,500 g of water glass having a silica concentration of 5% was passed through 2.2 L of a strongly acidic cation exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.1 to obtain 6,650 g of a silicic acid solution. .. The silica concentration of the obtained silicic acid solution was 4.7%.

1-2)珪酸液の高純度化処理
上記珪酸液6,650gを再度強酸性陽イオン交換樹脂SK1BH(三菱化学社製)0.4Lに空間速度3.1で通液させ、次いで強塩基性イオン交換樹脂SANUPC(三菱化学社製)0.4Lに空間速度3.1で通液させる事で、シリカ濃度4.4%の高純度珪酸液を得た。
得られた珪酸液の不純分を、次の方法で測定した。
前記高純度珪酸液1gを、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定した。
前記高純度珪酸液20gにアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
その結果、Naが50ppb以下、Kが50ppb以下、Clは1ppm以下であった。
1-2) High-purification treatment of silicic acid solution 6,650 g of the above silicic acid solution was passed through 0.4 L of strongly acidic cation exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation) again at a space velocity of 3.1, and then strongly basic. A high-purity silicic acid solution having a silica concentration of 4.4% was obtained by passing 0.4 L of an ion exchange resin SANUPC (manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.1.
The impure content of the obtained silicic acid solution was measured by the following method.
1 g of the high-purity silicic acid solution is heated on a sand bath. After drying, add a small amount of water and 50 ml of nitric acid to dissolve it, put it in a 100 ml volumetric flask, and add water to make 100 ml. In this solution, Na and K were measured by an atomic absorption spectrophotometer (for example, Z-2310 manufactured by Hitachi, Ltd.).
Add acetone to 20 g of the high-purity silicic acid solution to adjust to 100 ml, add 5 ml of acetic acid and 4 ml of 0.001 mol sodium chloride solution to this solution, and use a 0.002 mol silver nitrate solution for potentiometric titration (Kyoto Denshi: Potentiometric titration). The analysis is performed by the apparatus AT-610). As a separate blank measurement, the titration amount when 5 ml of acetic acid and 4 ml of 0.001 mol sodium chloride solution are added to 100 ml of acetone and titration is performed with 0.002 mol silver nitrate solution is obtained, and the titration amount when a sample is used is obtained. Was subtracted from the sample titration amount.
As a result, Na was 50 ppb or less, K was 50 ppb or less, and Cl was 1 ppm or less.

1-3)シリカゾル調製
上記で得られた珪酸液427.0gに純水165.3g、15%濃度のアンモニア水55.3gを添加して室温で10分間攪拌した。この時点でのpHは10.7だった。このpH調整した珪酸液を87℃に昇温して、30分保った。
別途、前記1-1)〜1-2)と同様の製造方法により4.4%濃度の高純度酸性ケイ酸液883.1gを調製した。
この高純度珪酸液883.1gと1.9%濃度のアンモニア水73.0gを前記昇温保持した珪酸液に9.5時間かけて同時添加した。添加終了後さらに87℃で1時間保ちその後室温まで冷却することでシリカゾルを得た。
得られたゾルは動的光散乱法により測定した平均粒子径が15nmであった。なお、動的光散乱法による平均粒子径の測定には、大塚電子社製、ELSZ-1000を使用した。
1-3) Preparation of silica sol 165.3 g of pure water and 55.3 g of 15% concentrated ammonia water were added to 427.0 g of the silicic acid solution obtained above, and the mixture was stirred at room temperature for 10 minutes. The pH at this point was 10.7. The pH-adjusted silicic acid solution was heated to 87 ° C. and kept for 30 minutes.
Separately, 883.1 g of a high-purity acidic silicic acid solution having a concentration of 4.4% was prepared by the same production method as in 1-1) to 1-2) above.
883.1 g of this high-purity silicic acid solution and 73.0 g of ammonia water having a concentration of 1.9% were simultaneously added to the silicic acid solution kept at a temperature rise over 9.5 hours. After completion of the addition, the mixture was kept at 87 ° C. for 1 hour and then cooled to room temperature to obtain a silica sol.
The obtained sol had an average particle size of 15 nm as measured by a dynamic light scattering method. The ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd. was used to measure the average particle size by the dynamic light scattering method.

1-4)限外濃縮
得られたシリカゾルを限外ろ過膜(旭化成社製、SIP−1013)で12%濃度まで濃縮した。
[有機反応用担体粒子分散液の調製]
そして、得られた12%濃度のシリカゾル333.3gにイオン交換水446.7gを加え、SiO2濃度5重量%のシリカゾルを調製し、ついで陽イオン交換樹脂(三菱化学(株)ダイヤイオンSK―1BH)20gを添加し、温度25℃で30分間攪拌して脱アルカリ処理した。陽イオン交換樹脂を分離した後、HClを加えてpHを3.5に調整した。このシリカゾルを80℃で24時間、加温処理して、SiO2濃度5重量%の有機反応用担体粒子分散液を調製した。得られた有機反応用担体粒子分散液に含まれるシリカ微粒子は、複数のシリカ微粒子が連結した構造からなる、鎖状の粒子連結型シリカ微粒子を含み、動的光散乱法による平均粒子径(D1)130nm、比表面積が289m2/g、比表面積換算粒子径(D2)が9nmであった。
また、粒子連結型シリカ微粒子の乾燥時細孔容積、[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]、表面シラノール基密度、該粒子連結型シリカ微粒子に含まれるシリカ微粒子(一次粒子)の平均個数及び粒子連結型シリカ微粒子のうち、分岐構造を有する粒子連結型シリカ微粒子の割合、有機反応触媒用担体粒子中のNa濃度等、粒子連結型シリカ微粒子の物性等を表1に記す。(以降の実施例と比較例についても同様)
1-4) Extraconcentration The obtained silica sol was concentrated to a concentration of 12% with an ultrafiltration membrane (manufactured by Asahi Kasei Corporation, SIP-1013).
[Preparation of carrier particle dispersion for organic reaction]
Then, 446.7 g of ion-exchanged water was added to 333.3 g of the obtained 12% concentration silica sol to prepare a silica sol having a SiO 2 concentration of 5% by weight, and then a cation exchange resin (Mitsubishi Chemical Co., Ltd. Diaion SK- 20 g of 1BH) was added, and the mixture was stirred at a temperature of 25 ° C. for 30 minutes for dealkaliization. After separating the cation exchange resin, HCl was added to adjust the pH to 3.5. This silica sol was heated at 80 ° C. for 24 hours to prepare a carrier particle dispersion for an organic reaction having a SiO 2 concentration of 5% by weight. The silica fine particles contained in the obtained carrier particle dispersion for organic reaction include chain-like particle-linked silica fine particles having a structure in which a plurality of silica fine particles are connected, and have an average particle size (D1) by a dynamic light scattering method. ) 130 nm, the specific surface area was 289 m 2 / g, and the specific surface area equivalent particle diameter (D2) was 9 nm.
In addition, the pore volume at the time of drying of the particle-linked silica fine particles, [average particle diameter (D1) determined by dynamic light scattering method] / [specific particle size equivalent particle diameter (D2) determined by NaOH titration], surface silanol group. The density, the average number of silica fine particles (primary particles) contained in the particle-linked silica fine particles, the ratio of the particle-linked silica fine particles having a branched structure among the particle-linked silica fine particles, and Na in the carrier particles for an organic reaction catalyst. Table 1 shows the physical properties of the particle-connected silica fine particles, such as the concentration. (The same applies to the following examples and comparative examples)

[触媒の調製]
得られた有機反応用担体粒子分散液50g(SiO2濃度5質量%)に、貴金属担持量が1.0質量%になるように貴金属源を含む水溶液(Au:[HAuCl4・4H2O aq.]、Rh:[RhCl3・3H2O aq.]、Pd:[PdCl2 aq.])をそれぞれ滴下し、その水溶液を室温にて一晩撹拌した。エバポレータを用いて60℃に加熱して溶媒を留去し、得られた粉末を60℃で16〜18時間真空乾燥させ、水素ガスを、30mL/minで流通させながら、200℃で2時間の還元処理をすることによって担体に貴金属を担持させたエチレン分解触媒を得た。
得られた触媒に担持した金属又は金属化合物の種類、得られた触媒における、粒子連結型シリカ微粒子と担持金属(金属換算)の質量比等、有機反応用触媒の物性等を表1に記す。(以降の実施例と比較例についても同様)
[Catalyst preparation]
The resulting organic reaction carrier particle dispersion 50 g (SiO 2 concentration of 5% by weight), an aqueous solution containing a noble metal source to the noble metal supporting amount is 1.0 wt% (Au: [HAuCl 4 · 4H 2 O aq .], Rh: [RhCl 3 · 3H 2 O aq], Pd:.. [PdCl 2 aq]) was added dropwise, respectively, and stirred overnight the aqueous solution at room temperature. The solvent was distilled off by heating to 60 ° C. using an evaporator, the obtained powder was vacuum dried at 60 ° C. for 16 to 18 hours, and hydrogen gas was circulated at 30 mL / min for 2 hours at 200 ° C. By the reduction treatment, an ethylene decomposition catalyst in which a noble metal was supported on a carrier was obtained.
Table 1 shows the types of metals or metal compounds supported on the obtained catalyst, the mass ratio of the particle-linked silica fine particles to the supported metal (metal equivalent) in the obtained catalyst, and the physical characteristics of the catalyst for organic reaction. (The same applies to the following examples and comparative examples)

<実施例2>
実施例1における有機反応用担体粒子分散液の調製における80℃での加温処理時間を8時間とした以外は、実施例1と同様にして有機反応用担体粒子分散液を調製した。得られた有機反応用担体粒子分散液に含まれる粒子連結型シリカ微粒子は、動的光散乱法による平均粒子径(D1)44nm、比表面積274m2/g、比表面積換算粒子径(D2)10nmであった。
得られた有機反応用担体粒子分散液を用いて、実施例1と同様に触媒調製を行い、エチレン分解触媒を得た。
<Example 2>
An organic reaction carrier particle dispersion was prepared in the same manner as in Example 1 except that the heating treatment time at 80 ° C. in the preparation of the organic reaction carrier particle dispersion in Example 1 was 8 hours. The particle-linked silica fine particles contained in the obtained carrier particle dispersion for organic reaction have an average particle diameter (D1) of 44 nm, a specific surface area of 274 m 2 / g, and a specific surface area equivalent particle diameter (D2) of 10 nm by a dynamic light scattering method. Met.
Using the obtained carrier particle dispersion for organic reaction, a catalyst was prepared in the same manner as in Example 1 to obtain an ethylene decomposition catalyst.

<実施例3>
実施例1における有機反応用担体粒子分散液の調製における80℃での加温処理時間を4時間とした以外は、実施例1と同様にして有機反応用担体粒子分散液を調製した。得られた有機反応用担体粒子分散液に含まれる粒子連結型シリカ微粒子は、動的光散乱法による平均粒子径(D1)34nm、比表面積274m2/g、比表面積換算粒子径(D2)10nmであった。
得られた有機反応用担体粒子分散液を用いて、実施例1と同様に触媒調製を行い、エチレン分解触媒を得た。
<Example 3>
An organic reaction carrier particle dispersion was prepared in the same manner as in Example 1 except that the heating treatment time at 80 ° C. in the preparation of the organic reaction carrier particle dispersion in Example 1 was 4 hours. The particle-linked silica fine particles contained in the obtained carrier particle dispersion for organic reaction have an average particle diameter (D1) of 34 nm, a specific surface area of 274 m 2 / g, and a specific surface area equivalent particle diameter (D2) of 10 nm by a dynamic light scattering method. Met.
Using the obtained carrier particle dispersion for organic reaction, a catalyst was prepared in the same manner as in Example 1 to obtain an ethylene decomposition catalyst.

<実施例4>
実施例1における有機反応用担体粒子分散液の調製における80℃での加温処理時間を16時間とした以外は、実施例1と同様にして有機反応用担体粒子分散液を調製した。得られた有機反応用担体粒子分散液に含まれる粒子連結型シリカ微粒子は、動的光散乱法による平均粒子径(D1)55nm、比表面積275m2/g、比表面積換算粒子径(D2)10nmであった。
得られた有機反応用担体粒子分散液を用いて、実施例1と同様に触媒調製を行い、エチレン分解触媒を得た。
<Example 4>
An organic reaction carrier particle dispersion was prepared in the same manner as in Example 1 except that the heating treatment time at 80 ° C. in the preparation of the organic reaction carrier particle dispersion in Example 1 was 16 hours. The particle-linked silica fine particles contained in the obtained carrier particle dispersion for organic reaction have an average particle diameter (D1) of 55 nm, a specific surface area of 275 m 2 / g, and a specific surface area equivalent particle diameter (D2) of 10 nm by a dynamic light scattering method. Met.
Using the obtained carrier particle dispersion for organic reaction, a catalyst was prepared in the same manner as in Example 1 to obtain an ethylene decomposition catalyst.

<比較例1>
実施例1で用いた球状のシリカ微粒子を含むアルカリ性シリカゾルについて、同様に評価を行った。
<Comparative example 1>
The alkaline silica sol containing the spherical silica fine particles used in Example 1 was evaluated in the same manner.

<触媒評価>
実施例1〜4および比較例1で作製したエチレン分解触媒を用いて、以下の方法によりエチレン分解率の測定を行い、その結果を表1に示した。
(1)触媒上の塩素抽出;触媒0.5gをビーカーに入れ、そこに純水50mlを加えた後、超音波装置により5分間超音波処理を行った。
(2)イオンクロマトグラフ法による塩素量測定;上記抽出水溶液を25倍に純水で希釈し、イオンクロマトグラフ装置で濃度測定を行った。装置は島津製作所(株)製イオンクロマトグラフ装置を使用し、カラムは島津製作所(株)製IC−A3を使用した。
(3)エチレン分解評価条件;におい袋に触媒1gを充填し、エチレンと空気を混合し、100ppmのエチレン混合ガスの2600mlをにおい袋に注入して4℃で20時間放置後のエチレン濃度をガスクロマトグラフ法により測定し、下記の式からエチレン分解率を計算した。
エチレン分解率(%)=[(初期エチレンガス濃度)−(20時間後のエチレンガスの濃度)]/(初期エチレンガス濃度)×100
<Catalyst evaluation>
Using the ethylene decomposition catalysts prepared in Examples 1 to 4 and Comparative Example 1, the ethylene decomposition rate was measured by the following method, and the results are shown in Table 1.
(1) Chlorine extraction on the catalyst; 0.5 g of the catalyst was placed in a beaker, 50 ml of pure water was added thereto, and then ultrasonic treatment was performed for 5 minutes with an ultrasonic device.
(2) Measurement of chlorine content by ion chromatograph method; The above extracted aqueous solution was diluted 25 times with pure water, and the concentration was measured by an ion chromatograph device. An ion chromatograph device manufactured by Shimadzu Corporation was used as the device, and an IC-A3 manufactured by Shimadzu Corporation was used as the column.
(3) Ethylene decomposition evaluation conditions; 1 g of catalyst is filled in an odor bag, ethylene and air are mixed, 2600 ml of 100 ppm ethylene mixed gas is injected into the odor bag, and the ethylene concentration after being left at 4 ° C. for 20 hours is measured by gas chromatography. The ethylene decomposition rate was calculated from the following formula.
Ethylene decomposition rate (%) = [(initial ethylene gas concentration)-(concentration of ethylene gas after 20 hours)] / (initial ethylene gas concentration) x 100

Figure 2021065825
Figure 2021065825

<実施例5>
[触媒の調製]
硝酸セリウムを純水に溶解させ、これに実施例1で得られた担体粒子分散液及び三酸化アンチモン、パラモリブデン酸アンモニウム、メタバナジン酸アンモニウム、メタタングステン酸アンモニウム水溶液、水酸化ニオブ、を加えて攪拌し、調整液を得た。
該調製液を150℃で噴霧乾燥し粉体を得た。該粉体をN2雰囲気下380℃で焼成し、触媒を製造した。
<Example 5>
[Catalyst preparation]
Cerium nitrate is dissolved in pure water, and the carrier particle dispersion obtained in Example 1 and antimony trioxide, ammonium paramolybate, ammonium metavanadate, aqueous ammonium metatungstate, and niobium hydroxide are added and stirred. And obtained the adjusting liquid.
The prepared liquid was spray-dried at 150 ° C. to obtain a powder. The powder was calcined at 380 ° C. in an N 2 atmosphere to produce a catalyst.

<触媒評価>
製造した触媒33mlを、ナイターを入れたジャケット付き反応管(内径21mm)に充填して加熱し、組成ガス(アクロレイン6体積%、酸素8体積%、スチーム22体積%、窒素ガス64体積%)を導入し、空間速度SVを1550hr-1として反応させた。
そして、「反応したアクロレインのモル数」「生成したアクリル酸モル数」「転化したアクロレインモル数」「生成したアクリル酸モル数」を以下のように測定した後、アクロレイン転化率、アクリル酸収率は、下記式(1)〜(2)より算出した。
反応生成物の分析は、反応管出口より反応生成物を回収し、ガスクロマトグラフィーを用いて実施した。
(1)アクロレイン転化率(モル%)=100×(反応したアクロレインのモル数)/(供給したアクロレインのモル数)
(2)アクリル酸収率(モル%)=100×(生成したアクリル酸モル数)/(供給したアクロレインモル数)
結果を表2に示す。
<Catalyst evaluation>
33 ml of the produced catalyst is filled in a reaction tube with a jacket (inner diameter 21 mm) containing a nighter and heated to add composition gas (acrolein 6% by volume, oxygen 8% by volume, steam 22% by volume, nitrogen gas 64% by volume). It was introduced and reacted with a space velocity SV of 1550 hr -1.
Then, after measuring "the number of moles of acrolein reacted", "the number of moles of acrylic acid produced", "the number of moles of converted acrolein" and "the number of moles of acrolein produced" as follows, the acrolein conversion rate and the acrylic acid yield Was calculated from the following formulas (1) and (2).
The reaction product was analyzed by collecting the reaction product from the outlet of the reaction tube and using gas chromatography.
(1) Acrolein conversion rate (mol%) = 100 × (number of moles of reacted acrolein) / (number of moles of supplied acrolein)
(2) Acrylic acid yield (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of acrolein supplied)
The results are shown in Table 2.

<実施例6>
実施例2と同様の担体粒子分散液を用いた以外は実施例5と同様の操作を行った。結果を表2に示す。
<Example 6>
The same operation as in Example 5 was performed except that the same carrier particle dispersion as in Example 2 was used. The results are shown in Table 2.

<実施例7>
実施例3と同様の担体粒子分散液を用いた以外は実施例5と同様の操作を行った。結果を表2に示す。
<Example 7>
The same operation as in Example 5 was performed except that the same carrier particle dispersion as in Example 3 was used. The results are shown in Table 2.

<実施例8>
実施例4と同様の担体粒子分散液を用いた以外は実施例5と同様の操作を行った。結果を表2に示す。
<Example 8>
The same operation as in Example 5 was performed except that the same carrier particle dispersion as in Example 4 was used. The results are shown in Table 2.

<比較例2>
比較例1と同様の担体粒子分散液を用いた以外は実施例5と同様の操作を行った。結果を表2に示す。
<Comparative example 2>
The same operation as in Example 5 was performed except that the same carrier particle dispersion as in Comparative Example 1 was used. The results are shown in Table 2.

Figure 2021065825
Figure 2021065825

Claims (6)

下記1)〜5)を満たし、複数のシリカ微粒子が結合してなる粒子連結型シリカ微粒子を含む、有機反応触媒用担体粒子分散液。
1)動的光散乱法による平均粒子径(D1)が20〜300nmの範囲。
2)比表面積が100〜900m2/gの範囲。
3)乾燥時細孔容積が0.3〜1.0ml/gの範囲。
4)前記粒子連結型シリカ微粒子の[動的光散乱法により求めた平均粒子径(D1)]/[NaOH滴定により求めた比表面積換算粒子径(D2)]の値が2.2〜150の範囲。
5)表面シラノール基密度が0.5〜5.0個/nm2の範囲。
A carrier particle dispersion for an organic reaction catalyst, which satisfies the following 1) to 5) and contains particle-linked silica fine particles in which a plurality of silica fine particles are bonded.
1) The average particle size (D1) by the dynamic light scattering method is in the range of 20 to 300 nm.
2) The specific surface area is in the range of 100 to 900 m 2 / g.
3) The pore volume at the time of drying is in the range of 0.3 to 1.0 ml / g.
4) The value of [average particle size (D1) determined by dynamic light scattering method] / [specific surface area equivalent particle size (D2) determined by NaOH titration] of the particle-connected silica fine particles is 2.2 to 150. range.
5) The surface silanol group density is in the range of 0.5 to 5.0 pieces / nm 2.
前記粒子連結型シリカ微粒子の1粒子中に含まれる前記シリカ微粒子の平均個数が8〜1,000個の範囲にある、請求項1に記載の有機反応触媒用担体粒子分散液。 The carrier particle dispersion for an organic reaction catalyst according to claim 1, wherein the average number of the silica fine particles contained in one particle of the particle-linked silica fine particles is in the range of 8 to 1,000. 前記粒子連結型シリカ微粒子のうち分岐構造を有するもの割合が10%以上である、請求項1又は2に記載の有機反応触媒用担体粒子分散液。 The carrier particle dispersion for an organic reaction catalyst according to claim 1 or 2, wherein the proportion of the particle-linked silica fine particles having a branched structure is 10% or more. 前記有機反応触媒用担体粒子含まれるナトリウム含有量が30ppm以下であることを特徴とする請求項1〜3の何れかに記載の有機反応触媒用担体粒子分散液。 The carrier particle dispersion for an organic reaction catalyst according to any one of claims 1 to 3, wherein the sodium content contained in the carrier particles for an organic reaction catalyst is 30 ppm or less. 請求項1〜4のいずれかに記載の有機反応触媒用担体粒子分散液に含まれる前記粒子連結型シリカ微粒子の焼結体であって、金属又は金属化合物が担持している有機反応触媒。 An organic reaction catalyst which is a sintered body of the particle-linked silica fine particles contained in the carrier particle dispersion for an organic reaction catalyst according to any one of claims 1 to 4, and which is supported by a metal or a metal compound. 前記粒子連結型シリカ微粒子と、担持した前記金属および金属化合物(金属換算)の合計との質量比が100:1〜100:400の範囲にあることを特徴とする、請求項5に記載の有機反応触媒。 The organic according to claim 5, wherein the mass ratio of the particle-linked silica fine particles to the total of the metal and the metal compound (metal equivalent) supported is in the range of 100: 1 to 100: 400. Reaction catalyst.
JP2019191968A 2019-10-21 2019-10-21 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst Pending JP2021065825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191968A JP2021065825A (en) 2019-10-21 2019-10-21 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191968A JP2021065825A (en) 2019-10-21 2019-10-21 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst

Publications (1)

Publication Number Publication Date
JP2021065825A true JP2021065825A (en) 2021-04-30

Family

ID=75638009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191968A Pending JP2021065825A (en) 2019-10-21 2019-10-21 Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst

Country Status (1)

Country Link
JP (1) JP2021065825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002053T5 (en) 2021-04-08 2024-04-04 Denso Corporation Heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (en) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd Silica sol having long and thin particle form and production thereof
JPH07118008A (en) * 1993-10-15 1995-05-09 Nissan Chem Ind Ltd Production of slender silica sol
WO2000015552A1 (en) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
JP2011016702A (en) * 2009-07-10 2011-01-27 Jgc Catalysts & Chemicals Ltd Particle-linked silica sol and method for producing the same
JP2012233051A (en) * 2011-04-28 2012-11-29 Asahi Kasei Chemicals Corp Coating composition
JP2017113721A (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (en) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd Silica sol having long and thin particle form and production thereof
JPH07118008A (en) * 1993-10-15 1995-05-09 Nissan Chem Ind Ltd Production of slender silica sol
WO2000015552A1 (en) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
JP2011016702A (en) * 2009-07-10 2011-01-27 Jgc Catalysts & Chemicals Ltd Particle-linked silica sol and method for producing the same
JP2012233051A (en) * 2011-04-28 2012-11-29 Asahi Kasei Chemicals Corp Coating composition
JP2017113721A (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002053T5 (en) 2021-04-08 2024-04-04 Denso Corporation Heat exchanger

Similar Documents

Publication Publication Date Title
JP4942738B2 (en) Production of Cu / Zn / Al catalyst via formate ester
JP5615707B2 (en) Reactive evaporation method of glycerol
CN104039442B (en) A catalyst for direct synthesis of hydrogen peroxide comprising zirconium oxide
WO2004078344A1 (en) Particulate porous ammoxidation catalyst
KR20090009896A (en) Method for producing chlorine by gas phase oxidation
JP5810846B2 (en) Method for producing chabazite-type zeolite having copper and alkali metal
AU5538500A (en) Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
JP2021065825A (en) Carrier particle dispersion for organic reaction catalyst and organic reaction catalyst
CN105642300B (en) A kind of copper bismuth catalyst preparation method for synthesizing 1,4 butynediols
CN109952270B (en) Method for producing chlorine by hydrogen chloride oxidation
CN105642302B (en) A kind of copper bismuth catalyst for synthesizing 1,4- butynediols and preparation method thereof
JP2011514252A (en) Regeneration of hydrogenation catalysts based on platinum group metals
Guan et al. Potassium-promoted three-dimensional mesoporous Pt/MnO2 for formaldehyde elimination at zero degree
JP5746539B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst
CN105642301B (en) A kind of preparation method for being used to synthesize the copper bismuth catalyst of 1,4 butynediols
JPH07138015A (en) Silica fine spherical particle and its production
JP2023546337A (en) Method for manufacturing supported catalyst
JP2001300327A (en) Supported catalyst and its manufacturing method
JP2001300328A (en) Supported catalyst and manufacturing method
JP4056782B2 (en) Catalyst for producing carboxylic acid ester, process for producing the same, and process for producing carboxylic acid ester using the catalyst
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid
CN104069853B (en) A kind of regeneration fume from catalytic cracking purifies with vanadium titanium mesoporous microsphere solid solution catalyst, preparation method and its usage
JP5806100B2 (en) Porous silazane-coated particles, supported catalyst, and production method thereof
JP2003275588A (en) Co shift reaction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718