JP2021064772A - Current transformer and zero-phase current transformer - Google Patents

Current transformer and zero-phase current transformer Download PDF

Info

Publication number
JP2021064772A
JP2021064772A JP2019197942A JP2019197942A JP2021064772A JP 2021064772 A JP2021064772 A JP 2021064772A JP 2019197942 A JP2019197942 A JP 2019197942A JP 2019197942 A JP2019197942 A JP 2019197942A JP 2021064772 A JP2021064772 A JP 2021064772A
Authority
JP
Japan
Prior art keywords
current transformer
molding resin
zero
outer case
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019197942A
Other languages
Japanese (ja)
Other versions
JP7384328B2 (en
Inventor
恭典 石田
Yasunori Ishida
恭典 石田
吉川 徹
Toru Yoshikawa
徹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2019197942A priority Critical patent/JP7384328B2/en
Publication of JP2021064772A publication Critical patent/JP2021064772A/en
Application granted granted Critical
Publication of JP7384328B2 publication Critical patent/JP7384328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breakers (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Insulating Of Coils (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

To provide a current transformer and a zero-phase current transformer that do not cause product deformation due to thermal expansion in a high-temperature atmosphere of air pool that occurs in a gap between an outer case and a coil due to pressure molding of a heat-fluidized molding resin.SOLUTION: In a current transformer and zero-phase current transformer, a cylindrical vent 8a with a slit 19a open to the side of a filling region in at least one wall of a double cylindrical wall (inner cylinder 2 or outer cylinder 3) in a molding resin filling region separated from a molding resin filling gate position 20 of an outer case 1 by a predetermined value or more.SELECTED DRAWING: Figure 4

Description

本発明は、交流電流または、直流が重畳した交流電流、例えば半波正弦波交流電流もしくはその漏洩電流を計測するための変流器及び零相変流器に関する。 The present invention relates to a current transformer and a zero-phase current transformer for measuring an alternating current or an alternating current in which a direct current is superimposed, for example, a half-wave sinusoidal alternating current or a leakage current thereof.

図6は、従来の一般的な変流器を示す概略図である。従来の変流器は、環状の磁心からなる閉磁路に2次巻線W2が巻回されており、計測対象の電流の流れる1次巻線W1が閉磁路の中央開口を貫通している。その動作は、1次巻線W1に電流I1が流れると、電磁誘導によって電流I1の大きさに対応した、好ましくは比例した電流I2が2次巻線W2に発生する。このとき2次巻線W2に負担抵抗を接続することによって、電圧信号が2次巻線W2に出力され、その結果、1次巻線W1に流れる電流I1を電圧信号として計測することが可能になる。 FIG. 6 is a schematic view showing a conventional general current transformer. In the conventional current transformer, the secondary winding W2 is wound around a closed magnetic path made of an annular magnetic core, and the primary winding W1 through which the current to be measured flows penetrates the central opening of the closed magnetic path. In that operation, when the current I1 flows through the primary winding W1, a preferably proportional current I2 corresponding to the magnitude of the current I1 is generated in the secondary winding W2 by electromagnetic induction. At this time, by connecting a bearing resistor to the secondary winding W2, a voltage signal is output to the secondary winding W2, and as a result, the current I1 flowing through the primary winding W1 can be measured as a voltage signal. Become.

また従来の変流器の製造方法としては、金属の型を用意し、少なくとも一つの巻線を備えた磁心すなわちコイルを外ケースに組み込んだ状態で型内に挿入し、型を閉鎖して、加熱流動化した成形樹脂を加圧下で型に充填することにより、加圧成形し一体に封止成形する方法がある。(例えば特許文献1参照) As a conventional method for manufacturing a current transformer, a metal mold is prepared, a magnetic core having at least one winding, that is, a coil is inserted into the mold in a state of being incorporated in an outer case, and the mold is closed. There is a method of pressure molding and integrally sealing molding by filling a mold with a heat-fluidized molding resin under pressure. (See, for example, Patent Document 1)

特開平7−183145号 図3Japanese Patent Application Laid-Open No. 7-183145 Fig. 3

図7は従来の変流器の加圧成形方法の説明図である。図7のアイソメ図(a)、上面図(b)に示すように、外ケース1にコイル12及びリード線11を組み込んだものを、金型(下型)18にセットし、金型(上型)17を閉じて、加熱流動化した成形樹脂を金型(上型)17のゲート9から注ぎ込み加圧成形してコイル12を封止している。ゲート9から離れた箇所ほど成形樹脂の温度低下に伴う流動性の低下により充填性が低下するため、外ケース1の中心軸から見てゲート9の反対側を中心に広範囲に外ケース1の内側円筒2および外側円筒3とコイル12側面間の空隙にて成形樹脂が外ケース1底面まで充填されず空気溜まりが生じる。加圧成形後に変流器が高温雰囲気下にさらされた場合、密閉された内部の空気溜まりの膨脹に伴い外ケース1および成形樹脂の変形が生じ、規定された外形形状を維持できない。さらに、内部圧力の上昇に伴い、コイル12にも圧力が加わり、電気的特性の低下が生じる。 FIG. 7 is an explanatory diagram of a conventional pressure molding method for a current transformer. As shown in the isometric view (a) and the top view (b) of FIG. 7, the outer case 1 in which the coil 12 and the lead wire 11 are incorporated is set in the mold (lower mold) 18 and is set in the mold (upper mold). The mold) 17 is closed, and the heat-fluidized molding resin is poured from the gate 9 of the mold (upper mold) 17 and pressure-molded to seal the coil 12. As the distance from the gate 9 decreases, the fluidity decreases as the temperature of the molding resin decreases, and the filling property decreases. Therefore, the inside of the outer case 1 is widely centered on the opposite side of the gate 9 when viewed from the central axis of the outer case 1. The molding resin is not filled to the bottom surface of the outer case 1 in the gap between the cylinder 2 and the outer cylinder 3 and the side surface of the coil 12, and an air pool is generated. When the current transformer is exposed to a high temperature atmosphere after pressure molding, the outer case 1 and the molding resin are deformed due to the expansion of the sealed internal air pool, and the specified outer shape cannot be maintained. Further, as the internal pressure increases, pressure is also applied to the coil 12, resulting in a decrease in electrical characteristics.

また、空気溜まり対策として、成形樹脂充填前に型内を真空引きする方法が考えられるが、真空ポンプ、真空タンク等の設備が必要となり、コストが大幅に増加するため、容易には採用できない。 Further, as a measure against air accumulation, a method of evacuating the inside of the mold before filling with the molding resin can be considered, but it cannot be easily adopted because equipment such as a vacuum pump and a vacuum tank is required and the cost increases significantly.

また、図8に示すように高温雰囲気下における前記空気溜まりの膨脹防止対策として簡易的な通気孔を設ける方法が考えられるが、外ケース1の底面図8(a)、側面図8(b)にて示すような通気孔21a、21bを設けた場合、コイル12を構成する巻線13が露出するため、変流器の耐電圧特性が著しく低下し採用できない。 Further, as shown in FIG. 8, a method of providing a simple ventilation hole as a measure for preventing the expansion of the air pool in a high temperature atmosphere can be considered, but the bottom view 8 (a) and the side view 8 (b) of the outer case 1 are considered. When the ventilation holes 21a and 21b as shown in the above are provided, the windings 13 constituting the coil 12 are exposed, so that the withstand voltage characteristics of the current transformer are significantly lowered and cannot be adopted.

この発明における変流器もしくは零相変流器は、高い比透磁率特性を有する環状磁心に巻線を施したコイルを、底面及び二重円筒状壁を有するケースに収納し、加熱流動化した成形樹脂を成形金型注入口からケースに注ぎ込みコイルと一体に加圧成形する構造であって、ケースは、注入口から所定以上離れた成形樹脂充填領域にある二重円筒状壁の少なくとも一方の壁に、壁の充填領域側面に切り欠き形状を有する溝、又は壁の充填領域側に開放したスリットを有する円筒状の通気孔を備えるものである。 In the current transformer or zero-phase current transformer in the present invention, a coil in which an annular magnetic core having a high relative permeability characteristic is wound is housed in a case having a bottom surface and a double cylindrical wall, and is heated and fluidized. The structure is such that the molding resin is poured into the case from the molding mold injection port and pressure-molded integrally with the coil, and the case is at least one of the double cylindrical walls in the molding resin filling region separated from the injection port by a predetermined value or more. The wall is provided with a groove having a notch shape on the side surface of the filling region of the wall, or a cylindrical ventilation hole having an open slit on the filling region side of the wall.

この発明は上記の通り、変流器の内部に生じる空気溜まりを切り欠き形状の溝や円筒状の通気孔と円筒状の通気孔が有する充填領域側に開放した天面から底面方向のスリットにより外気と通じさせることにより、高温雰囲気下における内部の空気溜まりの膨脹に伴う成形樹脂およびケースの変形を防止する効果を持つ。 As described above, in the present invention, the air pool generated inside the current transformer is formed by a notch-shaped groove, a cylindrical vent hole, and a slit from the top surface to the bottom surface open to the filling region side of the cylindrical vent hole. By communicating with the outside air, it has the effect of preventing deformation of the molding resin and the case due to expansion of the internal air reservoir in a high temperature atmosphere.

本発明の実施の形態1〜4における変流器もしくは零相変流器を示す図である。 It is a figure which shows the current transformer or the zero-phase current transformer in Embodiments 1 to 4 of this invention. 本発明の実施の形態1における変流器もしくは零相変流器に用いる外ケース構造を示す図である。 It is a figure which shows the outer case structure used for the current transformer or the zero-phase current transformer in Embodiment 1 of this invention. 本発明の実施の形態2における変流器もしくは零相変流器に用いる外ケース構造を示す図である。 It is a figure which shows the outer case structure used for the current transformer or the zero-phase current transformer in Embodiment 2 of this invention. 本発明の実施の形態3における変流器もしくは零相変流器に用いる外ケース構造を示す図である。 It is a figure which shows the outer case structure used for the current transformer or the zero-phase current transformer in Embodiment 3 of this invention. 本発明の実施の形態4における変流器もしくは零相変流器に用いる外ケース構造を示す図である。 It is a figure which shows the outer case structure used for the current transformer or the zero-phase current transformer in Embodiment 4 of this invention. 一般的な変流器を示す概略図である。 It is a schematic diagram which shows a general current transformer. 一般的な変流器の加圧成形方法の説明図である。 It is explanatory drawing of the pressure molding method of a general current transformer. 耐電圧特性の低い外ケース構造例を示す図である。 It is a figure which shows the example of the outer case structure which has a low withstand voltage characteristic.

実施の形態1.
図1はこの発明の実施の形態1における変流器もしくは零相変流器100で、図1(a)は平面図、図1(b)はA−A線断面図、図1(c)は正面図、図1(d)はコイル12のアイソメ図、図1(e)は図1(b)における空気溜まり16の拡大図を示す。
図1(d)にて示した12は集磁のためのトロイダル形状の磁心15(図1(b)に示す)と磁心15を収めるためのトロイダル形状のケース14(図1(b)に示す)および磁心15を収めたケース14に巻き付けられた磁心15内における磁束の変化を電流に変換するための巻線13(図1(b)に示す)により構成されるコイルであり、11はコイル12と電気的に接続された被覆を有した引き出し線用リード線である。
図1(a)において、1はコイル12及びリード線11の一部を収納する外ケースで、10はゲート9(図7に示す)から加圧充填されコイル12を封止する成形樹脂である。20はゲート9の位置を示す。
図1(e)はゲート位置20から最も離れた成形樹脂充填領域での充填状態を示しており、成形樹脂10は寸法Tの深さまでしか充填されておらず、広い範囲に空気溜まり16が存在する。
図2はこの発明の実施の形態1における変流器もしくは零相変流器100に用いる外ケース1で、図2(a)は外ケース1の平面図、図2(b)はA−A線断面図、図2(c)はアイソメ図、図2(d)は図2(a)に示した切り欠き形状の溝7a及び7bの拡大図である。
図2(a)において4はコイル12を外ケース1に収める際に巻線13と電気的に接続されるリード線11の一部を収めるためのリード線挿入部、5はリード線挿入部4に収められたリード線11を通し、外ケース外部に引き出すための貫通穴であるリード線引き出し部、6はリード線挿入部4に収められたリード線11の先端と外ケース1内に収められた巻線13を電気的に接続するための巻線13の余長線を通すため設けた巻線引出し部である。
図2(a)(c)において、外ケース1は外側円筒3の成形樹脂充填領域側の壁面に沿って切り欠き形状の溝7a及び7bを有し、これは外ケース1の中心軸に対して成形樹脂充填に用いるゲート9の位置20の反対側を中心に空気溜まり16が広がる範囲(成形樹脂充填領域において、外ケース1の中心軸を中心にゲート位置20の両側に例えば角度135度以上離れた範囲)内に設けている。ここでは切り欠き形状の溝を2個設けたが任意の数を設けてもよい。切り欠き形状の溝7a及び7bは、その断面に先端部を持ち先端部に至る角度を鋭角(例えば60度)とすることで、成形樹脂充填の際、切り欠き形状の溝7a及び7b先端部における成形樹脂の充填性を低下させ、さらに、図2(d)に示すように切り欠き形状の溝7a及び7bの先端部を樹脂の流動方向(図2(d)に矢印で示す。ここではゲート位置20から注入された成形樹脂10が、時計回り方向と反時計回り方向の2方向に流れ、両矢印の指す所で衝突した状態を示している。)に対して対向する向きに傾けることでより充填性の低い構造とし、先端部が空隙となるようする。ここで樹脂の流動方向が時計回り方向の位置に設けた切欠き形状の溝7aは、その断面が例えば先端部角度60度の三角形状であるが、この三角形状は二等辺三角形状ではなく、樹脂の流動方向に対向する向きである反時計回り方向に例えば60度傾いた形状としている。また、樹脂の流動方向が反時計回り方向の位置に設けた切欠き形状の溝7bは、その断面が例えば先端部角度60度の三角形状であるが、この三角形状は二等辺三角形状ではなく、樹脂の流動方向に対向する向きである時計回り方向に例えば60度傾いた形状としている。また、ここで切り欠き形状の溝7a及び7bの断面は先端部が1個の三角形状としたが、先端部の数は任意でもよく、例えば先端部が2個の反台形形状でもよい。
上記のように構成された外ケース1を用いた変流器もしくは零相変流器100においては、切り欠き形状の溝7a及び7bの先端部において成形樹脂充填の際生じる空隙を通して、外ケース1の外側円筒3とコイル12の間に生じた空気溜まり16が外気と通じる形となり、高温雰囲気下においても空気溜まり16内の空気が切り欠き形状の溝7a及び7b先端部の空隙を通して外部に放出されることで減圧されるため、空気溜まり16内の空気の熱膨張に伴う外ケース1および成形樹脂10の変形を防ぐことができる。
また、変流器100の外部から巻線13までの沿面距離を図1(e)に示すように成形樹脂10の厚みTを確保(例えば2.0mm以上)できるため、図8の外ケース1底面図(a)、側面図(b)に示すコイル12の巻線13が露出するような通気孔21aもしくは21bを外ケース1に設ける場合と比較して、切り欠き形状の溝7a及び7bを設けた場合では高い耐電圧特性を得ることができる。
Embodiment 1.
FIG. 1 shows a current transformer or a zero-phase current transformer 100 according to the first embodiment of the present invention, FIG. 1A is a plan view, FIG. 1B is a sectional view taken along line AA, and FIG. 1C is a cross-sectional view taken along the line AA. 1 (d) is a front view, FIG. 1 (d) is an isometric view of the coil 12, and FIG. 1 (e) is an enlarged view of the air pool 16 in FIG. 1 (b).
12 shown in FIG. 1 (d) shows a toroidal-shaped magnetic core 15 for magnetic collection (shown in FIG. 1 (b)) and a toroidal-shaped case 14 for accommodating the magnetic core 15 (shown in FIG. 1 (b)). ) And the winding 13 (shown in FIG. 1B) for converting the change in magnetic flux in the magnetic core 15 wound around the case 14 containing the magnetic core 15 into an electric current, and 11 is a coil. A lead wire for a lead wire having a coating electrically connected to 12.
In FIG. 1A, 1 is an outer case for accommodating a part of the coil 12 and the lead wire 11, and 10 is a molding resin that is pressure-filled from the gate 9 (shown in FIG. 7) to seal the coil 12. .. Reference numeral 20 indicates the position of the gate 9.
FIG. 1 (e) shows a filling state in the molding resin filling region farthest from the gate position 20, the molding resin 10 is filled only to the depth of the dimension T, and the air pool 16 exists in a wide range. To do.
FIG. 2 is an outer case 1 used for the current transformer or the zero-phase current transformer 100 according to the first embodiment of the present invention, FIG. 2A is a plan view of the outer case 1, and FIG. 2B is AA. FIG. 2 (c) is an isometric view, and FIG. 2 (d) is an enlarged view of the notched grooves 7a and 7b shown in FIG. 2 (a).
In FIG. 2A, 4 is a lead wire insertion portion for accommodating a part of the lead wire 11 electrically connected to the winding 13 when the coil 12 is housed in the outer case 1, and 5 is a lead wire insertion portion 4. The lead wire lead-out portion, which is a through hole for pulling out the lead wire 11 to the outside of the outer case through the lead wire 11 housed in the lead wire insertion portion 4, is housed in the tip of the lead wire 11 housed in the lead wire insertion portion 4 and the outer case 1. This is a winding lead-out portion provided for passing an extra length wire of the winding 13 for electrically connecting the winding 13.
In FIGS. 2A and 2C, the outer case 1 has notched grooves 7a and 7b along the wall surface of the outer cylinder 3 on the molding resin filling region side, which are relative to the central axis of the outer case 1. A range in which the air reservoir 16 spreads around the opposite side of the gate 9 position 20 used for filling the molding resin (in the molding resin filling region, for example, an angle of 135 degrees or more on both sides of the gate position 20 centering on the central axis of the outer case 1). It is provided within a remote range). Here, two notched grooves are provided, but any number may be provided. The notch-shaped grooves 7a and 7b have a tip portion in the cross section and the angle to the tip portion is an acute angle (for example, 60 degrees), so that the notch-shaped grooves 7a and 7b tip portions are filled with the molding resin. Further, as shown in FIG. 2D, the tip portions of the notched grooves 7a and 7b are indicated by arrows in the resin flow direction (here, in FIG. 2D). The molding resin 10 injected from the gate position 20 flows in two directions, a clockwise direction and a counterclockwise direction, and indicates a state of collision at the point indicated by the double-headed arrow). The structure is made to have a lower filling property, and the tip portion is made a gap. Here, the notch-shaped groove 7a provided at a position where the flow direction of the resin is in the clockwise direction has a triangular shape having a tip angle of 60 degrees, for example, but this triangular shape is not an isosceles triangular shape. The shape is inclined by, for example, 60 degrees in the counterclockwise direction, which is the direction facing the flow direction of the resin. Further, the notch-shaped groove 7b provided at a position where the resin flow direction is counterclockwise has, for example, a triangular shape with a tip angle of 60 degrees, but this triangular shape is not an isosceles triangular shape. The shape is inclined by, for example, 60 degrees in the clockwise direction, which is the direction facing the flow direction of the resin. Further, although the cross section of the notched grooves 7a and 7b has a triangular shape with one tip, the number of tips may be arbitrary, for example, an anti-trapezoidal shape with two tips may be used.
In the current transformer or zero-phase current transformer 100 using the outer case 1 configured as described above, the outer case 1 is passed through the voids generated during filling with the molding resin at the tips of the notched grooves 7a and 7b. The air pool 16 generated between the outer cylinder 3 and the coil 12 is in a shape that communicates with the outside air, and the air inside the air pool 16 is discharged to the outside through the gaps at the tips of the notched grooves 7a and 7b even in a high temperature atmosphere. Since the pressure is reduced, the deformation of the outer case 1 and the molding resin 10 due to the thermal expansion of the air in the air reservoir 16 can be prevented.
Further, as shown in FIG. 1 (e), the creepage distance from the outside of the current transformer 100 to the winding 13 can secure the thickness T of the molding resin 10 (for example, 2.0 mm or more), so that the outer case 1 of FIG. 8 can be secured. Compared with the case where the outer case 1 is provided with the ventilation holes 21a or 21b so that the winding 13 of the coil 12 shown in the bottom view (a) and the side view (b) is exposed, the notched grooves 7a and 7b are provided. When provided, high withstand voltage characteristics can be obtained.

実施の形態2.
本実施の形態では、実施の形態1と異なる部分について説明する。図3はこの発明の実施の形態2における変流器もしくは零相変流器100の外ケース1で、図3(a)は外ケース1の平面図、図3(b)はA−A線断面図、図3(c)はアイソメ図、図3(d)は図3(a)に示した切り欠き形状の溝7c及び7dの拡大図である。
図3(a)(c)において、外ケース1は内側円筒2の成形樹脂充填領域側の壁面に沿って切り欠き形状の溝7c及び7dを有し、これは外ケース1の中心軸に対して成形樹脂充填に用いるゲート9の位置20の反対側を中心に空気溜まり16が広がる範囲内に設けている。ここでは切り欠き形状の溝を2個設けたが任意の数を設けてもよい。切り欠き形状の溝7c及び7dは、その断面に先端部を持ち先端部に至る角度を鋭角(例えば60度)とすることで、成形樹脂充填の際、切り欠き形状の溝7c及び7d先端部における成形樹脂の充填性を低下させ、さらに、図3(d)に示すように切り欠き形状の溝7c及び7dの先端部を樹脂の流動方向(図3(d)に矢印で示す)に対して対向する向きに傾けることでより充填性の低い構造とし、先端部が空隙となるようする。
上記のように構成された外ケース1を用いた変流器もしくは零相変流器100においては、成形樹脂充填の際、切り欠き形状の溝7c及び7dの先端部において生じる空隙を通して、外ケース1の内側円筒2とコイル12の間に生じた空気溜まり16が外気と通じる形となり、高温雰囲気下においても空気溜まり16内の空気が切り欠き形状の溝7c及び7d先端部の空隙を通して外部に放出されることで減圧されるため、空気溜まり16内の空気の熱膨張に伴う外ケース1および成形樹脂10の変形を防ぐことができる。
また、変流器100の外部から巻線13までの沿面距離を図1(e)に示すように成形樹脂10の厚みTを確保できるため、図8の外ケース1底面図(a)、側面図(b)に示すコイル12の巻線13が露出するような通気孔21aもしくは21bを外ケース1に設ける場合と比較して、切り欠き形状の溝7c及び7dを設けた場合では高い耐電圧特性を得ることができる。
Embodiment 2.
In the present embodiment, a part different from the first embodiment will be described. FIG. 3 shows the outer case 1 of the current transformer or the zero-phase current transformer 100 according to the second embodiment of the present invention, FIG. 3 (a) is a plan view of the outer case 1, and FIG. 3 (b) is a line AA. A cross-sectional view, FIG. 3 (c) is an isometric view, and FIG. 3 (d) is an enlarged view of the notched grooves 7c and 7d shown in FIG. 3 (a).
In FIGS. 3A and 3C, the outer case 1 has notched grooves 7c and 7d along the wall surface of the inner cylinder 2 on the molding resin filling region side, which are relative to the central axis of the outer case 1. It is provided within a range in which the air reservoir 16 spreads around the opposite side of the position 20 of the gate 9 used for filling the molding resin. Here, two notched grooves are provided, but any number may be provided. The notch-shaped grooves 7c and 7d have a tip portion in the cross section and the angle to the tip portion is an acute angle (for example, 60 degrees), so that the notch-shaped grooves 7c and 7d tip portions are filled with the molding resin. Further, as shown in FIG. 3D, the tip portions of the notched grooves 7c and 7d are oriented with respect to the flow direction of the resin (indicated by arrows in FIG. 3D). By tilting them in opposite directions, the structure has a lower filling property, and the tip portion becomes a gap.
In the current transformer or zero-phase current transformer 100 using the outer case 1 configured as described above, when the molding resin is filled, the outer case is passed through the gaps generated at the tips of the notched grooves 7c and 7d. The air pool 16 generated between the inner cylinder 2 of 1 and the coil 12 communicates with the outside air, and even in a high temperature atmosphere, the air inside the air pool 16 passes through the notched groove 7c and the gap at the tip of the 7d to the outside. Since the pressure is reduced by being released, it is possible to prevent the outer case 1 and the molding resin 10 from being deformed due to the thermal expansion of the air in the air reservoir 16.
Further, as shown in FIG. 1 (e), the creepage distance from the outside of the current transformer 100 to the winding 13 can be secured, so that the thickness T of the molding resin 10 can be secured. Compared with the case where the vent holes 21a or 21b so as to expose the winding 13 of the coil 12 shown in FIG. (B) are provided in the outer case 1, the withstand voltage is higher when the notched grooves 7c and 7d are provided. The characteristics can be obtained.

実施の形態3.
本実施の形態では、実施の形態1と異なる部分について説明する。図4はこの発明の実施の形態3における変流器もしくは零相変流器100の外ケース1で、図4(a)は平面図、図4(b)はA−A線断面図、図4(c)はアイソメ図、図4(d)はB−B線断面図を示す図である。
図4(a)(c)(d)において、外ケース1は外側円筒3に外ケース1の金型を作成する上で支障のない大きさである任意形状の通気孔8aを外ケース中心軸に対して成形樹脂充填に用いるゲート位置20の反対側を中心に空気溜まり16が広がる範囲で任意の数(例えば1個)を有する。通気孔8aは天面から底面の方向に外ケース1の内部(成形樹脂充填領域側)へと通じるスリット19aを有し、スリット19aは成形樹脂充填の際に通気孔8aおよびスリット19aの上部は成形樹脂10でふさがりつつスリット19aの底部の位置までは成形樹脂10でふさがることがないような幅(例えば0.5mm)と深さ(例えば図1(e)のT+2.0mm以上)を有するものとする。
このように構成された変流器もしくは零相変流器100においては、空気溜まり16が通気孔8aおよびスリット19aを通して外気と通じる形となるため、高温雰囲気下においても空気溜まり16内の空気が通気孔8aを通して外部に放出されることで減圧されるため、空気溜まり16内の空気の熱膨張に伴う外ケース1および成形樹脂10の変形を防ぐことができる。
また、図4(d)に示すようにスリット19a底部から外ケース底面までの長さLを確保(例えば2mm以上)することで、変流器100の表面から巻線13までの沿面距離を確保できるため、図8の外ケース1底面図(a)、側面図(b)に示すコイル12の巻線13が露出するような通気孔21aもしくは21bを外ケース1に設ける場合と比較して、高い耐電圧特性を得ることができる。
Embodiment 3.
In the present embodiment, a part different from the first embodiment will be described. FIG. 4 is an outer case 1 of the current transformer or zero-phase current transformer 100 according to the third embodiment of the present invention, FIG. 4 (a) is a plan view, and FIG. 4 (b) is a sectional view taken along line AA. 4 (c) is an isometric view, and FIG. 4 (d) is a sectional view taken along line BB.
In FIGS. 4A, 4C, and 4D, the outer case 1 has a vent hole 8a of an arbitrary shape having a size that does not hinder the molding of the outer case 1 on the outer cylinder 3 as the outer case central axis. On the other hand, it has an arbitrary number (for example, one) within a range in which the air reservoir 16 spreads around the opposite side of the gate position 20 used for filling the molding resin. The vent hole 8a has a slit 19a that leads from the top surface to the inside of the outer case 1 (molding resin filling region side), and the slit 19a is formed by the vent hole 8a and the upper part of the slit 19a when the molding resin is filled. Those having a width (for example, 0.5 mm) and a depth (for example, T + 2.0 mm or more in FIG. 1 (e)) so as not to be blocked by the molding resin 10 up to the position of the bottom of the slit 19a while being blocked by the molding resin 10. And.
In the current transformer or zero-phase current transformer 100 configured in this way, the air pool 16 communicates with the outside air through the ventilation holes 8a and the slits 19a, so that the air in the air pool 16 can flow even in a high temperature atmosphere. Since the pressure is reduced by being discharged to the outside through the ventilation holes 8a, it is possible to prevent the outer case 1 and the molding resin 10 from being deformed due to the thermal expansion of the air in the air reservoir 16.
Further, as shown in FIG. 4D, by securing the length L from the bottom of the slit 19a to the bottom of the outer case (for example, 2 mm or more), the creepage distance from the surface of the current transformer 100 to the winding 13 is secured. Therefore, as compared with the case where the outer case 1 is provided with the ventilation holes 21a or 21b so that the winding 13 of the coil 12 shown in the bottom view (a) and the side view (b) of the outer case 1 of FIG. 8 is exposed. High withstand voltage characteristics can be obtained.

実施の形態4.
本実施の形態では、実施の形態1と異なる部分について説明する。図5はこの発明の実施の形態4における変流器もしくは零相変流器100の外ケース1で、図5(a)は平面図、図5(b)はA−A線断面図、図5(c)はアイソメ図、図5(d)はB−B線断面図を示す図である。
図5(a)(c)(d)において、外ケース1は内側円筒2に外ケース1の金型を作成する上で支障のない大きさである任意形状の通気孔8bを外ケース中心軸に対して成形樹脂充填に用いるゲート位置20の反対側を中心に空気溜まり16が広がる範囲で任意の数(例えば1個)を有する。通気孔8bは天面から底面の方向に外ケース1の内部(成形樹脂充填領域側)へと通じるスリット19bを有し、スリット19bは成形樹脂充填の際に通気孔8bおよびスリット19bの上部は成形樹脂10でふさがりつつスリット19bの底部の位置まで成形樹脂10でふさがることがないような幅(例えば0.5mm)と深さ(例えば図1(e)のT+2.0mm以上)を有するものとする。
このように構成された変流器もしくは零相変流器100においては、空気溜まり16が通気孔8bおよびスリット19bを通して外気と通じる形となるため、高温雰囲気下においても空気溜まり16内の空気が通気孔8bを通して外部に放出されることで減圧されるため、空気溜まり16内の空気の熱膨張に伴う外ケース1および成形樹脂10の変形を防ぐことができる。
また、図5(d)に示すようにスリット19b底部から外ケース底面までの長さLを確保(例えば2mm以上)することで、変流器100の製品表面から巻線13までの沿面距離を確保できるため、図8の外ケース1底面図(a)、側面図(b)に示すコイル12の巻線13が露出するような通気孔21aもしくは21bを外ケース1に設ける場合と比較して、高い耐電圧特性を得ることができる。
Embodiment 4.
In the present embodiment, a part different from the first embodiment will be described. 5A and 5B are an outer case 1 of a current transformer or a zero-phase current transformer 100 according to a fourth embodiment of the present invention, FIG. 5A is a plan view, and FIG. 5B is a sectional view taken along line AA. 5 (c) is an isometric view, and FIG. 5 (d) is a sectional view taken along line BB.
In FIGS. 5A, 5C, and 5D, the outer case 1 has an arbitrary shape vent hole 8b having a size that does not hinder the formation of the mold of the outer case 1 on the inner cylinder 2 as the outer case central axis. On the other hand, it has an arbitrary number (for example, one) within a range in which the air reservoir 16 spreads around the opposite side of the gate position 20 used for filling the molding resin. The vent hole 8b has a slit 19b that leads from the top surface to the inside of the outer case 1 (molding resin filling region side), and the slit 19b is formed by the vent hole 8b and the upper part of the slit 19b when the molding resin is filled. It has a width (for example, 0.5 mm) and a depth (for example, T + 2.0 mm or more in FIG. 1 (e)) so that the position of the bottom of the slit 19b is not blocked by the molding resin 10 while being blocked by the molding resin 10. To do.
In the current transformer or zero-phase current transformer 100 configured in this way, the air pool 16 communicates with the outside air through the ventilation holes 8b and the slit 19b, so that the air in the air pool 16 can flow even in a high temperature atmosphere. Since the pressure is reduced by being discharged to the outside through the ventilation holes 8b, it is possible to prevent the outer case 1 and the molding resin 10 from being deformed due to the thermal expansion of the air in the air reservoir 16.
Further, as shown in FIG. 5D, by securing the length L from the bottom of the slit 19b to the bottom of the outer case (for example, 2 mm or more), the creepage distance from the product surface of the current transformer 100 to the winding 13 can be determined. Since it can be secured, as compared with the case where the outer case 1 is provided with the ventilation holes 21a or 21b so that the winding 13 of the coil 12 shown in the bottom view (a) and the side view (b) of FIG. 8 is exposed. , High withstand voltage characteristics can be obtained.

1 外ケース
2 外ケース内側円筒
3 外ケース外側円筒
4 リード線挿入部
5 リード線引き出し部
6 巻線引き出し部
7a、7b、7c、7d 切り欠き形状
8a、8b 通気孔
9 ゲート(成形樹脂充填用)
10 成形樹脂
11 リード線
12 コイル
13 巻線
14 磁心を収めるケース
15 磁心
16 空気溜まり
17 金型(上型)
18 金型(下方)
19a、19b スリット部
20 ゲート位置
21a、21b 簡易的な通気孔例(耐電圧特性が得られない場合)
100 変流器及び零相変流器
1 Outer case 2 Outer case inner cylinder 3 Outer case outer cylinder 4 Lead wire insertion part 5 Lead wire lead part 6 Winding lead part 7a, 7b, 7c, 7d Notch shape 8a, 8b Vent 9 Gate (for filling resin) )
10 Molding resin 11 Lead wire 12 Coil 13 Winding 14 Case for accommodating magnetic core 15 Magnetic core 16 Air pool 17 Mold (upper mold)
18 mold (bottom)
19a, 19b Slit portion 20 Gate position 21a, 21b Simple ventilation hole example (when withstand voltage characteristics cannot be obtained)
100 current transformer and zero-phase current transformer

Claims (4)

高い比透磁率特性を有する環状磁心に巻線を施したコイルを、底面及び二重円筒状壁を有するケースに収納し、加熱流動化した成形樹脂を成形金型注入口から前記ケースに注ぎ込み前記コイルと一体に加圧成形した変流器もしくは零相変流器であって、
前記ケースは、前記注入口から所定以上離れた成形樹脂充填領域にある前記二重円筒状壁の少なくとも一方の壁に、前記壁の前記充填領域側面に切り欠き形状を有する溝、又は前記壁の前記充填領域側に開放したスリットを有する円筒状の通気孔を備えることを特徴とする変流器もしくは零相変流器。
A coil wound around an annular magnetic core having high relative permeability characteristics is housed in a case having a bottom surface and a double cylindrical wall, and a heat-fluidized molding resin is poured into the case from a molding die injection port. A current transformer or zero-phase current transformer that is pressure-molded integrally with the coil.
The case is a groove having a notch shape on the side surface of the filling region of the wall, or a groove of the wall, in at least one wall of the double cylindrical wall in the molding resin filling region separated from the injection port by a predetermined value or more. A current transformer or a zero-phase current transformer, which comprises a cylindrical vent hole having an open slit on the filling region side.
前記切り欠き形状を有する溝は、その断面に少なくとも一つの先端部を有し、前記先端部へ至る角度が鋭角であることを特徴とする請求項1記載の変流器もしくは零相変流器。 The current transformer or zero-phase current transformer according to claim 1, wherein the groove having the notch shape has at least one tip portion in its cross section, and the angle leading to the tip portion is an acute angle. .. 前記切り欠き形状を有する溝の断面は、前記成形樹脂の注入時の流動方向に対して対向する向きに傾斜している前記先端部を備えることを特徴とする請求項2記載の変流器もしくは零相変流器。 The current transformer according to claim 2, wherein the cross section of the groove having the notch shape includes the tip portion inclined in a direction facing the flow direction at the time of injection of the molding resin. Zero-phase current transformer. 前記円筒状の通気孔のスリットは、前記通気孔天面から底面方向に有り、その深さは前記通気孔の位置での前記成形樹脂が充填される深さより深く、かつ前記通気孔底面より所定以上の長さを有するだけ浅いことを特徴とする請求項1記載の変流器もしくは変流器もしくは零相変流器。 The slit of the cylindrical vent hole is in the direction from the top surface of the vent hole toward the bottom surface, and the depth thereof is deeper than the depth at which the molding resin is filled at the position of the vent hole and is predetermined from the bottom surface of the vent hole. The current transformer or current transformer or zero-phase current transformer according to claim 1, wherein the current transformer is shallow as long as it has the above length.
JP2019197942A 2019-10-10 2019-10-10 Current transformers and zero-phase current transformers Active JP7384328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197942A JP7384328B2 (en) 2019-10-10 2019-10-10 Current transformers and zero-phase current transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197942A JP7384328B2 (en) 2019-10-10 2019-10-10 Current transformers and zero-phase current transformers

Publications (2)

Publication Number Publication Date
JP2021064772A true JP2021064772A (en) 2021-04-22
JP7384328B2 JP7384328B2 (en) 2023-11-21

Family

ID=75486570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197942A Active JP7384328B2 (en) 2019-10-10 2019-10-10 Current transformers and zero-phase current transformers

Country Status (1)

Country Link
JP (1) JP7384328B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154113U (en) * 1980-04-17 1981-11-18
JPS56155419U (en) * 1980-04-22 1981-11-20
JPH06267396A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Zero-phase current transformer
JPH06290947A (en) * 1993-03-31 1994-10-18 Taiyo Yuden Co Ltd Inductance element
JPH10213603A (en) * 1996-10-23 1998-08-11 General Electric Co <Ge> Self power feeding type axial current sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154113U (en) * 1980-04-17 1981-11-18
JPS56155419U (en) * 1980-04-22 1981-11-20
JPH06267396A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Zero-phase current transformer
JPH06290947A (en) * 1993-03-31 1994-10-18 Taiyo Yuden Co Ltd Inductance element
JPH10213603A (en) * 1996-10-23 1998-08-11 General Electric Co <Ge> Self power feeding type axial current sensor
US6018239A (en) * 1996-10-23 2000-01-25 General Electric Company Self-powered axial current sensor

Also Published As

Publication number Publication date
JP7384328B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US8834765B2 (en) Method of manufacture for encased coil body
JP5365745B1 (en) Reactor manufacturing method
JP6478065B2 (en) Reactor and manufacturing method of reactor
US20130135072A1 (en) Reactor and manufacturing method for reactor
KR102103567B1 (en) Coil device
KR102627781B1 (en) An inductive device
US9984810B2 (en) Reactor
US20180233281A1 (en) Reactor and method for producing the same
CN109565206B (en) Rotating electrical machine
JP6621056B2 (en) Reactor and manufacturing method of reactor
JP6807937B2 (en) Ignition coil
JP2007019402A (en) Coil-sealing resin-molded reactor, and manufacturing method thereof
JP2021064772A (en) Current transformer and zero-phase current transformer
JP2019537260A (en) Guidance device and manufacturing method
JP7255153B2 (en) Reactor and manufacturing method thereof
WO2015178208A1 (en) Reactor
JP2020170832A (en) Current transformer and zero-phase-sequence current transformer
JP2022068076A (en) Current transformer and zero-phase current transformer
TWI841653B (en) Bobbin structure of armature
JP6628545B2 (en) Reactor
JP7240110B2 (en) Penetration type current sensor
WO2016002783A1 (en) Core piece and reactor
JP2010245154A (en) Reactor
WO2019230458A1 (en) Reactor
JP2023160696A (en) Current transformer and zero-phase current transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7384328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150