JP2021064013A - Decoder and method, and program - Google Patents

Decoder and method, and program Download PDF

Info

Publication number
JP2021064013A
JP2021064013A JP2021006899A JP2021006899A JP2021064013A JP 2021064013 A JP2021064013 A JP 2021064013A JP 2021006899 A JP2021006899 A JP 2021006899A JP 2021006899 A JP2021006899 A JP 2021006899A JP 2021064013 A JP2021064013 A JP 2021064013A
Authority
JP
Japan
Prior art keywords
audio signal
unit
priority information
channel
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021006899A
Other languages
Japanese (ja)
Other versions
JP7412367B2 (en
Inventor
徹 知念
Toru Chinen
徹 知念
西口 正之
Masayuki Nishiguchi
正之 西口
潤宇 史
Runyu Shi
潤宇 史
光行 畠中
Mitsuyuki Hatanaka
光行 畠中
優樹 山本
Yuki Yamamoto
優樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2021064013A publication Critical patent/JP2021064013A/en
Priority to JP2023038916A priority Critical patent/JP2023072027A/en
Application granted granted Critical
Publication of JP7412367B2 publication Critical patent/JP7412367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereophonic System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

To enable the amount of calculation for decoding an audio signal to be reduced.SOLUTION: A priority information acquisition unit acquires priority information of each channel from a bit stream for supply to an output selection unit. A channel audio signal decoding unit decodes encoded data of an audio signal of each channel, and supplies an obtained MDCT coefficient to the output selection unit. The output selection unit supplies the MDCT coefficient to an IMDCT unit in the case where the priority degree indicated in the priority information is more than or equal to a predetermined degree, and supplies 0 as the MDCT coefficient to a 0-value output unit in the case where the priority degree is less than the predetermined degree. The 0-value output unit generates an audio signal on the basis of 0 supplied as the MDCT coefficient. In addition, the IMDCT unit performs IMDCT on the basis of the MDCT coefficient to generate an audio signal. The present technology can be applied to an encoder and a decoder.SELECTED DRAWING: Figure 10

Description

本技術は復号装置および方法、並びにプログラムに関し、特に、オーディオ信号の復号の計算量を低減させることができるようにした復号装置および方法、並びにプログラムに関する。 The present technology relates to decoding devices and methods and programs, and more particularly to decoding devices and methods and programs capable of reducing the computational complexity of decoding audio signals.

例えば、オーディオ信号を符号化する方法として、国際標準規格であるMPEG(Moving Picture Experts Group)-2 AAC(Advanced Audio Coding)規格、MPEG-4 AAC規格やMPEG-D USAC(Unified Speech and Audio Coding)規格のマルチチャネル符号化が知られている(例えば、非特許文献1および非特許文献2参照)。 For example, as a method of encoding an audio signal, the international standards MPEG (Moving Picture Experts Group) -2 AAC (Advanced Audio Coding) standard, MPEG-4 AAC standard and MPEG-D USAC (Unified Speech and Audio Coding) Multi-channel coding of the standard is known (see, for example, Non-Patent Document 1 and Non-Patent Document 2).

INTERNATIONAL STANDARD ISO/IEC 14496-3 Fourth edition 2009-09-01 Information technology-coding of audio-visual objects-part3:AudioINTERNATIONAL STANDARD ISO / IEC 14496-3 Fourth edition 2009-09-01 Information technology-coding of audio-visual objects-part3: Audio INTERNATIONAL STANDARD ISO/IEC 23003-3 Frist edition 2012-04-01 Information technology-coding of audio-visual objects-part3:Unified speech and audio codingINTERNATIONAL STANDARD ISO / IEC 23003-3 Frist edition 2012-04-01 Information technology-coding of audio-visual objects-part3: Unified speech and audio coding

ところで、従来の5.1チャネルサラウンド再生を超える、より高臨場感な再生や、複数の音素材(オブジェクト)を伝送するためには、より多くのオーディオチャネルを用いた符号化技術が必要になる。 By the way, in order to reproduce more realistically than the conventional 5.1 channel surround reproduction and to transmit a plurality of sound materials (objects), a coding technique using more audio channels is required.

例えば、24チャネルのオーディオ信号および複数のオブジェクトのオーディオ信号を符号化し、復号を行う場合と、2チャネルのオーディオ信号を符号化し復号する場合とを考える。このような場合、計算能力の乏しいモバイルデバイスなどでは、2チャネルのオーディオ信号をリアルタイムに復号することは可能であるが、24チャネルのオーディオ信号および複数のオブジェクトのオーディオ信号をリアルタイムに復号することが困難な場合がある。 For example, consider a case where a 24-channel audio signal and an audio signal of a plurality of objects are encoded and decoded, and a case where a 2-channel audio signal is encoded and decoded. In such cases, it is possible to decode 2-channel audio signals in real time on mobile devices with poor computing power, but it is possible to decode 24-channel audio signals and audio signals of multiple objects in real time. It can be difficult.

現状のMPEG-D USACなどのオーディオコーデックでは、全チャネルおよび全オブジェクトのオーディオ信号を復号する必要があるため、復号時の計算量を低減させることが困難である。そうすると、復号側の機器によっては、リアルタイムでオーディオ信号を再生することができなくなってしまうことがある。 With the current audio codecs such as MPEG-D USAC, it is necessary to decode the audio signals of all channels and all objects, so it is difficult to reduce the amount of calculation at the time of decoding. Then, depending on the device on the decoding side, it may not be possible to reproduce the audio signal in real time.

本技術は、このような状況に鑑みてなされたものであり、復号の計算量を低減させることができるようにするものである。 The present technology has been made in view of such a situation, and makes it possible to reduce the amount of decoding calculation.

本技術の一側面の復号装置は、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得する取得部と、前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号を復号し、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号しないオーディオ信号復号部とを備える。 The decoding device of one aspect of the present technology acquires the priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each of the objects from the supplied bit stream at a predetermined time. Based on the unit and the priority information, the encoded audio signal of the object whose priority indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority indicated in the priority information is determined. It includes an audio signal decoding unit that does not decode the encoded audio signal of the object that is less than the predetermined degree.

本技術の一側面の復号方法またはプログラムは、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得し、前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号を復号し、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号しないステップを含む。 A decoding method or program of one aspect of the present technology obtains priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object from a supplied bit stream at a predetermined time. Then, based on the priority information, the encoded audio signal of the object whose priority indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority indicated in the priority information is the said. The encoded audio signal of the object that is less than a predetermined degree includes a step of not decoding.

本技術の一側面においては、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報が取得され、前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号が復号され、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号されない。 In one aspect of the present technology, priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each of the objects at a predetermined time is acquired from the supplied bit stream, and the priority is obtained. Based on the degree information, the encoded audio signal of the object whose priority degree indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority degree indicated in the priority information is less than the predetermined degree. The encoded audio signal of the object is not decoded.

ビットストリームについて説明する図である。It is a figure explaining a bit stream. 符号化について説明する図である。It is a figure explaining the coding. 優先度情報について説明する図である。It is a figure explaining the priority information. 優先度情報の値の意味について説明する図である。It is a figure explaining the meaning of the value of priority information. 符号化装置の構成例を示す図である。It is a figure which shows the structural example of the coding apparatus. チャネルオーディオ符号化部の構成例を示す図である。It is a figure which shows the structural example of the channel audio coding part. オブジェクトオーディオ符号化部の構成例を示す図である。It is a figure which shows the structural example of the object audio coding part. 符号化処理を説明するフローチャートである。It is a flowchart explaining the coding process. 復号装置の構成例を示す図である。It is a figure which shows the configuration example of the decoding apparatus. アンパッキング/復号部の構成例を示す図である。It is a figure which shows the structural example of the unpacking / decoding part. 復号処理を説明するフローチャートである。It is a flowchart explaining the decoding process. 選択復号処理を説明するフローチャートである。It is a flowchart explaining the selective decoding process. アンパッキング/復号部の他の構成例を示す図である。It is a figure which shows the other structural example of the unpacking / decoding part. 選択復号処理を説明するフローチャートである。It is a flowchart explaining the selective decoding process. オブジェクトのメタデータのシンタックスの一例を示す図である。It is a figure which shows an example of the syntax of the metadata of an object. オーディオ信号の生成について説明する図である。It is a figure explaining the generation of an audio signal. オーディオ信号の生成について説明する図である。It is a figure explaining the generation of an audio signal. MDCT係数の出力先の選択について説明する図である。It is a figure explaining the selection of the output destination of the MDCT coefficient. オーディオ信号と高域のパワー値のゲイン調整について説明する図である。It is a figure explaining the gain adjustment of an audio signal and a power value of a high region. オーディオ信号と高域のパワー値のゲイン調整について説明する図である。It is a figure explaining the gain adjustment of an audio signal and a power value of a high region. アンパッキング/復号部の他の構成例を示す図である。It is a figure which shows the other structural example of the unpacking / decoding part. 選択復号処理を説明するフローチャートである。It is a flowchart explaining the selective decoding process. オーディオ信号のゲイン調整について説明する図である。It is a figure explaining the gain adjustment of an audio signal. オーディオ信号のゲイン調整について説明する図である。It is a figure explaining the gain adjustment of an audio signal. アンパッキング/復号部の他の構成例を示す図である。It is a figure which shows the other structural example of the unpacking / decoding part. 選択復号処理を説明するフローチャートである。It is a flowchart explaining the selective decoding process. VBAPゲインについて説明する図である。It is a figure explaining the VBAP gain. VBAPゲインについて説明する図である。It is a figure explaining the VBAP gain. アンパッキング/復号部の他の構成例を示す図である。It is a figure which shows the other structural example of the unpacking / decoding part. 復号処理を説明するフローチャートである。It is a flowchart explaining the decoding process. 選択復号処理を説明するフローチャートである。It is a flowchart explaining the selective decoding process. コンピュータの構成例を示す図である。It is a figure which shows the configuration example of a computer.

以下、図面を参照して、本技術を適用した実施の形態について説明する。 Hereinafter, embodiments to which the present technology is applied will be described with reference to the drawings.

〈第1の実施の形態〉
〈本技術の概要について〉
本技術は、マルチチャネルを構成する各チャネルのオーディオ信号、およびオブジェクトのオーディオ信号の符号化において、各チャネルのオーディオ信号の優先度情報および各オブジェクトのオーディオ信号の優先度情報を伝送することで、復号の計算量を低減させることができるようにするものである。
<First Embodiment>
<Overview of this technology>
The present technology transmits the priority information of the audio signal of each channel and the priority information of the audio signal of each object in the coding of the audio signal of each channel constituting the multi-channel and the audio signal of the object. This is intended to reduce the amount of decoding calculation.

また、本技術は復号側において、各チャネルまたは各オブジェクトの優先度情報に示される優先度合いが所定の度合い以上である場合に周波数時間変換を行い、優先度情報に示される優先度合いが所定の度合い未満である場合には、周波数時間変換を行わず、周波数時間変換の結果を0とすることで、オーディオ信号の復号の計算量を低減させることができるようにするものである。 In addition, the present technology performs frequency-time conversion when the priority indicated in the priority information of each channel or each object is equal to or higher than a predetermined degree on the decoding side, and the priority indicated in the priority information is a predetermined degree. If it is less than, the frequency-time conversion is not performed and the result of the frequency-time conversion is set to 0 so that the amount of calculation for decoding the audio signal can be reduced.

なお、以下では、マルチチャネルのオーディオ信号およびオブジェクトのオーディオ信号がAAC規格に従って符号化される場合について説明するが、他の方式で符号化される場合にも同様の処理が行なわれる。 In the following, a case where the multi-channel audio signal and the audio signal of the object are encoded according to the AAC standard will be described, but the same processing is performed when the multi-channel audio signal and the object audio signal are encoded by another method.

例えば、マルチチャネルのオーディオ信号、および複数のオブジェクトのオーディオ信号がAAC規格に従って符号化され、伝送される場合、各チャネルや各オブジェクトのオーディオ信号がフレームごとに符号化されて伝送される。 For example, when a multi-channel audio signal and an audio signal of a plurality of objects are encoded and transmitted according to the AAC standard, the audio signal of each channel or each object is encoded and transmitted frame by frame.

具体的には図1に示すように、符号化されたオーディオ信号や、オーディオ信号の復号等に必要な情報が複数のエレメント(ビットストリームエレメント)に格納され、それらのエレメントからなるビットストリームが伝送されることになる。 Specifically, as shown in FIG. 1, a coded audio signal and information necessary for decoding an audio signal are stored in a plurality of elements (bitstream elements), and a bitstream composed of these elements is transmitted. Will be done.

この例では、1フレーム分のビットストリームには、先頭から順番にt個のエレメントEL1乃至エレメントELtが配置され、最後に当該フレームの情報に関する終端位置であることを示す識別子TERMが配置されている。 In this example, in the bit stream for one frame, t elements EL1 to element ELt are arranged in order from the beginning, and finally, an identifier TERM indicating that the end position is related to the information of the frame is arranged. ..

例えば、先頭に配置されたエレメントEL1は、DSE(Data Stream Element)と呼ばれるアンシラリデータ領域であり、DSEにはオーディオ信号のダウンミックスに関する情報や識別情報など、複数の各チャネルに関する情報が記述される。 For example, the element EL1 arranged at the beginning is an ancillary data area called DSE (Data Stream Element), and information about each of a plurality of channels such as information about downmixing of audio signals and identification information is described in DSE. To.

エレメントEL1の後に続くエレメントEL2乃至エレメントELtには、符号化されたオーディオ信号が格納される。 A coded audio signal is stored in the element EL2 to the element ELt following the element EL1.

特に、シングルチャネルのオーディオ信号が格納されているエレメントはSCEと呼ばれており、ペアとなる2つのチャネルのオーディオ信号が格納されているエレメントはCPEと呼ばれている。また、各オブジェクトのオーディオ信号はSCEに格納される。 In particular, the element that stores the audio signal of a single channel is called SCE, and the element that stores the audio signal of two pairs of channels is called CPE. Also, the audio signal of each object is stored in SCE.

本技術では、マルチチャネルを構成する各チャネルのオーディオ信号の優先度情報、および各オブジェクトのオーディオ信号の優先度情報が生成されてDSEに格納される。 In the present technology, the priority information of the audio signals of each channel constituting the multi-channel and the priority information of the audio signals of each object are generated and stored in the DSE.

例えば、図2に示すように連続するフレームF11乃至フレームF13のオーディオ信号が符号化されるとする。 For example, it is assumed that the audio signals of consecutive frames F11 to F13 are encoded as shown in FIG.

このような場合、符号化装置(エンコーダ)は、それらのフレームごとに、各チャネルのオーディオ信号がどの程度の優先度合いであるかを解析し、例えば図3に示すように各チャネルの優先度情報を生成する。同様に、符号化装置は、各オブジェクトのオーディオ信号についても優先度情報を生成する。 In such a case, the encoder analyzes the priority of the audio signal of each channel for each frame, and the priority information of each channel is analyzed, for example, as shown in FIG. To generate. Similarly, the encoding device also generates priority information for the audio signal of each object.

例えば符号化装置は、オーディオ信号の音圧やスペクトルの形状、さらに各チャネル間やオブジェクト間のスペクトル形状の相関などに基づいて、オーディオ信号がどの程度の優先度合いであるかを解析する。 For example, the coding device analyzes the priority of the audio signal based on the sound pressure of the audio signal, the shape of the spectrum, and the correlation of the spectrum shape between each channel or between objects.

図3では、全チャネル数がMチャネルである場合における各チャネルの優先度情報が例として示されている。すなわち、チャネル番号が0であるチャネルから、チャネル番号がM−1であるチャネルまでの各チャネルについて、それらのチャネルのオーディオ信号の優先度合いを示す数値が優先度情報として示されている。 In FIG. 3, priority information of each channel when the total number of channels is M channels is shown as an example. That is, for each channel from the channel having the channel number 0 to the channel having the channel number M-1, the numerical value indicating the priority degree of the audio signal of those channels is shown as the priority information.

例えばチャネル番号が0であるチャネルの優先度情報は3となっており、チャネル番号が1であるチャネルの優先度情報は0となっている。なお、以下、所定のチャネル番号m(m=0,1,・・・,M-1)のチャネルをチャネルmとも称することとする。 For example, the priority information of the channel having the channel number 0 is 3, and the priority information of the channel having the channel number 1 is 0. Hereinafter, the channel having a predetermined channel number m (m = 0,1, ..., M-1) will also be referred to as a channel m.

図3に示した優先度情報の値は、図4に示すように0から7までの何れかの値とされるようになされており、優先度情報の値が大きいほど、オーディオ信号の再生時の優先度合い、つまり重要度が高いとされている。 The value of the priority information shown in FIG. 3 is set to any value from 0 to 7 as shown in FIG. 4, and the larger the value of the priority information, the more the audio signal is reproduced. It is said that the priority of, that is, the importance is high.

したがって、優先度情報の値が0であるオーディオ信号は最も優先度が低く、優先度情報の値が7であるオーディオ信号は最も優先度が高いことになる。 Therefore, the audio signal having the priority information value of 0 has the lowest priority, and the audio signal having the priority information value of 7 has the highest priority.

マルチチャネルのオーディオ信号や複数のオブジェクトのオーディオ信号が同時に再生される場合、通常、それらのオーディオ信号により再生される音声のなかには、他の音声と比べるとそれほど重要ではない音声も含まれている。換言すれば、全体の音声のなかで、ある特定の音声が再生されなかったとしても、そのことにより受聴者に違和感を与えるようなことがない程度の音声も存在する。 When a multi-channel audio signal or an audio signal of multiple objects is played back at the same time, the sound played by those audio signals usually includes sound that is less important than other sounds. In other words, even if a specific sound is not reproduced in the whole sound, there is a sound that does not cause discomfort to the listener.

したがって、必要に応じて優先度の低いオーディオ信号については復号しないようにすれば、音質の劣化を抑えつつ復号の計算量を低減させることができる。そこで、符号化装置では、復号しないオーディオ信号を適切に選択することができるように、再生時における各オーディオ信号の重要さの度合い、つまり復号を優先させるべき度合いを示す優先度情報が、フレームごとに各オーディオ信号に対して付与される。 Therefore, if it is necessary not to decode an audio signal having a low priority, it is possible to reduce the amount of decoding calculation while suppressing deterioration of sound quality. Therefore, in the encoding device, priority information indicating the degree of importance of each audio signal at the time of reproduction, that is, the degree of priority for decoding is provided for each frame so that the audio signal to be undecoded can be appropriately selected. Is given to each audio signal.

以上のようにして各オーディ信号の優先度情報が定められると、それらの優先度情報は、図1に示したエレメントEL1のDSEに格納される。特に図3の例では、マルチチャネルのオーディオ信号を構成するチャネル数はMであるから、チャネル0からチャネルM−1のM個の各チャネルの優先度情報がDSEに格納される。 When the priority information of each audio signal is determined as described above, the priority information is stored in the DSE of the element EL1 shown in FIG. In particular, in the example of FIG. 3, since the number of channels constituting the multi-channel audio signal is M, the priority information of each of M channels from channel 0 to channel M-1 is stored in the DSE.

同様に、各オブジェクトの優先度情報もエレメントEL1のDSEに格納される。ここでは、例えばオブジェクト番号が0からN−1までのN個のオブジェクトがあるとすると、N個の各オブジェクトに対して、それぞれ優先度情報が定められ、DSEに格納される。 Similarly, the priority information of each object is also stored in the DSE of the element EL1. Here, for example, assuming that there are N objects having object numbers from 0 to N-1, priority information is determined for each of the N objects and stored in the DSE.

なお、以下、所定のオブジェクト番号n(n=0,1,・・・,N-1)のオブジェクトをオブジェクトnとも称することとする。 Hereinafter, an object having a predetermined object number n (n = 0,1, ..., N-1) will also be referred to as an object n.

このように、各オーディオ信号に対して優先度情報を定めれば、再生側、つまりオーディオ信号の復号側において、再生時にどのオーディオ信号が重要であり、優先して復号すべきか、つまり再生に用いるべきかを簡単に特定することができる。 If priority information is determined for each audio signal in this way, which audio signal is important at the time of reproduction on the reproduction side, that is, the decoding side of the audio signal, and which audio signal should be preferentially decoded, that is, used for reproduction. You can easily identify what should be done.

図2の説明に戻り、例えば所定のチャネルのフレームF11とフレームF13のオーディオ信号の優先度情報が7であり、その所定のチャネルのフレームF12のオーディオ信号の優先度情報が0であったとする。 Returning to the description of FIG. 2, for example, it is assumed that the priority information of the audio signals of the frames F11 and the frame F13 of the predetermined channel is 7, and the priority information of the audio signals of the frame F12 of the predetermined channel is 0.

また、オーディオ信号の復号側、つまり復号装置(デコーダ)において所定の優先度合い未満のオーディオ信号に対しては、復号が行われないようになっているとする。 Further, it is assumed that the decoding side of the audio signal, that is, the decoding device (decoder) does not decode the audio signal having a priority lower than the predetermined priority.

ここで、例えば所定の優先度合いを閾値と呼ぶこととし、その閾値が4であるとすると、上述した例では、優先度情報が7である所定チャネルのフレームF11とフレームF13のオーディオ信号に対しては復号が行われる。 Here, for example, assuming that a predetermined priority is called a threshold value and the threshold value is 4, in the above-described example, with respect to the audio signals of the frames F11 and the frame F13 of the predetermined channel whose priority information is 7. Is decrypted.

これに対して、優先度情報が0である所定チャネルのフレームF12のオーディオ信号に対しては復号が行われない。 On the other hand, the audio signal of the frame F12 of the predetermined channel whose priority information is 0 is not decoded.

したがって、この例ではフレームF12のオーディオ信号が無音信号とされて、フレームF11とフレームF13のオーディオ信号が合成され、最終的な所定チャネルのオーディオ信号とされる。 Therefore, in this example, the audio signal of the frame F12 is regarded as a silent signal, the audio signals of the frame F11 and the frame F13 are combined, and the audio signal of the final predetermined channel is obtained.

より詳細には、例えば各オーディオ信号の符号化時には、オーディオ信号に対する時間周波数変換が行われて時間周波数変換により得られた情報が符号化され、その結果得られた符号化データがエレメントに格納される。 More specifically, for example, when each audio signal is encoded, time-frequency conversion is performed on the audio signal to encode the information obtained by the time-frequency conversion, and the resulting encoded data is stored in the element. To.

なお、時間周波数変換としてどのような処理が行われてもよいが、以下では時間周波数変換としてMDCT(Modified Discrete Cosine Transform)(修正離散コサイン変換)が行われるものとして説明を続ける。 Although any processing may be performed as the time-frequency conversion, the description will be continued below assuming that MDCT (Modified Discrete Cosine Transform) (Modified Discrete Cosine Transform) is performed as the time-frequency conversion.

また、復号装置では、符号化データに対する復号が行われ、その結果得られたMDCT係数に対してIMDCT(Inverse Modified Discrete Cosine Transform)(逆修正離散コサイン変換)が行われ、オーディオ信号が生成される。すなわち、ここでは時間周波数変換の逆変換(周波数時間変換)としてIMDCTが行われる。 In the decoding device, the encoded data is decoded, and the MDCT coefficient obtained as a result is subjected to IMDCT (Inverse Modified Discrete Cosine Transform) (inverse modified discrete cosine transform) to generate an audio signal. .. That is, here, IMDCT is performed as the inverse conversion of the time-frequency conversion (frequency-time conversion).

そのため、より詳細には、優先度情報が閾値の値4以上であるフレームF11とフレームF13についてはIMDCTが行われてオーディオ信号が生成される。 Therefore, more specifically, IMDCT is performed on the frame F11 and the frame F13 whose priority information is the threshold value 4 or more, and an audio signal is generated.

また、優先度情報が閾値の値4未満であるフレームF12についてはIMDCTが行われず、IMDCTの結果が0とされてオーディオ信号が生成される。これにより、フレームF12のオーディオ信号は無音信号、つまり0データとなる。 Further, IMDCT is not performed for the frame F12 whose priority information is less than the threshold value 4, and the result of IMDCT is set to 0 to generate an audio signal. As a result, the audio signal of the frame F12 becomes a silent signal, that is, 0 data.

さらに別の例として、図3に示した例では、閾値が4であるときには各チャネル0乃至チャネルM−1のオーディオ信号のうち、優先度情報が閾値である4未満の値となっているチャネル0、チャネル1、およびチャネルM−2のオーディオ信号の復号が行われないことになる。 As yet another example, in the example shown in FIG. 3, when the threshold value is 4, among the audio signals of each channel 0 to channel M-1, the priority information is a value less than the threshold value 4. The audio signals of 0, channel 1, and channel M-2 will not be decoded.

以上のように閾値との比較結果に応じて、優先度情報により示される優先度合いの低いオーディオ信号については復号を行わないようにすることで、音質の劣化を最小限に抑えつつ、復号の計算量を低減させることができる。 As described above, the decoding calculation is performed while minimizing the deterioration of sound quality by not decoding the low priority audio signal indicated by the priority information according to the comparison result with the threshold value. The amount can be reduced.

〈符号化装置の構成例〉
次に、本技術を適用した符号化装置および復号装置の具体的な実施の形態について説明する。まず、符号化装置について説明する。
<Configuration example of encoding device>
Next, specific embodiments of a coding device and a decoding device to which the present technology is applied will be described. First, the coding device will be described.

図5は、本技術を適用した符号化装置の構成例を示す図である。 FIG. 5 is a diagram showing a configuration example of a coding device to which the present technology is applied.

図5の符号化装置11は、チャネルオーディオ符号化部21、オブジェクトオーディオ符号化部22、メタデータ入力部23、およびパッキング部24を有している。 The coding device 11 of FIG. 5 includes a channel audio coding unit 21, an object audio coding unit 22, a metadata input unit 23, and a packing unit 24.

チャネルオーディオ符号化部21には、チャネル数がMであるマルチチャネルの各チャネルのオーディオ信号が供給される。例えば各チャネルのオーディオ信号は、それらのチャネルに対応するマイクロフォンから供給される。図5では、文字「#0」乃至「#M−1」は、各チャネルのチャネル番号を表している。 The channel audio coding unit 21 is supplied with audio signals of each multi-channel channel having M channels. For example, the audio signal of each channel is supplied from the microphone corresponding to those channels. In FIG. 5, the characters "# 0" to "# M-1" represent channel numbers of each channel.

チャネルオーディオ符号化部21は、供給された各チャネルのオーディオ信号を符号化するとともに、オーディオ信号に基づいて優先度情報を生成し、符号化により得られた符号化データと、優先度情報とをパッキング部24に供給する。 The channel audio coding unit 21 encodes the audio signal of each supplied channel, generates priority information based on the audio signal, and combines the coded data obtained by the coding and the priority information. It is supplied to the packing unit 24.

オブジェクトオーディオ符号化部22には、N個の各オブジェクトのオーディオ信号が供給される。例えば各オブジェクトのオーディオ信号は、それらのオブジェクトに取り付けられたマイクロフォンから供給される。図5では、文字「#0」乃至「#N−1」は、各オブジェクトのオブジェクト番号を表している。 The object audio coding unit 22 is supplied with N audio signals of each object. For example, the audio signal for each object is supplied by a microphone attached to that object. In FIG. 5, the characters "# 0" to "# N-1" represent the object number of each object.

オブジェクトオーディオ符号化部22は、供給された各オブジェクトのオーディオ信号を符号化するとともに、オーディオ信号に基づいて優先度情報を生成し、符号化により得られた符号化データと、優先度情報とをパッキング部24に供給する。 The object audio coding unit 22 encodes the audio signal of each supplied object, generates priority information based on the audio signal, and combines the coded data obtained by the coding and the priority information. It is supplied to the packing unit 24.

メタデータ入力部23は、各オブジェクトのメタデータをパッキング部24に供給する。例えばオブジェクトのメタデータは、空間上におけるオブジェクトの位置を示す空間位置情報などとされる。より具体的には、例えば空間位置情報は3次元空間におけるオブジェクトの位置の座標を示す3次元座標情報である。 The metadata input unit 23 supplies the metadata of each object to the packing unit 24. For example, the metadata of an object is spatial position information indicating the position of the object in space. More specifically, for example, the spatial position information is three-dimensional coordinate information indicating the coordinates of the position of an object in the three-dimensional space.

パッキング部24は、チャネルオーディオ符号化部21から供給された符号化データと優先度情報、オブジェクトオーディオ符号化部22から供給された符号化データと優先度情報、およびメタデータ入力部23から供給されたメタデータをパッキングしてビットストリームを生成し、出力する。 The packing unit 24 is supplied from the coded data and priority information supplied from the channel audio coding unit 21, the coded data and priority information supplied from the object audio coding unit 22, and the metadata input unit 23. It packs the metadata to generate a bit stream and outputs it.

このようにして得られるビットストリームには、フレームごとに各チャネルの符号化データ、各チャネルの優先度情報、各オブジェクトの符号化データ、各オブジェクトの優先度情報、および各オブジェクトのメタデータが含まれていることになる。 The bitstream thus obtained contains the coded data of each channel, the priority information of each channel, the coded data of each object, the priority information of each object, and the metadata of each object for each frame. It will be.

ここで、1フレーム分のビットストリームに格納されるM個の各チャネルのオーディオ信号、およびN個の各オブジェクトのオーディオ信号は、同時に再生されるべき同一フレームのオーディオ信号である。 Here, the audio signals of the M channels and the audio signals of the N objects stored in the bit stream for one frame are audio signals of the same frame to be reproduced at the same time.

なお、ここでは、各チャネルや各オブジェクトのオーディオ信号の優先度情報として、1フレームごとに各オーディオ信号に対して優先度情報が生成される例について説明するが、任意の所定の時間を単位として、例えば数フレーム分のオーディオ信号に対して1つの優先度情報が生成されるようにしてもよい。 Here, an example in which priority information is generated for each audio signal for each frame as priority information for the audio signals of each channel or each object will be described, but with an arbitrary predetermined time as a unit. For example, one priority information may be generated for several frames of audio signals.

〈チャネルオーディオ符号化部の構成例〉
また、図5のチャネルオーディオ符号化部21は、より詳細には、例えば図6に示すように構成される。
<Configuration example of channel audio encoding unit>
Further, the channel audio coding unit 21 of FIG. 5 is configured as shown in, for example, FIG. 6 in more detail.

図6に示すチャネルオーディオ符号化部21は、符号化部51および優先度情報生成部52を備えている。 The channel audio coding unit 21 shown in FIG. 6 includes a coding unit 51 and a priority information generation unit 52.

符号化部51はMDCT部61を備えており、符号化部51は外部から供給された各チャネルのオーディオ信号を符号化する。 The coding unit 51 includes an MDCT unit 61, and the coding unit 51 encodes an audio signal of each channel supplied from the outside.

すなわち、MDCT部61は、外部から供給された各チャネルのオーディオ信号に対してMDCTを行う。符号化部51は、MDCTにより得られた各チャネルのMDCT係数を符号化し、その結果得られた各チャネルの符号化データ、つまり符号化されたオーディオ信号をパッキング部24に供給する。 That is, the MDCT unit 61 performs MDCT on the audio signals of each channel supplied from the outside. The coding unit 51 encodes the MDCT coefficient of each channel obtained by MDCT, and supplies the coded data of each channel obtained as a result, that is, the coded audio signal to the packing unit 24.

また、優先度情報生成部52は、外部から供給された各チャネルのオーディオ信号を解析して、それらの各チャネルのオーディオ信号の優先度情報を生成し、パッキング部24に供給する。 Further, the priority information generation unit 52 analyzes the audio signals of each channel supplied from the outside, generates the priority information of the audio signals of each of those channels, and supplies the priority information to the packing unit 24.

〈オブジェクトオーディオ符号化部の構成例〉
さらに、図5のオブジェクトオーディオ符号化部22は、より詳細には、例えば図7に示すように構成される。
<Configuration example of object audio encoding unit>
Further, the object audio coding unit 22 of FIG. 5 is configured as shown in FIG. 7, for example, in more detail.

図7に示すオブジェクトオーディオ符号化部22は、符号化部91および優先度情報生成部92を備えている。 The object audio coding unit 22 shown in FIG. 7 includes a coding unit 91 and a priority information generation unit 92.

符号化部91はMDCT部101を備えており、符号化部91は外部から供給された各オブジェクトのオーディオ信号を符号化する。 The coding unit 91 includes an MDCT unit 101, and the coding unit 91 encodes an audio signal of each object supplied from the outside.

すなわち、MDCT部101は、外部から供給された各オブジェクトのオーディオ信号に対してMDCTを行う。符号化部91は、MDCTにより得られた各オブジェクトのMDCT係数を符号化し、その結果得られた各オブジェクトの符号化データ、つまり符号化されたオーディオ信号をパッキング部24に供給する。 That is, the MDCT unit 101 performs MDCT on the audio signal of each object supplied from the outside. The coding unit 91 encodes the MDCT coefficient of each object obtained by MDCT, and supplies the coded data of each object obtained as a result, that is, the coded audio signal to the packing unit 24.

また、優先度情報生成部92は、外部から供給された各オブジェクトのオーディオ信号を解析して、それらの各オブジェクトのオーディオ信号の優先度情報を生成し、パッキング部24に供給する。 Further, the priority information generation unit 92 analyzes the audio signal of each object supplied from the outside, generates the priority information of the audio signal of each of the objects, and supplies the priority information to the packing unit 24.

〈符号化処理の説明〉
次に、符号化装置11により行われる処理について説明する。
<Explanation of coding process>
Next, the processing performed by the coding apparatus 11 will be described.

符号化装置11は、同時に再生される、複数の各チャネルのオーディオ信号および複数の各オブジェクトのオーディオ信号が1フレーム分だけ供給されると、符号化処理を行って、符号化されたオーディオ信号が含まれるビットストリームを出力する。 When the audio signals of the plurality of channels and the audio signals of the plurality of objects to be reproduced at the same time are supplied for one frame, the coding device 11 performs a coding process to obtain the coded audio signals. Output the included bitstream.

以下、図8のフローチャートを参照して、符号化装置11による符号化処理について説明する。なお、この符号化処理はオーディオ信号のフレームごとに行われる。 Hereinafter, the coding process by the coding apparatus 11 will be described with reference to the flowchart of FIG. Note that this coding process is performed for each frame of the audio signal.

ステップS11において、チャネルオーディオ符号化部21の優先度情報生成部52は、供給された各チャネルのオーディオ信号の優先度情報を生成し、パッキング部24に供給する。例えば優先度情報生成部52は、チャネルごとにオーディオ信号を解析し、オーディオ信号の音圧やスペクトル形状、チャネル間のスペクトル形状の相関などに基づいて優先度情報を生成する。 In step S11, the priority information generation unit 52 of the channel audio coding unit 21 generates priority information of the audio signal of each supplied channel and supplies it to the packing unit 24. For example, the priority information generation unit 52 analyzes an audio signal for each channel and generates priority information based on the sound pressure and spectral shape of the audio signal, the correlation of the spectral shapes between channels, and the like.

ステップS12において、パッキング部24は、優先度情報生成部52から供給された各チャネルのオーディオ信号の優先度情報をビットストリームのDSEに格納する。すなわち、優先度情報がビットストリームの先頭のエレメントに格納される。 In step S12, the packing unit 24 stores the priority information of the audio signal of each channel supplied from the priority information generation unit 52 in the DSE of the bit stream. That is, the priority information is stored in the first element of the bitstream.

ステップS13において、オブジェクトオーディオ符号化部22の優先度情報生成部92は、供給された各オブジェクトのオーディオ信号の優先度情報を生成し、パッキング部24に供給する。例えば優先度情報生成部92は、オブジェクトごとにオーディオ信号を解析し、オーディオ信号の音圧やスペクトル形状、オブジェクト間のスペクトル形状の相関などに基づいて優先度情報を生成する。 In step S13, the priority information generation unit 92 of the object audio coding unit 22 generates the priority information of the audio signal of each supplied object and supplies it to the packing unit 24. For example, the priority information generation unit 92 analyzes an audio signal for each object and generates priority information based on the sound pressure and spectral shape of the audio signal, the correlation of the spectral shapes between the objects, and the like.

なお、各チャネルや各オブジェクトのオーディオ信号の優先度情報の生成時には、優先度情報の値となる優先度合いごとに、それらの優先度合いが割り当てられるオーディオ信号の数が、チャネル数やオブジェクト数に対して予め定められているようにしてもよい。 When generating the priority information of the audio signal of each channel or each object, the number of audio signals to which the priority is assigned for each priority that is the value of the priority information is set with respect to the number of channels and the number of objects. It may be predetermined.

例えば図3の例では、優先度情報が「7」とされるオーディオ信号の数、つまりチャネルの数は5個、優先度情報が「6」とされるオーディオ信号の数は3個などと、予め定められているようにしてもよい。 For example, in the example of FIG. 3, the number of audio signals whose priority information is "7", that is, the number of channels is 5, the number of audio signals whose priority information is "6" is 3, and so on. It may be predetermined.

ステップS14において、パッキング部24は、優先度情報生成部92から供給された各オブジェクトのオーディオ信号の優先度情報をビットストリームのDSEに格納する。 In step S14, the packing unit 24 stores the priority information of the audio signal of each object supplied from the priority information generation unit 92 in the DSE of the bit stream.

ステップS15において、パッキング部24は、各オブジェクトのメタデータをビットストリームのDSEに格納する。 In step S15, the packing unit 24 stores the metadata of each object in the DSE of the bitstream.

例えばメタデータ入力部23は、ユーザの入力操作を受けたり、外部との通信を行ったり、外部の記録領域からの読み出しを行ったりすることで、各オブジェクトのメタデータを取得し、パッキング部24に供給する。パッキング部24は、このようにしてメタデータ入力部23から供給されたメタデータをDSEに格納する。 For example, the metadata input unit 23 acquires the metadata of each object by receiving a user input operation, communicating with the outside, and reading from an external recording area, and the packing unit 24 Supply to. The packing unit 24 stores the metadata supplied from the metadata input unit 23 in the DSE in this way.

以上の処理により、ビットストリームのDSEには、全チャネルのオーディオ信号の優先度情報、全オブジェクトのオーディオ信号の優先度情報、および全オブジェクトのメタデータが格納されたことになる。 By the above processing, the DSE of the bitstream stores the priority information of the audio signals of all channels, the priority information of the audio signals of all objects, and the metadata of all objects.

ステップS16において、チャネルオーディオ符号化部21の符号化部51は、供給された各チャネルのオーディオ信号を符号化する。 In step S16, the coding unit 51 of the channel audio coding unit 21 encodes the audio signal of each supplied channel.

より具体的には、MDCT部61は各チャネルのオーディオ信号に対してMDCTを行い、符号化部51は、MDCTにより得られた各チャネルのMDCT係数を符号化し、その結果得られた各チャネルの符号化データをパッキング部24に供給する。 More specifically, the MDCT unit 61 performs MDCT on the audio signal of each channel, and the coding unit 51 encodes the MDCT coefficient of each channel obtained by MDCT, and the resulting channel The coded data is supplied to the packing unit 24.

ステップS17において、パッキング部24は符号化部51から供給された各チャネルのオーディオ信号の符号化データを、ビットストリームのSCEまたはCPEに格納する。すなわち、ビットストリームにおいてDSEに続いて配置されている各エレメントに符号化データが格納される。 In step S17, the packing unit 24 stores the coded data of the audio signal of each channel supplied from the coding unit 51 in the SCE or CPE of the bit stream. That is, the coded data is stored in each element arranged after the DSE in the bit stream.

ステップS18において、オブジェクトオーディオ符号化部22の符号化部91は、供給された各オブジェクトのオーディオ信号を符号化する。 In step S18, the coding unit 91 of the object audio coding unit 22 encodes the audio signal of each supplied object.

より具体的には、MDCT部101は各オブジェクトのオーディオ信号に対してMDCTを行い、符号化部91は、MDCTにより得られた各オブジェクトのMDCT係数を符号化し、その結果得られた各オブジェクトの符号化データをパッキング部24に供給する。 More specifically, the MDCT unit 101 performs MDCT on the audio signal of each object, and the coding unit 91 encodes the MDCT coefficient of each object obtained by MDCT, and the MDCT coefficient of each object obtained as a result is encoded. The coded data is supplied to the packing unit 24.

ステップS19において、パッキング部24は符号化部91から供給された各オブジェクトのオーディオ信号の符号化データを、ビットストリームのSCEに格納する。すなわち、ビットストリームにおいてDSEよりも後に配置されているいくつかのエレメントに符号化データが格納される。 In step S19, the packing unit 24 stores the coded data of the audio signal of each object supplied from the coding unit 91 in the SCE of the bit stream. That is, the encoded data is stored in some elements arranged after the DSE in the bitstream.

以上の処理により、処理対象となっているフレームについて、全チャネルのオーディオ信号の優先度情報と符号化データ、全オブジェクトのオーディオ信号の優先度情報と符号化データ、および全オブジェクトのメタデータが格納されたビットストリームが得られる。 By the above processing, the priority information and coded data of the audio signals of all channels, the priority information and coded data of the audio signals of all objects, and the metadata of all objects are stored for the frame to be processed. The resulting bitstream is obtained.

ステップS20において、パッキング部24は、得られたビットストリームを出力し、符号化処理は終了する。 In step S20, the packing unit 24 outputs the obtained bit stream, and the coding process ends.

以上のようにして符号化装置11は、各チャネルのオーディオ信号の優先度情報と、各オブジェクトのオーディオ信号の優先度情報とを生成してビットストリームに格納し、出力する。したがって、復号側において、どのオーディオ信号がより優先度合いの高いものであるかを簡単に把握することができるようになる。 As described above, the coding device 11 generates the priority information of the audio signal of each channel and the priority information of the audio signal of each object, stores the information in the bit stream, and outputs the information. Therefore, the decoding side can easily grasp which audio signal has a higher priority.

これにより、復号側では、優先度情報に応じて、符号化されたオーディオ信号の復号を選択的に行うことができる。その結果、オーディオ信号により再生される音声の音質の劣化を最小限に抑えつつ、復号の計算量を低減させることができる。 As a result, the decoding side can selectively decode the encoded audio signal according to the priority information. As a result, it is possible to reduce the amount of decoding calculation while minimizing the deterioration of the sound quality of the sound reproduced by the audio signal.

特に、各オブジェクトのオーディオ信号の優先度情報をビットストリームに格納しておくことで、復号側において、復号の計算量を低減できるだけでなく、その後のレンダリング等の処理の計算量も低減させることができる。 In particular, by storing the priority information of the audio signal of each object in the bit stream, not only the amount of decoding calculation can be reduced on the decoding side, but also the amount of calculation for subsequent processing such as rendering can be reduced. it can.

〈復号装置の構成例〉
次に、以上において説明した符号化装置11から出力されたビットストリームを入力とし、ビットストリームに含まれる符号化データを復号する復号装置について説明する。
<Configuration example of decoding device>
Next, a decoding device that takes the bit stream output from the coding device 11 described above as an input and decodes the coded data included in the bit stream will be described.

そのような復号装置は、例えば図9に示すように構成される。 Such a decoding device is configured, for example, as shown in FIG.

図9に示す復号装置151は、アンパッキング/復号部161、レンダリング部162、およびミキシング部163を有している。 The decoding device 151 shown in FIG. 9 includes an unpacking / decoding unit 161, a rendering unit 162, and a mixing unit 163.

アンパッキング/復号部161は、符号化装置11から出力されたビットストリームを取得するとともに、ビットストリームのアンパッキングおよび復号を行う。 The unpacking / decoding unit 161 acquires the bit stream output from the encoding device 11 and unpacks and decodes the bit stream.

アンパッキング/復号部161は、アンパッキングおよび復号により得られた各オブジェクトのオーディオ信号と、各オブジェクトのメタデータとをレンダリング部162に供給する。このとき、アンパッキング/復号部161は、ビットストリームに含まれている優先度情報に応じて各オブジェクトの符号化データの復号を行う。 The unpacking / decoding unit 161 supplies the audio signal of each object obtained by the unpacking and decoding and the metadata of each object to the rendering unit 162. At this time, the unpacking / decoding unit 161 decodes the coded data of each object according to the priority information included in the bit stream.

また、アンパッキング/復号部161は、アンパッキングおよび復号により得られた各チャネルのオーディオ信号をミキシング部163に供給する。このとき、アンパッキング/復号部161は、ビットストリームに含まれている優先度情報に応じて各チャネルの符号化データの復号を行う。 Further, the unpacking / decoding unit 161 supplies the audio signals of each channel obtained by the unpacking and decoding to the mixing unit 163. At this time, the unpacking / decoding unit 161 decodes the coded data of each channel according to the priority information included in the bit stream.

レンダリング部162は、アンパッキング/復号部161から供給された各オブジェクトのオーディオ信号、および各オブジェクトのメタデータとしての空間位置情報に基づいて、Mチャネルのオーディオ信号を生成し、ミキシング部163に供給する。このときレンダリング部162は、各オブジェクトの音像が、それらのオブジェクトの空間位置情報により示される位置に定位するようにM個の各チャネルのオーディオ信号を生成する。 The rendering unit 162 generates an M channel audio signal based on the audio signal of each object supplied from the unpacking / decoding unit 161 and the spatial position information as metadata of each object, and supplies the audio signal to the mixing unit 163. To do. At this time, the rendering unit 162 generates M audio signals of each channel so that the sound image of each object is localized at the position indicated by the spatial position information of those objects.

ミキシング部163は、アンパッキング/復号部161から供給された各チャネルのオーディオ信号と、レンダリング部162から供給された各チャネルのオーディオ信号とをチャネルごとに重み付け加算を行って、最終的な各チャネルのオーディオ信号を生成する。ミキシング部163は、このようにして得られた最終的な各チャネルのオーディオ信号を、外部の各チャネルに対応するスピーカに供給し、音声を再生させる。 The mixing unit 163 weights and adds the audio signal of each channel supplied from the unpacking / decoding unit 161 and the audio signal of each channel supplied from the rendering unit 162 for each channel, and finally each channel. Generates an audio signal. The mixing unit 163 supplies the final audio signal of each channel thus obtained to the speaker corresponding to each external channel, and reproduces the sound.

〈アンパッキング/復号部の構成例〉
また、図9に示した復号装置151のアンパッキング/復号部161は、より詳細には例えば図10に示すように構成される。
<Configuration example of unpacking / decoding unit>
Further, the unpacking / decoding unit 161 of the decoding device 151 shown in FIG. 9 is configured as shown in, for example, FIG. 10 in more detail.

図10に示すアンパッキング/復号部161は、優先度情報取得部191、チャネルオーディオ信号取得部192、チャネルオーディオ信号復号部193、出力選択部194、0値出力部195、IMDCT部196、オブジェクトオーディオ信号取得部197、オブジェクトオーディオ信号復号部198、出力選択部199、0値出力部200、およびIMDCT部201を有している。 The unpacking / decoding unit 161 shown in FIG. 10 includes a priority information acquisition unit 191, a channel audio signal acquisition unit 192, a channel audio signal decoding unit 193, an output selection unit 194, a 0 value output unit 195, an IMDCT unit 196, and an object audio unit. It has a signal acquisition unit 197, an object audio signal decoding unit 198, an output selection unit 199, a 0 value output unit 200, and an IMDCT unit 201.

優先度情報取得部191は、供給されたビットストリームから、各チャネルのオーディオ信号の優先度情報を取得して出力選択部194に供給するとともに、ビットストリームから各オブジェクトのオーディオ信号の優先度情報を取得して出力選択部199に供給する。 The priority information acquisition unit 191 acquires the priority information of the audio signal of each channel from the supplied bit stream and supplies it to the output selection unit 194, and at the same time, obtains the priority information of the audio signal of each object from the bit stream. It is acquired and supplied to the output selection unit 199.

また、優先度情報取得部191は、供給されたビットストリームから各オブジェクトのメタデータを取得してレンダリング部162に供給するとともに、ビットストリームをチャネルオーディオ信号取得部192およびオブジェクトオーディオ信号取得部197に供給する。 Further, the priority information acquisition unit 191 acquires the metadata of each object from the supplied bit stream and supplies it to the rendering unit 162, and supplies the bit stream to the channel audio signal acquisition unit 192 and the object audio signal acquisition unit 197. Supply.

チャネルオーディオ信号取得部192は、優先度情報取得部191から供給されたビットストリームから各チャネルの符号化データを取得して、チャネルオーディオ信号復号部193に供給する。チャネルオーディオ信号復号部193は、チャネルオーディオ信号取得部192から供給された各チャネルの符号化データを復号し、その結果得られたMDCT係数を出力選択部194に供給する。 The channel audio signal acquisition unit 192 acquires the coded data of each channel from the bit stream supplied from the priority information acquisition unit 191 and supplies the coded data to the channel audio signal decoding unit 193. The channel audio signal decoding unit 193 decodes the coded data of each channel supplied from the channel audio signal acquisition unit 192, and supplies the resulting MDCT coefficient to the output selection unit 194.

出力選択部194は、優先度情報取得部191から供給された各チャネルの優先度情報に基づいて、チャネルオーディオ信号復号部193から供給された各チャネルのMDCT係数の出力先を選択的に切り替える。 The output selection unit 194 selectively switches the output destination of the MDCT coefficient of each channel supplied from the channel audio signal decoding unit 193 based on the priority information of each channel supplied from the priority information acquisition unit 191.

すなわち、出力選択部194は、所定のチャネルについての優先度情報が所定の閾値P未満である場合、そのチャネルのMDCT係数を0として0値出力部195に供給する。また、出力選択部194は、所定のチャネルについての優先度情報が所定の閾値P以上である場合、チャネルオーディオ信号復号部193から供給された、そのチャネルのMDCT係数をIMDCT部196に供給する。 That is, when the priority information for a predetermined channel is less than the predetermined threshold value P, the output selection unit 194 supplies the MDCT coefficient of the channel to the 0 value output unit 195 as 0. Further, when the priority information for a predetermined channel is equal to or higher than a predetermined threshold value P, the output selection unit 194 supplies the MDCT coefficient of the channel supplied from the channel audio signal decoding unit 193 to the IMDCT unit 196.

0値出力部195は、出力選択部194から供給されたMDCT係数に基づいてオーディオ信号を生成し、ミキシング部163に供給する。この場合、MDCT係数は0であるので、無音のオーディオ信号が生成される。 The 0-value output unit 195 generates an audio signal based on the MDCT coefficient supplied from the output selection unit 194, and supplies the audio signal to the mixing unit 163. In this case, the MDCT coefficient is 0, so a silent audio signal is generated.

IMDCT部196は、出力選択部194から供給されたMDCT係数に基づいてIMDCTを行ってオーディオ信号を生成し、ミキシング部163に供給する。 The IMDCT unit 196 performs IMDCT based on the MDCT coefficient supplied from the output selection unit 194 to generate an audio signal, and supplies the audio signal to the mixing unit 163.

オブジェクトオーディオ信号取得部197は、優先度情報取得部191から供給されたビットストリームから各オブジェクトの符号化データを取得して、オブジェクトオーディオ信号復号部198に供給する。オブジェクトオーディオ信号復号部198は、オブジェクトオーディオ信号取得部197から供給された各オブジェクトの符号化データを復号し、その結果得られたMDCT係数を出力選択部199に供給する。 The object audio signal acquisition unit 197 acquires the coded data of each object from the bit stream supplied from the priority information acquisition unit 191 and supplies the coded data to the object audio signal decoding unit 198. The object audio signal decoding unit 198 decodes the coded data of each object supplied from the object audio signal acquisition unit 197, and supplies the resulting MDCT coefficient to the output selection unit 199.

出力選択部199は、優先度情報取得部191から供給された各オブジェクトの優先度情報に基づいて、オブジェクトオーディオ信号復号部198から供給された各オブジェクトのMDCT係数の出力先を選択的に切り替える。 The output selection unit 199 selectively switches the output destination of the MDCT coefficient of each object supplied from the object audio signal decoding unit 198 based on the priority information of each object supplied from the priority information acquisition unit 191.

すなわち、出力選択部199は、所定のオブジェクトについての優先度情報が所定の閾値Q未満である場合、そのオブジェクトのMDCT係数を0として0値出力部200に供給する。また、出力選択部199は、所定のオブジェクトについての優先度情報が所定の閾値Q以上である場合、オブジェクトオーディオ信号復号部198から供給された、そのオブジェクトのMDCT係数をIMDCT部201に供給する。 That is, when the priority information for a predetermined object is less than the predetermined threshold value Q, the output selection unit 199 sets the MDCT coefficient of the object to 0 and supplies it to the 0 value output unit 200. Further, when the priority information for a predetermined object is equal to or higher than a predetermined threshold value Q, the output selection unit 199 supplies the MDCT coefficient of the object supplied from the object audio signal decoding unit 198 to the IMDCT unit 201.

なお、閾値Qの値は、閾値Pの値と同じであってもよいし、閾値Pの値と異なる値であってもよい。復号装置151の計算能力等に応じて適切に閾値Pおよび閾値Qを定めることにより、オーディオ信号の復号の計算量を、復号装置151がリアルタイムに復号することが可能な範囲内の計算量まで低減させることができる。 The value of the threshold value Q may be the same as the value of the threshold value P, or may be a value different from the value of the threshold value P. By appropriately determining the threshold value P and the threshold value Q according to the computing power of the decoding device 151, the amount of calculation for decoding the audio signal is reduced to a calculation amount within the range in which the decoding device 151 can decode in real time. Can be made to.

0値出力部200は、出力選択部199から供給されたMDCT係数に基づいてオーディオ信号を生成し、レンダリング部162に供給する。この場合、MDCT係数は0であるので、無音のオーディオ信号が生成される。 The 0-value output unit 200 generates an audio signal based on the MDCT coefficient supplied from the output selection unit 199 and supplies it to the rendering unit 162. In this case, the MDCT coefficient is 0, so a silent audio signal is generated.

IMDCT部201は、出力選択部199から供給されたMDCT係数に基づいてIMDCTを行ってオーディオ信号を生成し、レンダリング部162に供給する。 The IMDCT unit 201 performs IMDCT based on the MDCT coefficient supplied from the output selection unit 199 to generate an audio signal, and supplies the audio signal to the rendering unit 162.

〈復号処理の説明〉
次に、復号装置151の動作について説明する。
<Explanation of decryption process>
Next, the operation of the decoding device 151 will be described.

復号装置151は、符号化装置11から1フレーム分のビットストリームが供給されると、復号処理を行ってオーディオ信号を生成し、スピーカへと出力する。以下、図11のフローチャートを参照して、復号装置151により行われる復号処理について説明する。 When the decoding device 151 supplies a bit stream for one frame from the coding device 11, the decoding device 151 performs a decoding process to generate an audio signal and outputs the audio signal to the speaker. Hereinafter, the decoding process performed by the decoding device 151 will be described with reference to the flowchart of FIG.

ステップS51において、アンパッキング/復号部161は、符号化装置11から送信されてきたビットストリームを取得する。すなわち、ビットストリームが受信される。 In step S51, the unpacking / decoding unit 161 acquires the bit stream transmitted from the encoding device 11. That is, the bitstream is received.

ステップS52において、アンパッキング/復号部161は選択復号処理を行う。 In step S52, the unpacking / decoding unit 161 performs a selective decoding process.

なお、選択復号処理の詳細は後述するが、選択復号処理では各チャネルの符号化データと、各オブジェクトの符号化データとが優先度情報に基づいて選択的に復号される。そして、その結果得られた各チャネルのオーディオ信号がミキシング部163に供給され、各オブジェクトのオーディオ信号がレンダリング部162に供給される。また、ビットストリームから取得された各オブジェクトのメタデータがレンダリング部162に供給される。 The details of the selective decoding process will be described later, but in the selective decoding process, the coded data of each channel and the coded data of each object are selectively decoded based on the priority information. Then, the audio signal of each channel obtained as a result is supplied to the mixing unit 163, and the audio signal of each object is supplied to the rendering unit 162. Further, the metadata of each object acquired from the bit stream is supplied to the rendering unit 162.

ステップS53において、レンダリング部162は、アンパッキング/復号部161から供給された各オブジェクトのオーディオ信号、および各オブジェクトのメタデータとしての空間位置情報に基づいて、各オブジェクトのオーディオ信号のレンダリングを行う。 In step S53, the rendering unit 162 renders the audio signal of each object based on the audio signal of each object supplied from the unpacking / decoding unit 161 and the spatial position information as metadata of each object.

例えばレンダリング部162は、空間位置情報に基づいてVBAP(Vector Base Amplitude Pannning)により、各オブジェクトの音像が空間位置情報により示される位置に定位するように各チャネルのオーディオ信号を生成し、ミキシング部163に供給する。 For example, the rendering unit 162 generates an audio signal for each channel by VBAP (Vector Base Amplitude Pannning) based on the spatial position information so that the sound image of each object is localized at the position indicated by the spatial position information, and the mixing unit 163. Supply to.

ステップS54において、ミキシング部163は、アンパッキング/復号部161から供給された各チャネルのオーディオ信号と、レンダリング部162から供給された各チャネルのオーディオ信号とをチャネルごとに重み付け加算し、外部のスピーカに供給する。これにより、各スピーカには、それらのスピーカに対応するチャネルのオーディオ信号が供給されるので、各スピーカは供給されたオーディオ信号に基づいて音声を再生する。 In step S54, the mixing unit 163 weights and adds the audio signals of each channel supplied from the unpacking / decoding unit 161 and the audio signals of each channel supplied from the rendering unit 162 for each channel, and adds weight to the external speaker. Supply to. As a result, the audio signals of the channels corresponding to the speakers are supplied to each speaker, and each speaker reproduces the sound based on the supplied audio signals.

各チャネルのオーディオ信号がスピーカに供給されると、復号処理は終了する。 When the audio signal of each channel is supplied to the speaker, the decoding process ends.

以上のようにして、復号装置151は、ビットストリームから優先度情報を取得して、その優先度情報に応じて各チャネルおよび各オブジェクトの符号化データを復号する。 As described above, the decoding device 151 acquires the priority information from the bit stream and decodes the coded data of each channel and each object according to the priority information.

〈選択復号処理の説明〉
続いて、図12のフローチャートを参照して、図11のステップS52の処理に対応する選択復号処理について説明する。
<Explanation of selective decoding process>
Subsequently, the selective decoding process corresponding to the process of step S52 of FIG. 11 will be described with reference to the flowchart of FIG.

ステップS81において、優先度情報取得部191は、供給されたビットストリームから、各チャネルのオーディオ信号の優先度情報、および各オブジェクトのオーディオ信号の優先度情報を取得して、それぞれ出力選択部194および出力選択部199に供給する。 In step S81, the priority information acquisition unit 191 acquires the priority information of the audio signal of each channel and the priority information of the audio signal of each object from the supplied bit stream, and outputs the output selection unit 194 and the output selection unit 194, respectively. It is supplied to the output selection unit 199.

また、優先度情報取得部191は、ビットストリームから各オブジェクトのメタデータを取得してレンダリング部162に供給するとともに、ビットストリームをチャネルオーディオ信号取得部192およびオブジェクトオーディオ信号取得部197に供給する。 Further, the priority information acquisition unit 191 acquires the metadata of each object from the bit stream and supplies it to the rendering unit 162, and supplies the bit stream to the channel audio signal acquisition unit 192 and the object audio signal acquisition unit 197.

ステップS82において、チャネルオーディオ信号取得部192は、処理対象とするチャネルのチャネル番号に0を設定し、保持する。 In step S82, the channel audio signal acquisition unit 192 sets and holds the channel number of the channel to be processed.

ステップS83において、チャネルオーディオ信号取得部192は、保持しているチャネル番号がチャネル数M未満であるか否かを判定する。 In step S83, the channel audio signal acquisition unit 192 determines whether or not the held channel number is less than the number of channels M.

ステップS83において、チャネル番号がM未満であると判定された場合、ステップS84において、チャネルオーディオ信号復号部193は、処理対象のチャネルのオーディオ信号の符号化データを復号する。 If it is determined in step S83 that the channel number is less than M, in step S84, the channel audio signal decoding unit 193 decodes the encoded data of the audio signal of the channel to be processed.

すなわち、チャネルオーディオ信号取得部192は、優先度情報取得部191から供給されたビットストリームから、処理対象のチャネルの符号化データを取得してチャネルオーディオ信号復号部193に供給する。 That is, the channel audio signal acquisition unit 192 acquires the coded data of the channel to be processed from the bit stream supplied from the priority information acquisition unit 191 and supplies it to the channel audio signal decoding unit 193.

すると、チャネルオーディオ信号復号部193は、チャネルオーディオ信号取得部192から供給された符号化データを復号し、その結果得られたMDCT係数を出力選択部194に供給する。 Then, the channel audio signal decoding unit 193 decodes the encoded data supplied from the channel audio signal acquisition unit 192, and supplies the MDCT coefficient obtained as a result to the output selection unit 194.

ステップS85において、出力選択部194は、優先度情報取得部191から供給された処理対象のチャネルの優先度情報が、図示せぬ上位の制御装置等により指定された閾値P以上であるか否かを判定する。ここで閾値Pは、例えば復号装置151の計算能力等に応じて定められる。 In step S85, the output selection unit 194 determines whether or not the priority information of the channel to be processed supplied from the priority information acquisition unit 191 is equal to or higher than the threshold value P specified by the upper control device or the like (not shown). To judge. Here, the threshold value P is determined according to, for example, the computing power of the decoding device 151.

ステップS85において、優先度情報が閾値P以上であると判定された場合、出力選択部194は、チャネルオーディオ信号復号部193から供給された、処理対象のチャネルのMDCT係数をIMDCT部196に供給し、処理はステップS86に進む。この場合、処理対象のチャネルのオーディオ信号の優先度合いは、所定の優先度合い以上であるので、そのチャネルについての復号、より詳細にはIMDCTが行われる。 When it is determined in step S85 that the priority information is equal to or higher than the threshold value P, the output selection unit 194 supplies the MDCT coefficient of the channel to be processed supplied from the channel audio signal decoding unit 193 to the IMDCT unit 196. , The process proceeds to step S86. In this case, since the priority of the audio signal of the channel to be processed is equal to or higher than the predetermined priority, decoding for that channel, more specifically, IMDCT is performed.

ステップS86において、IMDCT部196は、出力選択部194から供給されたMDCT係数に基づいてIMDCTを行って、処理対象のチャネルのオーディオ信号を生成し、ミキシング部163に供給する。オーディオ信号が生成されると、その後、処理はステップS87へと進む。 In step S86, the IMDCT unit 196 performs IMDCT based on the MDCT coefficient supplied from the output selection unit 194 to generate an audio signal of the channel to be processed and supplies it to the mixing unit 163. When the audio signal is generated, the process then proceeds to step S87.

これに対して、ステップS85において、優先度情報が閾値P未満であると判定された場合、出力選択部194は、MDCT係数を0として0値出力部195に供給する。 On the other hand, when it is determined in step S85 that the priority information is less than the threshold value P, the output selection unit 194 supplies the 0 value output unit 195 with the MDCT coefficient set to 0.

0値出力部195は、出力選択部194から供給された0であるMDCT係数から、処理対象のチャネルのオーディオ信号を生成し、ミキシング部163に供給する。したがって、0値出力部195では、実質的にはIMDCTなどのオーディオ信号を生成するための処理は何も行われない。 The 0-value output unit 195 generates an audio signal of the channel to be processed from the MDCT coefficient of 0 supplied from the output selection unit 194, and supplies the audio signal to the mixing unit 163. Therefore, the 0-value output unit 195 does not substantially perform any processing for generating an audio signal such as IMDCT.

なお、0値出力部195により生成されるオーディオ信号は無音信号である。オーディオ信号が生成されると、その後、処理はステップS87へと進む。 The audio signal generated by the 0-value output unit 195 is a silent signal. When the audio signal is generated, the process then proceeds to step S87.

ステップS85において優先度情報が閾値P未満であると判定されたか、またはステップS86においてオーディオ信号が生成されると、ステップS87において、チャネルオーディオ信号取得部192は、保持しているチャネル番号に1を加え、処理対象のチャネルのチャネル番号を更新する。 If it is determined in step S85 that the priority information is less than the threshold value P, or if an audio signal is generated in step S86, the channel audio signal acquisition unit 192 sets 1 as the holding channel number in step S87. In addition, the channel number of the channel to be processed is updated.

チャネル番号が更新されると、その後、処理はステップS83に戻り、上述した処理が繰り返し行われる。すなわち、新たな処理対象のチャネルのオーディオ信号が生成される。 When the channel number is updated, the process then returns to step S83, and the above-described process is repeated. That is, an audio signal of a new channel to be processed is generated.

また、ステップS83において、処理対象のチャネルのチャネル番号がM未満ではないと判定された場合、全てのチャネルについてオーディオ信号が得られたので、処理はステップS88へと進む。 If it is determined in step S83 that the channel number of the channel to be processed is not less than M, audio signals have been obtained for all channels, so the process proceeds to step S88.

ステップS88において、オブジェクトオーディオ信号取得部197は、処理対象とするオブジェクトのオブジェクト番号に0を設定し、保持する。 In step S88, the object audio signal acquisition unit 197 sets the object number of the object to be processed to 0 and holds it.

ステップS89において、オブジェクトオーディオ信号取得部197は、保持しているオブジェクト番号がオブジェクト数N未満であるか否かを判定する。 In step S89, the object audio signal acquisition unit 197 determines whether or not the held object number is less than the number of objects N.

ステップS89において、オブジェクト番号がN未満であると判定された場合、ステップS90において、オブジェクトオーディオ信号復号部198は、処理対象のオブジェクトのオーディオ信号の符号化データを復号する。 If it is determined in step S89 that the object number is less than N, in step S90, the object audio signal decoding unit 198 decodes the encoded data of the audio signal of the object to be processed.

すなわち、オブジェクトオーディオ信号取得部197は、優先度情報取得部191から供給されたビットストリームから、処理対象のオブジェクトの符号化データを取得してオブジェクトオーディオ信号復号部198に供給する。 That is, the object audio signal acquisition unit 197 acquires the coded data of the object to be processed from the bit stream supplied from the priority information acquisition unit 191 and supplies it to the object audio signal decoding unit 198.

すると、オブジェクトオーディオ信号復号部198は、オブジェクトオーディオ信号取得部197から供給された符号化データを復号し、その結果得られたMDCT係数を出力選択部199に供給する。 Then, the object audio signal decoding unit 198 decodes the coded data supplied from the object audio signal acquisition unit 197, and supplies the MDCT coefficient obtained as a result to the output selection unit 199.

ステップS91において、出力選択部199は、優先度情報取得部191から供給された処理対象のオブジェクトの優先度情報が、図示せぬ上位の制御装置等により指定された閾値Q以上であるか否かを判定する。ここで閾値Qは、例えば復号装置151の計算能力等に応じて定められる。 In step S91, the output selection unit 199 determines whether or not the priority information of the object to be processed supplied from the priority information acquisition unit 191 is equal to or higher than the threshold value Q specified by a higher-level control device or the like (not shown). To judge. Here, the threshold value Q is determined according to, for example, the computing power of the decoding device 151.

ステップS91において、優先度情報が閾値Q以上であると判定された場合、出力選択部199は、オブジェクトオーディオ信号復号部198から供給された、処理対象のオブジェクトのMDCT係数をIMDCT部201に供給し、処理はステップS92に進む。 When it is determined in step S91 that the priority information is equal to or higher than the threshold value Q, the output selection unit 199 supplies the MDCT coefficient of the object to be processed supplied from the object audio signal decoding unit 198 to the IMDCT unit 201. , The process proceeds to step S92.

ステップS92において、IMDCT部201は、出力選択部199から供給されたMDCT係数に基づいてIMDCTを行って、処理対象のオブジェクトのオーディオ信号を生成し、レンダリング部162に供給する。オーディオ信号が生成されると、その後、処理はステップS93へと進む。 In step S92, the IMDCT unit 201 performs IMDCT based on the MDCT coefficient supplied from the output selection unit 199, generates an audio signal of the object to be processed, and supplies the audio signal to the rendering unit 162. When the audio signal is generated, the process then proceeds to step S93.

これに対して、ステップS91において、優先度情報が閾値Q未満であると判定された場合、出力選択部199は、MDCT係数を0として0値出力部200に供給する。 On the other hand, when it is determined in step S91 that the priority information is less than the threshold value Q, the output selection unit 199 supplies the 0 value output unit 200 with the MDCT coefficient set to 0.

0値出力部200は、出力選択部199から供給された0であるMDCT係数から、処理対象のオブジェクトのオーディオ信号を生成し、レンダリング部162に供給する。したがって、0値出力部200では、実質的にはIMDCTなどのオーディオ信号を生成するための処理は何も行われない。 The 0-value output unit 200 generates an audio signal of the object to be processed from the MDCT coefficient of 0 supplied from the output selection unit 199, and supplies the audio signal to the rendering unit 162. Therefore, the 0-value output unit 200 does not substantially perform any processing for generating an audio signal such as IMDCT.

なお、0値出力部200により生成されるオーディオ信号は無音信号である。オーディオ信号が生成されると、その後、処理はステップS93へと進む。 The audio signal generated by the 0-value output unit 200 is a silent signal. When the audio signal is generated, the process then proceeds to step S93.

ステップS91において優先度情報が閾値Q未満であると判定されたか、またはステップS92においてオーディオ信号が生成されると、ステップS93において、オブジェクトオーディオ信号取得部197は、保持しているオブジェクト番号に1を加え、処理対象のオブジェクトのオブジェクト番号を更新する。 If it is determined in step S91 that the priority information is less than the threshold value Q, or if an audio signal is generated in step S92, the object audio signal acquisition unit 197 sets the object number held by 1 to 1 in step S93. In addition, the object number of the object to be processed is updated.

オブジェクト番号が更新されると、その後、処理はステップS89に戻り、上述した処理が繰り返し行われる。すなわち、新たな処理対象のオブジェクトのオーディオ信号が生成される。 When the object number is updated, the process then returns to step S89, and the above-described process is repeated. That is, an audio signal of a new object to be processed is generated.

また、ステップS89において、処理対象のオブジェクトのオブジェクト番号がN未満ではないと判定された場合、全てのチャネルおよびオブジェクトについてオーディオ信号が得られたので選択復号処理は終了し、その後、処理は図11のステップS53に進む。 Further, in step S89, when it is determined that the object number of the object to be processed is not less than N, audio signals are obtained for all channels and objects, so that the selective decoding process is completed, and then the process is performed in FIG. Step S53.

以上のようにして、復号装置151は、各チャネルまたは各オブジェクトについて、優先度情報と閾値とを比較して、処理対象のフレームのチャネルやオブジェクトごとに符号化されたオーディオ信号の復号を行うか否かを判定しながら、符号化されたオーディオ信号を復号する。 As described above, whether the decoding device 151 compares the priority information and the threshold value for each channel or each object and decodes the audio signal encoded for each channel or object of the frame to be processed. Decoding the encoded audio signal while determining whether or not.

すなわち、復号装置151では、各オーディオ信号の優先度情報に応じた所定の数だけ、符号化されたオーディオ信号が復号され、残りのオーディオ信号は復号されない。 That is, in the decoding device 151, the encoded audio signals are decoded by a predetermined number according to the priority information of each audio signal, and the remaining audio signals are not decoded.

これにより、再生環境に合わせて優先度合いの高いオーディオ信号のみを選択的に復号することができ、オーディオ信号により再生される音声の音質の劣化を最小限に抑えつつ、復号の計算量を低減させることができる。 As a result, only the audio signal having a high priority can be selectively decoded according to the playback environment, and the amount of decoding calculation is reduced while minimizing the deterioration of the sound quality of the sound reproduced by the audio signal. be able to.

しかも、各オブジェクトのオーディオ信号の優先度情報に基づいて、符号化されたオーディオ信号の復号を行うことで、オーディオ信号の復号の計算量だけでなく、レンダリング部162等における処理など、その後の処理の計算量も低減させることができる。 Moreover, by decoding the encoded audio signal based on the priority information of the audio signal of each object, not only the computational complexity of decoding the audio signal but also the subsequent processing such as the processing in the rendering unit 162 and the like. The amount of calculation of can be reduced.

〈第1の実施の形態の変形例1〉
〈優先度情報について〉
なお、以上においては各チャネルや各オブジェクトの1つのオーディオ信号に対して、1つの優先度情報が生成されると説明したが、複数の優先度情報が生成されるようにしてもよい。
<Modification 1 of the first embodiment>
<About priority information>
Although it has been described above that one priority information is generated for one audio signal of each channel or each object, a plurality of priority information may be generated.

そのような場合、例えば複数の各優先度情報は復号の計算量、すなわち復号側の計算能力に応じて、計算能力ごとに生成される。 In such a case, for example, each of the plurality of priority information is generated for each computing power according to the computational complexity of decoding, that is, the computing power of the decoding side.

具体的には、例えば2チャネル相当のオーディオ信号をリアルタイムに復号するための計算量に基づいて、2チャネル相当の計算能力を有する機器のための優先度情報が生成される。 Specifically, for example, priority information for a device having computing power equivalent to 2 channels is generated based on the amount of calculation for decoding an audio signal corresponding to 2 channels in real time.

このような2チャネル相当の機器のための優先度情報では、例えば全オーディオ信号のうち、より優先度合いが低い、つまり0に近い値が優先度情報として割り当てられるオーディオ信号が多くなるように優先度情報が生成される。 In the priority information for such a device equivalent to two channels, for example, among all the audio signals, the priority is so that the audio signal having the lower priority, that is, the value close to 0 is assigned as the priority information is larger. Information is generated.

また、例えば24チャネル相当のオーディオ信号をリアルタイムに復号するための計算量に基づいて、24チャネル相当の計算能力を有する機器のための優先度情報も生成される。24チャネル相当の機器のための優先度情報では、例えば全オーディオ信号のうち、より優先度合いが高い、つまり7に近い値が優先度情報として割り当てられるオーディオ信号が多くなるように優先度情報が生成される。 In addition, priority information for a device having a computing power equivalent to 24 channels is also generated based on, for example, the amount of calculation for decoding an audio signal corresponding to 24 channels in real time. In the priority information for a device equivalent to 24 channels, for example, the priority information is generated so that the number of audio signals having a higher priority, that is, a value close to 7 is assigned as the priority information among all audio signals. Will be done.

この場合、例えば優先度情報生成部52は、図8のステップS11において、各チャネルのオーディオ信号に対して2チャネル相当の機器のための優先度情報を生成するとともに、それらの優先度情報に2チャネル相当の機器のためのものであることを示す識別子を付加し、パッキング部24に供給する。 In this case, for example, in step S11 of FIG. 8, the priority information generation unit 52 generates priority information for the equipment corresponding to two channels for the audio signal of each channel, and 2 for the priority information. An identifier indicating that the device is for a channel-equivalent device is added and supplied to the packing unit 24.

さらに、優先度情報生成部52は、ステップS11において、各チャネルのオーディオ信号に対して24チャネル相当の機器のための優先度情報も生成するとともに、それらの優先度情報に24チャネル相当の機器のためのものであることを示す識別子を付加し、パッキング部24に供給する。 Further, in step S11, the priority information generation unit 52 also generates priority information for the equipment corresponding to 24 channels for the audio signal of each channel, and also generates priority information for the equipment corresponding to 24 channels in the priority information. An identifier indicating that the information is for the purpose is added, and the information is supplied to the packing unit 24.

同様に、優先度情報生成部92も図8のステップS13において、2チャネル相当の機器のための優先度情報と、24チャネル相当の機器のための優先度情報とを生成して識別子を付加し、パッキング部24に供給する。 Similarly, in step S13 of FIG. 8, the priority information generation unit 92 also generates priority information for the equipment corresponding to 2 channels and priority information for the equipment corresponding to 24 channels and adds an identifier. , Supply to the packing unit 24.

これにより、例えばポータブルオーディオプレーヤや、多機能型携帯電話機、タブレット型コンピュータ、テレビジョン受像機、パーソナルコンピュータ、高品位な音響機器などの再生機器の計算能力に応じた優先度情報が複数得られることになる。 As a result, it is possible to obtain a plurality of priority information according to the computing power of a playback device such as a portable audio player, a multifunctional mobile phone, a tablet computer, a television receiver, a personal computer, or a high-quality audio device. become.

例えばポータブルオーディオプレーヤなどの再生機器は、比較的計算能力が低いので、そのような再生機器では、2チャネル相当の機器のための優先度情報に基づいて符号化されたオーディオ信号を復号すれば、リアルタイムでオーディオ信号の再生を行うことができる。 For example, a playback device such as a portable audio player has a relatively low computing power. Therefore, in such a playback device, if the audio signal encoded based on the priority information for the device equivalent to two channels is decoded, the audio signal can be decoded. Audio signals can be played back in real time.

以上のように、1つのオーディオ信号に対して複数の優先度情報が生成される場合、復号装置151では、例えば上位の制御装置により、複数の優先度情報のうちのどの優先度情報を用いて復号を行うかが優先度情報取得部191等に対して指示がされる。どの優先度情報を用いるかの指示は、例えば識別子が供給されることにより行われる。 As described above, when a plurality of priority information is generated for one audio signal, the decoding device 151 uses, for example, a higher-level control device which of the plurality of priority information is used. The priority information acquisition unit 191 and the like are instructed whether to perform decoding. The instruction as to which priority information is used is given, for example, by supplying an identifier.

なお、どの識別子の優先度情報を用いるかが、復号装置151ごとに予め定められているようにしてもよい。 It should be noted that which identifier priority information is used may be predetermined for each decoding device 151.

例えば優先度情報取得部191において、予めどの識別子の優先度情報を用いるかが定められた場合、または上位の制御装置により識別子が指定された場合、図12のステップS81では、優先度情報取得部191は、定められた識別子が付加されている優先度情報を取得する。そして、取得された優先度情報が優先度情報取得部191から、出力選択部194や出力選択部199に供給される。 In example priority information acquisition unit 191, when either using priority information in advance which identifiers have been established, or if the identifier is specified by the upper controller, in step S81 in FIG. 12, the priority information acquisition unit 191 acquires priority information to which a defined identifier is added. Then, the acquired priority information is supplied from the priority information acquisition unit 191 to the output selection unit 194 and the output selection unit 199.

換言すれば、ビットストリームに格納されている複数の優先度情報のなかから、復号装置151、より詳細にはアンパッキング/復号部161の計算能力等に応じて適切な優先度情報が1つ選択される。 In other words, from a plurality of priority information stored in the bit stream, one appropriate priority information is selected according to the computing power of the decoding device 151, more specifically, the unpacking / decoding unit 161 and the like. Will be done.

この場合、各チャネルの優先度情報と、各オブジェクトの優先度情報とで異なる識別子が利用されてビットストリームから優先度情報が読み出されてもよい。 In this case, the priority information may be read from the bit stream by using different identifiers for the priority information of each channel and the priority information of each object.

このように、ビットストリームに含まれている複数の優先度情報のなかから、特定の優先度情報を選択して取得することにより、復号装置151の計算能力等に応じて適切な優先度情報を選択し、復号を行うことができる。これにより、何れの復号装置151においてもリアルタイムでオーディオ信号を再生することができるようになる。 In this way, by selecting and acquiring specific priority information from the plurality of priority information included in the bit stream, appropriate priority information can be obtained according to the computing power of the decoding device 151 and the like. You can select and decrypt. As a result, any decoding device 151 can reproduce the audio signal in real time.

〈第2の実施の形態〉
〈アンパッキング/復号部の構成例〉
なお、以上においては、符号化装置11から出力されるビットストリームに優先度情報が含まれている例について説明したが、符号化装置によっては、ビットストリームに優先度情報が含まれていないこともあり得る。
<Second Embodiment>
<Configuration example of unpacking / decoding unit>
In the above, an example in which the bit stream output from the encoding device 11 contains priority information has been described, but depending on the coding device, the bit stream may not include the priority information. possible.

そこで、復号装置151において優先度情報を生成するようにしてもよい。例えば、ビットストリームに含まれているオーディオ信号の符号化データから抽出できる、オーディオ信号の音圧を示す情報やスペクトル形状を示す情報を用いて優先度情報を生成することが可能である。 Therefore, the decoding device 151 may generate priority information. For example, priority information can be generated using information indicating the sound pressure of the audio signal and information indicating the spectral shape, which can be extracted from the encoded data of the audio signal included in the bit stream.

このように、復号装置151において優先度情報を生成する場合、復号装置151のアンパッキング/復号部161は、例えば図13に示すように構成される。なお、図13において、図10における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。 In this way, when the decoding device 151 generates the priority information, the unpacking / decoding unit 161 of the decoding device 151 is configured as shown in FIG. 13, for example. In FIG. 13, the same reference numerals are given to the portions corresponding to the cases in FIG. 10, and the description thereof will be omitted as appropriate.

図13に示すアンパッキング/復号部161は、チャネルオーディオ信号取得部192、チャネルオーディオ信号復号部193、出力選択部194、0値出力部195、IMDCT部196、オブジェクトオーディオ信号取得部197、オブジェクトオーディオ信号復号部198、出力選択部199、0値出力部200、IMDCT部201、優先度情報生成部231、および優先度情報生成部232を有している。 The unpacking / decoding unit 161 shown in FIG. 13 includes a channel audio signal acquisition unit 192, a channel audio signal decoding unit 193, an output selection unit 194, a 0 value output unit 195, an IMDCT unit 196, an object audio signal acquisition unit 197, and an object audio unit. It has a signal decoding unit 198, an output selection unit 199, a 0 value output unit 200, an IMDCT unit 201, a priority information generation unit 231 and a priority information generation unit 232.

図13に示すアンパッキング/復号部161の構成は、優先度情報取得部191が設けられておらず、新たに優先度情報生成部231、および優先度情報生成部232が設けられている点で図10のアンパッキング/復号部161と異なり、他の構成は図10のアンパッキング/復号部161と同じとなっている。 The configuration of the unpacking / decoding unit 161 shown in FIG. 13 is that the priority information acquisition unit 191 is not provided, and the priority information generation unit 231 and the priority information generation unit 232 are newly provided. Unlike the unpacking / decoding unit 161 of FIG. 10, other configurations are the same as the unpacking / decoding unit 161 of FIG.

チャネルオーディオ信号取得部192は、供給されたビットストリームから各チャネルの符号化データを取得して、チャネルオーディオ信号復号部193および優先度情報生成部231に供給する。 The channel audio signal acquisition unit 192 acquires the coded data of each channel from the supplied bit stream and supplies it to the channel audio signal decoding unit 193 and the priority information generation unit 231.

優先度情報生成部231は、チャネルオーディオ信号取得部192から供給された各チャネルの符号化データに基づいて、各チャネルの優先度情報を生成し、出力選択部194に供給する。 The priority information generation unit 231 generates priority information for each channel based on the coded data of each channel supplied from the channel audio signal acquisition unit 192, and supplies the priority information to the output selection unit 194.

オブジェクトオーディオ信号取得部197は、供給されたビットストリームから各オブジェクトの符号化データを取得して、オブジェクトオーディオ信号復号部198および優先度情報生成部232に供給する。また、オブジェクトオーディオ信号取得部197は、供給されたビットストリームから各オブジェクトのメタデータを取得して、レンダリング部162に供給する。 The object audio signal acquisition unit 197 acquires the coded data of each object from the supplied bit stream and supplies it to the object audio signal decoding unit 198 and the priority information generation unit 232. Further, the object audio signal acquisition unit 197 acquires the metadata of each object from the supplied bit stream and supplies it to the rendering unit 162.

優先度情報生成部232は、オブジェクトオーディオ信号取得部197から供給された各オブジェクトの符号化データに基づいて、各オブジェクトの優先度情報を生成し、出力選択部199に供給する。 The priority information generation unit 232 generates priority information for each object based on the coded data of each object supplied from the object audio signal acquisition unit 197, and supplies the priority information to the output selection unit 199.

〈選択復号処理の説明〉
アンパッキング/復号部161が図13に示した構成とされる場合、復号装置151は、図11に示した復号処理のステップS52に対応する処理として、図14に示す選択復号処理を行う。以下、図14のフローチャートを参照して、復号装置151による選択復号処理について説明する。
<Explanation of selective decoding process>
When the unpacking / decoding unit 161 has the configuration shown in FIG. 13, the decoding device 151 performs the selective decoding process shown in FIG. 14 as the process corresponding to step S52 of the decoding process shown in FIG. Hereinafter, the selective decoding process by the decoding device 151 will be described with reference to the flowchart of FIG.

ステップS131において、優先度情報生成部231は各チャネルのオーディオ信号の優先度情報を生成する。 In step S131, the priority information generation unit 231 generates priority information of the audio signal of each channel.

例えばチャネルオーディオ信号取得部192は、供給されたビットストリームから各チャネルの符号化データを取得して、チャネルオーディオ信号復号部193および優先度情報生成部231に供給する。 For example, the channel audio signal acquisition unit 192 acquires the coded data of each channel from the supplied bit stream and supplies it to the channel audio signal decoding unit 193 and the priority information generation unit 231.

優先度情報生成部231は、チャネルオーディオ信号取得部192から供給された各チャネルの符号化データに基づいて各チャネルの優先度情報を生成し、出力選択部194に供給する。 The priority information generation unit 231 generates priority information for each channel based on the coded data of each channel supplied from the channel audio signal acquisition unit 192, and supplies the priority information to the output selection unit 194.

例えばビットストリームには、オーディオ信号の符号化データとして、MDCT係数を得るためのスケールファクタ、サイド情報、および量子化スペクトルが含まれている。ここで、スケールファクタはオーディオ信号の音圧を示す情報であり、量子化スペクトルはオーディオ信号のスペクトル形状を示す情報である。 For example, the bitstream contains the scale factor, side information, and quantization spectrum for obtaining the MDCT coefficient as the coded data of the audio signal. Here, the scale factor is information indicating the sound pressure of the audio signal, and the quantization spectrum is information indicating the spectral shape of the audio signal.

優先度情報生成部231は、各チャネルの符号化データとして含まれているスケールファクタや量子化スペクトルに基づいて、各チャネルのオーディオ信号の優先度情報を生成する。このように、スケールファクタや量子化スペクトルを用いて優先度情報を生成すれば、符号化データの復号を行う前に、直ちに優先度情報を得ることができ、優先度情報の生成のための計算量も低減させることができる。 The priority information generation unit 231 generates priority information of the audio signal of each channel based on the scale factor and the quantization spectrum included as the coded data of each channel. In this way, if the priority information is generated using the scale factor and the quantization spectrum, the priority information can be obtained immediately before decoding the coded data, and the calculation for generating the priority information can be performed. The amount can also be reduced.

なお、優先度情報は、その他、MDCT係数の自乗平均値を計算することで得られる、オーディオ信号の音圧や、MDCT係数のピーク包絡から得られるオーディオ信号のスペクトル形状に基づいて生成されるようにしてもよい。この場合、優先度情報生成部231は、適宜、符号化データの復号を行ったり、チャネルオーディオ信号復号部193からMDCT係数を取得したりする。 In addition, the priority information is generated based on the sound pressure of the audio signal obtained by calculating the mean value of the square of the MDCT coefficient and the spectral shape of the audio signal obtained from the peak wrapping of the MDCT coefficient. It may be. In this case, the priority information generation unit 231 decodes the encoded data as appropriate, or acquires the MDCT coefficient from the channel audio signal decoding unit 193.

各チャネルの優先度情報が得られると、その後、ステップS132乃至ステップS137の処理が行われるが、これらの処理は図12のステップS82乃至ステップS87の処理と同様であるので、その説明は省略する。但し、この場合、すでに各チャネルの符号化データは取得されているので、ステップS134では符号化データの復号のみが行われる。 When the priority information of each channel is obtained, the processes of steps S132 to S137 are subsequently performed, but since these processes are the same as the processes of steps S82 to S87 of FIG. 12, the description thereof will be omitted. .. However, in this case, since the coded data of each channel has already been acquired, only the coded data is decoded in step S134.

また、ステップS133において、チャネル番号がM未満でないと判定されると、ステップS138において、優先度情報生成部232は各オブジェクトのオーディオ信号の優先度情報を生成する。 If it is determined in step S133 that the channel number is not less than M, the priority information generation unit 232 generates priority information of the audio signal of each object in step S138.

例えばオブジェクトオーディオ信号取得部197は、供給されたビットストリームから各オブジェクトの符号化データを取得して、オブジェクトオーディオ信号復号部198および優先度情報生成部232に供給する。また、オブジェクトオーディオ信号取得部197は、供給されたビットストリームから各オブジェクトのメタデータを取得して、レンダリング部162に供給する。 For example, the object audio signal acquisition unit 197 acquires the coded data of each object from the supplied bit stream and supplies it to the object audio signal decoding unit 198 and the priority information generation unit 232. Further, the object audio signal acquisition unit 197 acquires the metadata of each object from the supplied bit stream and supplies it to the rendering unit 162.

優先度情報生成部232は、オブジェクトオーディオ信号取得部197から供給された各オブジェクトの符号化データに基づいて各オブジェクトの優先度情報を生成し、出力選択部199に供給する。例えば優先度情報は、各チャネルにおける場合と同様に、スケールファクタや量子化スペクトルに基づいて生成される。 The priority information generation unit 232 generates priority information for each object based on the coded data of each object supplied from the object audio signal acquisition unit 197, and supplies the priority information to the output selection unit 199. For example, priority information is generated based on scale factors and quantization spectra as in each channel.

また、MDCT係数から得られる音圧やスペクトル形状に基づいて優先度情報が生成されてもよい。この場合、優先度情報生成部232は、適宜、符号化データの復号を行ったり、オブジェクトオーディオ信号復号部198からMDCT係数を取得したりする。 Further, priority information may be generated based on the sound pressure and the spectral shape obtained from the MDCT coefficient. In this case, the priority information generation unit 232 decodes the encoded data as appropriate and acquires the MDCT coefficient from the object audio signal decoding unit 198.

各オブジェクトの優先度情報が得られると、その後、ステップS139乃至ステップS144の処理が行われて選択復号処理は終了するが、これらの処理は図12のステップS88乃至ステップS93の処理と同様であるので、その説明は省略する。但し、この場合、すでに各オブジェクトの符号化データは取得されているので、ステップS141では符号化データの復号のみが行われる。 When the priority information of each object is obtained, the processes of steps S139 to S144 are performed thereafter to end the selective decoding process, but these processes are the same as the processes of steps S88 to S93 of FIG. Therefore, the description thereof will be omitted. However, in this case, since the coded data of each object has already been acquired, only the coded data is decoded in step S141.

選択復号処理が終了すると、その後、処理は図11のステップS53へと進む。 When the selective decoding process is completed, the process then proceeds to step S53 of FIG.

以上のようにして、復号装置151は、ビットストリームに含まれている符号化データに基づいて、各チャネルや各オブジェクトのオーディオ信号の優先度情報を生成する。このように復号装置151において優先度情報を生成することで、各オーディオ信号について適切な優先度情報を少ない計算量で得ることができ、復号の計算量やレンダリング等の計算量を低減させることができる。また、オーディオ信号により再生される音声の音質の劣化を最小限に抑えることもできる。 As described above, the decoding device 151 generates priority information of the audio signal of each channel or each object based on the coded data included in the bit stream. By generating the priority information in the decoding device 151 in this way, it is possible to obtain appropriate priority information for each audio signal with a small amount of calculation, and it is possible to reduce the amount of calculation for decoding and the amount of calculation for rendering. it can. In addition, deterioration of the sound quality of the sound reproduced by the audio signal can be minimized.

なお、図10に示したアンパッキング/復号部161の優先度情報取得部191が、供給されたビットストリームから、各チャネルおよび各オブジェクトのオーディオ信号の優先度情報を取得しようとしたが、ビットストリームから優先度情報が取得できなかった場合に、優先度情報が生成されるようにしてもよい。そのような場合、優先度情報取得部191は、優先度情報生成部231や優先度情報生成部232と同様の処理を行い、符号化データから各チャネルおよび各オブジェクトのオーディオ信号の優先度情報を生成する。 The priority information acquisition unit 191 of the unpacking / decoding unit 161 shown in FIG. 10 tried to acquire the priority information of the audio signals of each channel and each object from the supplied bit stream, but the bit stream Priority information may be generated when the priority information cannot be obtained from. In such a case, the priority information acquisition unit 191 performs the same processing as the priority information generation unit 231 and the priority information generation unit 232, and obtains the priority information of the audio signals of each channel and each object from the coded data. Generate.

〈第3の実施の形態〉
〈優先度情報の閾値について〉
さらに、以上においては、各チャネルや各オブジェクトについて、優先度情報と、閾値Pや閾値Qとを比較して復号するオーディオ信号、より詳細にはIMDCTを行うMDCT係数を選択すると説明したが、これらの閾値Pや閾値Qがオーディオ信号のフレームごとに動的に変更されるようにしてもよい。
<Third embodiment>
<About the threshold of priority information>
Further, in the above, it has been explained that for each channel and each object, the audio signal to be decoded by comparing the priority information with the threshold value P and the threshold value Q, and more specifically, the MDCT coefficient for performing IMDCT is selected. The threshold value P and the threshold value Q of the audio signal may be dynamically changed for each frame of the audio signal.

例えば図10に示したアンパッキング/復号部161の優先度情報取得部191では、復号を必要とせずに、ビットストリームから各チャネルおよび各オブジェクトの優先度情報を取得することができる。 For example, the priority information acquisition unit 191 of the unpacking / decoding unit 161 shown in FIG. 10 can acquire priority information of each channel and each object from the bit stream without requiring decoding.

したがって、例えば優先度情報取得部191が全チャネルのオーディオ信号の優先度情報を読み出せば、処理対象となっているフレームにおける優先度情報の分布を得ることができる。また、復号装置151では、例えば何チャネルまでなら同時に、つまりリアルタイムで処理できるかなど、予め自分自身の計算能力が分かっている。 Therefore, for example, if the priority information acquisition unit 191 reads the priority information of the audio signals of all channels, the distribution of the priority information in the frame to be processed can be obtained. Further, the decoding device 151 knows in advance its own computing power, such as how many channels can be processed at the same time, that is, in real time.

そこで、優先度情報取得部191が処理対象のフレームにおける優先度情報の分布と、復号装置151の計算能力とに基づいて、その処理対象のフレームについての優先度情報の閾値Pを定めるようにしてもよい。 Therefore, the priority information acquisition unit 191 determines the threshold value P of the priority information for the frame to be processed based on the distribution of the priority information in the frame to be processed and the computing power of the decoding device 151. May be good.

例えば閾値Pは、復号装置151がリアルタイムで処理を行うことのできる範囲内で最も多くのオーディオ信号が復号されるように定められる。 For example, the threshold value P is set so that the largest number of audio signals can be decoded within the range in which the decoding device 151 can perform processing in real time.

また、優先度情報取得部191は、閾値Pにおける場合と同様に閾値Qを動的に定めることができる。この場合、優先度情報取得部191は全オブジェクトのオーディオ信号の優先度情報に基づいて、それらの優先度情報の分布を求め、求めた分布と、復号装置151の計算能力とに基づいて、処理対象のフレームについての優先度情報の閾値Qを定める。 Further, the priority information acquisition unit 191 can dynamically determine the threshold value Q as in the case of the threshold value P. In this case, the priority information acquisition unit 191 obtains the distribution of the priority information based on the priority information of the audio signals of all the objects, and processes based on the obtained distribution and the computing power of the decoding device 151. A threshold Q of priority information for the target frame is set.

このような閾値Pや閾値Qの決定は、比較的少ない計算量で行うことができる。 Such determination of the threshold value P and the threshold value Q can be performed with a relatively small amount of calculation.

このように優先度情報の閾値を動的に変化させることで、リアルタイムで復号を行いつつ、オーディオ信号により再生される音声の音質の劣化を最小限に抑えることができる。特にこのような場合、優先度情報を複数用意する必要がなく、また優先度情報に識別子を設ける必要もないので、ビットストリームの符号量も少なくてすむ。 By dynamically changing the threshold value of the priority information in this way, it is possible to minimize the deterioration of the sound quality of the sound reproduced by the audio signal while performing decoding in real time. In particular, in such a case, it is not necessary to prepare a plurality of priority information and it is not necessary to provide an identifier in the priority information, so that the code amount of the bit stream can be reduced.

〈オブジェクトのメタデータについて〉
さらに、以上において説明した第1の実施の形態乃至第3の実施の形態では、ビットストリームの先頭のエレメントには、1フレーム分のオブジェクトのメタデータや優先度情報などが格納されると説明した。
<About object metadata>
Further, in the first to third embodiments described above, it has been described that the first element of the bitstream stores the metadata and priority information of the object for one frame. ..

この場合、ビットストリームの先頭のエレメントにおける、オブジェクトのメタデータおよび優先度情報が格納される部分のシンタックスは、例えば図15に示すようになる。 In this case, the syntax of the part of the first element of the bitstream in which the metadata and priority information of the object is stored is as shown in FIG. 15, for example.

図15に示す例では、オブジェクトのメタデータのなかに、オブジェクトの空間位置情報と優先度情報が1フレーム分だけ格納されている。 In the example shown in FIG. 15, the spatial position information and the priority information of the object are stored in the metadata of the object for one frame.

この例では「num_objects」はオブジェクトの数を示している。また、「object_priority[o]」はO番目のオブジェクトの優先度情報を示している。ここで、O番目のオブジェクトとは、オブジェクト番号により特定されるオブジェクトである。 In this example, "num_objects" indicates the number of objects. In addition, "object_priority [o]" indicates the priority information of the O-th object. Here, the O-th object is an object specified by an object number.

「position_azimuth[o]」は、視聴者であるユーザからみた、つまり所定の基準位置からみたO番目のオブジェクトの3次元空間位置を表す水平方向角度を示している。また、「position_elevation[o]」は、視聴者であるユーザからみたO番目のオブジェクトの3次元空間位置を表す垂直方向角度を示している。さらに「position_radius[o]」は、視聴者からO番目のオブジェクトまでの距離を示している。 “Position_azimuth [o]” indicates a horizontal angle representing the three-dimensional spatial position of the O-th object as seen from the user who is the viewer, that is, as viewed from a predetermined reference position. Further, "position_elevation [o]" indicates a vertical angle representing the three-dimensional spatial position of the O-th object as seen from the user who is the viewer. Furthermore, "position_radius [o]" indicates the distance from the viewer to the Oth object.

したがって、3次元空間におけるオブジェクトの位置は、これらの「position_azimuth[o]」、「position_elevation[o]」、および「position_radius[o]」から特定されることになり、これらの情報がオブジェクトの空間位置情報とされる。 Therefore, the position of the object in the three-dimensional space is specified from these "position_azimuth [o]", "position_elevation [o]", and "position_radius [o]", and this information is the spatial position of the object. It is regarded as information.

また、「gain_factor[o]」はO番目のオブジェクトの利得を示している。 Also, "gain_factor [o]" indicates the gain of the Oth object.

このように、図15に示すメタデータには、1つのオブジェクトについての「object_priority[o]」、「position_azimuth[o]」、「position_elevation[o]」、「position_radius[o]」、および「gain_factor[o]」が、そのオブジェクトのデータとして順番に配置されている。そして、メタデータ内には、各オブジェクトのデータが、例えばオブジェクトのオブジェクト番号順に並べられて配置されている。 Thus, the metadata shown in FIG. 15 includes "object_priority [o]", "position_azimuth [o]", "position_elevation [o]", "position_radius [o]", and "gain_factor [" for one object. o] ”are arranged in order as the data of the object. Then, in the metadata, the data of each object is arranged and arranged in the order of the object numbers of the objects, for example.

〈第4の実施の形態〉
〈オーディオ信号の完全再構成と不連続性に起因するノイズについて〉
以上においては、復号装置151においてビットストリームから読み出されたチャネルまたはオブジェクトごとの各フレーム(以下では、特に時間フレームと称する)の優先度情報が、予め定められた閾値未満である場合にIMDCT等の復号処理を省くことで、復号時の処理量を削減する例について説明した。具体的には、優先度情報が閾値未満である場合には、0値出力部195や0値出力部200から無音のオーディオ信号を出力する、つまりオーディオ信号として0データを出力すると説明した。
<Fourth Embodiment>
<About noise caused by complete reconstruction and discontinuity of audio signals>
In the above, when the priority information of each frame (hereinafter, particularly referred to as a time frame) for each channel or object read from the bit stream by the decoding device 151 is less than a predetermined threshold value, IMDCT or the like. An example of reducing the processing amount at the time of decoding was described by omitting the decoding process of. Specifically, it has been described that when the priority information is less than the threshold value, the 0 value output unit 195 and the 0 value output unit 200 output a silent audio signal, that is, 0 data is output as an audio signal.

ところが、そのような場合、聴感上の音質劣化が生じてしまう。具体的には、オーディオ信号の完全再構成に起因する音質劣化と、グリッチノイズ等の信号の不連続性に起因するノイズの発生による音質劣化が生じる。 However, in such a case, the sound quality deteriorates in terms of hearing. Specifically, sound quality deterioration due to complete reconstruction of the audio signal and sound quality deterioration due to generation of noise due to signal discontinuity such as glitch noise occur.

(完全再構成に起因する音質劣化)
例えば、優先度情報が閾値未満である場合にオーディオ信号として0データを出力すると、0データの出力と、0データではない通常のオーディオ信号の出力との切り替え時に音質劣化が生じる。
(Sound quality deterioration due to complete reconstruction)
For example, if 0 data is output as an audio signal when the priority information is less than the threshold value, sound quality deterioration occurs when switching between the output of 0 data and the output of a normal audio signal that is not 0 data.

上述したようにアンパッキング/復号部161では、IMDCT部196やIMDCT部201において、ビットストリームから読み出された時間フレームごとのMDCT係数に対してIMDCTが行われる。そして、より詳細にはアンパッキング/復号部161では、現時間フレームについてのIMDCTの結果または0データと、1時間フレーム前のIMDCTの結果または0データとから、現時間フレームのオーディオ信号が生成される。 As described above, in the unpacking / decoding unit 161, the IMDCT unit 196 and the IMDCT unit 201 perform IMDCT with respect to the MDCT coefficient for each time frame read from the bit stream. Then, in more detail, the unpacking / decoding unit 161 generates an audio signal of the current time frame from the result or 0 data of the IMDCT about the current time frame and the result or 0 data of the IMDCT one hour before. To.

ここで、オーディオ信号の生成について、図16を参照して説明する。なお、ここでは、オブジェクトのオーディオ信号の生成を例として説明するが、各チャネルのオーディオ信号の生成についても同様である。また、以下では、0値出力部200から出力されるオーディオ信号、およびIMDCT部201から出力されるオーディオ信号を、特にIMDCT信号とも称することとする。同様に、0値出力部195から出力されるオーディオ信号、およびIMDCT部196から出力されるオーディオ信号を、特にIMDCT信号とも称することとする。 Here, the generation of the audio signal will be described with reference to FIG. Here, the generation of the audio signal of the object will be described as an example, but the same applies to the generation of the audio signal of each channel. Further, in the following, the audio signal output from the 0 value output unit 200 and the audio signal output from the IMDCT unit 201 will also be referred to as an IMDCT signal in particular. Similarly, the audio signal output from the 0-value output unit 195 and the audio signal output from the IMDCT unit 196 are also referred to as an IMDCT signal in particular.

図16では、図中、横方向は時間を示しており、文字「data[n-1]」乃至「data[n+2]」が記された長方形は、それぞれ所定のオブジェクトの時間フレーム(n-1)乃至時間フレーム(n+2)のビットストリームを表している。また、各時間フレームのビットストリーム内の数値は、その時間フレームのオブジェクトの優先度情報の値を示しており、この例では各時間フレームの優先度情報の値は「7」となっている。 In FIG. 16, in the figure, the horizontal direction indicates the time, and the rectangles with the characters “data [n-1]” to “data [n + 2]” are the time frames (n) of the predetermined objects. Represents a bitstream from -1) to time frame (n + 2). Further, the numerical value in the bit stream of each time frame indicates the value of the priority information of the object of that time frame, and in this example, the value of the priority information of each time frame is "7".

さらに、図16において文字「MDCT_coef[q]」(但し、q=n-1,n,…)が記された長方形は、それぞれ時間フレーム(q)のMDCT係数を表している。 Further, in FIG. 16, the rectangles marked with the letters “MDCT_coef [q]” (where q = n-1, n, ...) represent the MDCT coefficients of the time frame (q), respectively.

いま、閾値Q=4であるとすると、時間フレーム(n-1)の優先度情報の値「7」は閾値Q以上であるので、時間フレーム(n-1)についてのMDCT係数に対してIMDCTが行われる。同様に、時間フレーム(n)の優先度情報の値「7」も閾値Q以上であるので、時間フレーム(n)についてのMDCT係数に対してIMDCTが行われる。 Now, assuming that the threshold value Q = 4, the value "7" of the priority information in the time frame (n-1) is equal to or higher than the threshold value Q. Therefore, the IMDCT with respect to the MDCT coefficient for the time frame (n-1). Is done. Similarly, since the value "7" of the priority information in the time frame (n) is also equal to or higher than the threshold value Q, IMDCT is performed on the MDCT coefficient for the time frame (n).

その結果、時間フレーム(n-1)のIMDCT信号OPS11と、時間フレーム(n)のIMDCT信号OPS12が得られたとする。 As a result, it is assumed that the IMDCT signal OPS11 in the time frame (n-1) and the IMDCT signal OPS12 in the time frame (n) are obtained.

この場合、アンパッキング/復号部161は、時間フレーム(n)のIMDCT信号OPS12の前半部分と、1時間フレーム前の時間フレーム(n-1)のIMDCT信号OPS11の後半部分とを足し合わせて、時間フレーム(n)のオーディオ信号、つまり期間FL(n)のオーディオ信号とする。換言すれば、IMDCT信号OPS11の期間FL(n)の部分と、IMDCT信号OPS12の期間FL(n)の部分とがオーバーラップ加算されて、処理対象のオブジェクトの符号化前の時間フレーム(n)のオーディオ信号が再現される。 In this case, the unpacking / decoding unit 161 adds the first half of the IMDCT signal OPS12 of the time frame (n) and the second half of the IMDCT signal OPS11 of the time frame (n-1) one hour before. It is an audio signal of a time frame (n), that is, an audio signal of a period FL (n). In other words, the period FL (n) part of the IMDCT signal OPS11 and the period FL (n) part of the IMDCT signal OPS12 are overlapped and added, and the time frame (n) before encoding of the object to be processed is added. Audio signal is reproduced.

このような処理は、IMDCT信号がMDCT前の信号に完全再構成されるために必要な処理である。 Such processing is necessary for the IMDCT signal to be completely reconstructed into the signal before MDCT.

しかしながら、上述したアンパッキング/復号部161では、例えば図17に示すように、各時間フレームの優先度情報に応じて、IMDCT部201のIMDCT信号と0値出力部200のIMDCT信号を切り替えるタイミングにおいて、IMDCT信号がMDCT前の信号に完全再構成されなくなる。つまり、オーバーラップ加算時にもとの信号ではなく0データが用いられると、完全再構成されないため、もとのオーディオ信号を再現することができず、オーディオ信号の聴感上の音質が劣化してしまう。 However, in the unpacking / decoding unit 161 described above, at the timing of switching between the IMDCT signal of the IMDCT unit 201 and the IMDCT signal of the 0 value output unit 200 according to the priority information of each time frame, for example, as shown in FIG. , The IMDCT signal is no longer completely reconstructed into the pre-MDCT signal. That is, if 0 data is used instead of the original signal at the time of overlap addition, the original audio signal cannot be reproduced because it is not completely reconstructed, and the audible sound quality of the audio signal deteriorates. ..

なお、図17において、図16における場合と対応する部分には同一の文字等を記してあり、その説明は省略する。 In FIG. 17, the same characters and the like are written in the parts corresponding to the case in FIG. 16, and the description thereof will be omitted.

図17の例では、時間フレーム(n-1)の優先度情報の値は「7」であるが、他の時間フレーム(n)乃至時間フレーム(n+2)の優先度情報は最も低い「0」となっている。 In the example of FIG. 17, the value of the priority information of the time frame (n-1) is "7", but the priority information of the other time frames (n) to the time frame (n + 2) is the lowest "7". It is "0".

したがって、閾値Q=4であるとすると、時間フレーム(n-1)については、IMDCT部201においてMDCT係数に対するIMDCTが行われ、時間フレーム(n-1)のIMDCT信号OPS21が得られる。これに対して、時間フレーム(n)については、MDCT係数に対するIMDCTが行われず、0値出力部200から出力される0データが時間フレーム(n)のIMDCT信号OPS22とされる。 Therefore, assuming that the threshold value Q = 4, for the time frame (n-1), the IMDCT unit 201 performs IMDCT with respect to the MDCT coefficient, and the IMDCT signal OPS21 of the time frame (n-1) is obtained. On the other hand, for the time frame (n), the IMDCT for the MDCT coefficient is not performed, and the 0 data output from the 0 value output unit 200 is used as the IMDCT signal OPS22 for the time frame (n).

この場合、時間フレーム(n)のIMDCT信号OPS22である0データの前半部分と、その1時間フレーム前の時間フレーム(n-1)のIMDCT信号OPS21の後半部分とが足し合わされて、最終的な時間フレーム(n)のオーディオ信号とされる。すなわち、IMDCT信号OPS22とIMDCT信号OPS21の期間FL(n)の部分がオーバーラップ加算されて、処理対象のオブジェクトの最終的な時間フレーム(n)のオーディオ信号とされる。 In this case, the first half of 0 data, which is the IMDCT signal OPS22 of the time frame (n), and the second half of the IMDCT signal OPS21 of the time frame (n-1) one hour before that are added together to make the final It is regarded as an audio signal of the time frame (n). That is, the parts of the period FL (n) of the IMDCT signal OPS22 and the IMDCT signal OPS21 are overlapped and added to obtain the audio signal of the final time frame (n) of the object to be processed.

このようにIMDCT信号の出力元がIMDCT部201から0値出力部200へと、または0値出力部200からIMDCT部201へと切り替わるときには、IMDCT部201からのIMDCT信号が完全再構成されなくなり、聴感上の音質の劣化が生じてしまう。 When the output source of the IMDCT signal is switched from the IMDCT unit 201 to the 0 value output unit 200 or from the 0 value output unit 200 to the IMDCT unit 201 in this way, the IMDCT signal from the IMDCT unit 201 is not completely reconstructed. Deterioration of audible sound quality occurs.

(不連続性に起因するノイズの発生による音質劣化)
また、IMDCT信号の出力元がIMDCT部201から0値出力部200へと、または0値出力部200からIMDCT部201へと切り替わる場合、信号が完全再構成されないので、IMDCTにより得られたIMDCT信号と、0データとされたIMDCT信号との接続部分で信号が不連続となることがある。そうすると、その不連続な接続部分にグリッチノイズが発生し、オーディオ信号の聴感上の音質が劣化してしまう。
(Sound quality deterioration due to noise caused by discontinuity)
Further, when the output source of the IMDCT signal is switched from the IMDCT unit 201 to the 0 value output unit 200, or from the 0 value output unit 200 to the IMDCT unit 201, the signal is not completely reconstructed, so that the IMDCT signal obtained by the IMDCT is not completely reconstructed. And, the signal may be discontinuous at the connection part with the IMDCT signal which is set to 0 data. Then, glitch noise is generated in the discontinuous connection portion, and the audible sound quality of the audio signal is deteriorated.

さらに、アンパッキング/復号部161において音質を向上させるために、IMDCT部201や0値出力部200から出力されたIMDCT信号をオーバーラップ加算して得られたオーディオ信号に対して、SBR(Spectral Band Replication)等の処理が行われることがある。 Further, in order to improve the sound quality in the unpacking / decoding unit 161, SBR (Spectral Band) is applied to the audio signal obtained by overlapping and adding the IMDCT signals output from the IMDCT unit 201 and the 0 value output unit 200. Replication) etc. may be performed.

なお、IMDCT部201や0値出力部200の後段の処理として様々な処理が考えられるが、以下ではSBRを例として説明を続ける。 Various processes can be considered as the subsequent processes of the IMDCT unit 201 and the 0 value output unit 200, but the description will be continued below by taking SBR as an example.

SBRでは、低域成分である、オーバーラップ加算により得られたオーディオ信号と、ビットストリームに格納されている高域のパワー値とから、符号化前のもとのオーディオ信号の高域成分が生成される。 In SBR, the high-frequency component of the original audio signal before encoding is generated from the audio signal obtained by overlap addition, which is a low-frequency component, and the high-frequency power value stored in the bitstream. Will be done.

具体的には、1時間フレーム分のオーディオ信号が、タイムスロットと呼ばれるいくつかの区間に分割され、各タイムスロットのオーディオ信号が低域の複数のサブバンドの信号(以下、低域サブバンド信号とも称する)に帯域分割される。 Specifically, the audio signal for one hour frame is divided into several sections called time slots, and the audio signal in each time slot is a signal of a plurality of low-frequency subbands (hereinafter, low-frequency subband signal). The band is divided into (also called).

そして各サブバンドの低域サブバンド信号と、高域側のサブバンドごとのパワー値とに基づいて、高域の各サブバンドの信号(以下、高域サブバンド信号とも称する)が生成される。例えば、所定のサブバンドの低域サブバンド信号を高域の目的とするサブバンドのパワー値によりパワー調整したり、周波数シフトしたりすることで、目的とする高域サブバンド信号が生成される。 Then, a signal of each high-frequency subband (hereinafter, also referred to as a high-frequency subband signal) is generated based on the low-frequency subband signal of each subband and the power value of each subband on the high-frequency side. .. For example, the target high-frequency sub-band signal is generated by power-adjusting or frequency-shifting the low-frequency sub-band signal of a predetermined sub-band according to the power value of the target sub-band in the high frequency range. ..

さらに、高域サブバンド信号と低域サブバンド信号が合成されて、高域成分を含むオーディオ信号が生成され、タイムスロットごとに生成された高域成分を含むオーディオ信号が結合されて、高域成分を含む1時間フレームのオーディオ信号とされる。 Furthermore, the high-frequency subband signal and the low-frequency subband signal are combined to generate an audio signal containing a high-frequency component, and the audio signal including the high-frequency component generated for each time slot is combined to generate a high-frequency component. It is an audio signal of 1 hour frame containing components.

IMDCT部201や0値出力部200の後段において、このようなSBRが行われる場合、IMDCT部201から出力されたIMDCT信号からなるオーディオ信号については、SBRにより高域成分が生成される。ところが、0値出力部200から出力されたIMDCT信号は0データであるため、0値出力部200から出力されたIMDCT信号からなるオーディオ信号については、SBRにより得られる高域成分も0データとなってしまう。 When such SBR is performed in the subsequent stage of the IMDCT unit 201 and the 0 value output unit 200, a high frequency component is generated by the SBR for the audio signal composed of the IMDCT signal output from the IMDCT unit 201. However, since the IMDCT signal output from the 0-value output unit 200 is 0 data, the high-frequency component obtained by SBR is also 0 data for the audio signal consisting of the IMDCT signal output from the 0-value output unit 200. It ends up.

そうすると、IMDCT信号の出力元がIMDCT部201から0値出力部200へと、または0値出力部200からIMDCT部201へと切り替わるときに、高域においても接続部分が不連続となってしまうことがある。そのような場合、グリッチノイズが発生し、聴感上の音質が劣化してしまう。 Then, when the output source of the IMDCT signal is switched from the IMDCT unit 201 to the 0 value output unit 200, or from the 0 value output unit 200 to the IMDCT unit 201, the connection portion becomes discontinuous even in the high frequency range. There is. In such a case, glitch noise is generated and the audible sound quality is deteriorated.

そこで、本技術では前後の時間フレームを考慮したMDCT係数の出力先の選択、およびオーディオ信号に対するフェードイン処理とフェードアウト処理を行うことにより、上述した聴感上の音質劣化を抑制し、音質を向上させるようにした。 Therefore, in this technology, the output destination of the MDCT coefficient is selected in consideration of the time frames before and after, and the fade-in processing and the fade-out processing for the audio signal are performed to suppress the above-mentioned deterioration of the audible sound quality and improve the sound quality. I did.

〈前後の時間フレームを考慮したMDCT係数の出力先の選択について〉
まず、前後の時間フレームを考慮したMDCT係数の出力先の選択について説明する。なお、ここでもオブジェクトのオーディオ信号を例として説明するが、各チャネルのオーディオ信号についても同様である。また、以下において説明する処理は、オブジェクトごと、およびチャネルごとに行われる。
<Selection of MDCT coefficient output destination considering the time frame before and after>
First, the selection of the output destination of the MDCT coefficient in consideration of the time frames before and after will be described. Although the audio signal of the object will be described as an example here as well, the same applies to the audio signal of each channel. In addition, the processing described below is performed for each object and each channel.

例えば、上述した実施の形態では、出力選択部199は、現時間フレームの優先度情報に基づいて、各オブジェクトのMDCT係数の出力先を選択的に切り替えると説明した。これに対して、本実施の形態では、出力選択部199は、現時間フレーム、現時間フレームの1つ前の時間フレーム、および現時間フレームの1つ後の時間フレームの時間的に連続する3つの時間フレームの優先度情報に基づいて、MDCT係数の出力先を切り替える。換言すれば、連続する3つの時間フレームの優先度情報に基づいて、符号化データの復号を行うか否かが選択される。 For example, in the above-described embodiment, the output selection unit 199 has described that the output destination of the MDCT coefficient of each object is selectively switched based on the priority information of the current time frame. On the other hand, in the present embodiment, the output selection unit 199 is temporally continuous with the current time frame, the time frame immediately before the current time frame, and the time frame immediately after the current time frame. The output destination of the MDCT coefficient is switched based on the priority information of one time frame. In other words, whether or not to decode the encoded data is selected based on the priority information of three consecutive time frames.

具体的には、出力選択部199は、処理対象のオブジェクトについて、次式(1)に示す条件式が満たされる場合、そのオブジェクトの時間フレーム(n)のMDCT係数をIMDCT部201に供給する。 Specifically, the output selection unit 199 supplies the MDCT coefficient of the time frame (n) of the object to the IMDCT unit 201 when the conditional expression shown in the following equation (1) is satisfied for the object to be processed.

Figure 2021064013
Figure 2021064013

式(1)において、object_priority[q](但し、q=n-1,n,n+1)は各時間フレーム(q)の優先度情報を示しており、threは閾値Qを示している。 In the equation (1), object_priority [q] (where q = n-1, n, n + 1) indicates the priority information of each time frame (q), and thre indicates the threshold value Q.

したがって、現時間フレームと、現時間フレームの前後の時間フレームとの合計3つの連続する時間フレームにおいて、1つでも優先度情報が閾値Q以上となる時間フレームがある場合、MDCT係数の供給先としてIMDCT部201が選択される。この場合、符号化データの復号、より詳細にはMDCT係数に対するIMDCTが行われる。これに対して、それらの3つの時間フレームの優先度情報が全て閾値Q未満である場合、MDCT係数が0とされて0値出力部200に出力される。この場合、符号化データの復号、より詳細にはMDCT係数に対するIMDCTは実質的に行われない。 Therefore, if there is a time frame in which the priority information is equal to or higher than the threshold value Q in a total of three consecutive time frames, that is, the current time frame and the time frames before and after the current time frame, the MDCT coefficient is supplied as the supply destination. The IMDCT unit 201 is selected. In this case, the encoded data is decoded, and more specifically, the IMDCT for the MDCT coefficient is performed. On the other hand, when the priority information of those three time frames is all less than the threshold value Q, the MDCT coefficient is set to 0 and output to the 0 value output unit 200. In this case, decoding of the coded data, more specifically IMDCT on the MDCT coefficient, is not substantially performed.

これにより、図18に示すようにIMDCT信号からオーディオ信号が完全再構成され、聴感上の音質の劣化が抑制される。なお、図18において、図16における場合と対応する部分には同一の文字等を記してあり、その説明は省略する。 As a result, as shown in FIG. 18, the audio signal is completely reconstructed from the IMDCT signal, and the deterioration of the audible sound quality is suppressed. In FIG. 18, the same characters and the like are written in the parts corresponding to the case in FIG. 16, and the description thereof will be omitted.

図18の上側に示す例では、各時間フレームの優先度情報の値が図17に示した例と同じとなっている。例えば閾値Q=4であるとすると、図中、上側に示す例では時間フレーム(n-1)の優先度情報は閾値Q以上であるが、時間フレーム(n)乃至時間フレーム(n+2)では、優先度情報が閾値Q未満となっている。 In the example shown on the upper side of FIG. 18, the value of the priority information of each time frame is the same as the example shown in FIG. For example, assuming that the threshold value Q = 4, in the example shown on the upper side in the figure, the priority information of the time frame (n-1) is equal to or higher than the threshold value Q, but the time frame (n) to the time frame (n + 2). In, the priority information is less than the threshold value Q.

そのため、式(1)に示した条件式から、時間フレーム(n-1)と時間フレーム(n)のMDCT係数に対してIMDCTが行われ、それぞれIMDCT信号OPS31とIMDCT信号OPS32が得られる。これに対して、条件式が満たされない時間フレーム(n+1)では、MDCT係数に対するIMDCTが行われず、0データがIMDCT信号OPS33とされる。 Therefore, from the conditional expression shown in the equation (1), IMDCT is performed on the MDCT coefficients of the time frame (n-1) and the time frame (n), and the IMDCT signal OPS31 and the IMDCT signal OPS32 are obtained, respectively. On the other hand, in the time frame (n + 1) in which the conditional expression is not satisfied, IMDCT for the MDCT coefficient is not performed, and 0 data is set as the IMDCT signal OPS33.

したがって、図17の例では完全再構成されなかった時間フレーム(n)のオーディオ信号が、図18の上側に示す例では完全再構成されるようになり、聴感上の音質の劣化が抑制される。但し、この例では、その次の時間フレーム(n+1)でオーディオ信号が完全再構成されないため、時間フレーム(n)と時間フレーム(n+1)で後述するフェードアウト処理が行われ、聴感上の音質の劣化が抑制される。 Therefore, the audio signal of the time frame (n) that was not completely reconstructed in the example of FIG. 17 is completely reconstructed in the example shown on the upper side of FIG. 18, and the deterioration of the audible sound quality is suppressed. .. However, in this example, since the audio signal is not completely reconstructed in the next time frame (n + 1), the fade-out process described later is performed in the time frame (n) and the time frame (n + 1), which is audibly audible. Deterioration of sound quality is suppressed.

また、図中、下側に示す例では、時間フレーム(n-1)乃至時間フレーム(n+1)で優先度情報が閾値Q未満となっており、時間フレーム(n+2)で優先度情報は閾値Q以上となっている。 Further, in the example shown on the lower side in the figure, the priority information is less than the threshold value Q in the time frame (n-1) to the time frame (n + 1), and the priority is given in the time frame (n + 2). The information is equal to or higher than the threshold Q.

そのため、式(1)に示した条件式から、条件式が満たされない時間フレーム(n)ではMDCT係数に対するIMDCTが行われず、0データがIMDCT信号OPS41とされる。これに対して、時間フレーム(n+1)および時間フレーム(n+2)のMDCT係数に対してIMDCTが行われ、それぞれIMDCT信号OPS42とIMDCT信号OPS43が得られる。 Therefore, from the conditional expression shown in the equation (1), the IMDCT for the MDCT coefficient is not performed in the time frame (n) when the conditional expression is not satisfied, and 0 data is regarded as the IMDCT signal OPS41. On the other hand, IMDCT is performed on the MDCT coefficients of the time frame (n + 1) and the time frame (n + 2), and the IMDCT signal OPS42 and the IMDCT signal OPS43 are obtained, respectively.

この例では、優先度情報が閾値Q未満の値から閾値Q以上の値へと切り替わった時間フレーム(n+2)で、オーディオ信号を完全再構成することができるため、聴感上の音質の劣化を抑制することができる。但し、この場合においても、その直前の時間フレーム(n+1)でオーディオ信号が完全再構成されないため、時間フレーム(n+1)と時間フレーム(n+2)で後述するフェードイン処理が行われ、聴感上の音質の劣化が抑制される。 In this example, the audio signal can be completely reconstructed in the time frame (n + 2) when the priority information is switched from the value less than the threshold value Q to the value above the threshold value Q, so that the audible sound quality is deteriorated. Can be suppressed. However, even in this case, since the audio signal is not completely reconstructed in the time frame (n + 1) immediately before that, the fade-in processing described later is performed in the time frame (n + 1) and the time frame (n + 2). Therefore, the deterioration of the audible sound quality is suppressed.

なお、ここでは、1時間フレーム分だけ優先度情報の先読みを行って、連続する3時間フレームの優先度情報からMDCT係数の出力先が選択されている。そのため、図中、上側で示した例の時間フレーム(n)と時間フレーム(n+1)でフェードアウト処理が行われ、図中、下側で示した例の時間フレーム(n+1)と時間フレーム(n+2)でフェードイン処理が行われる。 Here, the priority information is pre-read for one hour frame, and the output destination of the MDCT coefficient is selected from the priority information of consecutive three-hour frames. Therefore, the fade-out process is performed in the time frame (n) and the time frame (n + 1) of the example shown on the upper side in the figure, and the time frame (n + 1) and the time of the example shown on the lower side in the figure. Fade-in processing is performed at the frame (n + 2).

しかし、2時間フレーム分の優先度情報の先読みを行うことができる場合には、図中、上側で示した例の時間フレーム(n+1)と時間フレーム(n+2)でフェードアウト処理が行われ、図中、下側で示した例の時間フレーム(n)と時間フレーム(n+1)でフェードイン処理が行われるようにしてもよい。 However, if the priority information for 2 hour frames can be pre-read, the fade-out process is performed in the time frame (n + 1) and the time frame (n + 2) in the example shown on the upper side in the figure. Therefore, the fade-in process may be performed in the time frame (n) and the time frame (n + 1) of the example shown at the lower side in the figure.

〈フェードイン処理とフェードアウト処理について〉
次に、オーディオ信号に対するフェードイン処理とフェードアウト処理について説明する。なお、ここでもオブジェクトのオーディオ信号を例として説明するが、各チャネルのオーディオ信号についても同様である。また、フェードイン処理とフェードアウト処理は、オブジェクトごと、およびチャネルごとに行われる。
<About fade-in processing and fade-out processing>
Next, the fade-in process and the fade-out process for the audio signal will be described. Although the audio signal of the object will be described as an example here as well, the same applies to the audio signal of each channel. Further, the fade-in process and the fade-out process are performed for each object and each channel.

本技術では、例えば図18に示した例のように、IMDCTにより得られたIMDCT信号と0データであるIMDCT信号とがオーバーラップ加算される時間フレームとその前または後の時間フレームにおいて、フェードイン処理またはフェードアウト処理が行われる。 In the present technology, for example, as in the example shown in FIG. 18, the time frame in which the IMDCT signal obtained by IMDCT and the IMDCT signal which is 0 data are overlapped and added and the time frame before or after the fade-in Processing or fading out processing is performed.

フェードイン処理では、その時間フレームのオーディオ信号の振幅(大きさ)が時間とともに大きくなるように、オーディオ信号に対するゲイン調整が行われる。逆にフェードアウト処理では、その時間フレームのオーディオ信号の振幅が時間とともに小さくなるように、オーディオ信号に対するゲイン調整が行われる。 In the fade-in process, the gain of the audio signal is adjusted so that the amplitude (magnitude) of the audio signal in the time frame increases with time. Conversely, in the fade-out process, the gain of the audio signal is adjusted so that the amplitude of the audio signal in that time frame decreases with time.

これにより、IMDCTにより得られたIMDCT信号と、0データとされたIMDCT信号との接続部分が不連続となる場合でも聴感上の音質の劣化を抑制することができる。なお、以下、このようなゲイン調整時にオーディオ信号に対して乗算されるゲイン値を、特にフェーディング信号ゲインとも称することとする。 As a result, deterioration of audible sound quality can be suppressed even when the connection portion between the IMDCT signal obtained by IMDCT and the IMDCT signal set to 0 data is discontinuous. Hereinafter, the gain value multiplied by the audio signal at the time of such gain adjustment will also be referred to as a fading signal gain in particular.

さらに、本技術では、IMDCTにより得られたIMDCT信号と0データであるIMDCT信号との接続部分について、SBRにおいてもフェードイン処理またはフェードアウト処理が行われる。 Further, in the present technology, fade-in processing or fade-out processing is also performed in SBR for the connection portion between the IMDCT signal obtained by IMDCT and the IMDCT signal which is 0 data.

すなわち、SBRではタイムスロットごとに高域の各サブバンドのパワー値が用いられるが、本技術では、フェードイン処理用またはフェードアウト処理用にタイムスロットごとに定められたゲイン値が、高域の各サブバンドのパワー値に乗算されてSBRが行われる。つまり、高域のパワー値のゲイン調整が行われる。 That is, in SBR, the power value of each high-frequency subband is used for each time slot, but in this technology, the gain value determined for each time slot for fade-in processing or fade-out processing is set for each high-frequency band. SBR is performed by multiplying the power value of the subband. That is, the gain of the high frequency power value is adjusted.

なお、以下、高域のパワー値に乗算される、タイムスロットごとに定められたゲイン値を、特にフェーディングSBRゲインとも称することとする。 Hereinafter, the gain value determined for each time slot, which is multiplied by the power value in the high frequency range, is also referred to as a fading SBR gain.

具体的には、フェードイン処理用のフェーディングSBRゲインは、そのゲイン値が時間とともに大きくなるように、つまり時間的に後方のタイムスロットのフェーディングSBRゲインほど、その値が大きくなるように定められている。逆に、フェードアウト処理用のフェーディングSBRゲインは、時間的に後方のタイムスロットのフェーディングSBRゲインほど、その値が小さくなるように定められている。 Specifically, the fading SBR gain for fade-in processing is set so that the gain value increases with time, that is, the fading SBR gain of the time slot rearward in time increases. Has been done. On the contrary, the fading SBR gain for the fade-out process is set so that the value becomes smaller as the fading SBR gain in the time slot rearward in time.

このように、SBR時にもフェードイン処理やフェードアウト処理を行うことで、高域が不連続となるときでも聴感上の音質の劣化を抑制することができる。 In this way, by performing the fade-in process and the fade-out process even during SBR, it is possible to suppress the deterioration of the audible sound quality even when the high frequencies are discontinuous.

このようなオーディオ信号および高域のパワー値に対するフェードイン処理やフェードアウト処理といったゲイン調整として、具体的には、例えば図19や図20に示す処理が行われることになる。なお、図19および図20において、図18における場合と対応する部分には同一の文字や符号等を記してあり、その説明は省略する。 Specifically, for example, the processes shown in FIGS. 19 and 20 are performed as gain adjustments such as fade-in processing and fade-out processing for the audio signal and the power value in the high frequency range. Note that, in FIGS. 19 and 20, the same characters, symbols, and the like are written in the parts corresponding to the cases in FIG. 18, and the description thereof will be omitted.

図19に示す例は、図18における図中、上側に示した場合の例である。この例では、時間フレーム(n)および時間フレーム(n+1)のオーディオ信号に対して、折れ線GN11に示されるフェーディング信号ゲインが乗算されることになる。 The example shown in FIG. 19 is an example of the case shown on the upper side in the figure of FIG. In this example, the time frame (n) and time frame (n + 1) audio signals are multiplied by the fading signal gain shown on the polygonal line GN11.

折れ線GN11に示されるフェーディング信号ゲインの値は、時間フレーム(n)の部分では時間とともに「1」から「0」まで線形に変化し、時間フレーム(n+1)の部分では継続して「0」となっている。したがって、フェーディング信号ゲインによるオーディオ信号のゲイン調整によって、オーディオ信号は徐々に0データへと変化していくので、聴感上の音質の劣化を抑制することができる。 The value of the fading signal gain shown on the polygonal line GN11 changes linearly from "1" to "0" with time in the time frame (n) part, and continues to be "" in the time frame (n + 1) part. It is "0". Therefore, by adjusting the gain of the audio signal by the fading signal gain, the audio signal gradually changes to 0 data, so that deterioration of the audible sound quality can be suppressed.

また、この例では時間フレーム(n)の各タイムスロットの高域のパワー値に対して、矢印GN12に示されるフェーディングSBRゲインが乗算されることになる。 Further, in this example, the fading SBR gain indicated by the arrow GN12 is multiplied by the high-frequency power value of each time slot in the time frame (n).

矢印GN12に示されるフェーディングSBRゲインの値は、時間的に後方のタイムスロットほど小さくなるように、「1」から「0」まで変化している。したがって、フェーディングSBRゲインによる高域のゲイン調整によって、オーディオ信号の高域成分は徐々に0データへと変化していくので、聴感上の音質の劣化を抑制することができる。 The value of the fading SBR gain indicated by the arrow GN12 changes from "1" to "0" so as to become smaller in time toward the rear time slot. Therefore, by adjusting the high-frequency gain by the fading SBR gain, the high-frequency component of the audio signal gradually changes to 0 data, so that deterioration of audible sound quality can be suppressed.

これに対して、図20に示す例は、図18における図中、下側に示した場合の例である。この例では、時間フレーム(n+1)および時間フレーム(n+2)のオーディオ信号に対して、折れ線GN21に示されるフェーディング信号ゲインが乗算されることになる。 On the other hand, the example shown in FIG. 20 is an example shown on the lower side in the figure of FIG. In this example, the time frame (n + 1) and time frame (n + 2) audio signals are multiplied by the fading signal gain shown on the polygonal line GN21.

折れ線GN21に示されるフェーディング信号ゲインの値は、時間フレーム(n+1)の部分では継続して「0」となっており、時間フレーム(n+2)の部分では時間とともに「0」から「1」まで線形に変化している。したがって、フェーディング信号ゲインによるオーディオ信号のゲイン調整によって、オーディオ信号は徐々に0データから本来の信号へと変化していくので、聴感上の音質の劣化を抑制することができる。 The value of the fading signal gain shown on the polygonal line GN21 is continuously "0" in the time frame (n + 1) part, and starts from "0" with time in the time frame (n + 2) part. It changes linearly up to "1". Therefore, by adjusting the gain of the audio signal by the fading signal gain, the audio signal gradually changes from 0 data to the original signal, so that deterioration of audible sound quality can be suppressed.

また、この例では時間フレーム(n+2)の各タイムスロットの高域のパワー値に対して、矢印GN22に示されるフェーディングSBRゲインが乗算されることになる。 Further, in this example, the fading SBR gain indicated by the arrow GN22 is multiplied by the high-frequency power value of each time slot in the time frame (n + 2).

矢印GN22に示されるフェーディングSBRゲインの値は、時間的に後方のタイムスロットほど大きくなるように、「0」から「1」まで変化している。したがって、フェーディングSBRゲインによる高域のゲイン調整によって、オーディオ信号の高域成分は徐々に0データから本来の信号へと変化していくので、聴感上の音質の劣化を抑制することができる。 The value of the fading SBR gain indicated by the arrow GN22 changes from "0" to "1" so as to increase in time toward the rear time slot. Therefore, by adjusting the high-frequency gain by the fading SBR gain, the high-frequency component of the audio signal gradually changes from 0 data to the original signal, so that deterioration of audible sound quality can be suppressed.

〈アンパッキング/復号部の構成例〉
以上において説明したMDCT係数の出力先の選択と、フェードイン処理やフェードアウト処理といったゲイン調整とが行われる場合、アンパッキング/復号部161は、例えば図21に示すように構成される。なお、図21において、図10における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<Configuration example of unpacking / decoding unit>
When the selection of the output destination of the MDCT coefficient described above and the gain adjustment such as the fade-in process and the fade-out process are performed, the unpacking / decoding unit 161 is configured as shown in FIG. 21, for example. In FIG. 21, the same reference numerals are given to the portions corresponding to the cases in FIG. 10, and the description thereof will be omitted as appropriate.

図21に示すアンパッキング/復号部161は優先度情報取得部191、チャネルオーディオ信号取得部192、チャネルオーディオ信号復号部193、出力選択部194、0値出力部195、IMDCT部196、オーバーラップ加算部271、ゲイン調整部272、SBR処理部273、オブジェクトオーディオ信号取得部197、オブジェクトオーディオ信号復号部198、出力選択部199、0値出力部200、IMDCT部201、オーバーラップ加算部274、ゲイン調整部275、およびSBR処理部276から構成される。 The unpacking / decoding unit 161 shown in FIG. 21 includes a priority information acquisition unit 191 and a channel audio signal acquisition unit 192, a channel audio signal decoding unit 193, an output selection unit 194, a 0 value output unit 195, an IMDCT unit 196, and overlap addition. Unit 271, Gain adjustment unit 272, SBR processing unit 273, Object audio signal acquisition unit 197, Object audio signal decoding unit 198, Output selection unit 199, 0 value output unit 200, IMDCT unit 201, Overlap addition unit 274, Gain adjustment It is composed of a unit 275 and an SBR processing unit 276.

図21に示すアンパッキング/復号部161の構成は、図10に示したアンパッキング/復号部161の構成に、さらにオーバーラップ加算部271乃至SBR処理部276が設けられた構成となっている。 The configuration of the unpacking / decoding unit 161 shown in FIG. 21 is such that the overlap adding unit 271 to the SBR processing unit 276 are further provided in addition to the configuration of the unpacking / decoding unit 161 shown in FIG.

オーバーラップ加算部271は、0値出力部195またはIMDCT部196から供給されたIMDCT信号(オーディオ信号)をオーバーラップ加算することにより、各時間フレームのオーディオ信号を生成し、ゲイン調整部272に供給する。 The overlap addition unit 271 generates an audio signal for each time frame by overlapping addition of the IMDCT signal (audio signal) supplied from the 0 value output unit 195 or the IMDCT unit 196, and supplies the audio signal to the gain adjustment unit 272. To do.

ゲイン調整部272は、優先度情報取得部191から供給された優先度情報に基づいて、オーバーラップ加算部271から供給されたオーディオ信号をゲイン調整し、SBR処理部273に供給する。 The gain adjustment unit 272 gain-adjusts the audio signal supplied from the overlap addition unit 271 based on the priority information supplied from the priority information acquisition unit 191 and supplies the audio signal to the SBR processing unit 273.

SBR処理部273は、優先度情報取得部191からタイムスロットごとの高域の各サブバンドのパワー値を取得するとともに、優先度情報取得部191から供給された優先度情報に基づいて高域のパワー値をゲイン調整する。また、SBR処理部273は、ゲイン調整された高域のパワー値を用いて、ゲイン調整部272から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をミキシング部163に供給する。 The SBR processing unit 273 acquires the power value of each high-frequency subband for each time slot from the priority information acquisition unit 191 and obtains the high-frequency power value based on the priority information supplied from the priority information acquisition unit 191. Adjust the gain of the power value. Further, the SBR processing unit 273 performs SBR on the audio signal supplied from the gain adjustment unit 272 using the gain-adjusted high-frequency power value, and the audio signal obtained as a result is transmitted to the mixing unit 163. Supply.

オーバーラップ加算部274は、0値出力部200またはIMDCT部201から供給されたIMDCT信号(オーディオ信号)をオーバーラップ加算することにより、各時間フレームのオーディオ信号を生成し、ゲイン調整部275に供給する。 The overlap addition unit 274 generates an audio signal for each time frame by overlapping addition of the IMDCT signal (audio signal) supplied from the 0 value output unit 200 or the IMDCT unit 201, and supplies the audio signal to the gain adjustment unit 275. To do.

ゲイン調整部275は、優先度情報取得部191から供給された優先度情報に基づいて、オーバーラップ加算部274から供給されたオーディオ信号をゲイン調整し、SBR処理部276に供給する。 The gain adjustment unit 275 gain-adjusts the audio signal supplied from the overlap addition unit 274 based on the priority information supplied from the priority information acquisition unit 191 and supplies the audio signal to the SBR processing unit 276.

SBR処理部276は、優先度情報取得部191からタイムスロットごとの高域の各サブバンドのパワー値を取得するとともに、優先度情報取得部191から供給された優先度情報に基づいて高域のパワー値をゲイン調整する。また、SBR処理部276は、ゲイン調整された高域のパワー値を用いて、ゲイン調整部275から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をレンダリング部162に供給する。 The SBR processing unit 276 acquires the power value of each high-frequency subband for each time slot from the priority information acquisition unit 191 and obtains the high-frequency power value based on the priority information supplied from the priority information acquisition unit 191. Adjust the gain of the power value. Further, the SBR processing unit 276 performs SBR on the audio signal supplied from the gain adjustment unit 275 using the gain-adjusted high-frequency power value, and transmits the resulting audio signal to the rendering unit 162. Supply.

〈選択復号処理の説明〉
続いて、アンパッキング/復号部161が図21に示した構成とされる場合における復号装置151の動作について説明する。この場合、復号装置151は、図11を参照して説明した復号処理を行う。但し、ステップS52の選択復号処理として、図22に示す処理を行う。
<Explanation of selective decoding process>
Subsequently, the operation of the decoding device 151 when the unpacking / decoding unit 161 has the configuration shown in FIG. 21 will be described. In this case, the decoding device 151 performs the decoding process described with reference to FIG. However, as the selective decoding process in step S52, the process shown in FIG. 22 is performed.

以下、図22のフローチャートを参照して、図11のステップS52の処理に対応する選択復号処理について説明する。 Hereinafter, the selective decoding process corresponding to the process of step S52 of FIG. 11 will be described with reference to the flowchart of FIG. 22.

ステップS181において、優先度情報取得部191は、供給されたビットストリームから、各チャネルのオーディオ信号の高域のパワー値を取得してSBR処理部273に供給するとともに、ビットストリームから、各オブジェクトのオーディオ信号の高域のパワー値を取得してSBR処理部276に供給する。 In step S181, the priority information acquisition unit 191 acquires the high-frequency power value of the audio signal of each channel from the supplied bitstream and supplies it to the SBR processing unit 273, and from the bitstream, of each object. The high-frequency power value of the audio signal is acquired and supplied to the SBR processing unit 276.

高域のパワー値が取得されると、その後ステップS182乃至ステップS187の処理が行われて処理対象のチャネルのオーディオ信号(IMDCT信号)が生成されるが、これらの処理は図12のステップS81乃至ステップS86の処理と同様であるので、その説明は省略する。 When the high frequency power value is acquired, the processing of steps S182 to S187 is performed thereafter to generate an audio signal (IMDCT signal) of the channel to be processed. These processings are performed in steps S81 to S81 to FIG. Since it is the same as the process of step S86, the description thereof will be omitted.

但し、ステップS186では、上述した式(1)と同様の条件式が満たされる場合、すなわち処理対象のチャネルの現時間フレームの優先度情報、およびその現時間フレームの直前および直後の各時間フレームの優先度情報のうちの1つでも閾値P以上である場合、優先度情報が閾値P以上であると判定される。また、0値出力部195またはIMDCT部196で生成されたIMDCT信号は、オーバーラップ加算部271に出力される。 However, in step S186, when the same conditional expression as the above-mentioned equation (1) is satisfied, that is, the priority information of the current time frame of the channel to be processed, and each time frame immediately before and after the current time frame. If even one of the priority information is equal to or higher than the threshold value P, it is determined that the priority information is equal to or higher than the threshold value P. Further, the IMDCT signal generated by the 0 value output unit 195 or the IMDCT unit 196 is output to the overlap addition unit 271.

ステップS186において優先度情報が閾値P以上であると判定されなかったか、またはステップS187においてIMDCT信号が生成されると、ステップS188の処理が行われる。 If it is not determined in step S186 that the priority information is equal to or higher than the threshold value P, or if an IMDCT signal is generated in step S187, the process of step S188 is performed.

ステップS188において、オーバーラップ加算部271は、0値出力部195またはIMDCT部196から供給されたIMDCT信号のオーバーラップ加算を行い、その結果得られた現時間フレームのオーディオ信号をゲイン調整部272に供給する。 In step S188, the overlap addition unit 271 performs overlap addition of the IMDCT signal supplied from the 0 value output unit 195 or the IMDCT unit 196, and outputs the audio signal of the current time frame obtained as a result to the gain adjustment unit 272. Supply.

具体的には、例えば図18を参照して説明したように、現時間フレームのIMDCT信号の前半部分と、直前の時間フレームのIMDCT信号の後半部分とが足し合わされて現時間フレームのオーディオ信号とされる。 Specifically, for example, as described with reference to FIG. 18, the first half of the IMDCT signal of the current time frame and the second half of the IMDCT signal of the immediately preceding time frame are added to obtain the audio signal of the current time frame. Will be done.

ステップS189において、ゲイン調整部272は、優先度情報取得部191から供給された処理対象のチャネルの優先度情報に基づいて、オーバーラップ加算部271から供給されたオーディオ信号をゲイン調整し、SBR処理部273に供給する。 In step S189, the gain adjustment unit 272 gain-adjusts the audio signal supplied from the overlap addition unit 271 based on the priority information of the channel to be processed supplied from the priority information acquisition unit 191 and performs SBR processing. Supply to unit 273.

具体的にはゲイン調整部272は、現時間フレームの直前の時間フレームの優先度情報が閾値P以上であり、かつ現時間フレームの優先度情報と、現時間フレームの直後の時間フレームの優先度情報が閾値P未満である場合、図19の折れ線GN11に示されるフェーディング信号ゲインでオーディオ信号のゲインを調整する。この場合、図19における時間フレーム(n)が現時間フレームに対応し、現時間フレームの直後の時間フレームでは、折れ線GN11に示されるように、フェーディング信号ゲイン=0でのゲイン調整が行われる。 Specifically, in the gain adjustment unit 272, the priority information of the time frame immediately before the current time frame is equal to or higher than the threshold value P, and the priority information of the current time frame and the priority of the time frame immediately after the current time frame are given. When the information is less than the threshold P, the gain of the audio signal is adjusted by the fading signal gain shown by the polygonal line GN11 in FIG. In this case, the time frame (n) in FIG. 19 corresponds to the current time frame, and in the time frame immediately after the current time frame, the gain is adjusted with the fading signal gain = 0 as shown by the polygonal line GN11. ..

また、ゲイン調整部272は、現時間フレームの優先度情報が閾値P以上であり、現時間フレームの直前の2時間フレームの優先度情報がともに閾値P未満である場合、図20の折れ線GN21に示されるフェーディング信号ゲインでオーディオ信号のゲインを調整する。この場合、図20における時間フレーム(n+2)が現時間フレームに対応し、現時間フレームの直前の時間フレームでは、折れ線GN21に示されるように、フェーディング信号ゲイン=0でのゲイン調整が行われる。 Further, when the priority information of the current time frame is equal to or higher than the threshold value P and the priority information of the 2-hour frame immediately before the current time frame is both less than the threshold value P, the gain adjusting unit 272 indicates the break line GN21 in FIG. Adjust the gain of the audio signal with the faded signal gain shown. In this case, the time frame (n + 2) in FIG. 20 corresponds to the current time frame, and in the time frame immediately before the current time frame, the gain adjustment at the fading signal gain = 0 is performed as shown by the polygonal line GN21. Will be done.

なお、ゲイン調整部272は、これらの2つの例の場合のみゲイン調整を行い、それ以外の場合にはゲイン調整を行わず、オーディオ信号をそのままSBR処理部273に供給する。 The gain adjusting unit 272 adjusts the gain only in these two examples, does not adjust the gain in other cases, and supplies the audio signal to the SBR processing unit 273 as it is.

ステップS190において、SBR処理部273は、優先度情報取得部191から供給された、処理対象のチャネルの高域のパワー値および優先度情報に基づいて、ゲイン調整部272から供給されたオーディオ信号に対してSBRを行う。 In step S190, the SBR processing unit 273 transfers the audio signal supplied from the gain adjusting unit 272 to the audio signal supplied from the gain adjusting unit 272 based on the high frequency power value and priority information of the channel to be processed, which is supplied from the priority information acquisition unit 191. Perform SBR for it.

具体的には、SBR処理部273は、現時間フレームの直前の時間フレームの優先度情報が閾値P以上であり、かつ現時間フレームの優先度情報と、現時間フレームの直後の時間フレームの優先度情報が閾値P未満である場合、図19の矢印GN12に示されるフェーディングSBRゲインで高域のパワー値をゲイン調整する。すなわち、高域のパワー値にフェーディングSBRゲインが乗算される。 Specifically, in the SBR processing unit 273, the priority information of the time frame immediately before the current time frame is equal to or higher than the threshold value P, and the priority information of the current time frame and the priority of the time frame immediately after the current time frame are prioritized. When the degree information is less than the threshold value P, the gain of the high frequency power value is adjusted by the fading SBR gain shown by the arrow GN12 in FIG. That is, the fading SBR gain is multiplied by the high frequency power value.

そして、SBR処理部273は、ゲイン調整された高域のパワー値を用いてSBRを行い、その結果得られたオーディオ信号をミキシング部163に供給する。この場合、図19における時間フレーム(n)が現時間フレームに対応する。 Then, the SBR processing unit 273 performs SBR using the gain-adjusted high-frequency power value, and supplies the audio signal obtained as a result to the mixing unit 163. In this case, the time frame (n) in FIG. 19 corresponds to the current time frame.

また、SBR処理部273は、現時間フレームの優先度情報が閾値P以上であり、現時間フレームの直前の2時間フレームの優先度情報がともに閾値P未満である場合、図20の矢印GN22に示されるフェーディングSBRゲインで高域のパワー値をゲイン調整する。そして、SBR処理部273は、ゲイン調整された高域のパワー値を用いてSBRを行い、その結果得られたオーディオ信号をミキシング部163に供給する。この場合、図20における時間フレーム(n+2)が現時間フレームに対応する。 Further, when the priority information of the current time frame is equal to or higher than the threshold value P and the priority information of the 2-hour frame immediately before the current time frame is both lower than the threshold value P, the SBR processing unit 273 indicates the arrow GN 22 in FIG. Adjust the high frequency power value with the indicated fading SBR gain. Then, the SBR processing unit 273 performs SBR using the gain-adjusted high-frequency power value, and supplies the audio signal obtained as a result to the mixing unit 163. In this case, the time frame (n + 2) in FIG. 20 corresponds to the current time frame.

なお、SBR処理部273は、これらの2つの例の場合のみ高域のパワー値のゲイン調整を行い、それ以外の場合にはゲイン調整を行わずに、取得された高域のパワー値をそのまま用いてSBRを行い、その結果得られたオーディオ信号をミキシング部163に供給する。 The SBR processing unit 273 adjusts the gain of the high frequency power value only in these two examples, and does not adjust the gain in other cases, and keeps the acquired high frequency power value as it is. SBR is performed using this, and the audio signal obtained as a result is supplied to the mixing unit 163.

SBRが行われて現時間フレームのオーディオ信号が得られると、その後、ステップS191乃至ステップS196の処理が行われるが、これらの処理は図12のステップS87乃至ステップS92の処理と同様であるので、その説明は省略する。 When the SBR is performed and the audio signal of the current time frame is obtained, the processes of steps S191 to S196 are subsequently performed, but these processes are the same as the processes of steps S87 to S92 of FIG. The description thereof will be omitted.

但し、ステップS195では、上述した式(1)の条件式が満たされる場合、優先度情報が閾値Q以上であると判定される。また、0値出力部200またはIMDCT部201で生成されたIMDCT信号(オーディオ信号)は、オーバーラップ加算部274に出力される。 However, in step S195, when the conditional expression of the above-mentioned equation (1) is satisfied, it is determined that the priority information is equal to or higher than the threshold value Q. Further, the IMDCT signal (audio signal) generated by the 0 value output unit 200 or the IMDCT unit 201 is output to the overlap addition unit 274.

このようにして現時間フレームのIMDCT信号が得られると、ステップS197乃至ステップS199の処理が行われて現時間フレームのオーディオ信号が生成されるが、これらの処理はステップS188乃至ステップS190の処理と同様であるので、その説明は省略する。 When the IMDCT signal of the current time frame is obtained in this way, the processes of steps S197 to S199 are performed to generate the audio signal of the current time frame, and these processes are the same as the processes of steps S188 to S190. Since it is the same, the description thereof will be omitted.

ステップS200において、オブジェクトオーディオ信号取得部197がオブジェクト番号に1を加えると、処理はステップS193に戻る。そして、ステップS193においてオブジェクト番号がN未満ではないと判定されると、選択復号処理は終了し、その後、処理は図11のステップS53へと進む。 When the object audio signal acquisition unit 197 adds 1 to the object number in step S200, the process returns to step S193. Then, if it is determined in step S193 that the object number is not less than N, the selective decoding process ends, and then the process proceeds to step S53 of FIG.

以上のようにしてアンパッキング/復号部161は、現時間フレームとその前後の時間フレームの優先度情報に応じて、MDCT係数の出力先を選択する。これにより、優先度情報が閾値以上である時間フレームと、優先度情報が閾値未満である時間フレームとの切り替わり部分においてオーディオ信号が完全再構成されるようになり、聴感上の音質の劣化を抑制することができる。 As described above, the unpacking / decoding unit 161 selects the output destination of the MDCT coefficient according to the priority information of the current time frame and the time frames before and after the current time frame. As a result, the audio signal is completely reconstructed at the switching portion between the time frame in which the priority information is equal to or higher than the threshold value and the time frame in which the priority information is less than the threshold value, thereby suppressing deterioration of the audible sound quality. can do.

また、アンパッキング/復号部161は、連続する3時間フレームの優先度情報に基づいて、オーバーラップ加算後のオーディオ信号や、高域のパワー値をゲイン調整する。すなわち、適宜、フェードイン処理やフェードアウト処理が行われる。これにより、グリッチノイズの発生を抑制し、聴感上の音質の劣化を抑制することができる。 Further, the unpacking / decoding unit 161 gain-adjusts the audio signal after overlap addition and the power value in the high frequency band based on the priority information of consecutive 3-hour frames. That is, fade-in processing and fade-out processing are performed as appropriate. As a result, it is possible to suppress the generation of glitch noise and suppress the deterioration of the audible sound quality.

〈第5の実施の形態〉
〈フェードイン処理とフェードアウト処理について〉
なお、第4の実施の形態では、オーバーラップ加算後のオーディオ信号に対してゲイン調整を行い、さらにSBR時に高域のパワー値に対するゲイン調整を行うと説明した。この場合、最終的なオーディオ信号の低域成分と高域成分とで別々にゲイン調整、つまりフェードイン処理やフェードアウト処理が行われることになる。
<Fifth Embodiment>
<About fade-in processing and fade-out processing>
In the fourth embodiment, it has been described that the gain is adjusted for the audio signal after the overlap addition, and the gain is adjusted for the high frequency power value at the time of SBR. In this case, gain adjustment, that is, fade-in processing and fade-out processing are performed separately for the low-frequency component and the high-frequency component of the final audio signal.

そこで、より少ない処理でこれらのフェードイン処理やフェードアウト処理を実現することができるように、オーバーラップ加算直後およびSBR時にはゲイン調整を行わず、SBRにより得られたオーディオ信号に対してゲイン調整を行うようにしてもよい。 Therefore, in order to realize these fade-in processing and fade-out processing with less processing, gain adjustment is performed on the audio signal obtained by SBR without performing gain adjustment immediately after overlap addition and during SBR. You may do so.

そのような場合、例えば図23や図24に示すようにゲイン調整が行われる。なお、図23および図24において、図19および図20における場合と対応する部分には同一の文字等を記してあり、その説明は省略する。 In such a case, for example, the gain adjustment is performed as shown in FIGS. 23 and 24. In addition, in FIG. 23 and FIG. 24, the same characters and the like are written in the parts corresponding to the cases in FIGS. 19 and 20, and the description thereof will be omitted.

図23に示す例は、優先度情報の変化が図19に示した場合と同じである例である。この例では、閾値Q=4であるとすると、時間フレーム(n-1)の優先度情報は閾値Q以上であるが、時間フレーム(n)乃至時間フレーム(n+2)では、優先度情報が閾値Q未満となっている。 The example shown in FIG. 23 is an example in which the change in priority information is the same as the case shown in FIG. In this example, assuming that the threshold value Q = 4, the priority information of the time frame (n-1) is equal to or higher than the threshold value Q, but the priority information in the time frame (n) to the time frame (n + 2). Is less than the threshold Q.

このような場合、時間フレーム(n)および時間フレーム(n+1)における、SBRにより得られたオーディオ信号に対して、折れ線GN31に示されるフェーディング信号ゲインが乗算されてゲイン調整されることになる。 In such a case, the audio signal obtained by SBR in the time frame (n) and the time frame (n + 1) is multiplied by the fading signal gain shown by the polygonal line GN31 to adjust the gain. Become.

この折れ線GN31に示されるフェーディング信号ゲインは、図19の折れ線GN11に示されるフェーディング信号ゲインと同じものとなっている。但し、図23の例の場合には、ゲイン調整の対象となるオーディオ信号は、低域成分も高域成分も含まれたものとなっているので、それらの低域成分と高域成分のゲイン調整を1つのフェーディング信号ゲインで行うことができる。 The fading signal gain shown by the polygonal line GN31 is the same as the fading signal gain shown by the polygonal line GN11 in FIG. However, in the case of the example of FIG. 23, since the audio signal to be gain-adjusted includes both low-frequency components and high-frequency components, the gains of those low-frequency components and high-frequency components are included. Adjustments can be made with a single fading signal gain.

このようなフェーディング信号ゲインによるオーディオ信号のゲイン調整によって、IMDCTにより得られたIMDCT信号と、0データとされたIMDCT信号とがオーバーラップ加算される部分とその直前の部分で、オーディオ信号が徐々に0データへと変化していくようになる。これにより、聴感上の音質の劣化を抑制することができる。 By adjusting the gain of the audio signal by such a fading signal gain, the audio signal is gradually added to the portion where the IMDCT signal obtained by IMDCT and the IMDCT signal set as 0 data are overlapped and added, and the portion immediately before that. It will change to 0 data. As a result, deterioration of sound quality in terms of hearing can be suppressed.

これに対して、図24に示す例は、優先度情報の変化が図20に示した場合と同じである例である。この例では、閾値Q=4であるとすると、時間フレーム(n)および時間フレーム(n+1)では優先度情報が閾値Q未満であるが、時間フレーム(n+2)の優先度情報は閾値Q以上となっている。 On the other hand, the example shown in FIG. 24 is an example in which the change in priority information is the same as the case shown in FIG. In this example, assuming that the threshold value Q = 4, the priority information in the time frame (n) and the time frame (n + 1) is less than the threshold value Q, but the priority information in the time frame (n + 2) is It is equal to or higher than the threshold value Q.

このような場合、時間フレーム(n+1)および時間フレーム(n+2)における、SBRにより得られたオーディオ信号に対して、折れ線GN41に示されるフェーディング信号ゲインが乗算されてゲイン調整されることになる。 In such a case, the audio signal obtained by SBR in the time frame (n + 1) and the time frame (n + 2) is multiplied by the fading signal gain shown by the polygonal line GN41 to adjust the gain. It will be.

この折れ線GN41に示されるフェーディング信号ゲインは、図20の折れ線GN21に示されるフェーディング信号ゲインと同じものとなっている。但し、図24の例の場合には、ゲイン調整の対象となるオーディオ信号は、低域成分も高域成分も含まれたものとなっているので、それらの低域成分と高域成分のゲイン調整を1つのフェーディング信号ゲインで行うことができる。 The fading signal gain shown by the polygonal line GN41 is the same as the fading signal gain shown by the polygonal line GN21 of FIG. However, in the case of the example of FIG. 24, since the audio signal to be gain-adjusted includes both low-frequency components and high-frequency components, the gains of those low-frequency components and high-frequency components are included. Adjustments can be made with a single fading signal gain.

このようなフェーディング信号ゲインによるオーディオ信号のゲイン調整によって、IMDCTにより得られたIMDCT信号と、0データとされたIMDCT信号とがオーバーラップ加算される部分とその直後の部分で、オーディオ信号が0データから本来の信号へと徐々に変化していくようになる。これにより、聴感上の音質の劣化を抑制することができる。 By adjusting the gain of the audio signal by such a fading signal gain, the audio signal is 0 in the part where the IMDCT signal obtained by IMDCT and the IMDCT signal which is regarded as 0 data are overlapped and added and the part immediately after that. It will gradually change from the data to the original signal. As a result, deterioration of sound quality in terms of hearing can be suppressed.

〈アンパッキング/復号部の構成例〉
図23および図24を参照して説明したフェードイン処理やフェードアウト処理によるゲイン調整が行われる場合、アンパッキング/復号部161は、例えば図25に示すように構成される。なお、図25において、図21における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<Configuration example of unpacking / decoding unit>
When the gain adjustment by the fade-in process or the fade-out process described with reference to FIGS. 23 and 24 is performed, the unpacking / decoding unit 161 is configured as shown in FIG. 25, for example. In FIG. 25, the same reference numerals are given to the portions corresponding to the cases in FIG. 21, and the description thereof will be omitted as appropriate.

図25に示すアンパッキング/復号部161は優先度情報取得部191、チャネルオーディオ信号取得部192、チャネルオーディオ信号復号部193、出力選択部194、0値出力部195、IMDCT部196、オーバーラップ加算部271、SBR処理部273、ゲイン調整部272、オブジェクトオーディオ信号取得部197、オブジェクトオーディオ信号復号部198、出力選択部199、0値出力部200、IMDCT部201、オーバーラップ加算部274、SBR処理部276、およびゲイン調整部275から構成される。 The unpacking / decoding unit 161 shown in FIG. 25 includes a priority information acquisition unit 191 and a channel audio signal acquisition unit 192, a channel audio signal decoding unit 193, an output selection unit 194, a 0 value output unit 195, an IMDCT unit 196, and overlap addition. Unit 271, SBR processing unit 273, gain adjustment unit 272, object audio signal acquisition unit 197, object audio signal decoding unit 198, output selection unit 199, 0 value output unit 200, IMDCT unit 201, overlap addition unit 274, SBR processing. It is composed of a unit 276 and a gain adjusting unit 275.

図25に示すアンパッキング/復号部161の構成は、ゲイン調整部272およびゲイン調整部275が、それぞれSBR処理部273およびSBR処理部276の後段に配置されている点で、図21に示したアンパッキング/復号部161の構成と異なる。 The configuration of the unpacking / decoding unit 161 shown in FIG. 25 is shown in FIG. 21 in that the gain adjusting unit 272 and the gain adjusting unit 275 are arranged after the SBR processing unit 273 and the SBR processing unit 276, respectively. The configuration is different from that of the unpacking / decoding unit 161.

図25に示すアンパッキング/復号部161では、SBR処理部273は、優先度情報取得部191から供給された高域のパワー値に基づいて、オーバーラップ加算部271から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をゲイン調整部272に供給する。この場合、SBR処理部273では、高域のパワー値のゲイン調整は行われない。 In the unpacking / decoding unit 161 shown in FIG. 25, the SBR processing unit 273 with respect to the audio signal supplied from the overlap addition unit 271 based on the high frequency power value supplied from the priority information acquisition unit 191. SBR is performed, and the audio signal obtained as a result is supplied to the gain adjustment unit 272. In this case, the SBR processing unit 273 does not adjust the gain of the high frequency power value.

ゲイン調整部272は、優先度情報取得部191から供給された優先度情報に基づいて、SBR処理部273から供給されたオーディオ信号をゲイン調整し、ミキシング部163に供給する。 The gain adjusting unit 272 gain-adjusts the audio signal supplied from the SBR processing unit 273 based on the priority information supplied from the priority information acquisition unit 191 and supplies it to the mixing unit 163.

SBR処理部276は、優先度情報取得部191から供給された高域のパワー値に基づいて、オーバーラップ加算部274から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をゲイン調整部275に供給する。この場合、SBR処理部276では、高域のパワー値のゲイン調整は行われない。 The SBR processing unit 276 performs SBR on the audio signal supplied from the overlap addition unit 274 based on the high-frequency power value supplied from the priority information acquisition unit 191 and obtains the audio signal as a result. Is supplied to the gain adjusting unit 275. In this case, the SBR processing unit 276 does not adjust the gain of the high frequency power value.

ゲイン調整部275は、優先度情報取得部191から供給された優先度情報に基づいて、SBR処理部276から供給されたオーディオ信号をゲイン調整し、レンダリング部162に供給する。 The gain adjusting unit 275 gain-adjusts the audio signal supplied from the SBR processing unit 276 based on the priority information supplied from the priority information acquisition unit 191 and supplies the audio signal to the rendering unit 162.

〈選択復号処理の説明〉
続いて、アンパッキング/復号部161が図25に示した構成とされる場合における復号装置151の動作について説明する。この場合、復号装置151は、図11を参照して説明した復号処理を行う。但し、ステップS52の選択復号処理として、図26に示す処理を行う。
<Explanation of selective decoding process>
Subsequently, the operation of the decoding device 151 when the unpacking / decoding unit 161 has the configuration shown in FIG. 25 will be described. In this case, the decoding device 151 performs the decoding process described with reference to FIG. However, as the selective decoding process in step S52, the process shown in FIG. 26 is performed.

以下、図26のフローチャートを参照して、図11のステップS52の処理に対応する選択復号処理について説明する。なお、ステップS231乃至ステップS238の処理は、図22のステップS181乃至ステップS188の処理と同様であるので、その説明は省略する。但し、ステップS232では、SBR処理部273およびSBR処理部276には、優先度情報は供給されない。 Hereinafter, the selective decoding process corresponding to the process of step S52 of FIG. 11 will be described with reference to the flowchart of FIG. 26. Since the processing of steps S231 to S238 is the same as the processing of steps S181 to S188 of FIG. 22, the description thereof will be omitted. However, in step S232, priority information is not supplied to the SBR processing unit 273 and the SBR processing unit 276.

ステップS239において、SBR処理部273は、優先度情報取得部191から供給された高域のパワー値に基づいて、オーバーラップ加算部271から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をゲイン調整部272に供給する。 In step S239, the SBR processing unit 273 performs SBR on the audio signal supplied from the overlap addition unit 271 based on the high frequency power value supplied from the priority information acquisition unit 191 and obtains the result. The generated audio signal is supplied to the gain adjustment unit 272.

ステップS240において、ゲイン調整部272は、優先度情報取得部191から供給された処理対象のチャネルの優先度情報に基づいて、SBR処理部273から供給されたオーディオ信号をゲイン調整し、ミキシング部163に供給する。 In step S240, the gain adjusting unit 272 gain-adjusts the audio signal supplied from the SBR processing unit 273 based on the priority information of the channel to be processed supplied from the priority information acquisition unit 191 and adjusts the gain to the mixing unit 163. Supply to.

具体的にはゲイン調整部272は、現時間フレームの直前の時間フレームの優先度情報が閾値P以上であり、かつ現時間フレームの優先度情報と、現時間フレームの直後の時間フレームの優先度情報が閾値P未満である場合、図23の折れ線GN31に示されるフェーディング信号ゲインでオーディオ信号のゲインを調整する。この場合、図23における時間フレーム(n)が現時間フレームに対応し、現時間フレームの直後の時間フレームでは、折れ線GN31に示されるように、フェーディング信号ゲイン=0でのゲイン調整が行われる。 Specifically, in the gain adjustment unit 272, the priority information of the time frame immediately before the current time frame is equal to or higher than the threshold value P, and the priority information of the current time frame and the priority of the time frame immediately after the current time frame are given. When the information is less than the threshold P, the gain of the audio signal is adjusted by the fading signal gain shown by the polygonal line GN31 in FIG. In this case, the time frame (n) in FIG. 23 corresponds to the current time frame, and in the time frame immediately after the current time frame, the gain is adjusted with the fading signal gain = 0 as shown by the polygonal line GN31. ..

また、ゲイン調整部272は、現時間フレームの優先度情報が閾値P以上であり、現時間フレームの直前の2時間フレームの優先度情報がともに閾値P未満である場合、図24の折れ線GN41に示されるフェーディング信号ゲインでオーディオ信号のゲインを調整する。この場合、図24における時間フレーム(n+2)が現時間フレームに対応し、現時間フレームの直前の時間フレームでは、折れ線GN41に示されるように、フェーディング信号ゲイン=0でのゲイン調整が行われる。 Further, when the priority information of the current time frame is equal to or higher than the threshold value P and the priority information of the 2-hour frame immediately before the current time frame is both less than the threshold value P, the gain adjusting unit 272 indicates the break line GN41 in FIG. Adjust the gain of the audio signal with the faded signal gain shown. In this case, the time frame (n + 2) in FIG. 24 corresponds to the current time frame, and in the time frame immediately before the current time frame, the gain adjustment at the fading signal gain = 0 is performed as shown by the polygonal line GN41. Will be done.

なお、ゲイン調整部272は、これらの2つの例の場合のみゲイン調整を行い、それ以外の場合にはゲイン調整を行わず、オーディオ信号をそのままミキシング部163に供給する。 The gain adjusting unit 272 adjusts the gain only in these two examples, does not adjust the gain in other cases, and supplies the audio signal to the mixing unit 163 as it is.

オーディオ信号のゲイン調整が行われると、その後、ステップS241乃至ステップS247の処理が行われるが、これらの処理は図22のステップS191乃至ステップS197の処理と同様であるので、その説明は省略する。 After the gain adjustment of the audio signal is performed, the processes of steps S241 to S247 are performed thereafter, but these processes are the same as the processes of steps S191 to S197 of FIG. 22, and the description thereof will be omitted.

このようにして処理対象のオブジェクトの現時間フレームのオーディオ信号が得られると、ステップS248およびステップS249の処理が行われて最終的な現時間フレームのオーディオ信号が生成されるが、これらの処理はステップS239およびステップS240の処理と同様であるので、その説明は省略する。 When the audio signal of the current time frame of the object to be processed is obtained in this way, the processing of steps S248 and S249 is performed to generate the final audio signal of the current time frame. Since it is the same as the processing of step S239 and step S240, the description thereof will be omitted.

ステップS250において、オブジェクトオーディオ信号取得部197がオブジェクト番号に1を加えると、処理はステップS243に戻る。そして、ステップS243においてオブジェクト番号がN未満ではないと判定されると、選択復号処理は終了し、その後、処理は図11のステップS53へと進む。 When the object audio signal acquisition unit 197 adds 1 to the object number in step S250, the process returns to step S243. Then, if it is determined in step S243 that the object number is not less than N, the selective decoding process ends, and then the process proceeds to step S53 of FIG.

以上のようにしてアンパッキング/復号部161は、連続する3時間フレームの優先度情報に基づいて、SBRにより得られたオーディオ信号をゲイン調整する。これにより、より簡単にグリッチノイズの発生を抑制し、聴感上の音質の劣化を抑制することができる。 As described above, the unpacking / decoding unit 161 gain-adjusts the audio signal obtained by SBR based on the priority information of consecutive 3-hour frames. As a result, it is possible to more easily suppress the generation of glitch noise and suppress the deterioration of the audible sound quality.

なお、この実施の形態では、3時間フレーム分の優先度情報を用いたMDCT係数の出力先の選択と、フェーディング信号ゲインによるゲイン調整とを行う例について説明したが、フェーディング信号ゲインによるゲイン調整のみが行われるようにしてもよい。 In this embodiment, an example of selecting the output destination of the MDCT coefficient using the priority information for 3 hours frames and adjusting the gain by the fading signal gain has been described, but the gain by the fading signal gain has been described. Only adjustments may be made.

そのような場合、出力選択部194や出力選択部199では、第1の実施の形態における場合と同様の処理により、MDCT係数の出力先が選択される。そして、ゲイン調整部272およびゲイン調整部275では、現時間フレームの優先度情報が閾値未満である場合、現時間フレームのフェーディング信号ゲインを線形に増加または減少させることで、フェードイン処理やフェードアウト処理を行う。ここで、フェードイン処理とするか、またはフェードアウト処理とするかは、現時間フレームの優先度情報と、その前後の時間フレームの優先度情報とから定めればよい。 In such a case, the output selection unit 194 and the output selection unit 199 select the output destination of the MDCT coefficient by the same processing as in the case of the first embodiment. Then, in the gain adjusting unit 272 and the gain adjusting unit 275, when the priority information of the current time frame is less than the threshold value, the fading signal gain of the current time frame is linearly increased or decreased to perform fade-in processing or fade-out. Perform processing. Here, whether the fade-in process or the fade-out process is performed may be determined from the priority information of the current time frame and the priority information of the time frames before and after that.

〈第6の実施の形態〉
〈フェードイン処理とフェードアウト処理について〉
ところで、レンダリング部162では、例えばVBAPが行われて各オブジェクトのオーディオ信号から、各オブジェクトの音声を再生するための各チャネルのオーディオ信号が生成される。
<Sixth Embodiment>
<About fade-in processing and fade-out processing>
By the way, in the rendering unit 162, for example, VBAP is performed and the audio signal of each channel for reproducing the sound of each object is generated from the audio signal of each object.

具体的には、VBAPではチャネルごと、つまり音声を出力するスピーカごとに、各オブジェクトについて、オーディオ信号のゲイン値(以下、VBAPゲインとも称する)が時間フレームごとに算出される。そして、同じチャネル(スピーカ)についてのVBAPゲインが乗算された各オブジェクトのオーディオ信号の和が、そのチャネルのオーディオ信号とされる。換言すれば、各オブジェクトについて、オブジェクトのオーディオ信号がチャネルごとに算出されたVBAPゲインで、それらの各チャネルに割り当てられる。 Specifically, in VBAP, the gain value of the audio signal (hereinafter, also referred to as VBAP gain) is calculated for each time frame for each object, that is, for each channel, that is, for each speaker that outputs audio. Then, the sum of the audio signals of each object multiplied by the VBAP gain for the same channel (speaker) is taken as the audio signal of that channel. In other words, for each object, the object's audio signal is assigned to each of those channels with the VBAP gain calculated for each channel.

そこで、オブジェクトのオーディオ信号については、オブジェクトのオーディオ信号や高域のパワー値のゲイン調整をするのではなく、VBAPゲインを適切に調整することにより、グリッチノイズの発生を抑制して聴感上の音質の劣化を抑制するようにしてもよい。 Therefore, for the audio signal of the object, instead of adjusting the gain of the audio signal of the object and the power value in the high frequency range, the VBAP gain is adjusted appropriately to suppress the generation of glitch noise and the audible sound quality. You may try to suppress the deterioration of.

そのような場合、例えば各時間フレームのVBAPゲインに対して線形補間等が行われ、各時間フレーム内のオーディオ信号のサンプルごとのVBAPゲインが算出され、得られたVBAPゲインにより各チャネルのオーディオ信号が生成される。 In such a case, for example, linear interpolation is performed on the VBAP gain of each time frame, the VBAP gain of each sample of the audio signal in each time frame is calculated, and the obtained VBAP gain is used to calculate the audio signal of each channel. Is generated.

例えば、処理対象の時間フレームの先頭サンプルのVBAPゲインの値は、処理対象の時間フレームの直前の時間フレームの末尾のサンプルのVBAPゲインの値とされる。また、処理対象の時間フレームの末尾のサンプルのVBAPゲインの値は、その処理対象の時間フレームに対する通常のVBAPにより算出されたVBAPゲインの値とされる。 For example, the value of the VBAP gain of the first sample of the time frame to be processed is the value of the VBAP gain of the sample at the end of the time frame immediately before the time frame to be processed. Further, the value of the VBAP gain of the sample at the end of the time frame to be processed is the value of the VBAP gain calculated by the normal VBAP for the time frame to be processed.

そして、処理対象の時間フレームでは、先頭サンプルから末尾のサンプルまでVBAPゲインが線形に変化するように、先頭サンプルと末尾のサンプルとの間の各サンプルのVBAPゲインの値が定められる。 Then, in the time frame to be processed, the value of the VBAP gain of each sample between the first sample and the last sample is determined so that the VBAP gain changes linearly from the first sample to the last sample.

但し、処理対象の時間フレームの優先度情報が閾値未満である場合には、VBAPの計算は行われず、その処理対象の時間フレームの末尾のサンプルのVBAPゲインの値は、0とされる。そして、処理対象の時間フレームの先頭サンプルから、末尾のサンプルまでVBAPゲインが線形に変化するように、各サンプルのVBAPゲインが定められる。 However, if the priority information of the time frame to be processed is less than the threshold value, the VBAP is not calculated, and the value of the VBAP gain of the sample at the end of the time frame to be processed is set to 0. Then, the VBAP gain of each sample is determined so that the VBAP gain changes linearly from the first sample of the time frame to be processed to the last sample.

このようにしてVBAPゲインにより各オブジェクトのオーディオ信号のゲイン調整を行うことで、低域成分と高域成分のゲイン調整を1度に行うことができ、より少ない処理量でグリッチノイズの発生を抑制し、聴感上の音質の劣化を抑制することができる。 By adjusting the gain of the audio signal of each object by the VBAP gain in this way, the gain of the low-frequency component and the high-frequency component can be adjusted at once, and the generation of glitch noise is suppressed with a smaller amount of processing. However, it is possible to suppress deterioration of sound quality in terms of hearing.

このようにサンプルごとにVBAPゲインを定める場合、各時間フレームのサンプルごとのVBAPゲインは例えば図27や図28に示すようになる。 When the VBAP gain is determined for each sample in this way, the VBAP gain for each sample in each time frame is shown in FIGS. 27 and 28, for example.

なお、図27および図28において、図19および図20における場合と対応する部分には同一の文字等を記してあり、その説明は省略する。また、図27および図28において、「VBAP_gain[q][s]」(但し、q=n-1,n,n+1,n+2)は、所定のチャネルに対応するスピーカを特定するスピーカインデックスがsである、処理対象のオブジェクトの時間フレーム(q)のVBAPゲインを示している。 In addition, in FIG. 27 and FIG. 28, the same characters and the like are written in the parts corresponding to the cases in FIGS. 19 and 20, and the description thereof will be omitted. Further, in FIGS. 27 and 28, “VBAP_gain [q] [s]” (where q = n-1, n, n + 1, n + 2) is a speaker that identifies a speaker corresponding to a predetermined channel. It shows the VBAP gain of the time frame (q) of the object to be processed, which has an index of s.

図27に示す例は、優先度情報の変化が図19に示した場合と同じである例である。この例では、閾値Q=4であるとすると、時間フレーム(n-1)の優先度情報は閾値Q以上であるが、時間フレーム(n)乃至時間フレーム(n+2)では、優先度情報が閾値Q未満となっている。 The example shown in FIG. 27 is an example in which the change in priority information is the same as the case shown in FIG. In this example, assuming that the threshold value Q = 4, the priority information of the time frame (n-1) is equal to or higher than the threshold value Q, but the priority information in the time frame (n) to the time frame (n + 2). Is less than the threshold Q.

このような場合、時間フレーム(n-1)乃至時間フレーム(n+1)のVBAPゲインは、例えば折れ線GN51に示されるゲインとされる。 In such a case, the VBAP gain of the time frame (n-1) to the time frame (n + 1) is, for example, the gain shown by the polygonal line GN51.

この例では、時間フレーム(n-1)の優先度情報は閾値Q以上であるので、通常のVBAPにより算出されたVBAPゲインに基づいて、各サンプルのVBAPゲインが定められる。 In this example, since the priority information of the time frame (n-1) is equal to or higher than the threshold value Q, the VBAP gain of each sample is determined based on the VBAP gain calculated by the normal VBAP.

すなわち、時間フレーム(n-1)の先頭のサンプルのVBAPゲインの値は、時間フレーム(n-2)の末尾のサンプルのVBAPゲインの値と同じとされている。また、時間フレーム(n-1)の末尾のサンプルのVBAPゲインの値は、処理対象となっているオブジェクトについて、時間フレーム(n-1)に対する通常のVBAPにより算出された、スピーカsに対応するチャネルのVBAPゲインの値とされている。そして、時間フレーム(n-1)の各サンプルのVBAPゲインの値は、先頭のサンプルから末尾のサンプルまで線形に変化するように定められている。 That is, the value of the VBAP gain of the sample at the beginning of the time frame (n-1) is the same as the value of the VBAP gain of the sample at the end of the time frame (n-2). Further, the value of the VBAP gain of the sample at the end of the time frame (n-1) corresponds to the speaker s calculated by the normal VBAP for the time frame (n-1) for the object to be processed. It is the value of the VBAP gain of the channel. The VBAP gain value of each sample in the time frame (n-1) is set to change linearly from the first sample to the last sample.

また、時間フレーム(n)の優先度情報は閾値Q未満であるので、時間フレーム(n)の末尾のサンプルのVBAPゲインの値は0とされる。 Further, since the priority information of the time frame (n) is less than the threshold value Q, the value of the VBAP gain of the sample at the end of the time frame (n) is set to 0.

すなわち、時間フレーム(n)の先頭のサンプルのVBAPゲインの値は、時間フレーム(n-1)の末尾のサンプルのVBAPゲインの値と同じとされ、時間フレーム(n)の末尾のサンプルのVBAPゲインの値は0とされる。そして、時間フレーム(n)の各サンプルのVBAPゲインの値が、先頭のサンプルから末尾のサンプルまで線形に変化するように定められる。 That is, the value of the VBAP gain of the sample at the beginning of the time frame (n) is the same as the value of the VBAP gain of the sample at the end of the time frame (n-1), and the VBAP of the sample at the end of the time frame (n). The value of the gain is set to 0. Then, the value of the VBAP gain of each sample in the time frame (n) is determined so as to change linearly from the first sample to the last sample.

さらに、時間フレーム(n+1)の優先度情報は閾値Q未満であるので、時間フレーム(n+1)の末尾のサンプルのVBAPゲインの値は0とされ、結果として時間フレーム(n+1)の全サンプルのVBAPゲインの値は0となる。 Furthermore, since the priority information of the time frame (n + 1) is less than the threshold Q, the value of the VBAP gain of the sample at the end of the time frame (n + 1) is set to 0, and as a result, the time frame (n + 1) The value of VBAP gain of all samples in) is 0.

このように、優先度情報が閾値Q未満である時間フレームの末尾のサンプルのVBAPゲインの値を0とすることで、図23の例と等価なフェードアウト処理が可能となる。 In this way, by setting the value of the VBAP gain of the sample at the end of the time frame in which the priority information is less than the threshold value Q to 0, the fade-out process equivalent to the example of FIG. 23 becomes possible.

これに対して、図28に示す例は、優先度情報の変化が図24に示した場合と同じである例である。この例では、閾値Q=4であるとすると、時間フレーム(n-1)乃至時間フレーム(n+1)では優先度情報が閾値Q未満であるが、時間フレーム(n+2)の優先度情報は閾値Q以上となっている。 On the other hand, the example shown in FIG. 28 is an example in which the change in priority information is the same as the case shown in FIG. 24. In this example, assuming that the threshold value Q = 4, the priority information is less than the threshold value Q in the time frame (n-1) to the time frame (n + 1), but the priority of the time frame (n + 2). The information is equal to or higher than the threshold value Q.

このような場合、時間フレーム(n-1)乃至時間フレーム(n+2)のVBAPゲインは、例えば折れ線GN61に示されるゲインとされる。 In such a case, the VBAP gain of the time frame (n-1) to the time frame (n + 2) is, for example, the gain shown by the polygonal line GN61.

この例では、時間フレーム(n)の優先度情報も時間フレーム(n+1)の優先度情報もともに閾値Q未満であるので、時間フレーム(n+1)の全サンプルのVBAPゲインは0となる。 In this example, both the priority information of the time frame (n) and the priority information of the time frame (n + 1) are less than the threshold value Q, so that the VBAP gain of all the samples in the time frame (n + 1) is 0. Become.

また、時間フレーム(n+2)の優先度情報は閾値Q以上であるので、処理対象となっているオブジェクトについて、通常のVBAPにより算出されたスピーカsに対応するチャネルのVBAPゲインに基づいて、各サンプルのVBAPゲインが定められる。 Further, since the priority information of the time frame (n + 2) is equal to or higher than the threshold value Q, the object to be processed is based on the VBAP gain of the channel corresponding to the speaker s calculated by the normal VBAP. The VBAP gain of each sample is determined.

すなわち、時間フレーム(n+2)の先頭のサンプルのVBAPゲインの値は、時間フレーム(n+1)の末尾のサンプルのVBAPゲインの値である0とされ、時間フレーム(n+2)の末尾のサンプルのVBAPゲインの値は、時間フレーム(n+2)に対する通常のVBAPにより算出されたVBAPゲインの値とされている。そして、時間フレーム(n+2)の各サンプルのVBAPゲインの値は、先頭のサンプルから末尾のサンプルまで線形に変化するように定められている。 That is, the value of the VBAP gain of the first sample of the time frame (n + 2) is set to 0, which is the value of the VBAP gain of the last sample of the time frame (n + 1), and the value of the time frame (n + 2). The value of the VBAP gain of the sample at the end is the value of the VBAP gain calculated by the normal VBAP for the time frame (n + 2). The VBAP gain value of each sample in the time frame (n + 2) is set to change linearly from the first sample to the last sample.

このように、優先度情報が閾値Q未満である時間フレームの末尾のサンプルのVBAPゲインの値を0とすることで、図24の例と等価なフェードイン処理が可能となる。 In this way, by setting the value of the VBAP gain of the sample at the end of the time frame in which the priority information is less than the threshold value Q to 0, the fade-in processing equivalent to the example of FIG. 24 becomes possible.

〈アンパッキング/復号部の構成例〉
図27および図28を参照して説明したフェードイン処理やフェードアウト処理によるゲイン調整が行われる場合、アンパッキング/復号部161は、例えば図29に示すように構成される。なお、図29において、図25における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<Configuration example of unpacking / decoding unit>
When the gain adjustment by the fade-in process or the fade-out process described with reference to FIGS. 27 and 28 is performed, the unpacking / decoding unit 161 is configured as shown in FIG. 29, for example. In FIG. 29, the same reference numerals are given to the portions corresponding to the cases in FIG. 25, and the description thereof will be omitted as appropriate.

図29に示すアンパッキング/復号部161は優先度情報取得部191、チャネルオーディオ信号取得部192、チャネルオーディオ信号復号部193、出力選択部194、0値出力部195、IMDCT部196、オーバーラップ加算部271、SBR処理部273、ゲイン調整部272、オブジェクトオーディオ信号取得部197、オブジェクトオーディオ信号復号部198、出力選択部199、0値出力部200、IMDCT部201、オーバーラップ加算部274、およびSBR処理部276から構成される。 The unpacking / decoding unit 161 shown in FIG. 29 includes a priority information acquisition unit 191 and a channel audio signal acquisition unit 192, a channel audio signal decoding unit 193, an output selection unit 194, a 0 value output unit 195, an IMDCT unit 196, and overlap addition. Section 271, SBR processing section 273, gain adjustment section 272, object audio signal acquisition section 197, object audio signal decoding section 198, output selection section 199, 0 value output section 200, IMDCT section 201, overlap addition section 274, and SBR. It is composed of a processing unit 276.

図29に示すアンパッキング/復号部161の構成は、ゲイン調整部275が設けられていない点で、図25に示したアンパッキング/復号部161の構成と異なり、その他の点では同じ構成となっている。 The configuration of the unpacking / decoding unit 161 shown in FIG. 29 is different from the configuration of the unpacking / decoding unit 161 shown in FIG. 25 in that the gain adjusting unit 275 is not provided, and is otherwise the same. ing.

図29に示すアンパッキング/復号部161では、SBR処理部276は、優先度情報取得部191から供給された高域のパワー値に基づいて、オーバーラップ加算部274から供給されたオーディオ信号に対してSBRを行い、その結果得られたオーディオ信号をレンダリング部162に供給する。 In the unpacking / decoding unit 161 shown in FIG. 29, the SBR processing unit 276 refers to the audio signal supplied from the overlap addition unit 274 based on the high frequency power value supplied from the priority information acquisition unit 191. SBR is performed, and the audio signal obtained as a result is supplied to the rendering unit 162.

また、優先度情報取得部191は、供給されたビットストリームから各オブジェクトのメタデータと優先度情報を取得してレンダリング部162に供給する。なお、各オブジェクトの優先度情報は、出力選択部199にも供給される。 Further, the priority information acquisition unit 191 acquires the metadata and priority information of each object from the supplied bit stream and supplies the metadata to the rendering unit 162. The priority information of each object is also supplied to the output selection unit 199.

〈復号処理の説明〉
続いて、アンパッキング/復号部161が図29に示した構成とされる場合における復号装置151の動作について説明する。
<Explanation of decryption process>
Subsequently, the operation of the decoding device 151 when the unpacking / decoding unit 161 has the configuration shown in FIG. 29 will be described.

この場合、復号装置151は、図30に示す復号処理を行う。以下、図30のフローチャートを参照して、復号装置151により行われる復号処理について説明する。但し、ステップS281では、図11のステップS51の処理と同様の処理が行われるので、その説明は省略する。 In this case, the decoding device 151 performs the decoding process shown in FIG. Hereinafter, the decoding process performed by the decoding device 151 will be described with reference to the flowchart of FIG. However, in step S281, the same processing as that of step S51 in FIG. 11 is performed, and thus the description thereof will be omitted.

ステップS282において、アンパッキング/復号部161は選択復号処理を行う。 In step S282, the unpacking / decoding unit 161 performs a selective decoding process.

ここで、図31のフローチャートを参照して、図30のステップS282の処理に対応する選択復号処理について説明する。 Here, the selective decoding process corresponding to the process of step S282 of FIG. 30 will be described with reference to the flowchart of FIG. 31.

なお、ステップS311乃至ステップS328の処理は、図26のステップS231乃至ステップS248の処理と同様であるので、その説明は省略する。但し、ステップS312では、優先度情報取得部191は、ビットストリームから取得された優先度情報をレンダリング部162にも供給する。 Since the processing of steps S311 to S328 is the same as the processing of steps S231 to S248 of FIG. 26, the description thereof will be omitted. However, in step S312, the priority information acquisition unit 191 also supplies the priority information acquired from the bit stream to the rendering unit 162.

ステップS329において、オブジェクトオーディオ信号取得部197がオブジェクト番号に1を加えると、処理はステップS323に戻る。そして、ステップS323においてオブジェクト番号がN未満ではないと判定されると、選択復号処理は終了し、その後、処理は図30のステップS283へと進む。 In step S329, when the object audio signal acquisition unit 197 adds 1 to the object number, the process returns to step S323. Then, if it is determined in step S323 that the object number is not less than N, the selective decoding process ends, and then the process proceeds to step S283 of FIG.

したがって、図31に示した選択復号処理では、各チャネルのオーディオ信号については、第5の実施の形態における場合と同様にフェーディング信号ゲインによるゲイン調整が行われ、各オブジェクトについては、ゲイン調整は行われず、SBRにより得られたオーディオ信号がそのままレンダリング部162に出力される。 Therefore, in the selective decoding process shown in FIG. 31, the gain of the audio signal of each channel is adjusted by the fading signal gain as in the case of the fifth embodiment, and the gain is adjusted for each object. The audio signal obtained by SBR is output to the rendering unit 162 as it is without being performed.

図30の復号処理の説明に戻り、ステップS283において、レンダリング部162は、SBR処理部276から供給された各オブジェクトのオーディオ信号と、優先度情報取得部191から供給された各オブジェクトのメタデータとしての位置情報、および各オブジェクトの現時間フレームの優先度情報とに基づいて、各オブジェクトのオーディオ信号のレンダリングを行う。 Returning to the description of the decoding process of FIG. 30, in step S283, the rendering unit 162 uses the audio signal of each object supplied from the SBR processing unit 276 and the metadata of each object supplied from the priority information acquisition unit 191. The audio signal of each object is rendered based on the position information of the object and the priority information of the current time frame of each object.

例えばレンダリング部162は、図27や図28を参照して説明したように、オブジェクトごとに、各チャネルについて現時間フレームの優先度情報と、現時間フレームの直前の時間フレームの末尾のサンプルのVBAPゲインに基づいて、現時間フレームの各サンプルのVBAPゲインを算出する。このときレンダリング部162は、適宜、位置情報に基づいてVBAPによりVBAPゲインを算出する。 For example, as described with reference to FIGS. 27 and 28, the rendering unit 162 provides priority information of the current time frame for each channel and a sample VBAP at the end of the time frame immediately before the current time frame for each object. Based on the gain, calculate the VBAP gain for each sample in the current time frame. At this time, the rendering unit 162 appropriately calculates the VBAP gain by VBAP based on the position information.

そして、レンダリング部162は、各オブジェクトについて算出した各チャネルのサンプルごとのVBAPゲインと、各オブジェクトのオーディオ信号とに基づいて、各チャネルのオーディオ信号を生成し、ミキシング部163に供給する。 Then, the rendering unit 162 generates an audio signal of each channel based on the VBAP gain for each sample of each channel calculated for each object and the audio signal of each object, and supplies the audio signal to the mixing unit 163.

なお、ここでは時間フレーム内の各サンプルのVBAPゲインが線形に変化するように各サンプルのVBAPゲインを算出する例について説明したが、VBAPゲインが非線形に変化するようにしてもよい。また、VBAPにより各チャネルのオーディオ信号が生成される例について説明したが、他の方法により各チャネルのオーディオ信号を生成する場合でも、VBAPにおける場合と同様の処理により、各オブジェクトのオーディオ信号のゲインを調整することが可能である。 Although an example of calculating the VBAP gain of each sample so that the VBAP gain of each sample in the time frame changes linearly has been described here, the VBAP gain may change non-linearly. Further, although an example in which the audio signal of each channel is generated by VBAP has been described, even when the audio signal of each channel is generated by another method, the gain of the audio signal of each object is obtained by the same processing as in the case of VBAP. It is possible to adjust.

各チャネルのオーディオ信号が生成されると、その後、ステップS284の処理が行われて復号処理は終了するが、ステップS284の処理は図11のステップS54の処理と同様であるので、その説明は省略する。 When the audio signal of each channel is generated, the process of step S284 is performed and the decoding process is terminated. However, since the process of step S284 is the same as the process of step S54 of FIG. 11, the description thereof is omitted. To do.

このようにして復号装置151は、各オブジェクトについて、優先度情報に基づいてサンプルごとにVBAPゲインを算出し、各チャネルのオーディオ信号の生成時に、VBAPゲインによりオブジェクトのオーディオ信号のゲイン調整を行う。これにより、より少ない処理量でグリッチノイズの発生を抑制し、聴感上の音質の劣化を抑制することができる。 In this way, the decoding device 151 calculates the VBAP gain for each sample based on the priority information for each object, and adjusts the gain of the object's audio signal by the VBAP gain when the audio signal of each channel is generated. As a result, it is possible to suppress the generation of glitch noise with a smaller amount of processing and suppress the deterioration of the audible sound quality.

なお、第4の実施の形態乃至第6の実施の形態では、現時間フレームの直前および直後の時間フレームの優先度情報を利用してMDCT係数の出力先を選択したり、フェーディング信号ゲイン等によるゲイン調整を行ったりすると説明した。しかし、これに限らず、現時間フレームの優先度情報と、現時間フレームの所定時間フレームだけ前の時間フレームの優先度情報や、現時間フレームの所定時間フレームだけ後の時間フレームの優先度情報とが用いられるようにしてもよい。 In the fourth to sixth embodiments, the output destination of the MDCT coefficient is selected by using the priority information of the time frames immediately before and after the current time frame, the fading signal gain, etc. It was explained that the gain is adjusted by. However, not limited to this, the priority information of the current time frame, the priority information of the time frame before the predetermined time frame of the current time frame, and the priority information of the time frame after the predetermined time frame of the current time frame And may be used.

ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどが含まれる。 By the way, the series of processes described above can be executed by hardware or software. When a series of processes are executed by software, the programs that make up the software are installed on the computer. Here, the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose computer capable of executing various functions by installing various programs.

図32は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 32 is a block diagram showing a configuration example of hardware of a computer that executes the above-mentioned series of processes programmatically.

コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。 In a computer, a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, and a RAM (Random Access Memory) 503 are connected to each other by a bus 504.

バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、およびドライブ510が接続されている。 An input / output interface 505 is further connected to the bus 504. An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.

入力部506は、キーボード、マウス、マイクロフォン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア511を駆動する。 The input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like. The output unit 507 includes a display, a speaker, and the like. The recording unit 508 includes a hard disk, a non-volatile memory, and the like. The communication unit 509 includes a network interface and the like. The drive 510 drives a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.

以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505およびバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。 In the computer configured as described above, the CPU 501 loads the program recorded in the recording unit 508 into the RAM 503 via the input / output interface 505 and the bus 504 and executes the above-described series. Is processed.

コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer (CPU 501) can be recorded and provided on the removable media 511 as a package media or the like, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.

コンピュータでは、プログラムは、リムーバブルメディア511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。 In the computer, the program can be installed in the recording unit 508 via the input / output interface 505 by mounting the removable media 511 in the drive 510. Further, the program can be received by the communication unit 509 and installed in the recording unit 508 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 502 or the recording unit 508.

なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.

また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Further, the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.

例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.

また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above-mentioned flowchart can be executed by one device or can be shared and executed by a plurality of devices.

さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.

また、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.

さらに、本技術は、以下の構成とすることも可能である。 Further, the present technology can also have the following configurations.

(1)
複数のチャネルまたは複数のオブジェクトの符号化されたオーディオ信号、および所定の時間における各前記オーディオ信号の優先度情報を取得する取得部と、
前記優先度情報に基づいて、前記優先度情報に応じた所定の数のチャネルまたはオブジェクトの前記符号化されたオーディオ信号を復号するオーディオ信号復号部と
を備える復号装置。
(2)
前記オーディオ信号復号部は、前記優先度情報により示される優先度合いが所定の度合い以上である、前記符号化されたオーディオ信号を復号する
(1)に記載の復号装置。
(3)
前記取得部は、前記所定の時間における前記複数のチャネルまたは前記複数のオブジェクトのオーディオ信号の前記優先度情報に基づいて、前記所定の度合いを変更する
(2)に記載の復号装置。
(4)
前記取得部は、前記オーディオ信号ごとに複数の前記優先度情報を取得し、
前記オーディオ信号復号部は、前記複数の前記優先度情報のなかから選択された1つの前記優先度情報に基づいて、前記符号化されたオーディオ信号を復号する
(1)乃至(3)の何れか一項に記載の復号装置。
(5)
前記複数の前記優先度情報は、前記符号化されたオーディオ信号の復号側の計算能力に応じて、前記計算能力ごとに生成されたものである
(4)に記載の復号装置。
(6)
前記符号化されたオーディオ信号に基づいて、前記優先度情報を生成する優先度情報生成部をさらに備える
(1)乃至(5)の何れか一項に記載の復号装置。
(7)
前記優先度情報生成部は、前記符号化されたオーディオ信号から得られる、オーディオ信号の音圧またはスペクトル形状に基づいて前記優先度情報を生成する
(6)に記載の復号装置。
(8)
前記オーディオ信号復号部は、チャネルごとまたはオブジェクトごとに、前記所定の時間の前記優先度情報と、前記所定の時間よりも前または後の時間の前記優先度情報とに基づいて、前記所定の時間の前記符号化されたオーディオ信号を復号するかを選択する
(1)に記載の復号装置。
(9)
前記復号が行われた場合、前記復号により得られた信号を出力信号とし、前記復号が行われなかった場合、0データを出力信号として、チャネルごとまたはオブジェクトごとに、前記所定の時間の前記出力信号と、前記所定の時間よりも前または後の時間の前記出力信号とを加算して前記所定の時間のオーディオ信号を生成する加算部と、
チャネルごとまたはオブジェクトごとに、前記所定の時間の前記優先度情報と、前記所定の時間よりも前または後の時間の前記優先度情報とに基づいて、前記所定の時間のオーディオ信号のゲイン調整を行うゲイン調整部と
をさらに備える(1)に記載の復号装置。
(10)
チャネルごとまたはオブジェクトごとに、前記所定の時間の前記優先度情報と、前記所定の時間よりも前または後の時間の前記優先度情報とに基づいて、高域のパワー値をゲイン調整するとともに、ゲイン調整された前記パワー値と、前記所定の時間のオーディオ信号とに基づいて、前記所定の時間のオーディオ信号の高域成分を生成する高域生成部をさらに備える
(9)に記載の復号装置。
(11)
チャネルごとまたはオブジェクトごとに、高域のパワー値と、前記所定の時間のオーディオ信号とに基づいて、高域成分が含まれる前記所定の時間のオーディオ信号を生成する高域生成部をさらに備え、
前記ゲイン調整部は、高域成分が含まれる前記所定の時間のオーディオ信号のゲイン調整を行う
(9)に記載の復号装置。
(12)
前記所定の時間の前記優先度情報に基づいて、オブジェクトのオーディオ信号を複数の各チャネルに所定のゲイン値で割り当てて、前記複数の各チャネルのオーディオ信号を生成するレンダリング部をさらに備える
(1)に記載の復号装置。
(13)
複数のチャネルまたは複数のオブジェクトの符号化されたオーディオ信号、および所定の時間における各前記オーディオ信号の優先度情報を取得し、
前記優先度情報に基づいて、前記優先度情報に応じた所定の数のチャネルまたはオブジェクトの前記符号化されたオーディオ信号を復号する
ステップを含む復号方法。
(14)
複数のチャネルまたは複数のオブジェクトの符号化されたオーディオ信号、および所定の時間における各前記オーディオ信号の優先度情報を取得し、
前記優先度情報に基づいて、前記優先度情報に応じた所定の数のチャネルまたはオブジェクトの前記符号化されたオーディオ信号を復号する
ステップを含む処理をコンピュータに実行させるプログラム。
(15)
複数のチャネルまたは複数のオブジェクトのオーディオ信号の所定の時間における優先度情報を生成する優先度情報生成部と、
前記優先度情報をビットストリームに格納するパッキング部と
を備える符号化装置。
(16)
前記優先度情報生成部は、前記オーディオ信号ごとに複数の前記優先度情報を生成する
(15)に記載の符号化装置。
(17)
前記優先度情報生成部は、符号化された前記オーディオ信号の復号側の計算能力に応じて、前記計算能力ごとに前記優先度情報を生成する
(16)に記載の符号化装置。
(18)
前記優先度情報生成部は、前記オーディオ信号の音圧またはスペクトル形状に基づいて前記優先度情報を生成する
(15)乃至(17)の何れか一項に記載の符号化装置。
(19)
前記複数のチャネルまたは前記複数のオブジェクトのオーディオ信号を符号化する符号化部をさらに備え、
前記パッキング部は、前記優先度情報と符号化された前記オーディオ信号とを前記ビットストリームに格納する
(15)乃至(18)の何れか一項に記載の符号化装置。
(20)
複数のチャネルまたは複数のオブジェクトのオーディオ信号の所定の時間における優先度情報を生成し、
前記優先度情報をビットストリームに格納する
ステップを含む符号化方法。
(21)
複数のチャネルまたは複数のオブジェクトのオーディオ信号の所定の時間における優先度情報を生成し、
前記優先度情報をビットストリームに格納する
ステップを含む処理をコンピュータに実行させるプログラム。
(1)
An acquisition unit that acquires encoded audio signals of a plurality of channels or a plurality of objects, and priority information of each said audio signal at a predetermined time.
A decoding device including an audio signal decoding unit that decodes the encoded audio signal of a predetermined number of channels or objects according to the priority information based on the priority information.
(2)
The decoding device according to (1), wherein the audio signal decoding unit decodes the encoded audio signal whose priority degree indicated by the priority information is equal to or higher than a predetermined degree.
(3)
The decoding device according to (2), wherein the acquisition unit changes the predetermined degree based on the priority information of the audio signals of the plurality of channels or the plurality of objects at the predetermined time.
(4)
The acquisition unit acquires a plurality of the priority information for each audio signal, and obtains the plurality of priority information.
The audio signal decoding unit decodes the encoded audio signal based on one of the priority information selected from the plurality of priority information (1) to (3). The decoding device according to paragraph 1.
(5)
The decoding device according to (4), wherein the plurality of priority information is generated for each of the computing powers according to the computing power of the decoding side of the coded audio signal.
(6)
The decoding device according to any one of (1) to (5), further comprising a priority information generation unit that generates the priority information based on the encoded audio signal.
(7)
The decoding device according to (6), wherein the priority information generation unit generates the priority information based on the sound pressure or spectral shape of the audio signal obtained from the encoded audio signal.
(8)
The audio signal decoding unit determines the predetermined time based on the priority information of the predetermined time and the priority information of the time before or after the predetermined time for each channel or object. The decoding device according to (1), wherein the encoded audio signal of the above is selected.
(9)
When the decoding is performed, the signal obtained by the decoding is used as an output signal, and when the decoding is not performed, 0 data is used as an output signal, and the output for the predetermined time is used for each channel or object. An adder that adds the signal and the output signal at a time before or after the predetermined time to generate an audio signal at the predetermined time.
For each channel or object, gain adjustment of the audio signal at the predetermined time is performed based on the priority information at the predetermined time and the priority information at a time before or after the predetermined time. The decoding device according to (1), further comprising a gain adjusting unit for performing the operation.
(10)
For each channel or object, the gain of the high frequency power value is adjusted based on the priority information at the predetermined time and the priority information at a time before or after the predetermined time, and the gain is adjusted. The decoding device according to (9), further comprising a high frequency generation unit that generates a high frequency component of the audio signal of the predetermined time based on the gain-adjusted power value and the audio signal of the predetermined time. ..
(11)
For each channel or object, a high frequency generator is further provided to generate an audio signal of the predetermined time including a high frequency component based on the power value of the high frequency band and the audio signal of the predetermined time.
The decoding device according to (9), wherein the gain adjusting unit adjusts the gain of an audio signal containing a high frequency component for the predetermined time.
(12)
A rendering unit is further provided which allocates an audio signal of an object to each of a plurality of channels at a predetermined gain value based on the priority information of the predetermined time and generates an audio signal of the plurality of channels (1). Decoding device according to.
(13)
The encoded audio signals of a plurality of channels or a plurality of objects, and the priority information of each said audio signal at a predetermined time are acquired.
A decoding method comprising decoding the encoded audio signal of a predetermined number of channels or objects according to the priority information based on the priority information.
(14)
The encoded audio signals of a plurality of channels or a plurality of objects, and the priority information of each said audio signal at a predetermined time are acquired.
A program that causes a computer to perform a process including decoding the encoded audio signal of a predetermined number of channels or objects according to the priority information based on the priority information.
(15)
A priority information generator that generates priority information for audio signals of multiple channels or multiple objects at a predetermined time, and
A coding device including a packing unit for storing the priority information in a bit stream.
(16)
The coding device according to (15), wherein the priority information generation unit generates a plurality of the priority information for each audio signal.
(17)
The coding device according to (16), wherein the priority information generation unit generates the priority information for each of the computing powers according to the computing power of the decoding side of the coded audio signal.
(18)
The coding device according to any one of (15) to (17), wherein the priority information generation unit generates the priority information based on the sound pressure or the spectral shape of the audio signal.
(19)
Further comprising a coding unit for encoding the audio signals of the plurality of channels or the plurality of objects.
The coding device according to any one of (15) to (18), wherein the packing unit stores the priority information and the encoded audio signal in the bit stream.
(20)
Generates priority information for audio signals of multiple channels or multiple objects at a given time,
A coding method that includes a step of storing the priority information in a bitstream.
(21)
Generates priority information for audio signals of multiple channels or multiple objects at a given time,
A program that causes a computer to perform a process including a step of storing the priority information in a bit stream.

11 符号化装置, 21 チャネルオーディオ符号化部, 22 オブジェクトオーディオ符号化部, 23 メタデータ入力部, 24 パッキング部, 51 符号化部, 52 優先度情報生成部, 61 MDCT部, 91 符号化部, 92 優先度情報生成部, 101 MDCT部, 151 復号装置, 161 アンパッキング/復号部, 162 レンダリング部, 163 ミキシング部, 191 優先度情報取得部, 193 チャネルオーディオ信号復号部, 194 出力選択部, 196 IMDCT部, 198 オブジェクトオーディオ信号復号部, 199 出力選択部, 201 IMDCT部, 231 優先度情報生成部, 232 優先度情報生成部, 271 オーバーラップ加算部, 272 ゲイン調整部, 273 SBR処理部, 274 オーバーラップ処理部, 275 ゲイン調整部, 276 SBR処理部 11 Encoding device, 21 channel audio coding section, 22 object audio coding section, 23 metadata input section, 24 packing section, 51 coding section, 52 priority information generation section, 61 MDCT section, 91 coding section, 92 Priority information generation unit, 101 MDCT unit, 151 decoding device, 161 unpacking / decoding unit, 162 rendering unit, 163 mixing unit, 191 priority information acquisition unit, 193 channel audio signal decoding unit, 194 output selection unit, 196 IMDCT section, 198 object audio signal decoding section, 199 output selection section, 201 IMDCT section, 231 priority information generation section, 232 priority information generation section, 271 overlap addition section, 272 gain adjustment section, 273 SBR processing section, 274 Overlap processing unit, 275 gain adjustment unit, 276 SBR processing unit

本技術の一側面の復号装置は、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得する取得部と、前記優先度情報に基づいて、前記オブジェクトの符号化されたオーディオ信号の復号処理を制御するオーディオ信号復号部とを備える。 The decoding device of one aspect of the present technology acquires the priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each of the objects from the supplied bit stream at a predetermined time. A unit and an audio signal decoding unit that controls the decoding process of the encoded audio signal of the object based on the priority information.

本技術の一側面の復号方法またはプログラムは、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得し、前記優先度情報に基づいて、前記オブジェクトの符号化されたオーディオ信号の復号処理を制御するステップを含む。 A decoding method or program of one aspect of the present technology obtains priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object from a supplied bit stream at a predetermined time. A step of controlling the decoding process of the encoded audio signal of the object based on the priority information is included.

本技術の一側面においては、供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報が取得され、前記優先度情報に基づいて、前記オブジェクトの符号化されたオーディオ信号の復号処理が制御されるIn one aspect of the present technology, priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object at a predetermined time is acquired from the supplied bit stream, and the priority is obtained. The decoding process of the encoded audio signal of the object is controlled based on the degree information.

Claims (3)

供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得する取得部と、
前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号を復号し、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号しないオーディオ信号復号部と
を備える復号装置。
An acquisition unit that acquires priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object at a predetermined time from the supplied bit stream.
Based on the priority information, the encoded audio signal of the object whose priority indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority indicated in the priority information is the predetermined degree. A decoding device including an audio signal decoding unit that does not decode the encoded audio signal of the object that is less than the degree.
復号装置が、
供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得し、
前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号を復号し、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号しない
復号方法。
The decryption device
The priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object at a predetermined time is acquired from the supplied bit stream.
Based on the priority information, the encoded audio signal of the object whose priority indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority indicated in the priority information is the predetermined degree. A decoding method that does not decode the encoded audio signal of the object that is less than a degree.
供給されたビットストリームから複数のオブジェクトの符号化されたオーディオ信号、および各前記オブジェクトの符号化されたオーディオ信号の所定の時間における優先度情報を取得し、
前記優先度情報に基づいて、前記優先度情報に示される優先度合いが所定の度合い以上である前記オブジェクトの符号化されたオーディオ信号を復号し、前記優先度情報に示される優先度合いが前記所定の度合い未満である前記オブジェクトの符号化されたオーディオ信号は復号しない
ステップを含む処理をコンピュータに実行させるプログラム。
The priority information of the encoded audio signals of a plurality of objects and the encoded audio signals of each object at a predetermined time is acquired from the supplied bit stream.
Based on the priority information, the encoded audio signal of the object whose priority indicated in the priority information is equal to or higher than a predetermined degree is decoded, and the priority indicated in the priority information is the predetermined degree. A program that causes a computer to perform a process that includes a step that does not decode the encoded audio signal of the object that is less than a degree.
JP2021006899A 2014-03-24 2021-01-20 Decoding device, method, and program Active JP7412367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023038916A JP2023072027A (en) 2014-03-24 2023-03-13 Decoder and method, and program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014060486 2014-03-24
JP2014060486 2014-03-24
JP2018217178A JP6863359B2 (en) 2014-03-24 2018-11-20 Decoding device and method, and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018217178A Division JP6863359B2 (en) 2014-03-24 2018-11-20 Decoding device and method, and program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023038916A Division JP2023072027A (en) 2014-03-24 2023-03-13 Decoder and method, and program

Publications (2)

Publication Number Publication Date
JP2021064013A true JP2021064013A (en) 2021-04-22
JP7412367B2 JP7412367B2 (en) 2024-01-12

Family

ID=65905576

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018217178A Active JP6863359B2 (en) 2014-03-24 2018-11-20 Decoding device and method, and program
JP2021006899A Active JP7412367B2 (en) 2014-03-24 2021-01-20 Decoding device, method, and program
JP2023038916A Pending JP2023072027A (en) 2014-03-24 2023-03-13 Decoder and method, and program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018217178A Active JP6863359B2 (en) 2014-03-24 2018-11-20 Decoding device and method, and program

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023038916A Pending JP2023072027A (en) 2014-03-24 2023-03-13 Decoder and method, and program

Country Status (1)

Country Link
JP (3) JP6863359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550732B (en) * 2022-04-15 2022-07-08 腾讯科技(深圳)有限公司 Coding and decoding method and related device for high-frequency audio signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516421A (en) * 1998-05-18 2002-06-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Scalable mixing for audio streaming
JP2003066994A (en) * 2001-08-27 2003-03-05 Canon Inc Apparatus and method for decoding data, program and storage medium
WO2010109918A1 (en) * 2009-03-26 2010-09-30 パナソニック株式会社 Decoding device, coding/decoding device, and decoding method
WO2012125855A1 (en) * 2011-03-16 2012-09-20 Dts, Inc. Encoding and reproduction of three dimensional audio soundtracks
WO2013006342A1 (en) * 2011-07-01 2013-01-10 Dolby Laboratories Licensing Corporation Synchronization and switchover methods and systems for an adaptive audio system
JP2013502184A (en) * 2009-08-14 2013-01-17 エスアールエス・ラブス・インコーポレーテッド System for adaptively streaming audio objects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007312597B2 (en) * 2006-10-16 2011-04-14 Dolby International Ab Apparatus and method for multi -channel parameter transformation
EP2469741A1 (en) * 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516421A (en) * 1998-05-18 2002-06-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Scalable mixing for audio streaming
JP2003066994A (en) * 2001-08-27 2003-03-05 Canon Inc Apparatus and method for decoding data, program and storage medium
WO2010109918A1 (en) * 2009-03-26 2010-09-30 パナソニック株式会社 Decoding device, coding/decoding device, and decoding method
JP2013502184A (en) * 2009-08-14 2013-01-17 エスアールエス・ラブス・インコーポレーテッド System for adaptively streaming audio objects
WO2012125855A1 (en) * 2011-03-16 2012-09-20 Dts, Inc. Encoding and reproduction of three dimensional audio soundtracks
JP2014525048A (en) * 2011-03-16 2014-09-25 ディーティーエス・インコーポレイテッド 3D audio soundtrack encoding and playback
WO2013006342A1 (en) * 2011-07-01 2013-01-10 Dolby Laboratories Licensing Corporation Synchronization and switchover methods and systems for an adaptive audio system

Also Published As

Publication number Publication date
JP2019049745A (en) 2019-03-28
JP7412367B2 (en) 2024-01-12
JP6863359B2 (en) 2021-04-21
JP2023072027A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6439296B2 (en) Decoding apparatus and method, and program
TWI628651B (en) Apparatus and method for encoding or decoding a multi-channel signal and related physical storage medium and computer program
KR101921403B1 (en) Higher order ambisonics signal compression
US9516446B2 (en) Scalable downmix design for object-based surround codec with cluster analysis by synthesis
RU2555221C2 (en) Complex transformation channel coding with broadband frequency coding
US20150371643A1 (en) Stereo audio signal encoder
KR20100035120A (en) A method and an apparatus for processing a signal
JP2023072027A (en) Decoder and method, and program
US20200402521A1 (en) Performing psychoacoustic audio coding based on operating conditions
JPWO2020080099A1 (en) Signal processing equipment and methods, and programs
CN115943461A (en) Signal processing device, method, and program
WO2023286698A1 (en) Encoding device and method, decoding device and method, and program
RU2809587C1 (en) Device, method and computer program for encoding audio signal or for decoding encoded audio scene
US20200402522A1 (en) Quantizing spatial components based on bit allocations determined for psychoacoustic audio coding
JP2009151183A (en) Multi-channel voice sound signal coding device and method, and multi-channel voice sound signal decoding device and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230322

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230328

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150