JP2021064081A - 情報処理装置、及び情報処理方法 - Google Patents

情報処理装置、及び情報処理方法 Download PDF

Info

Publication number
JP2021064081A
JP2021064081A JP2019187444A JP2019187444A JP2021064081A JP 2021064081 A JP2021064081 A JP 2021064081A JP 2019187444 A JP2019187444 A JP 2019187444A JP 2019187444 A JP2019187444 A JP 2019187444A JP 2021064081 A JP2021064081 A JP 2021064081A
Authority
JP
Japan
Prior art keywords
work
simulation
information processing
sample data
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187444A
Other languages
English (en)
Other versions
JP7416597B2 (ja
Inventor
宇都木 契
Chigiri Utsugi
契 宇都木
真斗 永田
Masato Nagata
真斗 永田
宏視 荒
Hiromi Ara
宏視 荒
石橋 尚也
Hisaya Ishibashi
尚也 石橋
守屋 俊夫
Toshio Moriya
俊夫 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019187444A priority Critical patent/JP7416597B2/ja
Priority to US17/767,482 priority patent/US20230219226A1/en
Priority to PCT/JP2020/037219 priority patent/WO2021070711A1/ja
Priority to CN202080071279.6A priority patent/CN114556385A/zh
Publication of JP2021064081A publication Critical patent/JP2021064081A/ja
Application granted granted Critical
Publication of JP7416597B2 publication Critical patent/JP7416597B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]

Abstract

【課題】階層構造を有する複数の工程により行われる作業についての指標の予測を効率よく高い精度で行う。【解決手段】情報処理装置は、下位工程について設定された下位モデルに基づく下位シミュレーションを実行することにより生成される指標を含むサンプルデータを、夫々の作業を表すパラメータに対応付けて記憶し、予測される作業について、上位工程について設定された上位モデルに基づく上位シミュレーションを、予測作業を表すパラメータに類似するパラメータに対応づけられているサンプルデータを用いて行うことにより指標を予測する。予測作業を表すパラメータに類似するパラメータに対応づけられているサンプルデータを記憶していない場合、情報処理装置は、下位シミュレーションを行ってサンプルデータを補完し、補完したサンプルデータを用いて上位シミュレーションを行う。【選択図】図3

Description

本発明は、情報処理装置、及び情報処理方法に関し、とくに工程のシミュレーションを行う技術に関する。
特許文献1には、複数のシミュレータの各々が実行するシミュレーションを同期させることができないという課題を解決することを目的として構成されたシミュレータ連携装置に関して開示されている。シミュレータ連携装置は、シミュレーションを周期的に実行させるサンプル間隔をユーザから受け付け、第1シミュレータから第1シミュレータのサンプル間隔分の第1実行結果を取得し、被制御装置についての第2シミュレータからサンプル間隔分の第2実行結果を取得し、第1実行結果を第2シミュレータに出力し、第2実行結果を第1シミュレータに出力し、第1シミュレータ及び第2シミュレータの各々にサンプル間隔でシミュレーションを周期的に実行させることにより上記課題の解決を図る。
特開2018−36945号公報
階層構造を有する複数の工程により行われる作業について、作業効率等に関する指標の予測をシミュレーションにより求める方法としては、上位工程について設定したモデルである上位モデルを用いたシミュレーション(以下、「上位シミュレーション」と称する。)による方法と、上位工程を構成する下位工程の夫々について設定したモデルである下位モデルを用いたシミュレーション(以下、「下位シミュレーション」と称する。)による方法と、がある。
ここで上位シミュレーションによる場合は、処理負荷が比較的小さく迅速に結果を得ることができるが、高い予測精度は期待できない。一方、下位シミュレーションによる場合は上位シミュレーションに比べて予測精度は高くなるが、処理負荷が大きく、結果が得られるまでの時間も長くなる。
上記特許文献1は、複数のシミュレータを連携する方法を開示するが、階層構造を有する複数の工程により行われる作業のシミュレーションにおいて、精度の向上や処理負荷の低減を図るための仕組みについては何も開示していない。
本発明はこのような背景に鑑みてなされたものであり、階層構造を有する複数の工程により行われる作業についての指標の予測を効率よく高い精度で行うことが可能な、情報処理装置、及び情報処理方法を提供することを目的とする。
上記目的を達成するための本発明の一つは、階層構造を有する複数の工程により作業を行う際の指標を予測する情報処理装置であって、前記作業について、下位の前記工程である下位工程について設定されたモデルである下位モデルに基づくシミュレーションである下位シミュレーションを実行することにより生成される指標を含むデータであるサンプルデータを、夫々の前記作業を表すパラメータに対応付けて記憶し、予測される作業である予測作業について、上位の前記工程である上位工程について設定されたモデルである上位
モデルに基づくシミュレーションである上位シミュレーションを、前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを用いて行うことにより、前記予測作業についての指標を予測する。
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
本発明によれば、階層構造を有する複数の工程により行われる作業についての指標の予測を効率よく高い精度で行うことができる。
階層構造を有する複数の工程により行われる作業の例である。 予測装置のハードウェア構成を示す図である。 予測装置が備える主な機能を示す図である。 作業情報の一例である。 機器情報の一例である。 作業者情報の一例である。 パラメータ生成情報の一例である。 (a)はパラメータの一例であり、(b)はサンプルデータの一例である。 工程作業スタック表の一例である。 仮想工程進捗表の一例である。 パラメータの要素毎の変化率の算出方法を説明するフローチャートである。 (a)はロボットシミュレータが表示する画面の例であり、(b)は人作業シミュレータが表示する画面の例である。 (a)はRPAスクリプトの実行に際して用いる画面情報の一例であり、(b)はシミュレータを自動実行するためのRPAスクリプトの一例である。 予測処理を説明するフローチャートである。 予測結果提示画面の一例である。 作業情報の一例である(第2実施形態)。 パラメータの一例である(第2実施形態)。 予測処理を説明するフローチャートである(第2実施形態)。 仮想空間モデルの一例である(第3実施形態)。 運搬ロボット制御システムの一例である(第3実施形態)。 3次元シミュレーション映像の一例である(第3実施形態)。 パラメータの一例である(第3実施形態)。
以下、実施形態について図面を参照しつつ説明する。以下の説明において、同一の又は類似する機能を有する構成について同一の符号を付すことにより重複した説明を省略することがある。また以下の説明において、符号の前に付した「S」の文字は処理ステップを意味する。
[第1実施形態]
図1は、階層構造を有する複数の工程により行われる作業(例えば、倉庫業務における作業、製品製造業務における作業等)の例である。同図に示すように、例示する作業は、上位工程31(A1,A2,A3)と、上位工程31を構成する下位工程32(同図では上位工程A1の下位工程32(A11、A12、A13)のみ例示)と、を含む。各工程の出力は、バッファ35(荷物や製品の保管エリア等)を介して、後続する工程に入力さ
れる。
同図に示す作業において、例えば、作業効率や作業品質、利益率等の各種指標(KPI:Key Performance Indicator)の予測値をシミュレーションにより求める方法としては、上位工程31について設定したモデルである上位モデルを用いたシミュレーション(以下、「上位シミュレーション」と称する。)による方法と、上位工程31を構成する下位工程32の夫々について設定したモデルである下位モデルを用いたシミュレーション(以下、「下位シミュレーション」と称する。)による方法と、がある。
例えば、公知の作業量予測手法によって予測された作業(以下、「予測作業」と称する。)を上位工程31に入力した場合の所要時間を予測値として求める場合を考える。この場合、上位シミュレーションでは、例えば、予測作業の作業量を平均処理数や平均生産数で除算する等の概算処理を行う上位モデルにより上記の所用時間を求める。一方、下位シミュレーションでは、例えば、人が作業主体となる場合であれば「作業の総量」や「関与する作業人数」、「作業を阻害するような停滞要因の発生率」、「作業者の熟練度」、「疲労による集中力の低下」等を、またロボット等の機械が作業主体となる場合であれば「作業対象物の認識処理時間」や「認識成功率」等を、夫々パラメータとして設定して機械学習モデル等からなる下位モデルに入力することにより上記の所用時間を求める。
ここで上位シミュレーションによる場合は後者の下位シミュレーションによる場合に比べて不定性を有する細かいパラメータの設定が必要でなく、また処理負荷が小さいため迅速に結果を得ることができる等の利点がある。一方、下位シミュレーションによる場合は精度の向上が期待できるが、詳細なパラメータを取り扱うことで処理が重くなり易く、上位シミュレーションによる場合に比べて結果が得られるまでの時間も長くなる。また確定できないパラメータについては、デフォルト値や、ランダム値により求めた平均値や分散値等により補完する必要があり、精度の低下や処理負荷の増大につながる。
そこで以下に示す実施形態では、入力される様々な作業について実測されたデータ(以下、「実測データ」と称する。)や下位シミュレーションにより生成したデータ(以下、「サンプルデータ」と称する。)を、作業の特徴を表すパラメータ(特徴量)に対応づけて記憶しておき、予測作業を表わすパラメータに類似するパラメータに対応づけられているサンプルデータを記憶している場合は、当該サンプルデータを利用して上位シミュレーションを行うことにより上位工程31についての予測値を求める。
また予測作業を表わすパラメータに類似するパラメータに対応づけられているサンプルデータを記憶していない場合は、当該上位工程31の下位工程32について下位シミュレーションを行うことによりサンプルデータを補完するデータ(サンプルデータとして追加するデータ。以下、「補完データ」と称する。)を生成し、サンプルデータと補完データ(もしくは補完データのみ)を用いて上位シミュレーションを行うことにより、上位工程31についての予測値を求める。
このように、予測作業を表わすパラメータに類似するパラメータに対応づけられているサンプルデータを記憶している場合は、サンプルデータを利用して上位シミュレーションを行い、予測作業を表わすパラメータに類似するパラメータに対応づけられているサンプルデータを記憶していない場合は、必要な補完データを下位シミュレーションにより生成して上位シミュレーションを行うことで、効率よく高い精度で予測値を求めることができる。以下、作業が倉庫業務における作業である場合を例として説明する。
図2に、以上の仕組みの実現に用いる情報処理装置(以下、「予測装置100」と称する。)のハードウェア構成を示している。同図に示すように、予測装置100は、プロセ
ッサ11、主記憶装置12、補助記憶装置13、入力装置14、出力装置15、及び通信装置16を備える。尚、予測装置100は、例えば、クラウドシステム(Cloud System)により提供されるクラウドサーバ(Cloud Server)のように仮想的な情報処理資源を用いて実現されるものであってもよい。また予測装置100は、同図に示す構成を有する複数の情報処理装置を用いて構成してもよい。
プロセッサ11は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable
Gate Array)、ASIC(Application Specific Integrated Circuit)、AI(Artificial Intelligence)チップ等を用いて構成されている。
主記憶装置12は、プログラムやデータを記憶する装置であり、例えば、ROM(Read
Only Memory)、RAM(Random Access Memory)、不揮発性メモリ(NVRAM(Non Volatile RAM))等である。
補助記憶装置13は、例えば、SSD(Solid State Drive)、ハードディスクドライ
ブ、光学式記憶装置(CD(Compact Disc)、DVD(Digital Versatile Disc)等)、ストレージシステム、ICカード、SDカードや光学式記録媒体等の記録媒体の読取/書込装置、クラウドサーバの記憶領域等である。補助記憶装置13には、記録媒体の読取装置や通信装置16を介してプログラムやデータを読み込むことができる。補助記憶装置13に格納(記憶)されているプログラムやデータは主記憶装置12に随時読み込まれる。
入力装置14は、外部からの入力を受け付けるインタフェースであり、例えば、キーボード、マウス、タッチパネル、カードリーダ、音声入力装置等である。
出力装置15は、処理経過や処理結果等の各種情報を出力するインタフェースである。出力装置15は、例えば、上記の各種情報を可視化する表示装置(液晶モニタ、LCD(Liquid Crystal Display)、グラフィックカード等)、上記の各種情報を音声化する装置(音声出力装置(スピーカ等))、上記の各種情報を文字化する装置(印字装置等)である。尚、例えば、予測装置100が通信装置16を介して他の装置との間で情報の入力や出力を行う構成としてもよい。
通信装置16は、他の装置との間の通信を実現する装置である。通信装置16は、通信ネットワークを介した他の装置(例えば、工程が行われる現場に設けられている情報処理装置やユーザ端末(スマートフォン、タブレット、携帯電話機等))との間の通信を実現する、有線方式または無線方式の通信インタフェースであり、例えば、NIC(Network Interface Card)、無線通信モジュール(BLEモジュール、WiFiモジュール等)、USBモジュール、シリアル通信モジュール等である。
予測装置100が備える機能は、プロセッサ11が、主記憶装置12に格納されているプログラムを読み出して実行することによって、もしくは、夫々を構成するハードウェア(FPGA、ASIC、AIチップ等)によって実現される。予測装置100には、例えば、オペレーティングシステム、デバイスドライバ、ファイルシステム、DBMS(DataBase Management System)(リレーショナルデータベース、NoSQL等)等が導入されていてもよい。
図3に予測装置100が備える主な機能を示す。同図に示すように、予測装置100は、記憶部110、作業予測部130、機器情報管理部132、作業者情報管理部133、パラメータ生成情報管理部134、パラメータ生成部135、サンプルデータ管理部140、予測処理部150、及び進捗管理部160の各機能を備える。
記憶部110は、上位モデル情報111、下位モデル情報112、作業情報113、機器情報114、作業者情報115、パラメータ生成情報116、パラメータ117、サンプルデータ118、補完データ119、仮想工程進捗表121、及び工程作業スタック表120の各情報(データ)を記憶する。記憶部110は、例えば、DBMSが提供するデータベースのテーブルや、ファイルシステムが提供するファイルとして、これらの情報を記憶する。
上位モデル情報111は、上位モデルを定義するデータ(例えば、線形予測を行う算出式、機械学習モデルの定義情報)を含む。上位モデルは、作業予測部130が生成(予測)した作業について、パラメータ生成部135が生成したパラメータ117を入力とする上位シミュレーションを行うことにより予測値を出力する。
下位モデル情報112は、下位モデルを定義するデータ(例えば、線形予測を行う算出式、機械学習モデルの定義情報)を含む。下位モデルは、作業予測部130が生成した作業について、パラメータ生成部135が生成したパラメータ117や、前段の下位シミュレーションの出力を入力として下位シミュレーションを行うことにより、予測値等の結果を出力する。
作業情報113は、作業予測部130が予測した予測作業に関する情報(予測作業の種類や作業量等)を含む。
機器情報114は、機器情報管理部132によって管理される情報であり、工程の作業が実施される現場に存在する機器に関する情報を含む。機器情報114は、パラメータ生成部135や補完データ生成部170によって参照される。
作業者情報115は、作業者情報管理部133によって管理されるデータであり、工程の作業を実施する作業者に関する情報を含む。作業者情報115は、パラメータ生成部135や補完データ生成部170によって参照される。
パラメータ生成情報116は、パラメータ生成情報管理部134によって管理される情報であり、パラメータ117の生成方法に関する情報を含む。パラメータ生成情報116は、パラメータ生成部135がパラメータ117を生成する際に参照される。
パラメータ117は、作業情報113、機器情報114、作業者情報115、及びパラメータ生成情報116に基づき生成される、予測作業の特徴を表す情報(特徴量)であり、例えば、ベクトル形式で表現される。パラメータ117は、シミュレーション(上位シミュレーション、下位シミュレーション)の実行に際してモデル(上位モデル、下位モデル)に入力される。
サンプルデータ118は、サンプルデータ管理部140によって管理される情報であり、工程の指標を表わす情報を含む。サンプルデータ118は、工程の様々な状況下で実測された情報や、下位シミュレーションにより得られる情報に基づき生成される。
補完データ119は、上位シミュレーションに実施において不足するサンプルデータ118を補完するデータであり、後述する補完データ生成部153によって生成される。
仮想工程進捗表121は、進捗管理部160によって管理される情報であり、予測処理部150により生成された予測値に基づく仮想的な工程の進捗状況に関する情報を含む。
工程作業スタック表120は、進捗管理部160によって管理される情報であり、作業毎の仮想的な進捗状況に関する情報を含む。
作業予測部130は、公知の作業量予測手法により工程に入力される作業(作業の種類、作業量等)を予測して作業情報113を生成する。
図4に作業情報113の一例を示す。同図に示すように、例示する作業情報113は、作業ID1131、品目1132、数量1133、重量1134、容積1135、最大長1136、上下配慮要否1137、値札付け作業有無1138、検品作業形式1139、及び個別梱包要否1140の各項目からなる一つ以上のエントリ(レコード)で構成される。
作業ID1131には、作業の識別子である作業IDが設定される。品目1132には、当該作業で取り扱われる品目を示す情報(本例では品目名)が設定される。数量1133には、当該作業で取り扱われる当該品目の数量が設定される。重量1134には、当該品目1つあたりの重量が設定される。容積1135には、当該品目1つあたりの容積が設定される。最大長1136には、当該品目の最大長が設定される。上下配慮要否1137には、当該品目の取り扱いに際し、当該品目の上下を逆にしないように配慮する必要があるか否かを示す情報(本例では、要の場合は「○」、否の場合は「×」)が設定される。値札付け作業有無1138には、当該品目の作業に際し値札を付ける必要があるか否かを示す情報(本例では、要の場合は「○」、否の場合は「×」)が設定される。検品作業形式1139には、当該商品の検品作業の形式を示す情報が設定される。個別梱包要否1140には、当該商品が個別梱包対象か否かを示す情報(本例では、要の場合は「○」、否の場合は「×」)が設定される。
図3に戻り、機器情報管理部132は、機器情報114を管理する。また作業者情報管理部133は、作業者情報115を管理する。またパラメータ生成情報管理部134は、パラメータ生成情報116を管理する。機器情報114や作業者情報115は、例えば、入力装置14を介して入力されるものでもよいし、通信装置16を介して工程が行われる現場等から自動取得されるものでもよい。
パラメータ生成部135は、作業情報113、機器情報114と作業者情報115のうちの少なくともいずれか、及びパラメータ生成情報116を参照してパラメータ117を生成する。
図5に機器情報114の一例を示す。例示する機器情報114は、機器が荷捌きロボット等の作業ロボットである場合の例である。同図に示すように、例示する機器情報114は、機器ID1141、アーム垂直移動最大速度1142、アーム水平移動最大速度1143、認識モジュール平均性能値1144、及びハードウェア性能劣化マージン1145の各項目を有する一つ以上のエントリ(レコード)で構成される。
機器ID1141には、機器の識別子である機器IDが設定される。アーム垂直移動最大速度1142には、当該機器が備えるアームの垂直移動最大速度が設定される。アーム水平移動最大速度1143には、当該機器が備えるアームの水平移動最大速度が設定される。認識モジュール平均性能値1144には、当該機器が備える物体認識装置が、コンベアを流れる物体の特徴を取得するのに要する平均時間が設定される。ハードウェア性能劣化マージン1145には、機器が備えるハードウェア(例えば、モータ)の使用限界(劣化マージン)を示す情報が設定される。
図6に作業者情報115の一例を示す。作業者情報115には、工程が行われる現場で
作業を行う作業者に関するリアルタイムな情報が管理される。同図に示すように、例示する作業者情報115は、商品特徴量1151、環境特徴量1152、作業内容1153、経験期間1154、所要時間1155、及び連続従事時間1156の各項目を有する一つ以上のエントリ(レコード)で構成される。
商品特徴量1151には、作業者が取り扱う商品の特徴を示す情報(本例では、要素z1〜z3の組み合わせ)が設定される。環境特徴量1152には、作業者の作業環境を示す情報(本例では商品を搬送するコンベアの長さ)が設定される。作業内容1153には、作業者が行う作業の内容を示す情報が設定される。経験期間1154には、当該作業を行う作業者について想定する当該作業の経験期間が設定される。所要時間1155には、作業者が当該作業を行うのに要する時間が設定される。連続従事時間1156には、作業者が当該作業に連続して従事可能な上限時間が設定される。
図7にパラメータ生成情報116の一例を示す。(a)は機器(ロボット)を利用して工程の作業を行う場合のパラメータ生成情報116であり、(b)は作業者が工程の作業を行う場合のパラメータ生成情報116である。同図に示すように、パラメータ生成情報116は、パラメータID1161、取得先1162、利用項目1163、及び算出式1164の各項目を有する一つ以上のエントリ(レコード)で構成される。
パラメータID1161には、パラメータ(特徴量)の識別子であるパラメータIDが設定される。取得先1162には、当該パラメータの算出に用いる情報(項目)の取得先を示す情報(「作業情報」(取得先が作業情報113である場合)、「機器情報」(取得先が機器情報114である場合)、「作業者情報」(取得先が作業者情報115である場合)等)が設定される。利用項目1163には、取得先から取得する一つ以上の項目を特定する情報が設定される。算出式1164には、当該パラメータを求めるための算出式が設定される。
パラメータ生成部135は、以上に例示した、作業情報113、機器情報114、及び作業者情報115のうちの少なくともいずれかとパラメータ生成情報116とに基づき、例えば、作業情報113から取得されるパラメータである品目数(品目1132の種類の数)、重量1134、最大長1136、上下配慮要否1137、機器情報114から取得される能力や性能(アーム垂直移動最大速度1142、アーム水平移動最大速度1143、認識モジュール平均性能値1144、及びハードウェア性能劣化マージン1145)等を要素とする特徴ベクトルをパラメータ117として生成する。
図8(a)に、パラメータ117の一例を示す。例示するパラメータ117は、データID1171、及びパラメータ要素1172の各項目を有する一つ以上のエントリ(レコード)で構成される。データID1171には、パラメータ117の識別子であるパラメータIDが設定される。パラメータ要素1172には、パラメータの要素(z1〜z6)が設定される。
図3に戻り、サンプルデータ管理部145は、工程が行われる現場等から取得されたサンプルデータをサンプルデータ118として管理する。
図8(b)に、サンプルデータ118の一例を示す。例示するサンプルデータ118は、データID1181、パラメータ要素1182、所用時間1183、及びパラメータの要素毎の変化率1184の各項目を有する一つ以上のエントリ(レコード)で構成される。
データID1181には、サンプルデータ118の識別子であるサンプルデータIDが
設定される。パラメータ要素1182には、当該サンプルデータ118に対応付けられるパラメータの要素(z1〜z6)が設定される。尚、パラメータ要素1182は、上位シミュレーションの入力となるパラメータ117に類似するサンプルデータ118を検索する際のインデックスとなる。所用時間1183には、生産性指標(所用時間等)の実測値又は下位シミュレーションの結果が設定される。パラメータの要素毎の変化率1184には、パラメータの要素毎の変化率の算出値が設定される。パラメータの要素毎の変化率の算出方法については後述する。尚、補完データ119もサンプルデータ118と同様の構成を有する。
図3に戻り、予測処理部150は、シミュレーション(上位シミュレーション、下位シミュレーション)を実行することにより、作業の生産性に関する指標である予測値を求める。予測処理部150は、予測作業を表わすパラメータ117に類似するパラメータに対応づけられているサンプルデータ118を記憶している場合、当該サンプルデータ118を用いて上位シミュレーションを行うことにより上位工程31についての予測値を求める。
また予測処理部150は、予測作業を表わすパラメータ117に類似するパラメータに対応づけられているサンプルデータ118を記憶していない場合、当該上位工程31の下位工程32について下位シミュレーションを行うことにより補完データ119を生成し、サンプルデータ118と生成した補完データ119(もしくは生成した補完データ119のみ)を用いて上位シミュレーションを行うことにより、上位工程31についての予測値を求める。
同図に示すように、予測処理部150は、サンプルデータ抽出部151、補完要否判定部152、補完データ生成部153、及び予測値算出部154を含む。
サンプルデータ抽出部151は、記憶部110が記憶しているサンプルデータ118の中から、予測値を求めたい予測作業を表わすパラメータ117に類似するパラメータに対応づけられているサンプルデータ118を抽出する。サンプルデータ118の抽出方法の詳細については後述する。
補完要否判定部152は、上位シミュレーションの実行に際し、予測作業を表わすパラメータ117に類似するパラメータに対応づけられているサンプルデータ118を記憶しているか否かを判定することにより、補完データ119の生成要否を判定する。補完データ119の生成要否の判定方法の詳細については後述する。
補完データ生成部153は、上位工程を構成する下位工程について下位シミュレーションを実行することにより補完データ119を生成する。補完データ119の生成方法の詳細については後述する。
予測値算出部154は、上位シミュレーションを行うことにより予測値を求める。
図3に戻り、進捗管理部160は、各上位シミュレーションの実行結果に基づき、各工程の進捗状況を管理する。同図に示すように、進捗管理部160は、作業進捗予測部161、作業進捗管理部162、及び工程進捗管理部163を含む。
作業進捗予測部161は、上位シミュレーションの実行結果に基づき、作業の進捗量(進捗度)を求める。
作業進捗管理部162は、工程作業スタック表120に作業の進捗状況を管理する。
図9に工程作業スタック表120の一例を示す。同図に示すように、例示する工程作業スタック表120は、工程ID1201、作業ID1202、進捗度1203、所用時間1204、仮想開始時間1205の各項目を有する一つ以上のエントリ(レコード)で構成される。工程ID1201には、工程の識別子である工程IDが設定される。作業ID1202には、作業IDが設定される。進捗度1203には、工程の現在の進捗度が設定される。所用時間1204には、現時点までに当該作業に要した時間が設定される。仮想開始時間1205には、当該作業のシミュレーション上の仮想的な開始時間が設定される。尚、本例はシミュレーション上の現在時刻が「午前10:00」であるときの例である。
図3に示す工程進捗管理部163は、工程作業スタック表120に基づく工程の進捗状況(完了状況)を仮想工程進捗表121に反映する。
図10に仮想工程進捗表121の一例を示す。例示する仮想工程進捗表121は、作業ID1211、及び各工程の開始/終了時刻の設定欄1212〜1213の各項目を有する一つ以上のエントリ(レコード)で構成される。作業ID1211には、作業IDが設定される。各工程の開始/終了時刻の設定欄1212〜1213には夫々、各工程の開始又は終了時刻が設定される。尚、本例は現在時刻が「午前10:00」であるときの例である。
<パラメータの要素毎の変化率の算出方法>
図11は、図8(b)のサンプルデータ118におけるパラメータの要素毎の変化率1184の算出処理(以下、「パラメータの要素毎変化率算出処理S1100」と称する。)、を説明するフローチャートである。以下、同図とともにパラメータの要素毎変化率算出処理S1100について説明する。
サンプルデータ管理部140は、例えば、予測装置100が新たなサンプルデータ118を記憶したことを契機として当該処理を実行する(S1111:YES)。
まずサンプルデータ管理部140は、パラメータzの要素ziの一つを選択し(S11
12)、選択した要素ziを微小変化(z+Δzi)させる(S1113)。
続いて、サンプルデータ管理部140は、z+Δziで上位シミュレーションを実行し
て予測値yiを求める(S1114)。
続いて、サンプルデータ管理部140は、予測値yiの元の予測値y0からの変化量Δyi=yi−y0を求める(S1115)。
続いて、サンプルデータ管理部140は、予測値yiの変化率(=Δyi/Δzi)を変
化率dy/dziとしてサンプルデータ118に設定する(S1116)。
続いて、サンプルデータ管理部140は、S1112で全ての要素ziを選択済か否か
を判定する(S1117)。全ての要素ziを選択済であれば(S1117:YES)当
該処理は終了する。未選択の全ての要素ziがあれば(S1117:NO)、処理はS1
112に戻る。
<予測値の算出方法の例>
予測値算出部154は、例えば、上位シミュレーションにおいて次式に基づく線形予測を行うことにより予測値を生成する。
Figure 2021064081
上式において、左辺のy(z+Δz)は、上位シミュレーションにより求めようとする生産性の予測値である。また右辺第1項のy(z)は、生産性指標の実測値(作業所用時
間等)である。また右辺第2項のΔziは、予測作業のパラメータの要素zi 0毎のサンプ
ルデータ118又は補完データ119のパラメータ要素ziとの差である。右辺第2項の
偏微分は、サンプルデータ118又は補完データ119から取得される、生産性のパラメータ要素zi毎の変化率(図8のパラメータの要素毎の変化率1184)である。
<補完要否判定部152による補完要否の判定方法>
補完要否判定部152は、サンプルデータ118に対応づけられているパラメータの変化量に対する、上位シミュレーションによる予測作業についての指標の予測値の変化量の大きさに基づき補完要否を判定する。具体的には、例えば、補完要否判定部152は、次式で定義される距離d(z0,z)に基づき補完データ119の生成要否を判定する。
Figure 2021064081
上式において、zi 0は、予測作業のパラメータ117の要素であり、ziは、サンプル
データ118に対応付けて記憶しているパラメータの要素である。
このようにサンプルデータ118に対応づけられているパラメータの変化量に対する、上位シミュレーションによる予測作業についての指標の予測値の変化量の大きさに基づき補完要否を判定することで、予測作業についての指標の予測精度を高めることができる。
補完要否判定部152は、距離d(z0,z)が小さいN個のサンプルデータ118が
予測作業のパラメータ117の近傍に存在する場合は、補完データ119の生成は不要であると判定し、一方、存在しない場合は、補完データ119の生成が必要であると判定する。具体的には、例えば、補完要否判定部152は、wを正の定数として次式を満たすサンプルデータ118が存在する場合は補完データ119の生成は不要であると判定し、存在しない場合は補完データ119の生成が必要であると判定する。
Figure 2021064081
<補完データの生成方法>
補完データ生成部153は、下位シミュレーションに入力するパラメータを生成し、生成したパラメータを用いて下位シミュレーションを実行することにより補完データ119を生成する。補完データ生成部153は、例えば、サンプルデータ118に対応づけられているパラメータから把握されるデータ分布に従ったランダム値を生成することにより、下位シミュレーションに用いるパラメータを生成する。また補完データ生成部153は、例えば、下位工程32の作業主体が作業ロボットである場合、生成したパラメータを用いて、機器情報114を参照しつつ、作業ロボットの作業を模擬するシミュレータ(以下、「ロボットシミュレータ」と称する。)を実行することにより、補完データ119を生成する。
図12(a)に、ロボットシミュレータが表示する画面の例を示す。例示するロボットシミュレータは、例えば、ユーザインタフェースを介して、パラメータとして、商品のサイズ、商品の重量、商品の表面の摩擦係数、商品の形状を特定するデータ等を設定することによりシミュレーションを実行し、補完データ119に相当する情報を出力する。尚、パラメータの設定から補完データ119の取得までの一連の処理をRPA(Robotic Process Automation)等を用いて自動化することで、ロボットシミュレータを用いて効率よく補完データ119を生成することができる。
また補完データ生成部153は、例えば、下位工程32の作業主体が作業者(人)である場合、生成したパラメータを用いて、補完データ生成部153は、作業者情報115を参照しつつ、人の作業を模擬するシミュレータ(以下、「人作業シミュレータ」と称する。)を実行することにより、補完データ119を生成する。
図12(b)に、人作業シミュレータが表示する画面の例を示す。例示する人作業シミュレータは、例えば、ユーザインタフェースを介して、パラメータとして、商品の特徴(商品のサイズ、商品の重量、商品の表面の摩擦係数、商品の形状、梱包材の形状等)や作業環境の特徴(入力用作業バッファ、入力コンベア、出力コンベア、作業机、コンベア操作盤、検品センサ等)、作業者の経験期間、作業内容等を特定するデータ等を設定することによりシミュレーションを実行し、補完データ119に相当する情報を出力する。尚、パラメータの設定から補完データ119の取得までの一連の処理をRPA等を用いて自動化することで、人作業シミュレータを用いて効率よく補完データ119を生成することができる。
図13にシミュレータを自動実行する際に用いるRPAスクリプトの例を示す。(a)は、RPAスクリプトの実行に際して用いる画面情報の一例である。また(b)は、シミュレータを自動実行するためのRPAスクリプトの一例である。
このように下位シミュレーションを既存のシミュレータを用いて行うことで、低コストで簡便に下位シミュレーションを行うことができる。またRPAスクリプトによりシミュレータを自動実行することで、効率よく下位シミュレーションを行うことができる。
<予測処理>
図14は、予測装置100が予測値の生成に際して行う処理(以下、「予測処理S1400」と称する。)を説明するフローチャートである。以下、同図とともに予測処理S1400について説明する。
同図に示すように、予測処理S1400は、シミュレーションの対象となる上位モデル毎、予め設定された単位時間毎、及び作業予測部130により予測された作業毎のループ処理(順にS1401S〜S1401E、S1402S〜S1402E、S1403S〜S1403E)を含む。尚、予測処理S1400の開始時点において、作業予測部130により作業情報113は既に生成されているものとする。
上記ループ処理では、まずパラメータ生成部135が、作業情報113、機器情報114及び作業者情報115のうちの少なくともいずれか、及びパラメータ生成情報116を参照してパラメータ117を生成する(S1411)。
続いて、予測処理部150のサンプルデータ抽出部151が、生成されたパラメータ117と対応づけられているパラメータが類似するサンプルデータ118を検索し、補完要否判定部152が、予測作業を表わすパラメータ117に類似するパラメータに対応づけ
られているサンプルデータ118を抽出できたか否かを判定する(S1412)。サンプルデータ118を抽出できた場合(S1412:YES)、予測値算出部154が、抽出したサンプルデータ118を用いて上位シミュレーションを行い予測値を算出する(S1420)。
一方、サンプルデータ118を抽出できなかった場合(S1412:NO)、パラメータ生成部135が、下位シミュレーションに用いるパラメータを生成し(S1415)、補完データ生成部153が、生成された上記パラメータを入力として下位シミュレーションを行うことにより補完データ119を生成して記憶する(S1415、S1416)。そして予測値算出部154が、生成したサンプルデータ118と生成した補完データ119(もしくは生成した補完データ119のみ)を用いて上位シミュレーションを行い予測値を算出する(S1420)。
続いて、進捗管理部160の作業進捗予測部161が、上位シミュレーションの実行結果に基づき、作業の進捗度を求める(S1430)。
続いて、作業進捗管理部162が、求めた進捗度を工程作業スタック表120に反映する(S1431)。
続いて、工程進捗管理部163が、工程作業スタック表120に基づき工程の完了有無を把握し、把握した内容を仮想工程進捗表121に反映する(S1432)。
<予測結果の提示>
図15は、予測装置100が予測結果としてユーザに提示する画面(以下、「予測結果提示画面1500」と称する。)の一例である。同図に示すように、予測結果提示画面1500は、横軸をパラメータzのいずれかの要素(z1〜z4)とし、縦軸を予測値yの大きさとして、予測値、サンプルデータ、最近傍のサンプルデータ、及び補完データをプロットしたグラフの表示欄1511、上記グラフの横軸の内容をユーザに選択させるためのリストボックス1512、予測値(生産性推定値)の表示欄1513、Δy/y1514の値(式1の右辺第1項に対する右辺第2項の比に相当)の表示欄1514、前述したwの値(更新閾値)の表示欄1515、手動再計算ボタン1516等を含む。
ユーザは、リストボックス1512を操作することで、上記グラフの横軸のパラメータの要素(z1〜z4)の一つを選択することができる。またユーザは、手動再計算ボタン1516を操作することで、予測装置100に、最新のサンプルデータ118に基づく予測処理S1400を再実行させることができる。例えば、Δy/y1514の値が予め設定された閾値よりも大きい場合、ユーザは手動再計算ボタン1516を操作して最新のサンプルデータ118に基づく予測処理S1400を再実行させる。
ユーザは、予測結果提示画面1500を参照することで、予測処理S1400により生成された予測値とサンプルデータもしくは補完データとの関係や、予測処理S1400で用いられた各種の値を容易に確認することができる。
[第2実施形態]
続いて、第2実施形態として、作業が倉庫の経営計画(週次予測計画)に関する作業である場合における構成例を示す。第2実施形態の予測装置100の基本的な構成は第1実施形態の予測装置100と同様である。以下、第1実施形態と相違する部分を中心として説明する。
図16は、第2実施形態の予測装置100の作業予測部130が生成する作業情報11
3の一例である。同図に示すように、作業予測部130は、倉庫の作業計画表を作業情報113として生成する。作業情報113は、日毎の作業計画を示す情報を含む。例示する作業情報113は、作業、作業総品目数、作業種類数、作業総重量、作業予定人数、終了予定時刻、及び利益指標予測の各項目について設定された情報を含む。
図17は、第2実施形態の予測装置100のパラメータ生成部135が生成するパラメータ117の一例である。同図に示すように、本例では、作業日1171毎に、作業総品目数、作業種類数、作業総重量、作業予定人数、及び作業ロボット数を要素(z1〜z5)とするパラメータが生成される。
図18は、第2実施形態の予測装置100が予測値の生成に際して行う処理(以下、「予測処理S1800」と称する。)を説明するフローチャートである。以下、同図とともに予測処理S1800について説明する。尚、予測処理S1800の開始時点において、作業予測部130により図16に示す作業情報113が既に生成されているものとする。
同図に示すように、予測処理S1800は、作業情報113の作業日毎のループ処理(S1801S〜S1801E)を含む。
上記ループ処理では、まずパラメータ生成部135が、作業情報113、機器情報114及び作業者情報115のうちの少なくともいずれか、及びパラメータ生成情報116を参照してパラメータ117(図17に例示するパラメータ117)を生成する(S1811)。
続いて、予測処理部150のサンプルデータ抽出部151が、生成されたパラメータ117と、対応づけられているパラメータが類似するサンプルデータ118を検索し、補完要否判定部152が、予測作業を表わすパラメータ117に類似するパラメータに対応づけられているサンプルデータ118を抽出できたか否かを判定する(S1812)。サンプルデータ118を抽出できた場合(S1812:YES)、予測値算出部154が、抽出したサンプルデータ118を用いて上位シミュレーションを行うことにより予測値(本例では作業の終了予定時刻、利益指標の予測値)を求める(S1820)。
一方、サンプルデータ118を抽出できなかった場合(S1812:NO)、補完データ生成部153が、下位シミュレーションに用いるパラメータを生成し(S1815)、生成したパラメータを入力として下位シミュレーションを行うことにより補完データ119を生成して記憶し(S1815、S1816)、生成したサンプルデータ118と生成した補完データ119(もしくは生成した補完データ119のみ)を用いて上位シミュレーションを行って予測値を求める(S1820)。
ループ処理(S1801S〜S1801E)を抜けると、続いて、予測値算出部154が、月間総利益の予測値を算出するとともに(S1830)、算出した各予測値(作業の終了予定時刻、利益指標の予測値、月間総利益の予測値)を記載した、所定期間における予定表を生成して出力する(S1831)。
続いて、予測処理部150は、ユーザから確認日の追加入力を受け付けたか否かを判定する(S1840)。追加入力を受け付けた場合は(S1840:YES)、受け付けた確認日を作業日に加えてS1801Sからの処理を行う。追加入力を受け付けていない場合(S1840:NO)、予測処理S1800は終了する。
このように、第1実施形態の構成は、倉庫の経営計画における作業の指標を予測する場合にも適用することができ、倉庫の経営計画に関する作業の指標の予測を効率よく高い精
度で行うことができる。
[第3実施形態]
第3実施形態では、第1実施形態の予測装置100の仕組みを、自律制御ロボットを用いて物流業務(検品、仕分け、梱包等)に関する作業を行う物流業務システムへの適用事例を示す。以下に例示する物流業務システムは、個々のロボットが自律的に状況判断を行って動作するシステム(以下、「自律行動システム」と称する。)と、複数のロボットに対して作業の概要を指示して複数のロボットの全体的な動作を管理するシステム(以下、「協調管理システム」と称する。)と、を含む。
図19は、物流業務システムのシミュレーションに際して用いる、作業現場の仮想空間モデル5である。同図に示すように、仮想空間モデル5は、作業対象となる物品6を作業エリア20に搬入する、複数の搬入口21aを有する搬入装置21、各搬入口21aから作業エリア20に搬入される物品6を運搬する複数の運搬ロボットRT、物品6に対して作業(検品、仕分け、梱包等)を行う複数の作業ロボットRW、作業ロボットRWが物品6に対して作業を行う複数の作業台22、物品6を搬送する複数のコンベアBC(作業位置まで物品6を搬送するコンベア、作業後の物品6を搬出するコンベア)、各コンベアBCに載置されている物品6の数(作業前の物品6の数、作業後の物品6の数)を計数する複数の物品計数装置CT、を含む。作業ロボットRWは、アタッチメントAの交換が可能であり、アタッチメントAを交換することで物品6に対して行う作業の種類を変更することができる。アタッチメントAの交換には所定時間を要する。
予測装置100は、仮想空間モデル5について、上位シミュレーションとして協調管理システムのシミュレーションを行う。また予測装置100は、仮想空間モデル5について、下位シミュレーションとして自律行動システムのシミュレーションを行う。例えば、予測装置100は、コンベアBCに載置されている作業前物品(未処理物品)の数に基づき、運搬ロボットRTに作業指示を出すアルゴリズムや、コンベアBCに載置されている作業前物品の数に基づき作業ロボットRWにアタッチメントAの交換指示を出すアルゴリズムの効率検証を目的として、上位シミュレーションを行う。また例えば、予測装置100は、運搬ロボットRTの衝突回避のアルゴリズムや、作業物体の認識を行うアルゴリズムの効率検証を目的として、下位シミュレーションを行う。
ここで下位シミュレーションとしての作業ロボットRWの動作のシミュレーションは、第1実施形態で説明したロボットシミュレータを用いる方法(図12(a)等)と同様の方法で行うことができる。一方、運搬ロボットRTの動作のシミュレーションについては、例えば、以下に説明する方法により行う。
図20は、下位シミュレーションとして運搬ロボットRTの動作をシミュレーションする情報処理システム(以下、「運搬ロボット制御システム7」と称する。)の一例である。運搬ロボット制御システム7は、第1実施形態の予測装置100の機能を備える。
同図に示すように、運搬ロボット制御システム7は、シミュレーション処理部71、運搬ロボット制御部72、及びロボット行動判定部73を備える。このような構成を有する公知のロボット制御システムとして、例えば、ROS(Robot Operating System)やIssacによるものがある。
シミュレーション処理部71は、運搬ロボットRTの物理的な挙動をシミュレーションする物理挙動シミュレーション部711、運搬ロボットRTに関する3次元シミュレーション映像を生成する3次元映像レンダリング部712、及びロボット行動判定部73からの制御指示を受け付ける抽象化API713を有する。尚、シミュレーション処理部71
は、作業エリア20に存在する各運搬ロボットRTの動作履歴75を取得可能である。
図20に示すように、運搬ロボット制御部72は、実際の運搬ロボットRTを制御する実ロボット制御部721、運搬ロボットRTや作業エリア20に設けられたセンサ装置722(撮影装置(カメラ)、各種センサ)、及びロボット行動判定部73からの制御指示を受け付ける抽象化API723を有する。
ロボット行動判定部73は、予め設定された業務指示を示すデータと、シミュレーション処理部71や運搬ロボット制御部72から入力されるセンサデータ(撮影装置により撮影された映像データや画像データ、各種センサにより取得された計測値)とに基づき、運搬ロボットRTがとるべき行動を判定し、判定の結果に応じた制御指示(モータ(アクチュエータ)の制御信号等)を、シミュレーション処理部71又は運搬ロボット制御部72に入力する。上記の判定は、例えば、運搬ロボットRTの過去の動作履歴等に基づく学習データにより学習された機械学習モデルを用いて行われる。尚、図21に、3次元映像レンダリング部712がセンサデータとして生成する3次元シミュレーション映像の一例を示す。
上記の機械学習モデルは、運搬ロボットRTを、業務指示を示すデータに応じて、搬入装置21の搬入口21aの一つに移動させて物品6を受け取り、受け取った物品6を指示されたコンベアBCまで運搬する制御指示を出力する。また機械学習モデルは、運搬ロボットRTが、他の運搬ロボットRTや障害物と衝突する可能性がある場合、動作制御(方向転換、速度調節等)を行って衝突を回避するように学習される。尚、上記の動作制御の度合いは、例えば、衝突が生じた場合のペナルティ値を設定することで調節することができる。
シミュレーション処理部71は、ロボット行動判定部73から入力される制御指示に従って運搬ロボットRTを制御した場合における運搬ロボットRTの挙動をシミュレーションし、シミュレーションの結果に基づき生成したセンサデータをロボット行動判定部73に入力する。上記挙動は、例えば、制御指示の受信、搬入装置21の搬入口21aの一つへの移動、物品6の受け取り、搬送先のコンベアBCまでの移動、物品6のコンベアBCへの載置等である。シミュレーション処理部71は、シミュレーションの結果(ログ情報)をサンプルデータ118として記憶する。またシミュレーション処理部71は、運搬ロボットRTが制御指示に従った行動をしたときの所要時間を算出し、算出した所要時間を含むサンプルデータ118を生成して記憶する。
運搬ロボット制御部72は、ロボット行動判定部73から入力される制御指示に従って運搬ロボットRTを制御する。また運搬ロボット制御部72は、センサデータをロボット行動判定部73に入力する。
図22は、予測装置100のパラメータ生成部135が生成するパラメータ117の一例である。同図に示すように、本例では、データID2111毎に、運搬元の自動倉庫モデルの運び出し口の識別子、運搬先のコンベアの識別子、移動中の運搬ロボットの総数、コンベア(1)のセンサのカウント数、コンベア(2)のセンサのカウント数、コンベア(3)のセンサのカウント数、コンベア(1)に向けて動いている運搬ロボットの数、コンベア(2)に向けて動いている運搬ロボットの数、コンベア(3)に向けて動いている運搬ロボットの数、コンベア(1)から帰っていく運搬ロボットの数、コンベア(2)から帰っていく運搬ロボットの数、コンベア(3)から帰っていく運搬ロボットの数、対象の自律体に与えられている衝突ペナルティの値(4)、及び全ロボットに与えられている衝突ペナルティの値の平均値を要素(z1〜z14)とするパラメータが生成される。
尚、下位シミュレーションの実行に際して必要になる、注目する運搬ロボットRT以外の運搬ロボットRTの動作については、例えば、過去の運搬ロボットRTの動作履歴や、既に実施したシミュレーションの結果を用いて事前に保存された行動パターンを利用する。また運搬ロボットRT同士の衝突が生じる可能性がある場合は、衝突の可能性のある各運搬ロボットRTについてシミュレーションを実行するようにしてもよい。
このように、第1実施形態の構成は、自律制御ロボットを用いて物流業務(検品、仕分け、梱包等)に関する作業を行う、自律行動システム及び協調管理システムを含む物流業務システムにおける作業の指標を予測する場合にも適用することができ、これにより物流業務システムにおける作業の指標の予測を効率よく高い精度で行うことができる。
以上、本発明の一実施形態について詳細に説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、説明した全ての構成を備えるものに必ずしも限定されるものではない。また上記実施形態の構成の一部について、他の構成の追加や削除、置換をすることが可能である。
また上記の各構成、機能部、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、IC
カード、SDカード、DVD等の記録媒体に置くことができる。
また各図において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしも実装上の全ての制御線や情報線を示しているとは限らない。例えば、実際には殆ど全ての構成が相互に接続されていると考えてもよい。
また以上に説明した各情報処理装置の各種機能部、各種処理部、各種データベースの配置形態は一例に過ぎない。各種機能部、各種処理部、各種データベースの配置形態は、これらの装置が備えるハードウェアやソフトウェアの性能、処理効率、通信効率等の観点から最適な配置形態に変更し得る。
また前述した各種のデータを格納するデータベースの構成(スキーマ(Schema)等)は、リソースの効率的な利用、処理効率向上、アクセス効率向上、検索効率向上等の観点から柔軟に変更し得る。
31 上位工程、32 下位工程、35 バッファ、100 予測装置、110 記憶部、111 上位モデル情報、112 下位モデル情報、113 作業情報、114 機器情報、115 作業者情報、116 パラメータ生成情報、117 パラメータ、118
サンプルデータ、119 補完データ、120 工程作業スタック表、121 仮想工程進捗表、130 作業予測部、132 機器情報管理部、133 作業者情報管理部、134 パラメータ生成情報管理部、135 パラメータ生成部、140 サンプルデータ管理部、150 予測処理部、151 サンプルデータ抽出部、152 補完要否判定部、153 補完データ生成部、154 予測値算出部、160 進捗管理部、161 作業進捗予測部、162 作業進捗管理部、163 工程進捗管理部

Claims (12)

  1. 階層構造を有する複数の工程により作業を行う際の指標を予測する情報処理装置であって、
    前記作業について、下位の前記工程である下位工程について設定されたモデルである下位モデルに基づくシミュレーションである下位シミュレーションを実行することにより生成される指標を含むデータであるサンプルデータを、夫々の前記作業を表すパラメータに対応付けて記憶し、
    予測される作業である予測作業について、上位の前記工程である上位工程について設定されたモデルである上位モデルに基づくシミュレーションである上位シミュレーションを、前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを用いて行うことにより、前記予測作業についての指標を予測する、
    情報処理装置。
  2. 請求項1に記載の情報処理装置であって、
    前記上位シミュレーションの実行に際し、前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶しているか否かを判定し、
    前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶している場合は、当該サンプルデータを用いて前記上位シミュレーションを行うことにより指標の予測値を求め、
    前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶していない場合は、前記上位工程を構成する前記下位工程の前記下位シミュレーションを行うことにより、前記予測作業を表すパラメータに類似するパラメータについての前記サンプルデータを生成し、生成した前記サンプルデータを用いて前記上位シミュレーションを行うことにより、前記予測作業についての指標の予測値を求める、
    情報処理装置。
  3. 請求項2に記載の情報処理装置であって、
    前記判定を、前記サンプルデータの前記パラメータの変化量に対する、前記上位シミュレーションによる前記予測作業についての指標の予測値の変化量の大きさに基づき行う、
    情報処理装置。
  4. 請求項1乃至3のいずれか一項に記載の情報処理装置であって、
    前記下位シミュレーションを、前記下位工程の作業を行うロボットの動作を模擬するシミュレータ、及び前記下位工程の作業を行う作業者の動作を模擬するシミュレータのうちの少なくともいずかを用いて行う、
    情報処理装置。
  5. 請求項1乃至3のいずれか一項に記載の情報処理装置であって、
    ユーザインタフェースを介して受け付けた情報を入力として前記下位シミュレーションに相当する処理を行うシミュレータと通信可能に接続し、
    前記下位モデルに入力するパラメータを前記シミュレータに入力して前記シミュレータによりシミュレーション行い当該シミュレーションの結果を取得する一連の処理を自動で行うRPA(Robotic Process Automation)のスクリプトを実行する、
    情報処理装置。
  6. 請求項1乃至3のいずれか一項に記載の情報処理装置であって、
    前記作業は、自律制御が可能な複数のロボットを用いて行われる作業を含み、
    前記上位シミュレーションは、前記複数のロボットの全体としての協調動作についてのシミュレーションであり、
    前記下位シミュレーションは、前記複数のロボットの個々の自律動作についてのシミュレーションである、
    情報処理装置。
  7. 階層構造を有する複数の工程により作業を行う際の指標を予測する情報処理方法であって、
    情報処理装置が、
    前記作業について、下位の前記工程である下位工程について設定されたモデルである下位モデルに基づくシミュレーションである下位シミュレーションを実行することにより生成される指標を含むデータであるサンプルデータを、夫々の前記作業を表すパラメータに対応付けて記憶するステップ、及び、
    予測される作業である予測作業について、上位の前記工程である上位工程について設定されたモデルである上位モデルに基づくシミュレーションである上位シミュレーションを、前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを用いて行うことにより、前記予測作業についての指標を予測するステップ、
    を実行する、情報処理方法。
  8. 請求項7に記載の情報処理方法であって、
    前記情報処理装置が、
    前記上位シミュレーションの実行に際し、前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶しているか否かを判定するステップ、
    前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶している場合は、当該サンプルデータを用いて前記上位シミュレーションを行うことにより指標の予測値を求めるステップ、及び、
    前記予測作業を表すパラメータに類似するパラメータに対応づけられている前記サンプルデータを記憶していない場合は、前記上位工程を構成する前記下位工程の前記下位シミュレーションを行うことにより、前記予測作業を表すパラメータに類似するパラメータについての前記サンプルデータを生成し、生成した前記サンプルデータを用いて前記上位シミュレーションを行うことにより、前記予測作業についての指標の予測値を求めるステップ、
    をさらに実行する、情報処理方法。
  9. 請求項8に記載の情報処理方法であって、
    前記情報処理装置が、前記判定を、前記サンプルデータの前記パラメータの変化量に対する、前記上位シミュレーションによる前記予測作業についての指標の予測値の変化量の大きさに基づき行うステップ、
    をさらに実行する、情報処理方法。
  10. 請求項7乃至9のいずれか一項に記載の情報処理方法であって、
    前記情報処理装置が、前記下位シミュレーションを、前記下位工程の作業を行うロボットの動作を模擬するシミュレータ、及び前記下位工程の作業を行う作業者の動作を模擬するシミュレータのうちの少なくともいずかを用いて行う、
    情報処理方法。
  11. 請求項7乃至9のいずれか一項に記載の情報処理方法であって、
    前記情報処理装置は、ユーザインタフェースを介して受け付けた情報を入力として前記下位シミュレーションに相当する処理を行うシミュレータと通信可能に接続しており、
    前記情報処理装置が、前記下位モデルに入力するパラメータを前記シミュレータに入力して前記シミュレータによりシミュレーション行い当該シミュレーションの結果を取得す
    る一連の処理を自動で行うRPA(Robotic Process Automation)のスクリプトを実行するステップ、
    をさらに実行する、情報処理方法。
  12. 請求項7乃至9のいずれか一項に記載の情報処理方法であって、
    前記作業は、自律制御が可能な複数のロボットを用いて行われる作業を含み、
    前記上位シミュレーションは、前記複数のロボットの全体としての協調動作についてのシミュレーションであり、
    前記下位シミュレーションは、前記複数のロボットの個々の自律動作についてのシミュレーションである、
    情報処理方法。
JP2019187444A 2019-10-11 2019-10-11 情報処理装置、及び情報処理方法 Active JP7416597B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019187444A JP7416597B2 (ja) 2019-10-11 2019-10-11 情報処理装置、及び情報処理方法
US17/767,482 US20230219226A1 (en) 2019-10-11 2020-09-30 Information processing device and information processing method
PCT/JP2020/037219 WO2021070711A1 (ja) 2019-10-11 2020-09-30 情報処理装置、及び情報処理方法
CN202080071279.6A CN114556385A (zh) 2019-10-11 2020-09-30 信息处理装置以及信息处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187444A JP7416597B2 (ja) 2019-10-11 2019-10-11 情報処理装置、及び情報処理方法

Publications (2)

Publication Number Publication Date
JP2021064081A true JP2021064081A (ja) 2021-04-22
JP7416597B2 JP7416597B2 (ja) 2024-01-17

Family

ID=75437906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187444A Active JP7416597B2 (ja) 2019-10-11 2019-10-11 情報処理装置、及び情報処理方法

Country Status (4)

Country Link
US (1) US20230219226A1 (ja)
JP (1) JP7416597B2 (ja)
CN (1) CN114556385A (ja)
WO (1) WO2021070711A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806545B (zh) * 2022-04-12 2023-06-21 廖文岳 圖形模組化自動加工整合系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317779A (ja) * 1999-05-10 2000-11-21 Mitsubishi Heavy Ind Ltd 離散事象のシミュレーションシステム
JP2001356806A (ja) * 2000-06-12 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> 分散生産管理装置及び記録媒体
JP2003108220A (ja) * 2001-09-28 2003-04-11 Omron Corp 制御プログラム開発支援方法及び装置
JP2012014386A (ja) * 2010-06-30 2012-01-19 Canon It Solutions Inc 情報処理装置、情報処理方法、及びコンピュータプログラム
JP2018036945A (ja) * 2016-09-01 2018-03-08 オムロン株式会社 シミュレータ連携装置、シミュレータ連携装置の制御方法、情報処理プログラム、および記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317779A (ja) * 1999-05-10 2000-11-21 Mitsubishi Heavy Ind Ltd 離散事象のシミュレーションシステム
JP2001356806A (ja) * 2000-06-12 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> 分散生産管理装置及び記録媒体
JP2003108220A (ja) * 2001-09-28 2003-04-11 Omron Corp 制御プログラム開発支援方法及び装置
JP2012014386A (ja) * 2010-06-30 2012-01-19 Canon It Solutions Inc 情報処理装置、情報処理方法、及びコンピュータプログラム
JP2018036945A (ja) * 2016-09-01 2018-03-08 オムロン株式会社 シミュレータ連携装置、シミュレータ連携装置の制御方法、情報処理プログラム、および記録媒体

Also Published As

Publication number Publication date
CN114556385A (zh) 2022-05-27
JP7416597B2 (ja) 2024-01-17
WO2021070711A1 (ja) 2021-04-15
US20230219226A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
Xie et al. Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems
Bangsow Manufacturing simulation with plant simulation and simtalk: usage and programming with examples and solutions
Prajapat et al. A review of assembly optimisation applications using discrete event simulation
Bonney Reflections on production planning and control (PPC)
TW201835821A (zh) 工作計劃最佳化裝置及工作計劃最佳化方法
US20180107961A1 (en) Task Support System and Task Support Method
US20160125345A1 (en) Systems, devices, and methods for determining an operational health score
US10054936B2 (en) Manufacturing execution system and method of determining production metrics for a line
WO2021070711A1 (ja) 情報処理装置、及び情報処理方法
US10627984B2 (en) Systems, devices, and methods for dynamic virtual data analysis
Kofler et al. Rassigning storage locations in a warehouse to optimize the order picking process
US20150277434A1 (en) Production plan creation support method and production plan creation support apparatus
JP6064038B2 (ja) 配置データの処理装置と処理方法、及び物品の入出庫作業方法
Daneshjo et al. Software support for optimizing layout solution in lean production
EP3514742A1 (en) Collecting data from a data-source into a mom data warehouse
JP6214835B2 (ja) 作業指導割当システム及び作業指導割当方法
JP6790165B2 (ja) 作業バッチ生成装置及び方法
JP2017165502A (ja) 集品作業装置、集品作業方法および集品作業プログラム
US11086585B2 (en) Information processing device, information processing method and storage medium
JP6314285B2 (ja) 作業指示割当装置および作業指示割当方法
Ryu et al. Development of integrated and interactive spatial planning system of assembly blocks in shipbuilding
Ng et al. SFlex-WMS: a novel multi-expert system for flexible logistics and warehouse operation in the context of Industry 4.0
JP2013254261A (ja) 作業支援方法等
CN111191999A (zh) 产品研发管理方法、装置、计算机设备及存储介质
JP5984686B2 (ja) 情報処理装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7416597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150