JP2021064600A - Tungsten-doped lithium manganese iron phosphate-based fine particle, powder material including the same, and production method of powder material - Google Patents

Tungsten-doped lithium manganese iron phosphate-based fine particle, powder material including the same, and production method of powder material Download PDF

Info

Publication number
JP2021064600A
JP2021064600A JP2020078277A JP2020078277A JP2021064600A JP 2021064600 A JP2021064600 A JP 2021064600A JP 2020078277 A JP2020078277 A JP 2020078277A JP 2020078277 A JP2020078277 A JP 2020078277A JP 2021064600 A JP2021064600 A JP 2021064600A
Authority
JP
Japan
Prior art keywords
source
powder material
tungsten
manganese
lithium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020078277A
Other languages
Japanese (ja)
Other versions
JP7089297B2 (en
JP7089297B6 (en
Inventor
チエン ウェン レン
Chien-Wen Jen
チエン ウェン レン
シン ター ホアン
Hsin-Ta Huang
シン ター ホアン
チー ツオン シュイ
Chih-Tsung Hsu
チー ツオン シュイ
イー シュアン ワン
Yi-Hsuan Wang
イー シュアン ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirose Technology Co Ltd
Original Assignee
Hirose Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW108137209A external-priority patent/TWI718711B/en
Priority claimed from TW108137210A external-priority patent/TWI717863B/en
Application filed by Hirose Technology Co Ltd filed Critical Hirose Technology Co Ltd
Publication of JP2021064600A publication Critical patent/JP2021064600A/en
Publication of JP7089297B2 publication Critical patent/JP7089297B2/en
Application granted granted Critical
Publication of JP7089297B6 publication Critical patent/JP7089297B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide tungsten doped lithium manganese iron phosphate-based fine particles which enable the production of a superior lithium ion battery.SOLUTION: A tungsten doped lithium manganese iron phosphate-based fine particle has a composition represented by the following formula (1): LixMn1-y-z-fFeyMzWfPaO4a±p/C (1). In the formula (1), M is Mg, Ca, Sr, Al, Si, Ti, Cr, V, Co, Ni, Zn, or selected from a group consisting of combinations thereof; 0.9≤x≤1.2, 0.1≤y≤0.4, 0≤z≤0.08, 0<f<0.02, 0.1<y+z+f<0.5, 0.85≤a≤1.15, and 0<p<0.1; and the content of C falls in a range of over 0 wt% up to 3.0 wt% to a total weight of the composition represented by the formula (1).SELECTED DRAWING: Figure 1

Description

本発明は、タングステンドープされたリン酸リチウムマンガン鉄系微粒子に関し、より具体的には、リチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系微粒子に関する。また、本発明は、該微粒子を含むタングステンドープされたリン酸リチウムマンガン鉄系粉末材料及び該粉末材料の製造方法に関する。 The present invention relates to tungsten-doped lithium manganese manganese phosphate fine particles, and more specifically to tungsten-doped lithium lithium manganese iron phosphate fine particles for the cathode of a lithium ion battery. The present invention also relates to a tungsten-doped lithium manganese manganese iron phosphate powder material containing the fine particles and a method for producing the powder material.

リチウムイオン電池(Lithium−ion battery)は、一般に、家電製品、輸送施設などの電力蓄積デバイス及び電力供給デバイスとして使用されている。リチウムイオン電池のカソードとして使用されている従来のリン酸リチウムマンガン鉄(lithium manganese iron phosphate、LMFP)は、電気伝導度が劣っているため、通常、電気伝導度を高めるために電気化学的活性がない金属元素がドープされている。 Lithium-ion batteries are generally used as power storage devices and power supply devices for home appliances, transportation facilities, and the like. Conventional lithium manganese iron phosphate (LMM), which is used as a cathode for lithium-ion batteries, is inferior in electrical conductivity and therefore usually has an electrochemical activity to increase the electrical conductivity. No metal elements are doped.

米国特許第6514640号明細書U.S. Pat. No. 6,514,640

しかしながら、ドープされたリン酸リチウムマンガン鉄は、通常、ドープされていないリン酸リチウムマンガン鉄と比較して、電気容量が低い。従って、ドープされたリン酸リチウムマンガン鉄で製造されたリチウムイオン電池のエネルギー密度は非常に低下する。更に、ドープされたリン酸リチウムマンガン鉄は、通常、ドープされていないリン酸リチウムマンガン鉄と比較して、比表面積が大きいので、水分を吸収しやすい。そのため、ドープされたリン酸リチウムマンガン鉄を含むカソード材料は、分散しにくいので、その材料により作られる電極の製造コストが高い。これは、ドープされたリン酸リチウムマンガン鉄をカソード材料とするリチウムイオン電池が、まだ広く商品化されていない1つの理由である。 However, the doped lithium manganese phosphate iron usually has a lower electrical capacity than the undoped lithium lithium manganese phosphate iron. Therefore, the energy density of a lithium ion battery made of doped lithium manganese phosphate is very low. Further, the doped lithium manganese phosphate iron usually has a larger specific surface area than the undoped lithium lithium manganese phosphate iron, so that it easily absorbs water. Therefore, the cathode material containing the doped lithium manganese manganese phosphate is difficult to disperse, and the manufacturing cost of the electrode made of the material is high. This is one reason why lithium ion batteries using doped lithium manganese phosphate iron as a cathode material have not yet been widely commercialized.

従って、本発明は、上記の欠点を克服できる、リチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系微粒子の提供を第1の目的とする。 Therefore, a first object of the present invention is to provide tungsten-doped lithium manganese manganese phosphate-based fine particles for the cathode of a lithium ion battery, which can overcome the above-mentioned drawbacks.

また、本発明は、リチウムイオン電池のカソード用の、タングステンドープされたリン酸リチウムマンガン鉄系微粒子を含むタングステンドープされたリン酸リチウムマンガン鉄系粉末材料の提供を第2の目的とする。 A second object of the present invention is to provide a tungsten-doped lithium manganese manganese phosphate powder material containing tungsten-doped lithium manganese manganese iron phosphate fine particles for the cathode of a lithium ion battery.

また、本発明は、タングステンドープされたリン酸リチウムマンガン鉄系粉末材料の製造方法の提供を第3の目的とする。 A third object of the present invention is to provide a method for producing a tungsten-doped lithium manganese manganese iron phosphate powder material.

上記目的を達成すべく、本発明は、式(1)で表されている組成物であるリチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系微粒子であり、
式(1)LiMn1−y−z−fFe4a±p/C
該式(1)において、
Mは、Mg、Ca、Sr、Al、Si、Ti、Cr、V、Co、Ni、Znまたはそれらの組み合わせからなる群から選択されるものであり、
0.9≦ x≦1.2、
0.1≦y≦0.4、
0≦z≦0.08、
0<f<0.02、
0.1<y+z+f<0.5、
0.85≦a≦1.15、及び
0<p<0.1であり、
Cの量は、式(1)で表されている組成物の総重量に基づいて、0wt%より多く3.0wt%以下の範囲にある、タングステンドープされたリン酸リチウムマンガン鉄系微粒子を提供する。
In order to achieve the above object, the present invention is a tungsten-doped lithium manganese manganese phosphate fine particle for the cathode of a lithium ion battery, which is a composition represented by the formula (1).
Equation (1) Li x Mn 1-y-z-f F y M z W f P a O 4a ± p / C
In the formula (1)
M is selected from the group consisting of Mg, Ca, Sr, Al, Si, Ti, Cr, V, Co, Ni, Zn or a combination thereof.
0.9 ≤ x ≤ 1.2,
0.1 ≤ y ≤ 0.4,
0 ≦ z ≦ 0.08,
0 <f <0.02,
0.1 <y + z + f <0.5,
0.85 ≤ a ≤ 1.15, and
0 <p <0.1,
The amount of C provides tungsten-doped lithium manganese manganese phosphate iron-based fine particles in the range of more than 0 wt% and 3.0 wt% or less based on the total weight of the composition represented by the formula (1). To do.

また、上記のタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含む、リチウムイオン電池のカソード用の粉末材料を提供する。 Further provided is a powder material for a cathode of a lithium ion battery, which comprises the above-mentioned tungsten-doped lithium manganese manganese phosphate fine particles.

また、(a)リチウム源と、マンガン源と、タングステン源と、鉄源と、リン源とに加えて、Mg源、Ca源、Sr源、Al源、Si源、Ti源、Cr源、V源、Co源、Ni源、Zn源またはその組み合わせからなる群から選択される追加金属源を更に含むプリミックスを調製するステップと、
(b)炭素源を前記プリミックスに加えて混合物を形成し、該混合物を粉砕及び粒化して粒状の混合物を形成するステップと、
(c)該粒状の混合物に焼結処理を施して、タングステンドープされたリン酸リチウムマンガン鉄系粉末材料を形成するステップと、を含む上記の粉末材料の製造方法を提供する。
Further, (a) in addition to the lithium source, the manganese source, the tungsten source, the iron source, and the phosphorus source, the Mg source, the Ca source, the Sr source, the Al source, the Si source, the Ti source, the Cr source, and V A step of preparing a premix further comprising an additional metal source selected from the group consisting of sources, Co sources, Ni sources, Zn sources or combinations thereof.
(B) A step of adding a carbon source to the premix to form a mixture, and pulverizing and granulating the mixture to form a granular mixture.
(C) Provided is a method for producing the above-mentioned powder material, which comprises a step of subjecting the granular mixture to a sintering treatment to form a tungsten-doped lithium manganese manganese iron phosphate powder material.

本発明のタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含む粉末材料は、比較的に小さい比表面積を有するので、該粉末材料を使用するカソード材料で製造されたリチウムイオン電池は、比較的大きい放電比容量と、大きい放電電流において比較的高い比容量維持率を有する。 Since the powder material containing the tungsten-doped lithium manganese iron phosphate fine particles of the present invention has a relatively small specific surface area, a lithium ion battery manufactured with a cathode material using the powder material is relatively large. It has a discharge specific capacity and a relatively high specific capacity retention rate at a large discharge current.

実施例1のタングステンドープリン酸リチウムマンガン鉄系微粒子のX線回折分析結果を示すグラフである。It is a graph which shows the X-ray diffraction analysis result of the tungsten-doped lithium manganese manganese iron phosphate fine particle of Example 1. 応用例1、比較応用例1及び比較応用例2のリチウムイオン電池の充放電比容量−電圧関係を示すグラフである。It is a graph which shows the charge / discharge specific capacity-voltage relationship of the lithium ion battery of application example 1, comparative application example 1 and comparative application example 2. 各充放電レートにおいて、応用例1、比較応用例1及び比較応用例2のリチウムイオン電池のサイクル数−放電比容量の関係を示すグラフである。It is a graph which shows the relationship of the cycle number | discharge specific volume of the lithium ion battery of application example 1, comparative application example 1 and comparative application example 2 at each charge / discharge rate.

本発明のリチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系微粒は、式(1)で表される組成物である。 The tungsten-doped lithium manganese manganese iron phosphate-based fine particles for the cathode of the lithium ion battery of the present invention are a composition represented by the formula (1).

式(1)LiMn1−y−z−fFe4a±p/C
該式(1)において、Mは、Mg、Ca、Sr、Al、Si、Ti、Cr、V、Co、Ni、Znまたはそれらの組み合わせからなる群から選択されるものであり、
0.9≦ x≦1.2、
0.1≦y≦0.4、
0≦z≦0.08、
0<f<0.02、
0.1<y+z+f<0.5、
0.85≦a≦1.15、及び
0<p<0.1であり、
C(即ち、炭素)の量は、式(1)で表される組成物の総重量に基づいて、0wt%より多く、3.0wt%以下の範囲にある。
Equation (1) Li x Mn 1-y-z-f F y M z W f P a O 4a ± p / C
In the formula (1), M is selected from the group consisting of Mg, Ca, Sr, Al, Si, Ti, Cr, V, Co, Ni, Zn or a combination thereof.
0.9 ≤ x ≤ 1.2,
0.1 ≤ y ≤ 0.4,
0 ≦ z ≦ 0.08,
0 <f <0.02,
0.1 <y + z + f <0.5,
0.85 ≤ a ≤ 1.15, and
0 <p <0.1,
The amount of C (ie, carbon) is in the range of more than 0 wt% and less than 3.0 wt% based on the total weight of the composition represented by the formula (1).

特定の実施形態において、Mは、Mg(即ち、マグネシウム)である。 In certain embodiments, M is Mg (ie, magnesium).

特定の実施形態において、fは、0より大きく、0.01より小さい(即ち、0<f<0.01)。 In certain embodiments, f is greater than 0 and less than 0.01 (ie, 0 <f <0.01).

本発明のリチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系粉末材料は、上記のタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含む粉末材料である。 The tungsten-doped lithium manganese manganese iron phosphate powder material for the cathode of the lithium ion battery of the present invention is the powder material containing the above-mentioned tungsten-doped lithium manganese manganese iron phosphate fine particles.

特定の実施形態において、該タングステンドープされたリン酸リチウムマンガン鉄系粉末材料は、0.5m/g〜20.0m/gの範囲内にある比表面積を有する。 In certain embodiments, the tungsten doped phosphate lithium manganese iron-based powder material has a specific surface area in the range of 0.5m 2 /g~20.0m 2 / g.

本発明のタングステンドープされたリン酸リチウムマンガン鉄系粉末材料の製造方法は、
(a)リチウム源と、マンガン源と、タングステン源と、鉄源と、リン源とに加えて、Mg源、Ca源、Sr源、Al源、Si源、Ti源、Cr源、V源、Co源、Ni源、Zn源またはその組み合わせからなる群から選択される追加金属源を更に含むプリミックスを調製するステップと、
(b)炭素源を前記プリミックスに加えて混合物を形成し、該混合物を粉砕及び粒化して粒状の混合物を形成するステップと、
(c)該粒状の混合物に焼結処理を施して、タングステンドープされたリン酸リチウムマンガン鉄系粉末材料を形成するステップと、を含む。
The method for producing a tungsten-doped lithium manganese manganese iron phosphate powder material of the present invention is as follows.
(A) In addition to lithium source, manganese source, tungsten source, iron source and phosphorus source, Mg source, Ca source, Sr source, Al source, Si source, Ti source, Cr source, V source, A step of preparing a premix further comprising an additional metal source selected from the group consisting of Co source, Ni source, Zn source or a combination thereof.
(B) A step of adding a carbon source to the premix to form a mixture, and pulverizing and granulating the mixture to form a granular mixture.
(C) Containing a step of subjecting the granular mixture to a sintering treatment to form a tungsten-doped lithium manganese manganese iron phosphate powder material.

特定の実施形態において、ステップ(a)におけるタングステン源として、三酸化タングステンを使用する。 In certain embodiments, tungsten trioxide is used as the tungsten source in step (a).

特定の実施形態において、ステップ(a)で使用される追加金属源は、マグネシウム含有化合物である(即ち、追加金属はMgである)。以下に示される実施例において、ステップ(a)で使用される追加金属源は、酸化マグネシウムである。 In certain embodiments, the additional metal source used in step (a) is a magnesium-containing compound (ie, the additional metal is Mg). In the examples shown below, the additional metal source used in step (a) is magnesium oxide.

特定の実施形態において、ステップ(c)において、500℃〜950℃の範囲の温度で焼結処理を行う。 In a particular embodiment, in step (c), the sintering process is performed at a temperature in the range of 500 ° C. to 950 ° C.

以下、本開示の実施例について説明する。これらの実施例は、例示的かつ説明的なものであり、且つ、本開示を限定するものと解釈されるべきではないことを理解されたい。 Hereinafter, examples of the present disclosure will be described. It should be understood that these examples are exemplary and descriptive and should not be construed as limiting this disclosure.

実施例1:Li1.02Mn0.72Fe0.23Mg0.0480.002PO4a±p/C(PE1)であるリン酸リチウムマンガン鉄系微粒子を含む粉末材料の製造
シュウ酸マンガン(II)(マンガン(Mn)の供給源)、シュウ酸鉄(II)(鉄(Fe)の供給源)、酸化マグネシウム(マグネシウム(Mg)の供給源)、三酸化タングステン(タングステン(W)の供給源)、リン酸(リン(P)の供給源)を、Mn:Fe:Mg:W:Pのモル比が0.720:0.230:0.048:0.002:1.000で反応器に順次に添加して水と混合した。そして、1.5時間撹拌し、続いて水酸化リチウム(リチウムの供給源、Li:Pのモル比は1.02:1.00)と混合してプリミックスを得た。
Example 1: Production of powder material containing lithium lithium manganese iron phosphate fine particles of Li 1.02 Mn 0.72 Fe 0.23 Mg 0.048 W 0.002 PO 4a ± p / C ( PE1) Shu Manganese (II) acid (source of manganese (Mn)), iron (II) oxalate (source of iron (Fe)), magnesium oxide (source of magnesium (Mg)), tungsten trioxide (tungsten (W)) ), Phosphorus (source of phosphorus (P)), Mn: Fe: Mg: W: P with a molar ratio of 0.720: 0.230: 0.048: 0.002: 1. At 000, it was added sequentially to the reactor and mixed with water. Then, the mixture was stirred for 1.5 hours and then mixed with lithium hydroxide (a source of lithium, a molar ratio of Li: P of 1.02: 1.00) to obtain a premix.

その後、該プリミックスをクエン酸とグルコースの組み合わせ(炭素の供給源、C:Pのモル比は0.092:1.00)と混合して混合物を得た。ボールミルを用いて該混合物を4時間粉砕し、噴霧造粒機を用いて粒化、乾燥させて、粒状の混合物を得た。 The premix was then mixed with a combination of citric acid and glucose (carbon source, C: P molar ratio 0.092: 1.00) to give a mixture. The mixture was pulverized for 4 hours using a ball mill, granulated and dried using a spray granulator to obtain a granular mixture.

該粒状の混合物を、窒素雰囲気下で、450℃で2時間焼結処理させてから、750℃で4時間焼結処理させて、Li1.02Mn0.72Fe0.23Mg0.0480.002PO4a±p/C(PE1)であるタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含む目標の粉末材料(PE1)を得た。 The granular mixture was sintered in a nitrogen atmosphere at 450 ° C. for 2 hours and then sintered at 750 ° C. for 4 hours to obtain Li 1.02 Mn 0.72 Fe 0.23 Mg 0.048. W was obtained 0.002 PO 4a ± p / C ( P E1) target powder material comprising tungsten doped lithium manganese phosphate iron-based particles is a (P E1).

タングステンドープされたリン酸リチウムマンガン鉄系微粒子における炭素の量は、タングステンドープされたリン酸リチウムマンガン鉄系微粒子の総重量に基づいて1.53wt%である。 The amount of carbon in the tungsten-doped lithium manganese iron phosphate fine particles is 1.53 wt% based on the total weight of the tungsten-doped lithium manganese iron phosphate fine particles.

比較例1:Li1.02Mn0.72Fe0.23Mg0.05PO/C(PCE1)であるリン酸リチウムマンガン鉄系微粒子を含む粉末材料の製造
比較例1の製造方法は、酸化マグネシウム、三酸化タングステン及びリン酸を、Mg:W:Pのモル比が0.050:0:1.000で添加した(即ち、タングステンを含んでいない)ことを除いて、実施例1の製造方法と同様である。
Comparative Example 1: Production of a powder material containing fine particles of lithium manganese manganese phosphate which is Li 1.02 Mn 0.72 Fe 0.23 Mg 0.05 PO 4 / C ( PCE1) The production method of Comparative Example 1 is , Magnesium oxide, tungsten trioxide and phosphoric acid were added at a molar ratio of Mg: W: P of 0.050: 0: 1.000 (ie, free of tungsten). It is the same as the manufacturing method of.

比較例2:Li1.02Mn0.72Fe0.23Mg0.030.02PO4a±p/C(PCE2)であるリン酸リチウムマンガン鉄系微粒子を含む粉末材料の製造
比較例2の製造方法は、酸化マグネシウム、三酸化タングステン及びリン酸を、Mg:W:Pのモル比が0.030:0.020:1.000で添加したことを除いて、実施例1の製造方法と同様である。
Comparative Example 2: Production of powder material containing fine particles of lithium manganese manganese phosphate which is Li 1.02 Mn 0.72 Fe 0.23 Mg 0.03 W 0.02 PO 4a ± p / C ( PCE2) Comparison The production method of Example 2 is that of Example 1 except that magnesium oxide, tungsten trioxide and phosphoric acid were added at a molar ratio of Mg: W: P of 0.030: 0.020: 1.000. It is the same as the manufacturing method.

X線回折(XRD)分析:
実施例1の粉末材料(PE1)は、X線回折計(製造元:Bruker、型番:D2 PHASER)を使用して分析された。その結果は、図1に示されている。
X-ray diffraction (XRD) analysis:
Powder material of Example 1 (P E1) is, X-rays diffractometer (manufacturer: Bruker, model number: D2 PHASER) were analyzed using. The result is shown in FIG.

図1に示されるように、実施例1の粉末材料に含まれるタングステンドープされたリン酸リチウムマンガン鉄系微粒子は、オリビン型結晶構造を有する。 As shown in FIG. 1, the tungsten-doped lithium manganese manganese-iron phosphate fine particles contained in the powder material of Example 1 have an olivine-type crystal structure.

比表面積の測定:
実施例1(PE1)、比較例1(PCE1)及び比較例2(PCE2)の各粉末材料の比表面積は、比表面積分析器(製造元:Micromeritics、型番:TriStar II3020)を用いてブルナウアー・エメット・テラー法(Brunauer−Emmett−Teller method、BET、分析用ガス:窒素)により測定された。その結果は、以下の表1に示されている。
Measurement of specific surface area:
Example 1 (P E1), a specific surface area of the powder material of Comparative Example 1 (P CE1) and Comparative Example 2 (P CE2) has a specific surface area analyzer (manufacturer: Micromeritics, model number: TriStar II3020) using Brunauer -Measured by the Emmet-Teller method (Brunauer-Emmett-Teller measurement, BET, analytical gas: nitrogen). The results are shown in Table 1 below.

Figure 2021064600
Figure 2021064600

表1に示されるように、実施例1の粉末材料は、比較例1及び比較例2の粉末材料と比較して比表面積が比較的小さいため、水分を吸収しにくく、以下のリチウムイオン電池の製造工程を更に便利に行うことができる。 As shown in Table 1, since the powder material of Example 1 has a relatively small specific surface area as compared with the powder materials of Comparative Example 1 and Comparative Example 2, it is difficult to absorb water, and the following lithium ion batteries The manufacturing process can be performed more conveniently.

それに対して、リン酸リチウムマンガン鉄系微粒子にタングステンドープされていない比較例1の粉末材料、及び、リン酸リチウム鉄マンガン鉄系微粒子に比較的大量にタングステンドープされた比較例2の粉末材料は、比較的大きな比表面積を有し、従って、リチウムイオン電池が製造されるとき、電解質溶液によって深刻な影響を受ける可能性が高い。 On the other hand, the powder material of Comparative Example 1 in which the lithium lithium manganese iron phosphate fine particles were not tungsten-doped and the powder material of Comparative Example 2 in which the lithium iron manganese iron phosphate fine particles were tungsten-doped in a relatively large amount were It has a relatively large specific surface area and is therefore likely to be seriously affected by the electrolyte solution when lithium ion batteries are manufactured.

応用例1:
実施例1の粉末材料、カーボンブラック及びポリフッ化ビニリデン(polyvinylidene fluoride、PVDF)を93:3:4の重量比で混合してプリミックス得た。該プリミックスをN−メチル−2−ピロリドン(N−methyl−2−pyrrolidone、NMP)と混合してペーストを得た。該ペーストをドクターブレード法を使用して厚さ20μmのアルミニウム箔上に塗布し、そして、真空中で140℃でベークして(baking)N−メチル−2−ピロリドンを除去することにより、カソード材料を得た。ローラー(roller)を使用してカソード材料を厚さ75μmにプレスし、直径12mmの円形のカソードに切断した。
Application example 1:
The powder material of Example 1, carbon black and polyvinylidene fluoride (PVDF) were mixed at a weight ratio of 93: 3: 4 to obtain a premix. The premix was mixed with N-methyl-2-pyrrolidone (NMP) to give a paste. Cathode material by applying the paste on aluminum foil to a thickness of 20 μm using the Doctor Blade method and baking at 140 ° C. in vacuum to remove N-methyl-2-pyrrolidone. Got The cathode material was pressed to a thickness of 75 μm using a roller and cut into a circular cathode with a diameter of 12 mm.

リチウム箔を使用して、直径15mm、厚さ0.2mmのアノードを作成した。 Lithium foil was used to create an anode with a diameter of 15 mm and a thickness of 0.2 mm.

六フッ化リン酸リチウム(LiPF)を、濃度が1Mになるように、エチレンカーボネート(ethylene carbonate、EC)、炭酸エチルメチル(ethyl methyl carbonate、EMC)及び炭酸ジメチル(dimethyl carbonate、DMC)からなる(体積比1:1:1)溶媒に溶解させて、電解液を得た。 Lithium hexafluorophosphate (LiPF 6 ) is composed of ethylene carbonate (ethylene solvent, EC), ethyl methyl carbonate (ethyl carbonate, EMC) and dimethyl carbonate (dimethyl carbonate, DMC) so as to have a concentration of 1M. (Volume ratio 1: 1: 1) Dissolved in a solvent to obtain an electrolytic solution.

ポリプロピレン膜(polypropylene membrane、旭化成株式会社から購入、厚さ25μm)を直径18mmの円形セパレーターに切断した。円形セパレーターを電解液に浸漬した後、電解液から取り出して浸漬セパレーターを得た。 A polypropylene film (polypolylone member, purchased from Asahi Kasei Corporation, 25 μm in thickness) was cut into a circular separator having a diameter of 18 mm. After immersing the circular separator in the electrolytic solution, it was taken out from the electrolytic solution to obtain a dipping separator.

アルゴンガス雰囲気で、上記のカソード、アノード及び浸漬セパレーターを他の部品と一緒に使用して、応用例1であるCR2032コイン型リチウムイオン電池を製造した。 A CR2032 coin-type lithium-ion battery according to Application Example 1 was manufactured by using the above-mentioned cathode, anode and immersion separator together with other parts in an argon gas atmosphere.

比較応用例1
比較応用例1であるCR2032コイン型リチウムイオン電池の製造方法は、比較例1の粉末材料を使用して円形カソードを製造したことを除いて、応用例1の製造方法と同様である。
Comparative application example 1
The method for manufacturing the CR2032 coin-type lithium-ion battery, which is Comparative Application Example 1, is the same as the manufacturing method for Application Example 1, except that the circular cathode is manufactured using the powder material of Comparative Example 1.

比較応用例2
比較応用例2であるCR2032コイン型リチウムイオン電池の製造方法は、比較例2の粉末材料を使用して円形カソードを製造したことを除いて、応用例1の製造方法と同様である。
Comparative application example 2
The method for manufacturing the CR2032 coin-type lithium-ion battery according to Comparative Application Example 2 is the same as the manufacturing method for Application Example 1 except that the circular cathode is manufactured using the powder material of Comparative Example 2.

充放電比容量:
応用例1、比較応用例1及び比較応用例2の各リチウムイオン電池の充放電比容量を、電池試験装置(米MACCOR社から購入)を使用して、25℃で1C/0.1Cの電流レベル及び2.7V〜4.25Vの範囲の電圧で測定した。その結果は、図2に示されている。
Charge / discharge specific capacity:
The charge / discharge ratio capacity of each lithium ion battery of Application Example 1, Comparative Application Example 1 and Comparative Application Example 2 was measured at a current of 1 C / 0.1 C at 25 ° C. using a battery test device (purchased from MACCOR, USA). Measured at levels and voltages in the range 2.7V to 4.25V. The result is shown in FIG.

図2に示されるように、応用例1のリチウムイオン電池は、放電比容量が144.5 mAh/gであった。比較応用例1及び比較応用例2のリチウムイオン電池は、放電比容量がそれぞれ141.9mAh/g及び139.2mAh/gであった。従って、比較応用例1及び比較応用例2のリチウムイオン電池のそれぞれの放電比容量は、応用例1のリチウムイオン電池の放電比容量(144.5mAh/g)よりも低い。 As shown in FIG. 2, the lithium ion battery of Application Example 1 had a discharge specific capacity of 144.5 mAh / g. The lithium ion batteries of Comparative Application Example 1 and Comparative Application Example 2 had discharge specific volumes of 141.9 mAh / g and 139.2 mAh / g, respectively. Therefore, the discharge specific capacities of the lithium ion batteries of Comparative Application Example 1 and Comparative Application Example 2 are lower than the discharge specific capacities (144.5 mAh / g) of the lithium ion batteries of Application Example 1.

サイクル充電/放電測定
応用例1、比較応用例1及び比較応用例2のリチウムイオン電池のそれぞれを、電池試験装置(米MACCOR社から購入)を使用して2.7V〜4.25Vの範囲の電圧且つ25℃で、電流1C/0.1C、1C/1C、1C/5C及び1C/10Cの順番に、各電流で3回の充放電サイクルを行って測定した。その結果は、図3に示されている。
Cycle charge / discharge measurement Each of the lithium-ion batteries of Application Example 1, Comparative Application Example 1 and Comparative Application Example 2 is in the range of 2.7V to 4.25V using a battery test device (purchased from MACCOR, USA). The measurement was performed by performing three charge / discharge cycles at each current in the order of currents 1C / 0.1C, 1C / 1C, 1C / 5C and 1C / 10C at a voltage and 25 ° C. The result is shown in FIG.

図3に示されるように、10Cの放電電流における放電比容量維持率は、10Cの放電電流の最初の充放電サイクルの放電比容量を、0.1Cの放電電流の最初の充放電サイルの放電比容量で割ることによって計算された。 As shown in FIG. 3, the discharge specific capacity retention rate at the discharge current of 10C is the discharge specific capacity of the first charge / discharge cycle of the discharge current of 10C and the discharge of the first charge / discharge sill of the discharge current of 0.1C. Calculated by dividing by the specific capacity.

応用例1のリチウムイオン電池における10Cの放電電流の放電比容量維持率は、80.0%であった。比較応用例1及び比較応用例2のリチウムイオン電池における10Cの放電電流の放電比容量維持率は、それぞれ65.6%及び77.9%であった。従って、比較応用例2及び比較応用例3のリチウムイオン電池のそれぞれの放電比容量維持率は、応用例1の放電比容量維持率(80.0%)よりも低い。 The discharge specific capacity retention rate of the discharge current of 10C in the lithium ion battery of Application Example 1 was 80.0%. The discharge specific capacity retention rates of the discharge current of 10C in the lithium ion batteries of Comparative Application Example 1 and Comparative Application Example 2 were 65.6% and 77.9%, respectively. Therefore, the discharge specific capacity retention rate of each of the lithium ion batteries of Comparative Application Example 2 and Comparative Application Example 3 is lower than the discharge specific capacity retention rate (80.0%) of Application Example 1.

上記の内容によれば、本開示のタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含む粉末材料は、比較的小さな比表面積を有する。この粉末材料を用いて製造されたリチウムイオン電池は、比較的大きい放電比容量と、大きい放電電流において比較的高い比容量維持率を有する。 According to the above contents, the powder material containing the tungsten-doped lithium manganese manganese iron phosphate fine particles of the present disclosure has a relatively small specific surface area. Lithium-ion batteries manufactured using this powder material have a relatively large discharge specific capacity and a relatively high specific capacity retention rate at a large discharge current.

上記においては、説明のため、本発明の全体的な理解を促すべく多くの具体的な詳細が示された。しかしながら、当業者であれば、一またはそれ以上の他の実施形態が具体的な詳細を示さなくとも実施され得ることが明らかである。 In the above, for illustration purposes, many specific details have been presented to facilitate an overall understanding of the invention. However, it will be apparent to those skilled in the art that one or more other embodiments may be implemented without specific details.

以上、本発明の好ましい実施形態及び変化例を説明したが、本発明はこれらに限定されるものではなく、最も広い解釈の精神および範囲内に含まれる様々な構成として、全ての修飾および均等な構成を包含するものとする。 Although preferred embodiments and variations of the present invention have been described above, the present invention is not limited thereto, and all modifications and equivalents are made as various configurations included in the spirit and scope of the broadest interpretation. It shall include the composition.

本発明のタングステンドープされたリン酸リチウムマンガン鉄系微粒子は、リチウムイオン電池のカソードの製造に適用でき、特に比較的大きい放電比容量と、大きい放電電流において比較的高い比容量維持率を有するリチウムイオン電池の製造に好適である。 The tungsten-doped lithium manganese iron phosphate fine particles of the present invention can be applied to the production of cathodes of lithium ion batteries, and lithium has a relatively large discharge specific capacity and a relatively high specific capacity retention rate at a large discharge current. Suitable for manufacturing ion batteries.

Claims (9)

式(1)で表される組成物であるリチウムイオン電池のカソード用のタングステンドープされたリン酸リチウムマンガン鉄系微粒子であり、
式(1)LiMn1−y−z−fFe4a±p/C
該式(1)において、
Mは、Mg、Ca、Sr、Al、Si、Ti、Cr、V、Co、Ni、Znまたはそれらの組み合わせからなる群から選択されるものであり、
0.9≦ x≦1.2、
0.1≦y≦0.4、
0≦z≦0.08、
0<f<0.02、
0.1<y+z+f<0.5、
0.85≦a≦1.15、及び
0<p<0.1であり、
Cの量は、式(1)で表されている組成物の総重量に基づいて、0wt%より多く3.0wt%以下の範囲にあることを特徴とするタングステンドープされたリン酸リチウムマンガン鉄系微粒子。
Tungsten-doped lithium manganese manganese phosphate fine particles for the cathode of a lithium ion battery, which is a composition represented by the formula (1).
Equation (1) Li x Mn 1-y-z-f F y M z W f P a O 4a ± p / C
In the formula (1)
M is selected from the group consisting of Mg, Ca, Sr, Al, Si, Ti, Cr, V, Co, Ni, Zn or a combination thereof.
0.9 ≤ x ≤ 1.2,
0.1 ≤ y ≤ 0.4,
0 ≦ z ≦ 0.08,
0 <f <0.02,
0.1 <y + z + f <0.5,
0.85 ≤ a ≤ 1.15, and
0 <p <0.1,
The amount of C is tungsten-doped lithium manganese manganese phosphate, which is in the range of more than 0 wt% and 3.0 wt% or less based on the total weight of the composition represented by the formula (1). System fine particles.
前記式(1)において、Mは、Mgであることを特徴とする請求項1に記載のタングステンドープされたリン酸リチウムマンガン鉄系微粒子。 The tungsten-doped lithium manganese manganese phosphate fine particles according to claim 1, wherein in the formula (1), M is Mg. 前記式(1)において、0<f<0.01であることを特徴とする請求項1または請求項2に記載のタングステンドープされたリン酸リチウムマンガン鉄系微粒子。 The tungsten-doped lithium manganese manganese phosphate-based fine particles according to claim 1 or 2, wherein in the formula (1), 0 <f <0.01. リチウムイオン電池のカソード用のリン酸リチウムマンガン鉄系粉末材料であって、
請求項1〜請求項3のいずれか一項に記載のタングステンドープされたリン酸リチウムマンガン鉄系微粒子を含むことを特徴とする粉末材料。
Lithium manganese phosphate iron-based powder material for the cathode of lithium-ion batteries
A powder material comprising the tungsten-doped lithium manganese manganese iron phosphate-based fine particles according to any one of claims 1 to 3.
0.5m/g〜20.0m/gの範囲内にある比表面積を有することを特徴とする請求項4に記載の粉末材料。 Powder material according to claim 4, characterized in that it has a specific surface area in the range of 0.5m 2 /g~20.0m 2 / g. 請求項4または請求項5に記載の粉末材料の製造方法であって、
(a)リチウム源と、マンガン源と、タングステン源と、鉄源と、リン源とに加えて、Mg源、Ca源、Sr源、Al源、Si源、Ti源、Cr源、V源、Co源、Ni源、Zn源またはその組み合わせからなる群から選択される追加金属源を更に含むプリミックスを調製するステップと、
(b)炭素源を前記プリミックスに加えて混合物を形成し、該混合物を粉砕及び粒化して粒状の混合物を形成するステップと、
(c)該粒状の混合物に焼結処理を施して、タングステンドープされたリン酸リチウムマンガン鉄系粉末材料を形成するステップと、を含むことを特徴とする粉末材料の製造方法。
The method for producing a powder material according to claim 4 or 5.
(A) In addition to lithium source, manganese source, tungsten source, iron source and phosphorus source, Mg source, Ca source, Sr source, Al source, Si source, Ti source, Cr source, V source, A step of preparing a premix further comprising an additional metal source selected from the group consisting of Co source, Ni source, Zn source or a combination thereof.
(B) A step of adding a carbon source to the premix to form a mixture, and pulverizing and granulating the mixture to form a granular mixture.
(C) A method for producing a powder material, which comprises a step of subjecting the granular mixture to a sintering treatment to form a tungsten-doped lithium manganese manganese iron phosphate powder material.
ステップ(a)におけるタングステン源として、三酸化タングステンを使用することを特徴とする請求項6に記載の粉末材料の製造方法。 The method for producing a powder material according to claim 6, wherein tungsten trioxide is used as the tungsten source in step (a). ステップ(a)における追加金属源は、Mg源であることを特徴とする請求項6または請求項7に記載の粉末材料の製造方法。 The method for producing a powder material according to claim 6 or 7, wherein the additional metal source in step (a) is an Mg source. ステップ(c)において、500℃〜950℃の範囲の温度で焼結処理を行うことを特徴とする請求項6〜請求項8のいずれか一項に記載の粉末材料の製造方法。 The method for producing a powder material according to any one of claims 6 to 8, wherein in step (c), the sintering treatment is performed at a temperature in the range of 500 ° C. to 950 ° C.
JP2020078277A 2019-10-16 2020-04-27 Tungsten-doped lithium manganese iron phosphate fine particles, powder material containing the fine particles, and method for producing the powder material Active JP7089297B6 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW108137209 2019-10-16
TW108137210 2019-10-16
TW108137209A TWI718711B (en) 2019-10-16 2019-10-16 Tungsten-doped lithium ferromanganese phosphate particles and tungsten-doped lithium ferromanganese phosphate powder materials used for positive electrodes of lithium ion batteries and their preparation methods
TW108137210A TWI717863B (en) 2019-10-16 2019-10-16 Doped lithium ferromanganese phosphate particles, doped lithium ferromanganese phosphate powder materials for positive electrodes of lithium ion batteries, and preparation method thereof

Publications (3)

Publication Number Publication Date
JP2021064600A true JP2021064600A (en) 2021-04-22
JP7089297B2 JP7089297B2 (en) 2022-06-22
JP7089297B6 JP7089297B6 (en) 2023-12-22

Family

ID=69157608

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020078217A Active JP6997366B2 (en) 2019-10-16 2020-04-27 Dopped lithium manganese phosphate iron-based fine particles, powder material containing the fine particles, and a method for producing the powder material.
JP2020078277A Active JP7089297B6 (en) 2019-10-16 2020-04-27 Tungsten-doped lithium manganese iron phosphate fine particles, powder material containing the fine particles, and method for producing the powder material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020078217A Active JP6997366B2 (en) 2019-10-16 2020-04-27 Dopped lithium manganese phosphate iron-based fine particles, powder material containing the fine particles, and a method for producing the powder material.

Country Status (3)

Country Link
US (2) US11616232B2 (en)
EP (2) EP3808702A1 (en)
JP (2) JP6997366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448284B (en) * 2022-09-30 2024-01-30 曲靖市德方纳米科技有限公司 Method for preparing battery-grade lithium manganese phosphate composite material by using minerals and application of battery-grade lithium manganese phosphate composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
JP2011042553A (en) * 2009-03-13 2011-03-03 Jfe Chemical Corp Method for producing iron lithium phosphate
JP2013527576A (en) * 2010-05-27 2013-06-27 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Carbon lithium transition metal phosphate composites with low carbon content
JP2016507863A (en) * 2012-12-21 2016-03-10 ダウ グローバル テクノロジーズ エルエルシー LMFP cathode material with improved electrochemical performance
CN107359342A (en) * 2017-07-27 2017-11-17 泓辰电池材料有限公司 Lithium phosphate ferromanganese system particle, lithium phosphate ferromanganese system powder and preparation method thereof
WO2018148833A1 (en) * 2017-02-15 2018-08-23 HYDRO-QUéBEC Electrode materials and processes for their preparation
JP2019040854A (en) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. Lithium manganese iron phosphate-based particulate for use in cathode of lithium battery, lithium manganese iron phosphate-based powdery material containing the same, and method for manufacturing the powdery material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269955B2 (en) * 2009-09-24 2016-02-23 Valence Technology Inc. Manganese phosphates and related electrode active materials
CN101777648B (en) 2010-01-26 2012-08-22 中国科学院宁波材料技术与工程研究所 Preparation method of monodisperse lithium iron phosphate nanometer material and lithium-ion secondary battery
CN102074690B (en) 2010-12-24 2013-01-30 复旦大学 Method for synthesizing battery anode material LiFePO4 by using controllable carbon clad FePO4
KR101805541B1 (en) 2011-06-24 2017-12-08 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
CN102364726B (en) 2011-10-21 2013-06-12 济宁市无界科技有限公司 Method for producing iron lithium manganese phosphate composite positive electrode material used in lithium ion battery through carbon reduction
KR101893955B1 (en) 2011-12-16 2018-09-03 삼성에스디아이 주식회사 Metal doped crystalline iron phosphate, method for preparation thereof and lithium composite metal phosphorus oxide prepared using the same
EP2936589A1 (en) 2012-12-21 2015-10-28 Dow Global Technologies LLC Method for making lithium transition metal olivines using water/cosolvent mixtures
US20160240856A1 (en) * 2013-10-02 2016-08-18 Umicore Carbon Coated Electrochemically Active Powder
CN106935851B (en) 2015-12-31 2019-11-29 惠州比亚迪电池有限公司 A kind of iron manganese phosphate for lithium class material and preparation method thereof and cell size and anode and lithium battery
KR102656223B1 (en) * 2017-11-22 2024-04-11 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery and method for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
JP2011042553A (en) * 2009-03-13 2011-03-03 Jfe Chemical Corp Method for producing iron lithium phosphate
JP2013527576A (en) * 2010-05-27 2013-06-27 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Carbon lithium transition metal phosphate composites with low carbon content
JP2016507863A (en) * 2012-12-21 2016-03-10 ダウ グローバル テクノロジーズ エルエルシー LMFP cathode material with improved electrochemical performance
JP2018060811A (en) * 2012-12-21 2018-04-12 ダウ グローバル テクノロジーズ エルエルシー LMFP cathode material with improved electrochemical performance
WO2018148833A1 (en) * 2017-02-15 2018-08-23 HYDRO-QUéBEC Electrode materials and processes for their preparation
JP2019040854A (en) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. Lithium manganese iron phosphate-based particulate for use in cathode of lithium battery, lithium manganese iron phosphate-based powdery material containing the same, and method for manufacturing the powdery material
CN107359342A (en) * 2017-07-27 2017-11-17 泓辰电池材料有限公司 Lithium phosphate ferromanganese system particle, lithium phosphate ferromanganese system powder and preparation method thereof

Also Published As

Publication number Publication date
JP6997366B2 (en) 2022-01-17
JP7089297B2 (en) 2022-06-22
JP7089297B6 (en) 2023-12-22
JP2021064599A (en) 2021-04-22
US20210119211A1 (en) 2021-04-22
EP3808702A1 (en) 2021-04-21
EP3808701A1 (en) 2021-04-21
US11094936B2 (en) 2021-08-17
US11616232B2 (en) 2023-03-28
US20210119212A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US10205158B2 (en) LMFP cathode materials with improved electrochemical performance
KR102296131B1 (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
JP7215423B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US20200251732A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2015162323A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2017045633A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP7089297B2 (en) Tungsten-doped lithium manganese phosphate iron-based fine particles, powder material containing the fine particles, and a method for producing the powder material.
JP2023080310A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6583254B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery and method for producing positive electrode material for non-aqueous secondary battery
US11967717B2 (en) Tungsten-doped lithium manganese iron phosphate-based particulate and tungsten-doped lithium manganese iron phosphate-based powdery material including the same
TWI718711B (en) Tungsten-doped lithium ferromanganese phosphate particles and tungsten-doped lithium ferromanganese phosphate powder materials used for positive electrodes of lithium ion batteries and their preparation methods
JP2013206563A (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
CN112744800B (en) Tungsten-doped lithium manganese iron phosphate particles and powder materials for positive electrodes of lithium ion batteries and preparation methods thereof
JP5949199B2 (en) Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5594309B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN112750990A (en) Doped lithium manganese iron phosphate particles for positive electrode of lithium ion battery, powder material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220401

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220603

R150 Certificate of patent or registration of utility model

Ref document number: 7089297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150