JP2021063529A - Motor valve and refrigeration cycle system - Google Patents

Motor valve and refrigeration cycle system Download PDF

Info

Publication number
JP2021063529A
JP2021063529A JP2019187391A JP2019187391A JP2021063529A JP 2021063529 A JP2021063529 A JP 2021063529A JP 2019187391 A JP2019187391 A JP 2019187391A JP 2019187391 A JP2019187391 A JP 2019187391A JP 2021063529 A JP2021063529 A JP 2021063529A
Authority
JP
Japan
Prior art keywords
main valve
valve body
sub
valve
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187391A
Other languages
Japanese (ja)
Other versions
JP7208127B2 (en
Inventor
雄希 北見
Yuki Kitami
雄希 北見
亮司 小池
Ryoji Koike
亮司 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019187391A priority Critical patent/JP7208127B2/en
Priority to CN202011056269.3A priority patent/CN112648391B/en
Publication of JP2021063529A publication Critical patent/JP2021063529A/en
Application granted granted Critical
Publication of JP7208127B2 publication Critical patent/JP7208127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Fluid-Driven Valves (AREA)
  • Details Of Valves (AREA)

Abstract

To provide a motor valve capable of suppressing change in fluid passing sound in small flow rate control to reduce user's discomfort or the like, and a refrigeration cycle system.SOLUTION: A motor valve 10 comprises a valve body 1A, a main valve body 2, a sub valve body 3, a drive unit 4 that advances and retreats the sub valve body 3 and the main valve body 2, and a guide member 1B that advances and retreats the main valve body 2; and has a two-stage flow rate control range: a small flow rate control range for changing the opening degree of a sub valve port 24 and a large flow rate control range for opening and closing a main valve port 14. The motor valve comprises a first communication part 25A that connects a main valve chamber 1C and a sub valve chamber 23 and allows liquid refrigerant of gas-liquid two-phase refrigerant inside the main valve chamber 1C to pass therethrough, and a second communication part 25B that connects the main valve chamber 1C and the sub valve chamber 23 and allows gas refrigerant of the gas-liquid two-phase refrigerant to pass therethrough. With respect to the liquid level of the gas-liquid two-phase refrigerant, the first communication part 25A is provided below the liquid level, and the second communication part 25B is provided above the liquid level.SELECTED DRAWING: Figure 1

Description

本発明は、電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electric valve and a refrigeration cycle system.

従来、空気調和機の冷凍サイクルシステムに設けられる電動弁として、小流量制御域と大流量制御域との二段の流量制御域を有するものが提案されている(例えば、特許文献1参照。)。小流量制御域では、副弁体が軸線方向に進退駆動されて主弁体の副弁ポートでの流量制御が行われる。大流量制御域では、主弁室の主弁ポートが主弁体で開閉されて流量制御が行われる。 Conventionally, as an electric valve provided in a refrigeration cycle system of an air conditioner, a valve having a two-stage flow rate control range of a small flow rate control range and a large flow rate control range has been proposed (see, for example, Patent Document 1). .. In the small flow rate control region, the auxiliary valve body is driven forward and backward in the axial direction to control the flow rate at the auxiliary valve port of the main valve body. In the large flow rate control range, the main valve port of the main valve chamber is opened and closed by the main valve body to control the flow rate.

特許文献1に記載の電動弁は、主弁体と、主弁ばねと、副弁体(パイロット弁体)と、駆動部と、を備えている。主弁体は、主弁室の主弁ポート(大口径ポート)を開閉する。副弁体は、主弁体の内部に形成された副弁ポート(小口径ポート)を開閉する。駆動部は、副弁体を駆動する電動モータ(ステッピングモータ)を有している。上記の電動弁では、主弁ばねに付勢された主弁体が主弁座に着座して主弁ポートを閉じるとともに、駆動部によって進退駆動される副弁体が副弁ポートの開度を変更する。即ち、駆動部により副弁体が進退駆動することで副弁ポートの開度が増減され、これにより小流量制御が行われる。また、主弁体に係合した副弁体を介して主弁体が進退駆動されることで主弁ポートが開閉され、これにより大流量制御が行われる。 The electric valve described in Patent Document 1 includes a main valve body, a main valve spring, a sub valve body (pilot valve body), and a drive unit. The main valve body opens and closes the main valve port (large diameter port) of the main valve chamber. The sub-valve body opens and closes a sub-valve port (small diameter port) formed inside the main valve body. The drive unit has an electric motor (stepping motor) that drives the auxiliary valve body. In the above electric valve, the main valve body urged by the main valve spring sits on the main valve seat and closes the main valve port, and the sub-valve body driven forward and backward by the drive unit adjusts the opening of the sub-valve port. change. That is, the opening and retreating of the sub-valve body is driven by the drive unit to increase or decrease the opening degree of the sub-valve port, whereby small flow rate control is performed. Further, the main valve body is driven forward and backward via the auxiliary valve body engaged with the main valve body to open and close the main valve port, whereby a large flow rate control is performed.

また、特許文献1に記載の電動弁では、主弁体の側面部を貫通して複数の横孔(導通路)が形成され、これらの横孔によって主弁室と主弁体内部の副弁室(パイロット弁室)とが連通されている。主弁体によって主弁ポートが閉じられた小流量制御域では、冷媒は、横孔を通って主弁室と副弁室との相互間を通過し、更に、副弁体と副弁ポートの隙間を通過することになる。 Further, in the electric valve described in Patent Document 1, a plurality of lateral holes (conduction paths) are formed through the side surface portion of the main valve body, and these lateral holes form a main valve chamber and a sub valve inside the main valve body. It is connected to the room (pilot valve room). In the small flow control region where the main valve port is closed by the main valve body, the refrigerant passes between the main valve chamber and the sub valve chamber through the lateral hole, and further, the sub valve body and the sub valve port It will pass through the gap.

特開2012−117584号公報Japanese Unexamined Patent Publication No. 2012-117584

ところで、特許文献1に記載された従来の電動弁では、主弁室と副弁室とを連通する横孔は、副弁室から真横に延びて主弁体の側面部を貫通して形成され、特定の高さ位置に開口して設けられている。このため、小流量制御域で冷媒が気液二相冷媒であってその液面が横孔の高さ位置に対して上下に変動した場合、主弁室と副弁室との相互間を、液冷媒またはガス冷媒の一方が通過したり両方が通過したりして、副弁室において冷媒の状態変化が不規則に発生する可能性がある。このような冷媒の状態変化が起きると、小流量制御時に副弁ポートを通過する冷媒の流体通過音の音質や音圧も変化することになり、流体通過音を耳にする利用者が違和感や不快感を覚える懸念がある。 By the way, in the conventional electric valve described in Patent Document 1, the lateral hole communicating the main valve chamber and the sub-valve chamber extends right beside the sub-valve chamber and is formed through the side surface portion of the main valve body. , It is provided with an opening at a specific height position. Therefore, when the refrigerant is a gas-liquid two-phase refrigerant in the small flow rate control range and the liquid level fluctuates up and down with respect to the height position of the lateral hole, the space between the main valve chamber and the sub valve chamber is changed. One or both of the liquid refrigerant and the gas refrigerant may pass through, and the state change of the refrigerant may occur irregularly in the auxiliary valve chamber. When such a change in the state of the refrigerant occurs, the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port also change during small flow control, and the user who hears the fluid passing sound feels uncomfortable. There is a concern that it may cause discomfort.

従って、本発明は、上記のような問題に着目し、小流量制御時における流体通過音の変化を抑制して利用者の不快感等を軽減することができる電動弁及び冷凍サイクルシステムを提供することを目的とする。 Therefore, the present invention focuses on the above problems and provides an electric valve and a refrigeration cycle system capable of suppressing changes in fluid passing sound during small flow rate control and reducing user discomfort and the like. The purpose is.

上記課題を解決するために、本発明の電動弁は、主弁室、主弁座、及び主弁ポートを有した弁本体と、前記主弁ポートを開閉するとともに内部に副弁室及び副弁ポートを有した主弁体と、前記副弁ポートの開度を変更する副弁体と、前記副弁体及び前記主弁体を軸線方向に進退駆動する駆動部と、前記主弁体を前記軸線方向に進退案内する案内部材と、を備え、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートを開閉する大流量制御域と、の二段の流量制御域を有した電動弁であって、前記主弁室と前記副弁室とを連通し、前記主弁室の気液二相冷媒のうち液冷媒を通過させる第1連通部を備えるとともに、前記主弁室と前記副弁室とを連通し、前記主弁室の前記気液二相冷媒のうちガス冷媒を通過させる第2連通部と、を備え、前記気液二相冷媒の液面に対し、前記第1連通部は、前記液面よりも下方に設けられ、前記第2連通部は、前記液面よりも上方に設けられていることを特徴とする。 In order to solve the above problems, the electric valve of the present invention opens and closes a valve body having a main valve chamber, a main valve seat, and a main valve port, and the main valve port, and internally opens and closes a sub valve chamber and a sub valve. A main valve body having a port, a sub-valve body that changes the opening degree of the sub-valve port, a drive unit that drives the sub-valve body and the main valve body to move forward and backward in the axial direction, and the main valve body are described. A small flow rate control area in which the sub-valve body changes the opening degree of the sub-valve port and a large flow rate control area in which the main valve body opens and closes the main valve port. An electric valve having a two-stage flow rate control range, the main valve chamber and the sub-valve chamber are communicated with each other, and the liquid refrigerant among the gas-liquid two-phase refrigerants in the main valve chamber is passed through. It is provided with one communication portion, and is provided with a second communication portion that communicates the main valve chamber and the sub-valve chamber and allows a gas refrigerant among the gas-liquid two-phase refrigerants in the main valve chamber to pass through. The first communication portion is provided below the liquid level, and the second communication portion is provided above the liquid level with respect to the liquid level of the liquid two-phase refrigerant. ..

本発明の電動弁によれば、液冷媒を通過させる第1連通部が主弁室の気液二相冷媒の液面よりも下方に設けられ、ガス冷媒を通過させる第2連通部が主弁室の気液二相冷媒の液面よりも上方に設けられている。これにより、主弁ポートが閉止した小流量制御域において、気液二相冷媒の液面が上下に変動した場合であっても、副弁室には、液冷媒とガス冷媒が常に流れ込むことから、副弁室における冷媒の状態が変化し難くなる。即ち、液冷媒を第1連通部に、ガス冷媒を第2連通部に、それぞれ通過させることで、副弁室においては気液二相状態の冷媒となり、この気液二相状態の冷媒が副弁ポートを通過することになる。このように副弁室中における冷媒の状態変化が起き難くなることで、小流量制御時に副弁ポートを通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 According to the electric valve of the present invention, the first communication portion through which the liquid refrigerant is passed is provided below the liquid level of the gas-liquid two-phase refrigerant in the main valve chamber, and the second communication portion through which the gas refrigerant is passed is the main valve. It is provided above the liquid level of the gas-liquid two-phase refrigerant in the chamber. As a result, even if the liquid level of the gas-liquid two-phase refrigerant fluctuates up and down in the small flow rate control range where the main valve port is closed, the liquid refrigerant and the gas refrigerant always flow into the auxiliary valve chamber. , The state of the refrigerant in the auxiliary valve chamber is less likely to change. That is, by passing the liquid refrigerant through the first communication section and the gas refrigerant through the second communication section, the refrigerant becomes a gas-liquid two-phase state refrigerant in the auxiliary valve chamber, and the gas-liquid two-phase state refrigerant becomes a secondary It will pass through the valve port. By making it difficult for the state of the refrigerant to change in the auxiliary valve chamber in this way, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port during small flow control. It is possible to reduce the discomfort and the like.

ここで、本発明の電動弁において、前記主弁体は、前記副弁室を内包する円筒部と、前記円筒部の下部に設けられて前記主弁座に着座する着座部と、前記着座部よりも径方向内側に設けられる前記副弁ポートと、を有し、前記円筒部の外周面と前記案内部材の内周面とが摺接することで前記軸線方向に進退案内され、前記第1連通部は、前記着座部の近傍位置を含む前記円筒部の下部領域において前記円筒部を貫通して形成されていることが好適である。 Here, in the electric valve of the present invention, the main valve body includes a cylindrical portion including the sub-valve chamber, a seating portion provided below the cylindrical portion and seating on the main valve seat, and the seating portion. It has the sub-valve port provided on the inner side in the radial direction, and the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the guide member are in sliding contact with each other to guide the advancement and retreat in the axial direction, and the first communication is performed. It is preferable that the portion is formed so as to penetrate the cylindrical portion in the lower region of the cylindrical portion including the position near the seating portion.

この構成によれば、主弁体が円筒部と着座部と副弁ポートとを有し、着座部の近傍位置を含む主弁体の円筒部の下部領域について円筒部を貫通して第1連通部が形成されている。即ち、主弁座に着座した主弁体の最下部近傍に第1連通部が位置している。これにより、主弁室において気液二相冷媒の液面が下降した場合であっても液冷媒を通過させやすく、液面の変動による影響を小さくすることができる。 According to this configuration, the main valve body has a cylindrical portion, a seating portion, and a sub-valve port, and the first communication is performed through the cylindrical portion for the lower region of the cylindrical portion of the main valve body including the position near the seating portion. The part is formed. That is, the first communication portion is located near the lowermost portion of the main valve body seated on the main valve seat. As a result, even when the liquid level of the gas-liquid two-phase refrigerant drops in the main valve chamber, the liquid refrigerant can easily pass through the main valve chamber, and the influence of fluctuations in the liquid level can be reduced.

また、この構成において、前記第2連通部は、前記円筒部が前記案内部材に摺接する摺接部の少なくとも一部を含んで前記摺接部よりも下側にまで至る領域について前記円筒部を貫通して形成されていることが一層好適である。 Further, in this configuration, the second communication portion includes the cylindrical portion in a region extending below the sliding contact portion including at least a part of the sliding contact portion in which the cylindrical portion is in sliding contact with the guide member. It is more preferable that it is formed through.

この構成によれば、案内部材との摺接部の少なくとも一部を含んで摺接部よりも下側にまで至る領域について円筒部を貫通して第2連通部が形成されている。即ち、案内部材に案内される円筒部のうち案内部材から露出した部分の最上部に達するまで第2連通部が位置している。これにより、気液二相冷媒の液面が上昇した場合であってもガス冷媒を通過させやすく、液面の変動による影響を小さくすることができる。 According to this configuration, a second communication portion is formed through the cylindrical portion in a region including at least a part of the sliding contact portion with the guide member and extending below the sliding contact portion. That is, the second communication portion is located until it reaches the uppermost portion of the cylindrical portion guided by the guide member that is exposed from the guide member. As a result, even when the liquid level of the gas-liquid two-phase refrigerant rises, the gas refrigerant can easily pass through, and the influence of fluctuations in the liquid level can be reduced.

また、この構成において、前記第1連通部及び前記第2連通部は、それぞれ前記円筒部を貫通する一又は複数の小孔で構成され、互いに上下に離隔して設けられていることが更に好適である。 Further, in this configuration, it is more preferable that the first communication portion and the second communication portion are each composed of one or a plurality of small holes penetrating the cylindrical portion, and are provided vertically separated from each other. Is.

あるいは、前記第1連通部及び前記第2連通部は、前記円筒部を貫通する前記軸線方向に長孔又は丸孔として互いに連続して形成されていてもよい。 Alternatively, the first communication portion and the second communication portion may be continuously formed as elongated holes or round holes in the axial direction penetrating the cylindrical portion.

これらの構成によれば、第1連通部及び第2連通部は、小孔が上下に離隔して設けられたものとなるか、あるいは互いに連続して形成されたものとなる。これにより、電動弁に対して要求される性能や運転条件等に応じて適宜な数、形状、サイズの第1連通部及び第2連通部を選択して適用することができる。 According to these configurations, the first communication portion and the second communication portion are provided with small holes vertically separated from each other, or are formed continuously with each other. Thereby, an appropriate number, shape, and size of the first communication portion and the second communication portion can be selected and applied according to the performance required for the electric valve, the operating conditions, and the like.

また、第1連通部が着座部の近傍位置を含む領域に形成されている上記構成において、前記第2連通部は、前記案内部材を貫通して前記主弁体の上方に至る外側連通路と、前記主弁体と前記副弁体との間を通って前記副弁室に至る内側連通路と、を有して構成されていることも一層好適である。 Further, in the above configuration in which the first communication portion is formed in the region including the vicinity position of the seating portion, the second communication portion is the outer communication passage that penetrates the guide member and reaches above the main valve body. It is also more preferable that the main valve body and the sub-valve body are provided with an inner communication passage leading to the sub-valve chamber.

この構成によれば、第2連通部が外側連通路と内側連通路とを有することで、主弁体に対して第2連通路を一層高い位置に形成することができる。これにより、気液二相冷媒の液面が上昇した場合であってもガス冷媒を第2連通部に通過させ易く、液面の変動による影響を小さくすることができる。 According to this configuration, since the second communication portion has the outer communication passage and the inner communication passage, the second communication passage can be formed at a higher position with respect to the main valve body. As a result, even when the liquid level of the gas-liquid two-phase refrigerant rises, the gas refrigerant can easily pass through the second communication portion, and the influence of fluctuations in the liquid level can be reduced.

また、本発明の電動弁において、前記第1連通部及び前記第2連通部は、前記主弁体の周方向の複数位置に設けられていることが好適である。 Further, in the electric valve of the present invention, it is preferable that the first communication portion and the second communication portion are provided at a plurality of positions in the circumferential direction of the main valve body.

この構成によれば、第1連通部及び第2連通部が主弁体の周方向の複数位置に設けられているので、主弁室における冷媒の周方向の偏りの影響を受け難く、副弁室における冷媒の状態を安定させることができる。 According to this configuration, since the first communication portion and the second communication portion are provided at a plurality of positions in the circumferential direction of the main valve body, the auxiliary valve is less susceptible to the influence of the circumferential bias of the refrigerant in the main valve chamber. The state of the refrigerant in the chamber can be stabilized.

上記課題を解決するために、本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、上述した本発明の電動弁が、前記膨張弁として用いられていることを特徴とする。 In order to solve the above problems, the refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and the electric valve of the present invention described above is used. It is characterized in that it is used as the expansion valve.

本発明の冷凍サイクルシステムによれば、前述の電動弁による効果と同様に、副弁室における冷媒が気液二相状態となり、この気液二相状態の冷媒が副弁ポートを通過することになるので、冷媒の状態変化が起き難くなる。これにより、冷凍サイクルシステムにおいて、小流量制御時(例えば、除湿モード)に副弁ポートを通過する冷媒の流体通過音や音質の変化を抑制して、利用者の違和感や不快感を軽減することが可能となる。 According to the refrigeration cycle system of the present invention, the refrigerant in the sub-valve chamber is in a gas-liquid two-phase state, and the refrigerant in the gas-liquid two-phase state passes through the sub-valve port, similar to the effect of the electric valve described above. Therefore, the state change of the refrigerant is less likely to occur. As a result, in the refrigeration cycle system, changes in the fluid passing sound and sound quality of the refrigerant passing through the auxiliary valve port during small flow rate control (for example, dehumidification mode) are suppressed, and the user's discomfort and discomfort are reduced. Is possible.

本発明の電動弁及び冷凍サイクルシステムによれば、小流量制御時における流体通過音の変化を抑制して利用者の違和感や不快感を軽減することができる。 According to the electric valve and the refrigeration cycle system of the present invention, it is possible to suppress the change in the fluid passing sound at the time of small flow rate control and reduce the discomfort and discomfort of the user.

本発明の一実施形態に係る電動弁を示す図である。It is a figure which shows the electric valve which concerns on one Embodiment of this invention. 図1に示されている電動弁における冷媒の流量制御状態が小流量制御域にあるときの主弁体の周辺構造を拡大して示す図である。It is an enlarged view which shows the peripheral structure of the main valve body when the flow rate control state of the refrigerant in the electric valve shown in FIG. 1 is in a small flow rate control range. 図1に示されている電動弁における冷媒の流量制御状態が大流量制御域にあるときの主弁体の周辺構造を拡大して示す図である。It is an enlarged view which shows the peripheral structure of the main valve body when the flow rate control state of the refrigerant in the electric valve shown in FIG. 1 is in a large flow rate control range. 図1に示されている電動弁における主弁体の側面を示した図である。It is a figure which showed the side surface of the main valve body in the electric valve shown in FIG. 図1に示されている電動弁が適用された、本発明の一実施形態に係る冷凍サイクルシステムを示す模式図である。It is a schematic diagram which shows the refrigeration cycle system which concerns on one Embodiment of this invention to which the electric valve shown in FIG. 1 is applied. 図1〜図5に示されている実施形態に対する第1変形例を示す図である。It is a figure which shows the 1st modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第2変形例を示す図である。It is a figure which shows the 2nd modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第3変形例を示す図である。It is a figure which shows the 3rd modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第4変形例を示す図である。It is a figure which shows the 4th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第5変形例を示す図である。It is a figure which shows the 5th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第6変形例を示す図である。It is a figure which shows the 6th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第7変形例を示す図である。It is a figure which shows the 7th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第8変形例を示す図である。It is a figure which shows the 8th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第9変形例を示す図である。It is a figure which shows the 9th modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第10変形例を示す図である。It is a figure which shows the tenth modification with respect to the embodiment shown in FIGS. 1 to 5. 図15に示されている主弁体の側面を示した図である。It is a figure which showed the side surface of the main valve body shown in FIG. 図1〜図5に示されている実施形態に対する第11変形例を示す図である。It is a figure which shows the eleventh modification with respect to the embodiment shown in FIGS. 1 to 5. 図1〜図5に示されている実施形態に対する第12変形例を示す図である。It is a figure which shows the twelfth modification with respect to the embodiment shown in FIGS. 1 to 5.

本発明の一実施形態に係る電動弁を図1〜4に基づいて説明する。 An electric valve according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1は、本発明の一実施形態に係る電動弁を示す図である。図2は、図1に示されている電動弁における冷媒の流量制御状態が小流量制御域にあるときの主弁体の周辺構造を拡大して示す図である。図3は、図1に示されている電動弁における冷媒の流量制御状態が大流量制御域にあるときの主弁体の周辺構造を拡大して示す図である。また、図4は、図1に示されている電動弁における主弁体の側面を示した図である。 FIG. 1 is a diagram showing an electric valve according to an embodiment of the present invention. FIG. 2 is an enlarged view showing the peripheral structure of the main valve body when the flow rate control state of the refrigerant in the electric valve shown in FIG. 1 is in the small flow rate control range. FIG. 3 is an enlarged view showing the peripheral structure of the main valve body when the flow rate control state of the refrigerant in the electric valve shown in FIG. 1 is in the large flow rate control range. Further, FIG. 4 is a view showing a side surface of a main valve body in the electric valve shown in FIG.

本実施形態の電動弁10は、弁ハウジング1と、主弁体2と、副弁体3と、駆動部4と、を備えている。なお、以下の説明における「上下」の概念は各図面における上下に対応する。 The electric valve 10 of the present embodiment includes a valve housing 1, a main valve body 2, a sub valve body 3, and a drive unit 4. The concept of "upper and lower" in the following description corresponds to upper and lower in each drawing.

弁ハウジング1は、筒状の弁本体1Aと、弁本体1Aの内部に固定される案内部材1Bと、を有している。弁本体1Aは、その内部に円筒状の主弁室1Cが形成されている。この弁本体1Aには、側面側から主弁室1Cに連通して冷媒が出入りする第1継手管11が取り付けられている。また、底面側から主弁室1Cに連通して冷媒が出入りする第2継手管12が取り付けられている。さらに、弁本体1Aには、主弁室1Cと第2継手管12とを連通する位置に主弁座13が形成されるとともに、この主弁座13から第2継手管12側に断面形状が円形の主弁ポート14が形成されている。案内部材1Bは、金属製の固定部15によって弁本体1Aに溶接固定されている。案内部材1Bは、樹脂成形品であって、主弁座13側に設けられて円筒状の主弁ガイド部16と、駆動部4側に設けられて内周面に雌ねじが形成された雌ねじ部17と、を有して形成されている。弁本体1Aの上端部には、ケース18が溶接等によって弁本体1Aに気密に固定されている。 The valve housing 1 has a tubular valve body 1A and a guide member 1B fixed inside the valve body 1A. A cylindrical main valve chamber 1C is formed inside the valve body 1A. A first joint pipe 11 that communicates with the main valve chamber 1C from the side surface side to allow the refrigerant to flow in and out is attached to the valve body 1A. Further, a second joint pipe 12 is attached, which communicates with the main valve chamber 1C from the bottom surface side and allows the refrigerant to flow in and out. Further, in the valve body 1A, the main valve seat 13 is formed at a position where the main valve chamber 1C and the second joint pipe 12 communicate with each other, and the cross-sectional shape is formed from the main valve seat 13 to the second joint pipe 12 side. A circular main valve port 14 is formed. The guide member 1B is welded and fixed to the valve body 1A by a metal fixing portion 15. The guide member 1B is a resin molded product, and has a cylindrical main valve guide portion 16 provided on the main valve seat 13 side and a female screw portion provided on the drive portion 4 side and having female threads formed on the inner peripheral surface. 17 and is formed. A case 18 is airtightly fixed to the valve body 1A by welding or the like at the upper end of the valve body 1A.

主弁体2は、主弁座13に対して軸線方向に進退するする弁体主部2Aと、ばね受け部2Bと、副弁座2Cと、を有している。弁体主部2Aは、軸線Lを軸方向とする円筒状の円筒部22と、この円筒部22に内包されて流体が流通する副弁室23と、軸線Lに沿って副弁座2Cを貫通する副弁ポート24と、を有している。円筒部22の周面部における第1継手管11側には一体連通孔25が形成され、副弁室23はこの一体連通孔25により主弁室1Cに連通されている。一体連通孔25は、下端側部分に当たる第1連通部25Aと上端側部分に当たる第2連通部25Bとが、円筒部22を貫通する軸線方向の長孔として連続して形成されたものである。一体連通孔25、第1連通部25A、及び第2連通部25Bについては後で再度説明する。 The main valve body 2 has a valve body main portion 2A that advances and retreats in the axial direction with respect to the main valve seat 13, a spring receiving portion 2B, and a sub valve seat 2C. The valve body main portion 2A includes a cylindrical cylindrical portion 22 whose axial direction is the axis L, a sub valve chamber 23 contained in the cylindrical portion 22 through which a fluid flows, and a sub valve seat 2C along the axis L. It has an auxiliary valve port 24 that penetrates. An integrated communication hole 25 is formed on the side of the first joint pipe 11 on the peripheral surface of the cylindrical portion 22, and the auxiliary valve chamber 23 is communicated with the main valve chamber 1C by the integrated communication hole 25. The integrated communication hole 25 is formed by continuously forming a first communication portion 25A corresponding to the lower end side portion and a second communication portion 25B corresponding to the upper end side portion as long holes in the axial direction penetrating the cylindrical portion 22. The integrated communication hole 25, the first communication portion 25A, and the second communication portion 25B will be described again later.

弁体主部2Aの円筒部22の内周面には、軸線Lに沿った挿通孔26が形成され、この挿通孔26内には副弁体3の副弁基部3Aが挿通されている。ばね受け部2Bは、円環状に形成されて弁体主部2Aの上端部に固定され、その内部にロータ軸46が挿通されている。ばね受け部2Bの上面と案内部材1Bの天井面との間には、主弁ばね27が配設されており、この主弁ばね27により主弁体2は主弁座13方向(閉方向)に付勢されている。 An insertion hole 26 along the axis L is formed on the inner peripheral surface of the cylindrical portion 22 of the valve body main portion 2A, and the auxiliary valve base portion 3A of the auxiliary valve body 3 is inserted into the insertion hole 26. The spring receiving portion 2B is formed in an annular shape and is fixed to the upper end portion of the valve body main portion 2A, and the rotor shaft 46 is inserted therein. A main valve spring 27 is arranged between the upper surface of the spring receiving portion 2B and the ceiling surface of the guide member 1B, and the main valve body 2 is moved in the main valve seat 13 direction (closing direction) by the main valve spring 27. Is being urged to.

副弁体3は、円筒状の副弁基部3Aと、副弁基部3Aから下方に突出する副弁部3Bと、副弁基部3Aの上側に設けられたスラストワッシャ3Cと、副弁基部3Aの内部に設けられた副弁ばね(不図示)と、で構成されている。副弁基部3Aは、主弁体2の挿通孔26に挿通され、軸線Lに沿った上下方向に進退自在かつ軸線L回りに回転自在に支持されている。スラストワッシャ3Cは、副弁基部3Aの上面及びばね受け部2Bの下面に当接可能になっており、その当接面同士の摩擦力が極めて小さくなるようになっている。副弁
基部3Aの上部には挿通孔が設けられてロータ軸46が挿通され、ロータ軸46の下端部に形成されたフランジ部(不図示)と副弁基部3Aの底部に接合された副弁部3Bの上端部との間に副弁ばねが配設されている。この副弁ばねにより副弁体3はロータ軸46(マグネットロータ44)に対して副弁座2C方向(閉方向)に付勢されている。なお、副弁基部3Aは、ロータ軸46および副弁部3Bと一体に形成されてもよく、その場合には、副弁基部3Aが中実状に形成され、副弁ばねが省略されてもよい。
The sub-valve body 3 includes a cylindrical sub-valve base 3A, a sub-valve 3B protruding downward from the sub-valve base 3A, a thrust washer 3C provided above the sub-valve base 3A, and a sub-valve base 3A. It is composed of an auxiliary valve spring (not shown) provided inside. The sub-valve base 3A is inserted into the insertion hole 26 of the main valve body 2 and is supported so as to be vertically reciprocating along the axis L and rotatably around the axis L. The thrust washer 3C can come into contact with the upper surface of the auxiliary valve base portion 3A and the lower surface of the spring receiving portion 2B, and the frictional force between the contact surfaces is extremely small. An insertion hole is provided in the upper part of the sub-valve base 3A, the rotor shaft 46 is inserted, and a flange (not shown) formed at the lower end of the rotor shaft 46 and a sub-valve joined to the bottom of the sub-valve base 3A. A sub-valve spring is arranged between the portion 3B and the upper end portion. The sub-valve body 3 is urged by the sub-valve spring in the sub-valve seat 2C direction (closed direction) with respect to the rotor shaft 46 (magnet rotor 44). The sub-valve base 3A may be integrally formed with the rotor shaft 46 and the sub-valve 3B. In that case, the sub-valve base 3A may be formed in a solid state and the sub-valve spring may be omitted. ..

駆動部4は、電動モータとしてのステッピングモータ41と、ステッピングモータ41の回転により副弁体3を進退させるねじ送り機構42と、ステッピングモータ41の回転を規制するストッパ機構43と、を備える。ステッピングモータ41は、外周部が多極に着磁されたマグネットロータ44と、ケース18の外周に配設されたステータコイル45と、マグネットロータ44に固定されたロータ軸46と、を備えている。ロータ軸46は、固定部材46aを介してマグネットロータ44に固定されるとともに、軸線Lに沿って延び、その上端部はストッパ機構43のガイド47に挿入されている。ロータ軸46の中間部には雄ねじ部46bが一体に形成され、この雄ねじ部46bが案内部材1Bの雌ねじ部17に螺合し、これによってねじ送り機構42が構成されている。マグネットロータ44が回転すると、ロータ軸46の雄ねじ部46bが雌ねじ部17に案内される。これにより、マグネットロータ44およびロータ軸46が軸線L方向に進退移動し、これに伴って副弁体3及び主弁体2が軸線Lに沿った軸線方向に進退駆動(上昇又は下降)される。 The drive unit 4 includes a stepping motor 41 as an electric motor, a screw feed mechanism 42 for advancing and retreating the auxiliary valve body 3 by the rotation of the stepping motor 41, and a stopper mechanism 43 for restricting the rotation of the stepping motor 41. The stepping motor 41 includes a magnet rotor 44 whose outer peripheral portion is magnetized in multiple poles, a stator coil 45 arranged on the outer peripheral portion of the case 18, and a rotor shaft 46 fixed to the magnet rotor 44. .. The rotor shaft 46 is fixed to the magnet rotor 44 via the fixing member 46a and extends along the axis L, and the upper end portion thereof is inserted into the guide 47 of the stopper mechanism 43. A male screw portion 46b is integrally formed in the intermediate portion of the rotor shaft 46, and the male screw portion 46b is screwed into the female screw portion 17 of the guide member 1B, whereby the screw feed mechanism 42 is formed. When the magnet rotor 44 rotates, the male threaded portion 46b of the rotor shaft 46 is guided to the female threaded portion 17. As a result, the magnet rotor 44 and the rotor shaft 46 move forward and backward in the axis L direction, and accordingly, the auxiliary valve body 3 and the main valve body 2 are driven forward and backward (up or down) in the axial direction along the axis L. ..

ストッパ機構43は、ケース18の天井部から垂下された円筒状のガイド47と、ガイド47の外周に固定されたガイド線体48と、ガイド線体48にガイドされて回転かつ上下動可能な可動スライダ49と、を備えている。可動スライダ49には、径方向外側に突出した爪部49aが設けられ、マグネットロータ44には、上方に延びて爪部49aと当接する延長部44aが設けられている。マグネットロータ44が回転すると、延長部44aが爪部49aを押すことで、可動スライダ49がガイド線体48に倣って回転かつ上下するようになっている。ガイド線体48には、マグネットロータ44の最上端位置を規定する上端ストッパ48aと、マグネットロータ44の最下端位置を規定する下端ストッパ48bと、が形成されている。これらの上端ストッパ48aおよび下端ストッパ48bに可動スライダ49が当接することで、可動スライダ49の回転が停止され、これによりマグネットロータ44の回転が規制され、副弁体3及び主弁体2の進退駆動も停止される。 The stopper mechanism 43 has a cylindrical guide 47 hanging from the ceiling of the case 18, a guide wire 48 fixed to the outer circumference of the guide 47, and a movable guide wire 48 that can rotate and move up and down. It includes a slider 49 and. The movable slider 49 is provided with a claw portion 49a protruding outward in the radial direction, and the magnet rotor 44 is provided with an extension portion 44a extending upward and in contact with the claw portion 49a. When the magnet rotor 44 rotates, the extension portion 44a pushes the claw portion 49a, so that the movable slider 49 rotates and moves up and down in accordance with the guide wire body 48. The guide wire body 48 is formed with an upper end stopper 48a that defines the uppermost end position of the magnet rotor 44 and a lower end stopper 48b that defines the lowermost end position of the magnet rotor 44. When the movable slider 49 comes into contact with the upper end stopper 48a and the lower end stopper 48b, the rotation of the movable slider 49 is stopped, whereby the rotation of the magnet rotor 44 is restricted, and the auxiliary valve body 3 and the main valve body 2 advance and retreat. The drive is also stopped.

次に、主弁体2における一体連通孔25、第1連通部25A、及び第2連通部25Bについて説明する。 Next, the integrated communication hole 25, the first communication portion 25A, and the second communication portion 25B in the main valve body 2 will be described.

図1、図2に示す小流量制御域にあるときの状態において、まず、一体連通孔25の下端側部分に当たる第1連通部25Aは、主弁室1Cと副弁室23とを連通し、主弁室1Cの内部の気液二相冷媒のうち下層となる液冷媒を通過させる。また、一体連通孔25の上端側部分に当たる第2連通部25Bは、主弁室1Cと副弁室23とを連通し、主弁室1Cの内部の気液二相冷媒のうち上層となるガス冷媒を通過させる。そして、図4に示されているように、気液二相冷媒の液面LV11に対し、第1連通部25Aは、液面LV11よりも下方に設けられ、第2連通部25Bは、液面LV11よりも上方に設けられている。 In the state of being in the small flow rate control range shown in FIGS. 1 and 2, first, the first communication portion 25A, which corresponds to the lower end side portion of the integrated communication hole 25, communicates the main valve chamber 1C and the sub-valve chamber 23. Of the gas-liquid two-phase refrigerant inside the main valve chamber 1C, the liquid refrigerant that is the lower layer is passed through. Further, the second communication portion 25B, which corresponds to the upper end side portion of the integrated communication hole 25, communicates the main valve chamber 1C and the sub-valve chamber 23, and is a gas that becomes the upper layer of the gas-liquid two-phase refrigerant inside the main valve chamber 1C. Allow the refrigerant to pass through. Then, as shown in FIG. 4, the first communication portion 25A is provided below the liquid level LV11 with respect to the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 25B is the liquid level. It is provided above the LV11.

第1連通部25Aは、主弁体2の円筒部22の下部に設けられた着座部21の近傍位置を含む領域において円筒部22を貫通して形成されている。上述した副弁ポート24は、着座部21の径方向内側に設けられている。他方、第2連通部25Bは、主弁体2が主弁座13に着座時の小流量制御時において円筒部22が案内部材1Bに摺接している摺接部22Aの少なくとも一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成されている。そして、第1連通部25A及び第2連通部25Bは、円筒部22を貫通する軸線方向の長孔として互いに連続して一体連通孔25を構成するように形成されている。 The first communication portion 25A is formed so as to penetrate the cylindrical portion 22 in a region including a position near the seating portion 21 provided under the cylindrical portion 22 of the main valve body 2. The auxiliary valve port 24 described above is provided on the inner side in the radial direction of the seating portion 21. On the other hand, the second communication portion 25B includes at least a part of the sliding contact portion 22A in which the cylindrical portion 22 is in sliding contact with the guide member 1B when the main valve body 2 is seated on the main valve seat 13 and the small flow rate is controlled. It is formed so as to penetrate the cylindrical portion 22 in a region extending below the sliding contact portion 22A. The first communication portion 25A and the second communication portion 25B are formed so as to form an integral communication hole 25 continuously with each other as an axially elongated hole penetrating the cylindrical portion 22.

以上の電動弁10は、以下のように動作する。まず、図2の状態では、主弁体2の着座部21が主弁座13に着座し、主弁ポート14が閉じられた弁閉状態である。一方、副弁ポート24に最も近づいた位置にある副弁体3は、副弁座2Cに着座せず、副弁体3の副弁部3Bの外周面と副弁ポート24の内周面との隙間によって流路が形成されている。従って、第1継手管11から主弁室1Cへと気液二相状態の冷媒が流入する際には、その下層の液冷媒が第1連通部25Aを通過し、上層のガス冷媒が第2連通部25Bを通過して、それぞれ副弁室23に流入する。これにより、副弁室23においても冷媒が気液二相状態となる。副弁室23における冷媒は、副弁部3Bと副弁ポート24との隙間を通って下方に流れ、主弁ポート14から第2継手管12に向かって流出する。すなわち、この電動弁10では、主弁体2による主弁ポート14の弁開度がゼロであっても副弁ポート24を介して冷媒の微少な流量が生じる。 The above electric valve 10 operates as follows. First, in the state of FIG. 2, the seating portion 21 of the main valve body 2 is seated on the main valve seat 13, and the main valve port 14 is closed. On the other hand, the sub-valve body 3 located closest to the sub-valve port 24 does not sit on the sub-valve seat 2C, and the outer peripheral surface of the sub-valve portion 3B of the sub-valve body 3 and the inner peripheral surface of the sub-valve port 24. A flow path is formed by the gap between the two. Therefore, when the refrigerant in the gas-liquid two-phase state flows from the first joint pipe 11 into the main valve chamber 1C, the liquid refrigerant in the lower layer passes through the first communication portion 25A, and the gas refrigerant in the upper layer passes through the second communication portion 25A. It passes through the communication portion 25B and flows into the auxiliary valve chambers 23, respectively. As a result, the refrigerant is in a gas-liquid two-phase state also in the auxiliary valve chamber 23. The refrigerant in the sub-valve chamber 23 flows downward through the gap between the sub-valve portion 3B and the sub-valve port 24, and flows out from the main valve port 14 toward the second joint pipe 12. That is, in the electric valve 10, even if the valve opening degree of the main valve port 14 by the main valve body 2 is zero, a minute flow rate of the refrigerant is generated through the sub valve port 24.

次に、駆動部4のステッピングモータ41を駆動してマグネットロータ44を回転させて副弁体3を上昇させることで、副弁体3の副弁部3Bが副弁ポート24から抜け出し、副弁部3Bと副弁ポート24との隙間による流路が拡大され、流量が徐々に増加する。この際、主弁体2の着座部21は主弁座13に着座したままであるため、流量の増加は微少である。このように主弁体2を閉じたまま副弁体3の開度を変更する制御域が小流量制御域である。次に、副弁体3をさらに上昇させると、スラストワッシャ3Cがばね受け部2Bに当接し、副弁体3によって主弁体2が引き上げられ、着座部21が主弁座13から離座する。このように主弁体2を着座位置(閉位置)から弁開位置(開位置)に向かって上昇させる制御域が大流量制御域である。この大流量制御域における主弁体2の開度(ステッピングモータ41の回転量=弁リフト量)に対する流量の変化は大きなものとなり、主弁体2の全開状態において、流量は最大となる。 Next, by driving the stepping motor 41 of the drive unit 4 to rotate the magnet rotor 44 to raise the sub-valve body 3, the sub-valve portion 3B of the sub-valve body 3 comes out of the sub-valve port 24, and the sub-valve The flow path due to the gap between the portion 3B and the auxiliary valve port 24 is expanded, and the flow rate gradually increases. At this time, since the seating portion 21 of the main valve body 2 remains seated on the main valve seat 13, the increase in the flow rate is slight. The control range for changing the opening degree of the sub-valve body 3 while the main valve body 2 is closed in this way is the small flow rate control range. Next, when the sub-valve body 3 is further raised, the thrust washer 3C comes into contact with the spring receiving portion 2B, the main valve body 2 is pulled up by the sub-valve body 3, and the seating portion 21 is separated from the main valve seat 13. .. The control range for raising the main valve body 2 from the seating position (closed position) toward the valve open position (open position) in this way is the large flow rate control range. The change in the flow rate with respect to the opening degree of the main valve body 2 (rotation amount of the stepping motor 41 = valve lift amount) in this large flow rate control range becomes large, and the flow rate becomes maximum when the main valve body 2 is fully opened.

以上に説明した実施形態の電動弁10によれば、液冷媒を通過させる第1連通部25Aが主弁室1Cの内部の気液二相冷媒の液面LV11よりも下方に設けられ、ガス冷媒を通過させる第2連通部25Bが主弁室1Cの内部の気液二相冷媒の液面LV11よりも上方に設けられている。小流量制御域においては、副弁が全開となっても小流量であり、液面LV11の位置に大きな変化は無く、これにより、気液二相冷媒の液面が多少上下に変動した場合であっても、副弁室23における冷媒の状態が変化し難くなる。即ち、小流量制御域において液冷媒を第1連通部25Aに、ガス冷媒を第2連通部25Bに、それぞれ通過させることで、副弁室23においては液体のみの状態や、ガスのみの状態に変化することなく、常に気液二相状態の冷媒となり、この気液二相状態の冷媒が副弁ポート24を通過することになる。このように冷媒の状態変化が起き難くなることで、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 According to the electric valve 10 of the embodiment described above, the first communication portion 25A through which the liquid refrigerant passes is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant inside the main valve chamber 1C, and the gas refrigerant is provided. The second communication portion 25B is provided above the liquid level LV11 of the gas-liquid two-phase refrigerant inside the main valve chamber 1C. In the small flow rate control range, the flow rate is small even when the auxiliary valve is fully opened, and there is no significant change in the position of the liquid level LV11, which causes the liquid level of the gas-liquid two-phase refrigerant to fluctuate slightly up and down. Even if there is, it becomes difficult for the state of the refrigerant in the auxiliary valve chamber 23 to change. That is, by passing the liquid refrigerant through the first communication section 25A and the gas refrigerant through the second communication section 25B in the small flow control range, the auxiliary valve chamber 23 becomes a liquid-only state or a gas-only state. The refrigerant is always in the gas-liquid two-phase state without changing, and the gas-liquid two-phase state refrigerant passes through the auxiliary valve port 24. By making it difficult for the state of the refrigerant to change in this way, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, resulting in user discomfort and the like. Can be reduced.

ここで、本実施形態では、主弁体2が円筒部22と着座部21と副弁ポート24とを有し、着座部21の近傍位置を含む領域について円筒部22を貫通して第1連通部25Aが形成されている。即ち、主弁座13に着座した主弁体2の最下部近傍に第1連通部25Aが位置している。これにより、主弁室1Cにおいて気液二相冷媒の液面が下降した場合であっても液冷媒を通過させやすく、液面の変動による影響を小さくすることができる。 Here, in the present embodiment, the main valve body 2 has a cylindrical portion 22, a seating portion 21, and a sub-valve port 24, and the first communication penetrates the cylindrical portion 22 for a region including a position near the seating portion 21. Part 25A is formed. That is, the first communication portion 25A is located near the lowermost portion of the main valve body 2 seated on the main valve seat 13. As a result, even when the liquid level of the gas-liquid two-phase refrigerant drops in the main valve chamber 1C, the liquid refrigerant can easily pass through the main valve chamber 1C, and the influence of fluctuations in the liquid level can be reduced.

また、本実施形態では、案内部材1Bとの摺接部22Aの少なくとも一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して第2連通部25Bが形成されている。即ち、案内部材1Bに案内される円筒部22のうち案内部材1Bから露出した部分の最上部に達するまで第2連通部25Bが位置している。これにより、気液二相冷媒の液面が上昇した場合であってもガス冷媒を通過させやすく、液面の変動による影響を小さくすることができる。 Further, in the present embodiment, the second communication portion 25B is formed through the cylindrical portion 22 in a region including at least a part of the sliding contact portion 22A with the guide member 1B and extending below the sliding contact portion 22A. Has been done. That is, the second communication portion 25B is located until it reaches the uppermost portion of the cylindrical portion 22 guided by the guide member 1B, which is exposed from the guide member 1B. As a result, even when the liquid level of the gas-liquid two-phase refrigerant rises, the gas refrigerant can easily pass through, and the influence of fluctuations in the liquid level can be reduced.

そして、本実施形態では、第1連通部25A及び第2連通部25Bは、互いに連続して長孔状の一体連通孔25を構成するように形成されている。第1連通部25A及び第2連通部25Bからなる一体連通孔25は、電動弁10に対して要求される性能や運転条件等に応じた適宜な形状やサイズに設定されている。 Then, in the present embodiment, the first communication portion 25A and the second communication portion 25B are formed so as to form a long-hole-shaped integral communication hole 25 that is continuous with each other. The integrated communication hole 25 including the first communication portion 25A and the second communication portion 25B is set to an appropriate shape and size according to the performance and operating conditions required for the electric valve 10.

次に、本発明の冷凍サイクルシステムの一実施形態について説明する。 Next, an embodiment of the refrigeration cycle system of the present invention will be described.

図5は、図1に示されている電動弁が適用された、本発明の一実施形態に係る冷凍サイクルシステムを示す模式図である。 FIG. 5 is a schematic view showing a refrigeration cycle system according to an embodiment of the present invention to which the electric valve shown in FIG. 1 is applied.

この冷凍サイクルシステム90は、例えば、家庭用エアコン等の空気調和機に用いられる。前記実施形態の電動弁10は、空気調和機の第1室内側熱交換器91(蒸発器として作動)と第2室内側熱交換器92(凝縮器として作動)との間に設けられている。この電動弁10は、圧縮機93、四方弁94、室外側熱交換器95(凝縮器又は蒸発器として作動)および電子膨張弁96とともに、ヒ−トポンプ式冷凍サイクルを構成している。第1室内側熱交換器91と第2室内側熱交換器92及び電動弁10は室内に設置され、圧縮機93、四方弁94、室外側熱交換器95および電子膨張弁96は室外に設置されていて冷暖房装置を構成している。 This refrigeration cycle system 90 is used, for example, in an air conditioner such as a home air conditioner. The electric valve 10 of the above embodiment is provided between the first chamber side heat exchanger 91 (operating as an evaporator) and the second chamber side heat exchanger 92 (operating as a condenser) of the air conditioner. .. The electric valve 10 constitutes a heat pump type refrigeration cycle together with a compressor 93, a four-way valve 94, an outdoor heat exchanger 95 (acting as a condenser or an evaporator) and an electronic expansion valve 96. The first indoor side heat exchanger 91, the second indoor side heat exchanger 92, and the electric valve 10 are installed indoors, and the compressor 93, the four-way valve 94, the outdoor heat exchanger 95, and the electronic expansion valve 96 are installed outdoors. It constitutes a heating and cooling system.

本実施形態の冷凍サイクルシステム90によれば、前述の電動弁10による効果と同様に、副弁室23における冷媒が気液二相状態となり、この気液二相状態の冷媒が副弁ポート24を通過することになるので、冷媒の状態変化が起き難くなる。これにより、冷凍サイクルシステム90において、小流量制御時(例えば、除湿モード)に副弁ポート24を通過する冷媒の流体通過音や音質の変化を抑制して、利用者の違和感や不快感を軽減することが可能となる。 According to the refrigeration cycle system 90 of the present embodiment, the refrigerant in the sub-valve chamber 23 is in a gas-liquid two-phase state, and the refrigerant in the gas-liquid two-phase state is in the gas-liquid two-phase state, similar to the effect of the electric valve 10 described above. Since it passes through the refrigerant, it is difficult for the state of the refrigerant to change. As a result, in the refrigeration cycle system 90, changes in the fluid passing sound and sound quality of the refrigerant passing through the auxiliary valve port 24 during small flow rate control (for example, dehumidification mode) are suppressed, and the user's discomfort and discomfort are reduced. It becomes possible to do.

次に、上述した実施形態に対する種々の変形例について以下に説明する。尚、以下の変形例は、何れも、液冷媒を通過させる第1連通部及びガス冷媒を通過させる第2連通部が上述の実施形態と異なっている。以下では、変形例について実施形態との相違点に注目して説明を行い、同一点については各図において実施形態と同じ符号を付して示し、重複説明を割愛する。 Next, various modifications to the above-described embodiment will be described below. In each of the following modifications, the first communication portion through which the liquid refrigerant passes and the second communication portion through which the gas refrigerant passes are different from the above-described embodiment. In the following, the modified examples will be described by paying attention to the differences from the embodiments, and the same points will be indicated by the same reference numerals as those of the embodiments in each figure, and duplicate description will be omitted.

図6は、図1〜図5に示されている実施形態に対する第1変形例を示す図である。 FIG. 6 is a diagram showing a first modification with respect to the embodiment shown in FIGS. 1 to 5.

この第1変形例では、第1連通部251A及び第2連通部251Bは、互いに連続して楕円状の長孔である一体連通孔251となって主弁体2の円筒部22を貫通している。ここで、第1変形例における第2連通部251Bは、円筒部22における案内部材1Bとの摺接部22Aにまでは達してはいないが、気液二相冷媒の液面LV11よりも上方に設けられている。また、第1連通部251Aは、液面LV11よりも下方で、着座部21の近傍位置を含む領域について円筒部22を貫通して設けられている。 In this first modification, the first communication portion 251A and the second communication portion 251B form an integral communication hole 251 which is an elliptical elongated hole that is continuous with each other and penetrates the cylindrical portion 22 of the main valve body 2. There is. Here, the second communication portion 251B in the first modification does not reach the sliding contact portion 22A with the guide member 1B in the cylindrical portion 22, but is above the liquid level LV11 of the gas-liquid two-phase refrigerant. It is provided. Further, the first communication portion 251A is provided below the liquid level LV11 and penetrates the cylindrical portion 22 for a region including a position near the seating portion 21.

図7は、図1〜図5に示されている実施形態に対する第2変形例を示す図である。 FIG. 7 is a diagram showing a second modification with respect to the embodiment shown in FIGS. 1 to 5.

この第2変形例では、第1連通部252A及び第2連通部252Bは、互いに連続して上述の実施形態よりも幅狭の長孔である一体連通孔252となって主弁体2の円筒部22を貫通している。この第2連通部252Bも、円筒部22における案内部材1Bとの摺接部22Aにまでは達してはいない。ただし、第2連通部252Bは、気液二相冷媒の液面LV11よりも上方に設けられ、第1連通部252Aは、液面LV11よりも下方で、着座部21の近傍位置を含む領域について円筒部22を貫通して設けられている。 In this second modification, the first communication portion 252A and the second communication portion 252B form an integral communication hole 252 which is a long hole narrower than the above-described embodiment and is a cylinder of the main valve body 2. It penetrates the portion 22. The second communication portion 252B also does not reach the sliding contact portion 22A with the guide member 1B in the cylindrical portion 22. However, the second communication portion 252B is provided above the liquid level LV11 of the gas-liquid two-phase refrigerant, and the first communication portion 252A is below the liquid level LV11 and includes a position near the seating portion 21. It is provided so as to penetrate the cylindrical portion 22.

図8は、図1〜図5に示されている実施形態に対する第3変形例を示す図である。 FIG. 8 is a diagram showing a third modification with respect to the embodiment shown in FIGS. 1 to 5.

この第3変形例では、第1連通部253A及び第2連通部253Bは、互いに連続して丸孔状の一体連通孔253となって主弁体2の円筒部22を貫通している。この第2連通部253Bも、円筒部22における案内部材1Bとの摺接部22Aにまでは達してはいない。ただし、第2連通部253Bは、気液二相冷媒の液面LV11よりも上方に設けられ、第1連通部253Aは、液面LV11よりも下方で、着座部21の近傍位置を含む領域について円筒部22を貫通して設けられている。 In this third modification, the first communication portion 253A and the second communication portion 253B continuously form a round hole-shaped integral communication hole 253 and penetrate the cylindrical portion 22 of the main valve body 2. The second communication portion 253B also does not reach the sliding contact portion 22A with the guide member 1B in the cylindrical portion 22. However, the second communication portion 253B is provided above the liquid level LV11 of the gas-liquid two-phase refrigerant, and the first communication portion 253A is below the liquid level LV11 and includes a position near the seating portion 21. It is provided so as to penetrate the cylindrical portion 22.

図9は、図1〜図5に示されている実施形態に対する第4変形例を示す図である。 FIG. 9 is a diagram showing a fourth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第4変形例では、第1連通部254A及び第2連通部254Bからなる一体連通孔254は、主弁体2の円筒部22の側面を見た時の平面視形状は上述の実施形態と同様の長孔状である。また、第2連通部254Bも、円筒部22における案内部材1Bとの摺接部22Aに達し、かつ気液二相冷媒の液面LV11よりも上方に設けられている点は実施形態と同様である。また、第1連通部254Aが液面LV11よりも下方で、着座部21の近傍位置を含む領域について円筒部22を貫通して設けられている点も実施形態と同様である。ただし、この第4変形例では、一体連通孔254における軸線Lに沿った縦断面の形状が図2に示す実施形態と異なっている。第4変形例における一体連通孔254は、第1連通部254Aの下端部における縦断面形状が、副弁室23から離れるに従って着座部21側へと傾斜して広がった形状となっている。 In this fourth modification, the integrated communication hole 254 including the first communication portion 254A and the second communication portion 254B has the same plan-view shape as the above-described embodiment when the side surface of the cylindrical portion 22 of the main valve body 2 is viewed. It has a similar elongated hole shape. Further, the second communication portion 254B also reaches the sliding contact portion 22A with the guide member 1B in the cylindrical portion 22, and is provided above the liquid level LV11 of the gas-liquid two-phase refrigerant, as in the embodiment. is there. Further, it is the same as the embodiment in that the first communication portion 254A is provided below the liquid level LV11 and penetrates the cylindrical portion 22 in the region including the vicinity position of the seating portion 21. However, in this fourth modification, the shape of the vertical cross section of the integrated communication hole 254 along the axis L is different from that of the embodiment shown in FIG. The integrated communication hole 254 in the fourth modification has a shape in which the vertical cross-sectional shape at the lower end of the first communication portion 254A is inclined and widens toward the seating portion 21 as the distance from the auxiliary valve chamber 23 increases.

以上に説明した第1〜第4変形例でも、気液二相冷媒の液面LV11よりも第1連通部251A,・・・,254Aが下方に設けられ第2連通部251B,・・・,254Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、これらの変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Also in the first to fourth modifications described above, the first communication portions 251A, ..., 254A are provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portions 251B, ..., Since the 254B is provided above, it is possible to make it difficult for the state change of the refrigerant to occur. That is, even with these modified examples, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, as in the above-described embodiment. It is possible to reduce discomfort and the like.

尚、第1〜第3変形例のように、第2連通部251B,252B,253Bについては、円筒部22の摺接部22Aにまで達しないように設けてもよい。ただし、上述の実施形態や第5変形例のように、第2連通部25B,254Bが円筒部22の摺接部22Aに達するように設けることで、液面の変動による影響を一層小さくすることができる点は上述した通りである。 As in the first to third modifications, the second communication portions 251B, 252B, and 253B may be provided so as not to reach the sliding contact portion 22A of the cylindrical portion 22. However, as in the above-described embodiment and the fifth modification, the second communication portions 25B and 254B are provided so as to reach the sliding contact portion 22A of the cylindrical portion 22, so that the influence of the fluctuation of the liquid level is further reduced. The points that can be done are as described above.

図10は、図1〜図5に示されている実施形態に対する第5変形例を示す図である。 FIG. 10 is a diagram showing a fifth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第5変形例では、第1連通部255A及び第2連通部255Bは、それぞれ円筒部22を貫通する一の小孔で構成され、互いに上下に離隔して設けられている。このとき、上側の第2連通部255Bは、円筒部22の摺接部22Aの一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成されている。下側の第1連通部255Aは、着座部21の近傍位置を含む領域について円筒部22を貫通して形成されている。そして、気液二相冷媒の液面LV11よりも第1連通部255Aが下方に設けられ第2連通部255Bが上方に設けられている。また、第5変形例では、第1連通部255A及び第2連通部255Bは、それぞれ軸線Lに対する直交方向に延びるストレート孔となっている。 In this fifth modification, the first communication portion 255A and the second communication portion 255B are each composed of one small hole penetrating the cylindrical portion 22, and are provided vertically separated from each other. At this time, the upper second communication portion 255B is formed so as to penetrate the cylindrical portion 22 in a region extending below the sliding contact portion 22A including a part of the sliding contact portion 22A of the cylindrical portion 22. .. The lower first communication portion 255A is formed so as to penetrate the cylindrical portion 22 for a region including a position near the seating portion 21. The first communication portion 255A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 255B is provided above. Further, in the fifth modification, the first communication portion 255A and the second communication portion 255B are straight holes extending in the direction orthogonal to the axis L, respectively.

図11は、図1〜図5に示されている実施形態に対する第6変形例を示す図である。 FIG. 11 is a diagram showing a sixth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第6変形例は、上述の第5変形例に対する変形例でもあり、まずは、第5変形例と同様に、第1連通部256A及び第2連通部256Bは、それぞれ円筒部22を貫通する一の小孔で構成され、互いに上下に離隔して設けられている。そして、第2連通部256Bが、円筒部22の摺接部22Aの一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成され、第1連通部256Aが、着座部21の近傍位置を含む領域に形成されている。そして、気液二相冷媒の液面LV11よりも第1連通部256Aが下方に設けられ第2連通部256Bが上方に設けられている。このとき、上側の第2連通部256Bは、第5変形例と同様のストレート孔となっている。他方、下側の第1連通部256Aは、その断面形状が、副弁室23から離れるに従って先細りとなったテーパ形状に形成されている。 This sixth modification is also a modification with respect to the fifth modification described above. First, similarly to the fifth modification, the first communication portion 256A and the second communication portion 256B each penetrate the cylindrical portion 22. It is composed of small holes of the above, and is provided vertically separated from each other. Then, the second communication portion 256B is formed so as to penetrate the cylindrical portion 22 in a region including a part of the sliding contact portion 22A of the cylindrical portion 22 and extending below the sliding contact portion 22A, and the first communication portion is formed. 256A is formed in a region including a position near the seating portion 21. The first communication portion 256A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 256B is provided above. At this time, the upper second communication portion 256B has a straight hole similar to that of the fifth modification. On the other hand, the lower first communication portion 256A is formed in a tapered shape whose cross-sectional shape is tapered as the distance from the auxiliary valve chamber 23 increases.

図12は、図1〜図5に示されている実施形態に対する第7変形例を示す図である。 FIG. 12 is a diagram showing a seventh modification with respect to the embodiment shown in FIGS. 1 to 5.

この第7変形例は、上述の第6変形例に対する変形例でもあり、まずは、第6変形例と同様に、第1連通部257A及び第2連通部257Bは、それぞれ円筒部22を貫通する一の小孔で構成され、互いに上下に離隔して設けられている。そして、第2連通部257Bが、円筒部22の摺接部22Aの一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成され、第1連通部257Aが、着座部21の近傍位置を含む領域に形成されている。そして、気液二相冷媒の液面LV11よりも第1連通部257Aが下方に設けられ第2連通部257Bが上方に設けられている。このとき、上側の第2連通部257Bは、第6変形例と同様のストレート孔となっている。他方、下側の第1連通部257Aは、その断面形状が、副弁室23から離れるに従って拡径した逆テーパ形状に形成されている。 This seventh modification is also a modification with respect to the sixth modification described above. First, similarly to the sixth modification, the first communication portion 257A and the second communication portion 257B each penetrate the cylindrical portion 22. It is composed of small holes of the above, and is provided so as to be separated from each other at the top and bottom. Then, the second communication portion 257B is formed so as to penetrate the cylindrical portion 22 in a region including a part of the sliding contact portion 22A of the cylindrical portion 22 and extending below the sliding contact portion 22A, and the first communication portion is formed. 257A is formed in a region including a position near the seating portion 21. The first communication portion 257A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 257B is provided above. At this time, the upper second communication portion 257B has a straight hole similar to that of the sixth modification. On the other hand, the lower first communication portion 257A is formed in a reverse taper shape whose cross-sectional shape increases in diameter as the distance from the auxiliary valve chamber 23 increases.

以上に説明した第5〜第7変形例でも、気液二相冷媒の液面LV11よりも第1連通部255A,256A,257Aが下方に設けられ第2連通部255B,256B,257Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、これらの変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Also in the fifth to seventh modifications described above, the first communication portions 255A, 256A, and 257A are provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portions 255B, 256B, and 257B are above. By providing it, it is possible to make it difficult for the state change of the refrigerant to occur. That is, even with these modified examples, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, as in the above-described embodiment. It is possible to reduce discomfort and the like.

また、第5〜第7変形例では、上下に離隔した第1連通部255A,256A,257A及び第2連通部255B,256B,257Bは、電動弁10に対して要求される性能や運転条件等に応じた適宜な形状やサイズに設定されている。 Further, in the fifth to seventh modifications, the first communication portions 255A, 256A, 257A and the second communication portions 255B, 256B, 257B, which are separated vertically, have the performance, operating conditions, etc. required for the electric valve 10. It is set to an appropriate shape and size according to the above.

図13は、図1〜図5に示されている実施形態に対する第8変形例を示す図である。 FIG. 13 is a diagram showing an eighth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第8変形例でも、まずは、第6変形例と同様に、第1連通部258A及び第2連通部258Bは、それぞれ円筒部22を貫通する一の小孔で構成され、互いに上下に離隔して設けられている。第2連通部258Bが、円筒部22の摺接部22Aの一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成され、第1連通部258Aが、着座部21の近傍位置を含む領域に形成されている。そして、気液二相冷媒の液面LV11よりも第1連通部258Aが下方に設けられ第2連通部258Bが上方に設けられている。このとき、第8変形例では、第1連通部258A及び第2連通部258Bが、それぞれ、主弁体2における円筒部22の周方向D11の複数位置に設けられている。 Also in this eighth modification, first, as in the sixth modification, the first communication portion 258A and the second communication portion 258B are each composed of one small hole penetrating the cylindrical portion 22, and are separated from each other vertically. It is provided. The second communication portion 258B is formed so as to penetrate the cylindrical portion 22 in a region including a part of the sliding contact portion 22A of the cylindrical portion 22 and extending below the sliding contact portion 22A, and the first communication portion 258A is formed. , Is formed in a region including a position near the seating portion 21. The first communication portion 258A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 258B is provided above. At this time, in the eighth modification, the first communication portion 258A and the second communication portion 258B are provided at a plurality of positions of the cylindrical portion 22 in the main valve body 2 in the circumferential direction D11, respectively.

以上に説明した第8変形例でも、気液二相冷媒の液面LV11よりも第1連通部258Aが下方に設けられ第2連通部258Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、この第8変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Even in the eighth modification described above, the state of the refrigerant changes because the first communication portion 258A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant and the second communication portion 258B is provided above. Can be made less likely to occur. That is, also in this eighth modification, as in the above-described embodiment, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, and the user. It is possible to reduce the discomfort and the like.

また、第8変形例では、第1連通部258A及び第2連通部258Bが主弁体2の周方向D11の複数位置に設けられているので、主弁室1Cにおける冷媒の周方向D11の偏りの影響を受け難く、副弁室23における冷媒の状態を安定させることができる。 Further, in the eighth modification, since the first communication portion 258A and the second communication portion 258B are provided at a plurality of positions in the circumferential direction D11 of the main valve body 2, the refrigerant in the main valve chamber 1C is biased in the circumferential direction D11. It is not easily affected by the above, and the state of the refrigerant in the auxiliary valve chamber 23 can be stabilized.

図14は、図1〜図5に示されている実施形態に対する第9変形例を示す図である。 FIG. 14 is a diagram showing a ninth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第9変形例でも、まずは、第6変形例と同様に、第1連通部259A及び第2連通部259Bは、それぞれ円筒部22を貫通する一の小孔で構成され、互いに上下に離隔して設けられている。第2連通部259Bが、主弁体2における円筒部22の摺接部22Aの一部を含んで摺接部22Aよりも下側にまで至る領域について円筒部22を貫通して形成されている。他方の第1連通部259Aは、着座部21の近傍位置を含む領域に形成されている。そして、気液二相冷媒の液面LV11よりも第1連通部259Aが下方に設けられ第2連通部259Bが上方に設けられている。このとき、第9変形例では、第1連通部259A及び第2連通部259Bとは別に、軸線方向における両者の中間位置に第3連通部259Cが設けられている。この第3連通部259Cは、周方向D11について第1連通部259A及び第2連通部259Bの反対側に位置している。第3連通部259Cは、液面LV11に近く、気液二相冷媒の液面が上下したときに液面の上方となったり下方となったりする他の連通部となっている。 Also in this ninth modification, first, as in the sixth modification, the first communication portion 259A and the second communication portion 259B are each composed of one small hole penetrating the cylindrical portion 22, and are separated from each other vertically. It is provided. The second communication portion 259B is formed so as to penetrate the cylindrical portion 22 in a region extending below the sliding contact portion 22A including a part of the sliding contact portion 22A of the cylindrical portion 22 in the main valve body 2. .. The other first communication portion 259A is formed in a region including a position near the seating portion 21. The first communication portion 259A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant, and the second communication portion 259B is provided above. At this time, in the ninth modification, the third communication portion 259C is provided at an intermediate position between the first communication portion 259A and the second communication portion 259B in the axial direction. The third communication portion 259C is located on the opposite side of the first communication portion 259A and the second communication portion 259B in the circumferential direction D11. The third communication portion 259C is close to the liquid level LV11 and is another communication portion that rises or falls below the liquid level when the liquid level of the gas-liquid two-phase refrigerant rises or falls.

以上に説明した第9変形例では、気液二相冷媒の液面LV11よりも第1連通部258Aが下方に設けられ第2連通部258Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、この第9変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 In the ninth modification described above, the state of the refrigerant changes because the first communication portion 258A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant and the second communication portion 258B is provided above. Can be made less likely to occur. That is, also in this ninth modification, as in the above-described embodiment, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, and the user. It is possible to reduce the discomfort and the like.

図15は、図1〜図5に示されている実施形態に対する第10変形例を示す図である。また、図16は、図15に示されている主弁体の側面を示した図である。 FIG. 15 is a diagram showing a tenth modification with respect to the embodiment shown in FIGS. 1 to 5. Further, FIG. 16 is a view showing a side surface of the main valve body shown in FIG.

この第10変形例では、第1連通部261A及び第2連通部261Bが、それぞれ主弁体2の円筒部22を貫通する小孔で構成され、互いに上下に離隔して設けられている。具体的には、円筒部22の側面には、軸線Lに沿った上下方向に4つの小孔が等間隔で並び、最下段の1つの小孔が、気液二相冷媒の液面LV11よりも下方に設けられた第1連通部261Aとなっている。また、4つの小孔のうち最上段の1つの小孔が、気液二相冷媒の液面LV11よりも上方に設けられた第2連通部261Bとなっている。中間位置の2つの小孔は、液面LV11に近く、気液二相冷媒の液面が上下したときに液面の上方となったり下方となったりする他の第3連通部261Cとなっている。 In this tenth modification, the first communication portion 261A and the second communication portion 261B are each formed of small holes penetrating the cylindrical portion 22 of the main valve body 2, and are provided vertically separated from each other. Specifically, on the side surface of the cylindrical portion 22, four small holes are arranged at equal intervals in the vertical direction along the axis L, and one small hole at the bottom is from the liquid level LV11 of the gas-liquid two-phase refrigerant. Is also the first communication section 261A provided below. Further, one of the four small holes at the uppermost stage is a second communication portion 261B provided above the liquid level LV11 of the gas-liquid two-phase refrigerant. The two small holes at the intermediate position are close to the liquid level LV11 and serve as another third communication portion 261C that moves above or below the liquid level when the liquid level of the gas-liquid two-phase refrigerant rises and falls. There is.

以上に説明した第10変形例でも、気液二相冷媒の液面LV11よりも第1連通部261Aが下方に設けられ第2連通部261Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、この第10変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Even in the tenth modification described above, the state of the refrigerant changes because the first communication portion 261A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant and the second communication portion 261B is provided above. Can be made less likely to occur. That is, also in this tenth modification, as in the above-described embodiment, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, and the user. It is possible to reduce the discomfort and the like.

尚、この第10変形例では、複数の小孔のうちの最下段の1つが液面LV11よりも下方の第1連通部261Aで、最上段の1つが液面LV11よりも上方の第2連通部261Bとなっている。しかしながら、第10変形例とは異なり、複数の小孔のうち上側の2つ以上が液面よりも下方の第1連通部をなし、下側の2つ以上が液面よりも下方の第2連通部をなすように構成してもよい。第1連通部及び第2連通部については、電動弁に対して要求される性能や運転条件等に応じて適宜な数、形状、サイズに設定されることとなる。 In this tenth modification, one of the lowermost stages of the plurality of small holes is the first communication portion 261A below the liquid level LV11, and one of the uppermost stages is the second communication portion above the liquid level LV11. It is part 261B. However, unlike the tenth modification, two or more of the plurality of small holes on the upper side form the first communication portion below the liquid level, and two or more on the lower side form the second communication portion below the liquid level. It may be configured to form a communication portion. The first communication section and the second communication section are set to an appropriate number, shape, and size according to the performance and operating conditions required for the electric valve.

図17は、図1〜図5に示されている実施形態に対する第11変形例を示す図である。 FIG. 17 is a diagram showing an eleventh modification with respect to the embodiment shown in FIGS. 1 to 5.

この第11変形例では、気液二相冷媒の液面LV11よりも下方の第1連通部262Aは、主弁体2の円筒部22を貫通する小孔で構成されている。他方、液面LV11よりも上方の第2連通部262Bは、案内部材1Bを貫通して主弁体2の上方に至る外側連通路262B−1と、主弁体2と副弁体3との間を通って副弁室23に至る内側連通路262B−2と、を有して構成されている。 In this eleventh modification, the first communication portion 262A below the liquid level LV11 of the gas-liquid two-phase refrigerant is composed of small holes penetrating the cylindrical portion 22 of the main valve body 2. On the other hand, the second communication portion 262B above the liquid level LV11 has an outer communication passage 262B-1 that penetrates the guide member 1B and reaches above the main valve body 2, and the main valve body 2 and the sub valve body 3. It is configured to have an inner communication passage 262B-2 that leads to the auxiliary valve chamber 23 through the space.

外側連通路262B−1は、案内部材1Bにおいて弁本体1Aの上縁に接合されるフランジ部分を上下に貫く第1貫通部262B−1aと、案内部材1Bにおける上記のフランジ部分よりも上方の側壁を左右に貫く第2貫通部262B−1bと、を有している。ガス冷媒が主弁室1Cから副弁室23に至る場合には、主弁室1Cから第1貫通部262B−1aを通過して上部のケース18(図1)の内側へと至る。その後、第2貫通部262B−1bを通過して副弁体3の上方へと至り、内側連通路262B−2を通過して副弁室23に達する。他方、液冷媒については、液面LV11よりも下方の第1連通部262Aを通って、主弁室1Cと副弁室23との相互間を通過する。 The outer passage 262B-1 includes a first penetrating portion 262B-1a that vertically penetrates a flange portion joined to the upper edge of the valve body 1A in the guide member 1B, and a side wall above the flange portion in the guide member 1B. It has a second penetrating portion 262B-1b that penetrates left and right. When the gas refrigerant reaches from the main valve chamber 1C to the sub-valve chamber 23, it passes from the main valve chamber 1C through the first penetrating portion 262B-1a and reaches the inside of the upper case 18 (FIG. 1). After that, it passes through the second penetrating portion 262B-1b to reach above the sub-valve body 3, passes through the inner communication passage 262B-2, and reaches the sub-valve chamber 23. On the other hand, the liquid refrigerant passes between the main valve chamber 1C and the sub-valve chamber 23 through the first communication portion 262A below the liquid level LV11.

以上に説明した第11変形例でも、気液二相冷媒の液面LV11よりも第1連通部262Aが下方に設けられ第2連通部262Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、この第11変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Even in the eleventh modification described above, the state of the refrigerant changes because the first communication portion 262A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant and the second communication portion 262B is provided above. Can be made less likely to occur. That is, also in this eleventh modification, as in the above-described embodiment, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, and the user. It is possible to reduce the discomfort and the like.

また、第11変形例によれば、第2連通部262Bが外側連通路262B−1と内側連通路262B−2とを有することで、主弁体2に対して第2連通路262Bを一層高い位置に形成することができる。これにより、気液二相冷媒の液面が上昇した場合であってもガス冷媒を第2連通部262Bに通過させ易く、液面の変動による影響を小さくすることができる。 Further, according to the eleventh modification, the second communication portion 262B has the outer communication passage 262B-1 and the inner communication passage 262B-2, so that the second communication passage 262B is higher than the main valve body 2. Can be formed in position. As a result, even when the liquid level of the gas-liquid two-phase refrigerant rises, the gas refrigerant can easily pass through the second communication portion 262B, and the influence of fluctuations in the liquid level can be reduced.

図18は、図1〜図5に示されている実施形態に対する第12変形例を示す図である。 FIG. 18 is a diagram showing a twelfth modification with respect to the embodiment shown in FIGS. 1 to 5.

この第12変形例は、上述の第11変形例に対する変形例でもあり、まずは、第11変形例と同様に、気液二相冷媒の液面LV11よりも下方の第1連通部263Aは、主弁体2の円筒部22を貫通する小孔で構成されている。他方、液面LV11よりも上方の第2連通部263Bは、案内部材1Bを貫通して主弁体2の上方に至る外側連通路263B−1と、主弁体2と副弁体3との間を通って副弁室23に至る内側連通路263B−2と、を有して構成されている。 This 12th modification is also a modification with respect to the 11th modification described above. First, as in the 11th modification, the first communication portion 263A below the liquid level LV11 of the gas-liquid two-phase refrigerant is mainly used. It is composed of small holes penetrating the cylindrical portion 22 of the valve body 2. On the other hand, the second communication portion 263B above the liquid level LV11 has an outer communication passage 263B-1 that penetrates the guide member 1B and reaches above the main valve body 2, and the main valve body 2 and the sub valve body 3. It is configured to have an inner communication passage 263B-2 that leads to the auxiliary valve chamber 23 through the space.

ここで、第12変形例における外側連通路263B−1は、案内部材1Bにおける上記のフランジ部分よりも下方の側壁を左右に貫く第1貫通部263B−1aと、主弁体2の円筒部22の外周面に設けられた溝状の第2貫通部263B−1bと、を有している。第2貫通部263B−1bは、軸線Lに沿って円筒部22の外周面に上下方向に延びるように設けられた溝となっている。ガス冷媒が主弁室1Cから副弁室23に至る場合には、主弁室1Cから第1貫通部263B−1aを通過して案内部材1Bの内側に至る。その後、第2貫通部263B−1bを通過して副弁体3の上方へと至る。 Here, the outer communication passage 263B-1 in the twelfth modification has a first penetrating portion 263B-1a that penetrates the side wall below the flange portion of the guide member 1B to the left and right, and a cylindrical portion 22 of the main valve body 2. It has a groove-shaped second penetrating portion 263B-1b provided on the outer peripheral surface of the above. The second penetrating portion 263B-1b is a groove provided so as to extend in the vertical direction on the outer peripheral surface of the cylindrical portion 22 along the axis L. When the gas refrigerant reaches from the main valve chamber 1C to the sub-valve chamber 23, it passes from the main valve chamber 1C through the first penetrating portion 263B-1a to the inside of the guide member 1B. After that, it passes through the second penetrating portion 263B-1b and reaches above the auxiliary valve body 3.

内側連通路263B−2は、副弁体3の副弁基部3Aの外周面に、軸線Lに沿って上下方向に延びるように形成された溝である。第2貫通部263B−1bを通過して副弁体3の上方に至ったガス冷媒は、この内側連通路263B−2を通過して副弁室23に達する。他方、液冷媒については、液面LV11よりも下方の第1連通部263Aを通って、主弁室1Cと副弁室23との相互間を通過する。 The inner communication passage 263B-2 is a groove formed on the outer peripheral surface of the sub-valve base 3A of the sub-valve body 3 so as to extend in the vertical direction along the axis L. The gas refrigerant that has passed through the second penetrating portion 263B-1b and reached above the auxiliary valve body 3 passes through the inner communication passage 263B-2 and reaches the auxiliary valve chamber 23. On the other hand, the liquid refrigerant passes between the main valve chamber 1C and the sub-valve chamber 23 through the first communication portion 263A below the liquid level LV11.

以上に説明した第12変形例でも、気液二相冷媒の液面LV11よりも第1連通部263Aが下方に設けられ第2連通部263Bが上方に設けられていることで、冷媒の状態変化が起き難くすることができる。即ち、この第12変形例によっても、上述の実施形態と同様に、小流量制御時に副弁ポート24を通過する冷媒の流体通過音の音質や音圧の変化を抑制することができ、利用者の不快感等を軽減することができる。 Even in the twelfth modification described above, the state of the refrigerant changes because the first communication portion 263A is provided below the liquid level LV11 of the gas-liquid two-phase refrigerant and the second communication portion 263B is provided above. Can be made less likely to occur. That is, also in this twelfth modification, as in the above-described embodiment, it is possible to suppress changes in the sound quality and sound pressure of the fluid passing sound of the refrigerant passing through the auxiliary valve port 24 during small flow rate control, and the user. It is possible to reduce the discomfort and the like.

また、第12変形例でも、上述の第11変形例と同様に、第2連通部263Bが外側連通路263B−1と内側連通路263B−2とを有することで、主弁体2に対して第2連通路263Bを一層高い位置に形成することができる。これにより、気液二相冷媒の液面が上昇した場合であってもガス冷媒を第2連通部263Bに通過させ易く、液面の変動による影響を小さくすることができる。 Further, also in the twelfth modification, similarly to the eleventh modification described above, the second communication portion 263B has the outer communication passage 263B-1 and the inner communication passage 263B-2, so that the main valve body 2 is provided with the second communication portion 263B. The second passage 263B can be formed at a higher position. As a result, even when the liquid level of the gas-liquid two-phase refrigerant rises, the gas refrigerant can easily pass through the second communication portion 263B, and the influence of fluctuations in the liquid level can be reduced.

尚、以上に説明した実施形態や変形例は本発明の代表的な形態を示したに過ぎず、本発明は、これに限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の電動弁及び冷凍サイクルシステムの構成を具備する限り、勿論、本発明の範疇に含まれるものである。 It should be noted that the embodiments and modifications described above merely show typical embodiments of the present invention, and the present invention is not limited thereto. That is, it can be modified in various ways without departing from the gist of the present invention. As long as the electric valve and the refrigeration cycle system of the present invention are still provided by such deformation, they are, of course, included in the category of the present invention.

例えば、上述の実施形態では、家庭用エアコン等の空気調和機に用いられる電動弁10を例示したが、本発明の電動弁は、家庭用エアコンに限らず、業務用エアコンであってもよいし、空気調和機に限らず、各種の冷凍機等にも適用可能である。また、本実施形態では、第1継手管11から冷媒が流入し、第2継手管12から流出する旨を記載している。しかしながら、この一方向の流れに限定されるものではなく、逆流しとして、第2継手管12から冷媒が流入し、第1継手管11から流出する場合にも適用可能であり、特に全開状態での逆流しを行うことがある。 For example, in the above-described embodiment, the electric valve 10 used in an air conditioner such as a home air conditioner has been exemplified, but the electric valve of the present invention is not limited to the home air conditioner and may be a commercial air conditioner. , Not limited to air conditioners, it can also be applied to various refrigerators and the like. Further, in the present embodiment, it is described that the refrigerant flows in from the first joint pipe 11 and flows out from the second joint pipe 12. However, the flow is not limited to this one direction, and can be applied to the case where the refrigerant flows in from the second joint pipe 12 and flows out from the first joint pipe 11 as a backflow, especially in the fully open state. May be backflowed.

また、上述の実施形態及び第1〜第12変形例では、気液二相冷媒の液面よりも下方の第1連通部、及び気液二相冷媒の液面よりも上方の第2連通部、それぞれについて具体的な数、形状、サイズについて例示している。しかしながら、これらの連通部については、例示された具体例に限るものではなく、電動弁に対して要求される性能や運転条件等に応じて適宜な数、形状、サイズの第1連通部及び第2連通部を選択して適用することができる。 Further, in the above-described embodiment and the first to twelfth modifications, the first communication portion below the liquid level of the gas-liquid two-phase refrigerant and the second communication portion above the liquid level of the gas-liquid two-phase refrigerant. , Specific numbers, shapes, and sizes are illustrated for each. However, these communication parts are not limited to the specific examples illustrated, and the first communication parts and the first communication parts having an appropriate number, shape, and size according to the performance and operating conditions required for the electric valve are not limited. Two communication parts can be selected and applied.

1 弁ハウジング
1A 弁本体
1C 主弁室
2 主弁体
2A 弁体主部
2C 副弁座
3 副弁体
4 駆動部
10 電動弁
13 主弁座
14 主弁ポート
21 着座部
22 円筒部
22A 摺接部
23 副弁室
24 副弁ポート
25,251,252,253,254 一体連通孔
25A,251A,252A,253A,254A,255A,256A,257A,258A,259A,261A,262A,263A 第1連通部
25B,251B,252B,253B,254B,255B,256B,257B,258B,259B,261B,262B,263B 第2連通部
90 冷凍サイクルシステム
91 第1室内側熱交換器(蒸発器)
92 第2室内側熱交換器(凝縮器)
93 圧縮機
95 室外側熱交換器(蒸発器又は凝縮器)
259C,261C 第3連通部
262B−1,263B−1 外側連通路
262B−1a,263B−1a 第1貫通部
262B−1b,263B−1b 第2貫通部
262B−2,263B−2 内側連通路
LV11 液面
1 Valve housing 1A Valve body 1C Main valve chamber 2 Main valve body 2A Valve body Main part 2C Sub valve seat 3 Sub valve body 4 Drive part 10 Electric valve 13 Main valve seat 14 Main valve port 21 Seating part 22 Cylindrical part 22A Sliding connection Part 23 Sub-valve chamber 24 Sub-valve port 25,251,252,253,254 Integrated communication holes 25A, 251A, 252A, 253A, 254A, 255A, 256A, 257A, 258A, 259A, 261A, 262A, 263A 1st communication part 25B, 251B, 252B, 253B, 254B, 255B, 256B, 257B, 258B, 259B, 261B, 262B, 263B 2nd communication part 90 Refrigeration cycle system 91 1st indoor heat exchanger (evaporator)
92 Second chamber side heat exchanger (condenser)
93 Compressor 95 Outdoor heat exchanger (evaporator or condenser)
259C, 261C 3rd communication part 262B-1,263B-1 Outer passage 262B-1a, 263B-1a 1st penetration 262B-1b, 263B-1b 2nd penetration 262B-2, 263B-2 Inner passage LV11 Liquid surface

Claims (8)

主弁室、主弁座、及び主弁ポートを有した弁本体と、前記主弁ポートを開閉するとともに内部に副弁室及び副弁ポートを有した主弁体と、前記副弁ポートの開度を変更する副弁体と、前記副弁体及び前記主弁体を軸線方向に進退駆動する駆動部と、前記主弁体を前記軸線方向に進退案内する案内部材と、を備え、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートを開閉する大流量制御域と、の二段の流量制御域を有した電動弁であって、
前記主弁室と前記副弁室とを連通し、前記主弁室の気液二相冷媒のうち液冷媒を通過させる第1連通部を備えるとともに、前記主弁室と前記副弁室とを連通し、前記主弁室の前記気液二相冷媒のうちガス冷媒を通過させる第2連通部と、を備え、
前記気液二相冷媒の液面に対し、前記第1連通部は、前記液面よりも下方に設けられ、前記第2連通部は、前記液面よりも上方に設けられていることを特徴とする電動弁。
The valve body having the main valve chamber, the main valve seat, and the main valve port, the main valve body having the sub valve chamber and the sub valve port inside while opening and closing the main valve port, and the opening of the sub valve port. The sub valve body includes a sub valve body for changing the degree, a drive unit for driving the sub valve body and the main valve body forward and backward in the axial direction, and a guide member for guiding the main valve body forward and backward in the axial direction. An electric valve having a two-stage flow rate control range, that is, a small flow rate control range in which the valve body changes the opening degree of the sub valve port and a large flow rate control range in which the main valve body opens and closes the main valve port. There,
The main valve chamber and the sub-valve chamber are communicated with each other, and the first communication portion through which the liquid refrigerant of the gas-liquid two-phase refrigerant in the main valve chamber is passed is provided, and the main valve chamber and the sub-valve chamber are provided. A second communicating portion for communicating and passing a gas refrigerant among the gas-liquid two-phase refrigerants in the main valve chamber is provided.
The first communication portion is provided below the liquid level, and the second communication portion is provided above the liquid level with respect to the liquid level of the gas-liquid two-phase refrigerant. Electric valve.
前記主弁体は、前記副弁室を内包する円筒部と、前記円筒部の下部に設けられて前記主弁座に着座する着座部と、前記着座部よりも径方向内側に設けられる前記副弁ポートと、を有し、前記円筒部の外周面と前記案内部材の内周面とが摺接することで前記軸線方向に進退案内され、
前記第1連通部は、前記着座部の近傍位置を含む前記円筒部の下部領域において前記円筒部を貫通して形成されていることを特徴とする請求項1に記載の電動弁。
The main valve body includes a cylindrical portion including the auxiliary valve chamber, a seating portion provided below the cylindrical portion and seated on the main valve seat, and the sub portion provided radially inside the seating portion. It has a valve port, and is guided in the axial direction by sliding contact between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the guide member.
The electric valve according to claim 1, wherein the first communication portion is formed so as to penetrate the cylindrical portion in a lower region of the cylindrical portion including a position near the seating portion.
前記第2連通部は、前記円筒部が前記案内部材に摺接する摺接部の少なくとも一部を含んで前記摺接部よりも下側にまで至る領域について前記円筒部を貫通して形成されていることを特徴とする請求項2に記載の電動弁。 The second communication portion is formed so as to penetrate the cylindrical portion in a region extending below the sliding contact portion including at least a part of the sliding contact portion in which the cylindrical portion slides into contact with the guide member. The electric valve according to claim 2, wherein the electric valve is provided. 前記第1連通部及び前記第2連通部は、それぞれ前記円筒部を貫通する一又は複数の小孔で構成され、互いに上下に離隔して設けられていることを特徴とする請求項3に記載の電動弁。 The third aspect of claim 3, wherein the first communication portion and the second communication portion are each composed of one or a plurality of small holes penetrating the cylindrical portion, and are provided vertically separated from each other. Electric valve. 前記第1連通部及び前記第2連通部は、前記円筒部を貫通する前記軸線方向に長孔又は丸孔として互いに連続して形成されていることを特徴とする請求項3に記載の電動弁。 The electric valve according to claim 3, wherein the first communication portion and the second communication portion are continuously formed as elongated holes or round holes in the axial direction penetrating the cylindrical portion. .. 前記第2連通部は、前記案内部材を貫通して前記主弁体の上方に至る外側連通路と、前記主弁体と前記副弁体との間を通って前記副弁室に至る内側連通路と、を有して構成されていることを請求項2に記載の電動弁。 The second communication portion is an outer communication passage that penetrates the guide member and extends above the main valve body, and an inner communication portion that passes between the main valve body and the sub valve body and reaches the sub valve chamber. The electric valve according to claim 2, wherein the electric valve is configured to have a passage. 前記第1連通部及び前記第2連通部は、前記主弁体の周方向の複数位置に設けられていることを特徴とする請求項1〜6の何れか一項に記載の電動弁。 The electric valve according to any one of claims 1 to 6, wherein the first communication portion and the second communication portion are provided at a plurality of positions in the circumferential direction of the main valve body. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1〜7の何れか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the electric valve according to any one of claims 1 to 7 is used as the expansion valve. A refrigeration cycle system characterized by that.
JP2019187391A 2019-10-11 2019-10-11 Electric valve and refrigeration cycle system Active JP7208127B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019187391A JP7208127B2 (en) 2019-10-11 2019-10-11 Electric valve and refrigeration cycle system
CN202011056269.3A CN112648391B (en) 2019-10-11 2020-09-29 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187391A JP7208127B2 (en) 2019-10-11 2019-10-11 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021063529A true JP2021063529A (en) 2021-04-22
JP7208127B2 JP7208127B2 (en) 2023-01-18

Family

ID=75346619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187391A Active JP7208127B2 (en) 2019-10-11 2019-10-11 Electric valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7208127B2 (en)
CN (1) CN112648391B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7248922B2 (en) * 2021-06-23 2023-03-30 ダイキン工業株式会社 air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783533A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Air conditioner
JP2007024186A (en) * 2005-07-15 2007-02-01 Saginomiya Seisakusho Inc Two-stage control valve
JP2014238207A (en) * 2013-06-07 2014-12-18 株式会社不二工機 Expansion valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022120B2 (en) * 2007-07-03 2012-09-12 株式会社不二工機 Motorized valves for air conditioning systems
JP5842185B2 (en) * 2011-05-10 2016-01-13 株式会社テージーケー Control valve
JP6526478B2 (en) * 2015-05-18 2019-06-05 株式会社不二工機 Motorized valve
JP6580125B2 (en) * 2016-08-04 2019-09-25 太平洋工業株式会社 Motorized valve
JP6643292B2 (en) * 2017-09-28 2020-02-12 株式会社不二工機 Electric valve
CN109780224A (en) * 2017-11-13 2019-05-21 艾默生环境优化技术(苏州)有限公司 Electric expansion valve
JP6909740B2 (en) * 2018-01-31 2021-07-28 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP6845817B2 (en) * 2018-02-01 2021-03-24 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP6857624B2 (en) * 2018-02-01 2021-04-14 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
CN109798368B (en) * 2019-02-27 2023-08-29 苏州纽威阀门股份有限公司 Part-way regulating valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783533A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Air conditioner
JP2007024186A (en) * 2005-07-15 2007-02-01 Saginomiya Seisakusho Inc Two-stage control valve
JP2014238207A (en) * 2013-06-07 2014-12-18 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
CN112648391A (en) 2021-04-13
JP7208127B2 (en) 2023-01-18
CN112648391B (en) 2022-07-15

Similar Documents

Publication Publication Date Title
CN114483980B (en) Electric valve and refrigeration cycle system
JP3145048U (en) Electric expansion valve and refrigeration cycle
CN101311588B (en) Needle valve and refrigerating cycle device with the needle valve
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP6178557B2 (en) Flow control valve
JP6959900B2 (en) Valve gear, motorized valves and refrigeration cycle system
JP6978391B2 (en) Electric valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
JP6359593B2 (en) Motorized valve
JP6966416B2 (en) Valve device and refrigeration cycle system
JP2021063529A (en) Motor valve and refrigeration cycle system
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP7105721B2 (en) Electric valve and refrigeration cycle system
JP7107881B2 (en) Electric valve and refrigeration cycle system
JP6722230B2 (en) Motorized valve
JP6474863B2 (en) Flow control valve
JP7465845B2 (en) Motor-operated valve and refrigeration cycle system
CN113915339B (en) Two-stage electric valve and refrigeration cycle system
JP2021067344A (en) Motor-operated valve and refrigeration cycle system
JP7264975B2 (en) Electric valve and refrigeration cycle system
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
JP2021165574A (en) Two-stage type motor-operated valve and refrigeration cycle system
JP2023174727A (en) Motor valve and refrigeration cycle system
CN113883325A (en) Flow control valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7208127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150