JP2021063282A - Chemical agent application apparatus and chemical agent application method - Google Patents

Chemical agent application apparatus and chemical agent application method Download PDF

Info

Publication number
JP2021063282A
JP2021063282A JP2019190195A JP2019190195A JP2021063282A JP 2021063282 A JP2021063282 A JP 2021063282A JP 2019190195 A JP2019190195 A JP 2019190195A JP 2019190195 A JP2019190195 A JP 2019190195A JP 2021063282 A JP2021063282 A JP 2021063282A
Authority
JP
Japan
Prior art keywords
drug
fluid
chemical
flow
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019190195A
Other languages
Japanese (ja)
Inventor
柴崎 理
Osamu Shibazaki
理 柴崎
宇広 原
Takahiro Hara
宇広 原
雅人 岡村
Masahito Okamura
雅人 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019190195A priority Critical patent/JP2021063282A/en
Publication of JP2021063282A publication Critical patent/JP2021063282A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

To enable an appropriate adhesion of a chemical agent injected into fluid, onto a surface of a structural material on which the fluid contacts and flows, regardless of a flow rate of the fluid.SOLUTION: A chemical agent application apparatus 40 is configured to adhere a chemical agent injected into fluid, onto a surface of a structural material on which the fluid having a flow velocity distribution contacts and flows. The chemical agent application apparatus includes: a first tank 41 storing a first chemical agent containing an ion or a particle with a particle size 10 nm or less; a second tank 42 storing a second chemical agent with a particle size 100 nm or more; and an injection pump 44 configured to inject the first chemical agent in the first tank and the second chemical agent in the second tank into a flow of the fluid.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、流速分布を有する流体が接して流れる構造材の表面に、流体中に注入された薬剤を付着させる薬剤施工装置及び薬剤施工方法に関する。 An embodiment of the present invention relates to a chemical application apparatus and a chemical application method for adhering a chemical injected into a fluid to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid.

ボイラや発電所、化学プラントをはじめとする多くの産業機器では、機器からの発熱に対応するため冷却水が使用されている。これらの冷却水の多くは、水道水や河川水などが利用されるが、構造材の腐食、微生物の繁殖、スケールと呼ばれる水中微量成分の析出などように、機器の運転の障害となる事象が発生する恐れがある。 Many industrial equipment, including boilers, power plants, and chemical plants, use cooling water to handle the heat generated by the equipment. Most of these cooling waters are tap water and river water, but there are events that hinder the operation of equipment, such as corrosion of structural materials, propagation of microorganisms, and precipitation of trace components in water called scales. It may occur.

腐食現象は構造材の破損につながる可能性があることに加え、腐食反応により発生した構造材の酸化物が堆積することで、配管の閉塞による機器障害や冷却能力の低下を引き起こす恐れがある。同様に、スケールの析出や微生物の繁殖においても、機器の能力の低下を引き起こす恐れがある。 In addition to the possibility that the corrosion phenomenon may lead to damage to the structural material, the accumulation of oxides of the structural material generated by the corrosion reaction may cause equipment failure due to blockage of piping and a decrease in cooling capacity. Similarly, the precipitation of scales and the propagation of microorganisms can cause a decrease in the capacity of the equipment.

これらの事象の予防技術として、冷却水の水質浄化や化学処理が行われている。スケールであれば析出防止剤の投入、微生物であればその発生要因となる酸素濃度や有機物濃度の管理が行われる。また、発電所では、スケールや微生物を取り除く水質浄化に加え、腐食を抑制するための各種処理が行われている。腐食抑制の具体的方法としては、腐食反応に寄与する酸素や過酸化水素を低減するための脱気器の設置、水素やヒドラジンなどの還元性物質の注入が行われ、更に腐食反応が低い高pH環境とするためのアンモニアや水酸化リチウム等の薬剤の注入が行われている。 As a preventive technique for these events, water purification and chemical treatment of cooling water are performed. In the case of scale, a precipitation inhibitor is added, and in the case of microorganisms, the oxygen concentration and organic matter concentration that cause the generation are controlled. In addition to water purification that removes scale and microorganisms, power plants are undergoing various treatments to control corrosion. Specific methods for suppressing corrosion include installing a deaerator to reduce oxygen and hydrogen peroxide that contribute to the corrosion reaction, injecting reducing substances such as hydrogen and hydrazine, and further reducing the corrosion reaction. Chemicals such as ammonia and lithium hydroxide are injected to create a pH environment.

更に、高温で運転する機器においては応力腐食割れ(SCC)も懸念事項の一つである。応力腐食割れ予防の観点では、貴金属や酸化チタンなどの注入が行われる。この注入技術は、構造材の電位を低下させることで腐食反応の速度を低下させて、SCCの進展を予防するものである。ここで、腐食反応の一例を式1に示す。金属構造材の腐食反応は電子の放出を伴っており、電位が低下してマイナスの環境となった場合に、マイナスの電荷を持つ電子の放出が抑制されるため、電子放出反応である腐食反応も抑制される。
Fe→Fe2++2e ………式1
Furthermore, stress corrosion cracking (SCC) is also a concern in equipment that operates at high temperatures. From the viewpoint of preventing stress corrosion cracking, precious metals and titanium oxide are injected. This injection technique reduces the rate of the corrosion reaction by lowering the potential of the structural material and prevents the development of SCC. Here, an example of the corrosion reaction is shown in Equation 1. The corrosion reaction of metal structural materials is accompanied by the emission of electrons, and when the potential drops and the environment becomes negative, the emission of negatively charged electrons is suppressed, so the corrosion reaction is an electron emission reaction. Is also suppressed.
Fe → Fe 2+ + 2e ……… Equation 1

上述のような薬剤施工技術は、構造材の表面に接して流れる流体の流れ中に薬剤を注入し、この注入した薬剤が構造材の表面に到達することで効果を発揮するものがほとんどである。しかしながら、これらの薬剤処理を実施する機器内部は単純な配管と異なり、一様な流れではないと考えられる。そのため、流体の流速の違いや構造材の表面形状の相違から、施工薬剤の効果は構造材の表面部位によって異なるものことが考えられる。 Most of the above-mentioned chemical construction techniques are effective when a chemical is injected into the flow of a fluid flowing in contact with the surface of the structural material and the injected chemical reaches the surface of the structural material. .. However, unlike simple piping, it is considered that the inside of the equipment that carries out these chemical treatments does not have a uniform flow. Therefore, it is considered that the effect of the construction agent differs depending on the surface portion of the structural material due to the difference in the flow velocity of the fluid and the difference in the surface shape of the structural material.

ここで、イオンまたは粒子径10nm以下の粒子が、構造材の表面に到達して付着する物質量(到達量または拡散量J)は、拡散係数をD、溶液濃度をC0、表面濃度をC、拡散層厚さをδとして、下記の式2を例に評価可能である。
J=D×(C0−C)/δ ………式2
上記式2のうちで、拡散層厚さδは、レイノルズ数をRe、シュミッド数をSc、配管径をdとして、次式3で示される。
δ=1/(0.023×d×Re0.8×Sc0.33) ………式3
上記式3中のレイノルズ数Reとシュミッド数Scは、流体速度をv、配管径をd、動粘性係数をν、動粘度をμ、拡散係数をDとして、それぞれ次の式4、式5で表される。
Re=v×d/ν ………式4
Sc=μ/D ………式5
Here, the amount of substance (reaching amount or diffusion amount J) in which ions or particles having a particle diameter of 10 nm or less reach the surface of the structural material and adhere to the surface has a diffusion coefficient of D, a solution concentration of C0, and a surface concentration of C. Assuming that the diffusion layer thickness is δ, the following equation 2 can be used as an example for evaluation.
J = D × (C0-C) / δ ……… Equation 2
In the above formula 2, the diffusion layer thickness δ is represented by the following formula 3, where the Reynolds number is Re, the Schmid number is Sc, and the pipe diameter is d.
δ = 1 / (0.023 × d × Re 0.8 × Sc 0.33 ) ……… Equation 3
The Reynolds number Re and the Schmid number Sc in the above equation 3 are expressed in the following equations 4 and 5, respectively, where v is the fluid velocity, d is the pipe diameter, ν is the kinematic viscosity coefficient, μ is the kinematic viscosity, and D is the mass diffusivity. expressed.
Re = v × d / ν ……… Equation 4
Sc = μ / D ……… Equation 5

これらの式2乃至式5から、流体の流れの高流速環境ではレイノルズ数Reの上昇による拡散層厚さδの減少に伴い、比較的多くの薬剤が構造材の表面に到着して付着することが分かる。一方、流体の流れの低流速部については、薬剤の付着量が少ないものと考えられる。 From these formulas 2 to 5, a relatively large amount of chemicals arrive at the surface of the structural material and adhere to the surface of the structural material as the diffusion layer thickness δ decreases due to the increase in the Reynolds number Re in the high flow velocity environment of the fluid flow. I understand. On the other hand, it is considered that the amount of the chemical adhered to the low flow velocity portion of the fluid flow is small.

特開2007−192745号公報JP-A-2007-192745

薬剤施工においては、流体が接して流れる構造材の表面の各部位における流体の流速や構造材の表面形状の影響により、薬剤の到達量に差が生じることが想定される。これにより、貴金属や酸化チタン等の薬剤の施工では、流体の流れの低流速部に接する構造材の表面に、薬剤の十分な付着量を確保できない恐れがある。 In chemical construction, it is assumed that the amount of chemicals reached will differ due to the influence of the flow velocity of the fluid and the surface shape of the structural material at each part of the surface of the structural material to which the fluid flows in contact. As a result, in the construction of chemicals such as precious metals and titanium oxide, there is a risk that a sufficient amount of chemicals adhered to the surface of the structural material in contact with the low flow velocity portion of the fluid flow.

本発明の実施形態は、上述の事情を考慮してなされたものであり、流体が接して流れる構造材の表面に流体中に注入された薬剤を、流体の流速に拘らず好適に付着させることができる薬剤施工装置及び薬剤施工方法を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and the drug injected into the fluid is suitably attached to the surface of the structural material in which the fluid is in contact and flows regardless of the flow velocity of the fluid. It is an object of the present invention to provide a chemical construction apparatus and a chemical construction method capable of performing.

本発明の実施形態における薬剤施工装置は、流速分布を有する流体が接して流れる構造材の表面に、前記流体中に注入された薬剤を付着させる薬剤施工装置であって、イオンまたは粒子径10nm以下の粒子を含有する前記薬剤としての第1薬剤を貯溜する第1タンクと、粒子径100nm以上の前記薬剤としての第2薬剤を貯溜する第2タンクと、前記第1タンク内の前記第1薬剤と前記第2タンク内の前記第2薬剤とを前記流体の流れ中に注入させる注入手段と、を有して構成されたことを特徴とする薬剤施工装置ものである。 The chemical construction apparatus according to the embodiment of the present invention is a chemical construction apparatus that adheres a chemical injected into the fluid to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid, and has an ion or particle diameter of 10 nm or less. A first tank for storing the first drug as the drug containing the particles of the above, a second tank for storing the second drug as the drug having a particle diameter of 100 nm or more, and the first drug in the first tank. The chemical construction apparatus is characterized in that it is configured to have an injection means for injecting the second chemical in the second tank into the flow of the fluid.

本発明の実施形態における薬剤施工方法は、流速分布を有する流体が接して流れる構造材の表面に、前記流体中に注入された薬剤を付着させる薬剤施工方法であって、イオンまたは粒子径10nm以下の粒子を含有する前記薬剤としての第1薬剤と、粒子径100nm以上の前記薬剤としての第2薬剤とを、前記流体の流れ中に注入することを特徴とするものである。 The chemical application method according to the embodiment of the present invention is a chemical application method in which a chemical injected into the fluid is attached to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid, and the ion or particle size is 10 nm or less. The first drug as the drug containing the particles of the above and the second drug as the drug having a particle diameter of 100 nm or more are injected into the flow of the fluid.

本発明の実施形態によれば、流体が接して流れる構造材の表面に流体中に注入された薬剤を、流体の流速に拘らず好適に付着させることができる。 According to the embodiment of the present invention, the drug injected into the fluid can be suitably attached to the surface of the structural material in which the fluid flows in contact with the fluid, regardless of the flow velocity of the fluid.

第1実施形態に係る薬剤施工装置が適用される原子力発電プラントの一部を示す系統図。The system diagram which shows a part of the nuclear power plant to which the chemical construction apparatus which concerns on 1st Embodiment is applied. 図1の薬剤施工装置を示す構成図。The block diagram which shows the chemicals construction apparatus of FIG. 薬剤の粒子と分散材との関係を示し、分散材の濃度が高く薬剤の粒子径が小さい場合を説明する説明図。Explanatory drawing which shows the relationship between the particle of a drug and a dispersant, and explains the case where the concentration of a dispersant is high and the particle size of a drug is small. 薬剤の粒子と分散材との関係を示し、薬剤の濃度が低く薬剤の粒子径が大きい場合を説明する説明図。Explanatory drawing which shows the relationship between the particle of a drug and a dispersant, and explains the case where the concentration of a drug is low and the particle size of a drug is large. 第3実施形態に係る薬剤施工方法を説明する薬剤施工装置及び構造材の概略図。FIG. 6 is a schematic view of a chemical construction apparatus and a structural material for explaining the chemical construction method according to the third embodiment.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図4)
図1は、第1実施形態に係る薬剤施工装置が適用される原子力発電プラントの一部を示す系統図である。また、図2は、図1の薬剤施工装置を示す構成図である。この図1に示す原子力発電プラント10の沸騰水型原子炉11は、原子炉圧力容器12内に炉心13を収容する。この炉心13を構成する多数の燃料集合体(不図示)は、炉心シュラウド14に囲まれると共に、炉心支持板15及び上部格子板16により支持される。炉心シュラウド14の上部開口はシュラウドヘッド17により閉塞され、このシュラウドヘッド17の上方に気水分離器18、蒸気乾燥器19が順次配置されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (FIGS. 1 to 4)
FIG. 1 is a system diagram showing a part of a nuclear power plant to which the chemical construction apparatus according to the first embodiment is applied. Further, FIG. 2 is a configuration diagram showing the chemical construction apparatus of FIG. The boiling water reactor 11 of the nuclear power plant 10 shown in FIG. 1 houses the core 13 in the reactor pressure vessel 12. A large number of fuel assemblies (not shown) constituting the core 13 are surrounded by the core shroud 14 and supported by the core support plate 15 and the upper lattice plate 16. The upper opening of the core shroud 14 is closed by the shroud head 17, and the steam separator 18 and the steam dryer 19 are sequentially arranged above the shroud head 17.

原子炉圧力容器12は、容器本体20と、この容器本体20の上部開口を閉塞するように設けられた蓋体21とを有して構成される。容器本体20は、円筒形状の胴体22と、この胴体22の下端に接続されて炉心下部プレナム24を形成する下鏡23を備えて構成される。下鏡23には、制御棒駆動機構25や炉内計装管を挿通させる貫通孔(共に不図示)が設けられている。 The reactor pressure vessel 12 includes a vessel body 20 and a lid 21 provided so as to close the upper opening of the vessel body 20. The container body 20 includes a cylindrical body 22 and a mirror 23 connected to the lower end of the body 22 to form a lower core plenum 24. The lower mirror 23 is provided with a through hole (both not shown) through which the control rod drive mechanism 25 and the in-core instrumentation pipe are inserted.

この原子炉圧力容器12の内部に、前述の炉心シュラウド14、炉心支持板15、上部格子板16、シュラウドヘッド17、気水分離器18及び蒸気乾燥器19、並びに後述のジェットポンプ36、図示しないシュラウドサポート及び炉心スプレー系配管などの原子炉内構造物が収納されている。 Inside the reactor pressure vessel 12, the core shroud 14, the core support plate 15, the upper lattice plate 16, the shroud head 17, the air-water separator 18 and the steam dryer 19, and the jet pump 36 described later, which will be described later, are not shown. Reactor internal structures such as shroud support and core spray system piping are housed.

更に、原子炉圧力容器12に、冷却材を給水として取水し、蒸気を放出等する原子炉一次系配管が接続される。この原子炉一次系配管は、主蒸気系26の主蒸気系配管27、給水系28の給水系配管29、原子炉再循環系30の再循環系配管31、原子炉冷却材浄化系32の冷却材浄化系配管33、及びボトムドレン配管34等である。冷却材浄化系配管33は、ボトムドレン配管34及び再循環系配管31に接続されている。 Further, the reactor primary system piping that takes in the coolant as water supply and releases steam or the like is connected to the reactor pressure vessel 12. The reactor primary system piping includes the main steam system piping 27 of the main steam system 26, the water supply system piping 29 of the water supply system 28, the recirculation system piping 31 of the reactor recirculation system 30, and the cooling of the reactor coolant purification system 32. The material purification system pipe 33, the bottom drain pipe 34, and the like. The cooling material purification system pipe 33 is connected to the bottom drain pipe 34 and the recirculation system pipe 31.

沸騰水型原子炉11の炉心13で発生した蒸気は、気水分離器18にて水分が分離され、蒸気乾燥器19にて乾燥されて、主蒸気系配管27を通りタービン系(不図示)へ供給される。タービン系で仕事をした蒸気は凝縮されて復水となり、給水系28を通る間に加熱されて給水となり、給水系配管29から原子炉圧力容器12内へ冷却材として供給される。 The steam generated in the core 13 of the boiling water reactor 11 is separated by the steam separator 18 and dried by the steam dryer 19, and passes through the main steam system pipe 27 to the turbine system (not shown). Is supplied to. The steam that has worked in the turbine system is condensed into condensate, heated while passing through the water supply system 28 to become water supply, and is supplied from the water supply system pipe 29 into the reactor pressure vessel 12 as a coolant.

この冷却材は、原子炉再循環系30の再循環ポンプ35により昇圧され、原子炉圧力容器12の容器本体20と炉心シュラウド14との間のダウンカマ部に複数本設置されたジェットポンプ36によって、気水分離器18にて分離された水と共に、炉心13下方の炉心下部プレナム24内へ導かれる。冷却材は、この炉心下部プレナム24から上方へ流動し、炉心13の核反応熱により加熱されて蒸気と水の気液混合流になり、気水分離器18へ至る。上述のサイクルが繰り返される。 This coolant is boosted by the recirculation pump 35 of the reactor recirculation system 30, and is supplied by a plurality of jet pumps 36 installed in the downside section between the vessel body 20 of the reactor pressure vessel 12 and the core shroud 14. Together with the water separated by the air-water separator 18, it is guided into the lower core plenum 24 below the core 13. The coolant flows upward from the lower plenum 24 of the core, is heated by the nuclear reaction heat of the core 13, becomes a gas-liquid mixed flow of steam and water, and reaches the gas-water separator 18. The above cycle is repeated.

上述のように原子炉圧力容器12、原子炉内構造物等の機器、及び原子炉一次系配管などの構造材の表面は、流体としての冷却材(冷却水)が接触して流れている。本第1実施形態では、このように冷却水が接して流れる構造材の表面の主に腐食を防止する目的で、薬剤施工装置40から冷却水の流れ中に薬剤を注入して、構造材の表面に付着させている。この薬剤は、例えば水素またはヒドラジンを含む還元性物質からなる脱酸素剤である。 As described above, the coolant (coolant water) as a fluid flows in contact with the surface of the reactor pressure vessel 12, the equipment such as the reactor internal structure, and the structural material such as the reactor primary system piping. In the first embodiment, for the purpose of mainly preventing corrosion of the surface of the structural material to which the cooling water flows in contact with the cooling water, the chemical is injected into the flow of the cooling water from the chemical construction apparatus 40 to form the structural material. It is attached to the surface. This agent is an oxygen scavenger consisting of a reducing substance containing, for example, hydrogen or hydrazine.

薬剤の構造材表面への付着の施工性は、薬剤がイオンまたは粒子径10nm以下の粒子を含有する場合には、この第1薬剤が構造材の表面に到達する到達量(拡散量)によって決定される。この到達量(拡散量)は、前述の式2により規定されるため、第1薬剤は、冷却水の高速流(例えば0.1m/sを超えた速度)の環境では、レイノルズ数Reの上昇による拡散層厚さδの減少に伴って構造材の表面に良好に付着する。 The workability of adhering the chemical to the surface of the structural material is determined by the amount of the first chemical reaching the surface of the structural material (diffusion amount) when the chemical contains ions or particles having a particle size of 10 nm or less. Will be done. Since this amount of arrival (diffusion amount) is defined by the above formula 2, the first drug increases the Reynolds number Re in an environment of a high-speed flow of cooling water (for example, a speed exceeding 0.1 m / s). As the diffusion layer thickness δ decreases due to the above, it adheres well to the surface of the structural material.

一方、薬剤が粒子径100nm以上の第2薬剤の場合、この第2薬剤は、冷却水の低流速(例えば0.1m/s以下)の環境において沈着する形で付着し、しかも剥離性も低いことから、十分な耐久性を備える。 On the other hand, when the drug is a second drug having a particle size of 100 nm or more, the second drug adheres in a deposited form in an environment where the cooling water has a low flow velocity (for example, 0.1 m / s or less), and has low peelability. Therefore, it has sufficient durability.

そこで、本第1実施形態の薬剤施工装置40は、流速分布を有する冷却水が接して流れる構造材の表面に、冷却水中に注入された薬剤を付着させる際に、冷却水の流速分布によって、粒子径が異なる薬剤(第1薬剤、第2薬剤)を付着させることとしている。 Therefore, in the chemical construction apparatus 40 of the first embodiment, when the chemical injected into the cooling water is adhered to the surface of the structural material in which the cooling water having the flow velocity distribution flows in contact with the cooling water, the flow velocity distribution of the cooling water is used. Drugs with different particle sizes (first drug, second drug) are attached.

この際に、第1薬剤と第2薬剤のそれぞれは、それぞれの薬剤の粒子径の範囲内で粒子径が異なる2種以上の薬剤であってもよい。例えば、第1薬剤は、粒子径10nm以下の範囲で異なる粒子径の2種以上の第2薬剤を同時に用いてもよい。また、第1薬剤と第2薬剤は、同一物質の薬剤が好ましいが、相互に悪影響を与えないのであれば、異なった物質の薬剤であってもよい。 At this time, each of the first drug and the second drug may be two or more kinds of drugs having different particle sizes within the range of the particle size of each drug. For example, as the first agent, two or more kinds of second agents having different particle sizes within a particle size range of 10 nm or less may be used at the same time. Further, the first drug and the second drug are preferably drugs of the same substance, but may be drugs of different substances as long as they do not adversely affect each other.

上述のような本第1実施形態の薬剤施工装置40は、図2に示すように、第1薬剤を貯溜する第1タンク41と、第2薬剤を貯溜する第2タンク42と、第1タンク41内の第1薬剤と第2タンク42内の第2薬剤を混合する混合タンク43と、この混合タンク43にて混合された第1薬剤及び第2薬剤を冷却水の流れ中に注入する注入手段としての1台の注入ポンプ44と、を有して構成される。 As shown in FIG. 2, the chemical construction apparatus 40 of the first embodiment as described above has a first tank 41 for storing the first chemical, a second tank 42 for storing the second chemical, and a first tank. A mixing tank 43 that mixes the first drug in the 41 and the second drug in the second tank 42, and an injection that injects the first drug and the second drug mixed in the mixing tank 43 into the flow of cooling water. It is configured to have one injection pump 44 as a means.

第1タンク41及び第2タンク42による薬剤の貯溜と、混合タンク43による薬剤の混合は、常温常圧の環境下でなされる。特に、混合タンク43による薬剤の混合は、注入ポンプ44により注入の前(例えば直前)に実施される。また、注入ポンプ44は、薬剤注入対象の構造材が高温高圧環境にあることも想定されるので、この高温高圧環境に対応可能に構成されている。本第1実施形態では、注入ポンプ44は、冷却材浄化系配管33を流れる冷却水の流れ中に、第1薬剤と第2薬剤を高圧で注入する。 The storage of the chemicals in the first tank 41 and the second tank 42 and the mixing of the chemicals in the mixing tank 43 are performed in an environment of normal temperature and pressure. In particular, the mixing of the drug in the mixing tank 43 is performed by the injection pump 44 before (for example, immediately before) injection. Further, since it is assumed that the structural material to be injected with the drug is in a high temperature and high pressure environment, the injection pump 44 is configured to be compatible with this high temperature and high pressure environment. In the first embodiment, the injection pump 44 injects the first agent and the second agent at high pressure into the flow of the cooling water flowing through the cooling material purification system pipe 33.

ここで、第1薬剤と第2薬剤のそれぞれの粒子径は、例えばこれらの薬剤中に存在する分散剤2(図3、図4)の濃度を変更することにより制御される。つまり、分散剤2の濃度が高い場合には、図3に示すように、薬剤粒子1の表面全体を分散剤2が覆うことで、薬剤粒子1同士の結合が阻害されて、薬剤粒子1の粒子径は小さくなる。これに対し、分散剤2の濃度が低い場合には、図4に示すように、分散剤2が薬剤粒子1の表面全体を覆うことがないので、薬剤粒子1が互いに結合して薬剤粒子1の粒子径は大きくなると考えられる。尚、上述の分散剤2の濃度変更は、分散剤2の中和、酸化、還元、加熱分解などによって分散剤2の濃度を低下させ、また、分散剤2を添加することによって分散剤2の濃度を上昇させる手法が考えられる。 Here, the particle size of each of the first agent and the second agent is controlled, for example, by changing the concentration of the dispersant 2 (FIGS. 3 and 4) present in these agents. That is, when the concentration of the dispersant 2 is high, as shown in FIG. 3, the dispersant 2 covers the entire surface of the drug particles 1, thereby inhibiting the binding between the drug particles 1 and the drug particles 1. The particle size becomes smaller. On the other hand, when the concentration of the dispersant 2 is low, as shown in FIG. 4, the dispersant 2 does not cover the entire surface of the drug particles 1, so that the drug particles 1 bind to each other and the drug particles 1 It is considered that the particle size of is large. The above-mentioned change in the concentration of the dispersant 2 reduces the concentration of the dispersant 2 by neutralization, oxidation, reduction, thermal decomposition, etc. of the dispersant 2, and the dispersant 2 is added by adding the dispersant 2. A method of increasing the concentration can be considered.

また、第1薬剤と第2薬剤のそれぞれの粒子径は、図2に示す粒子径変更手段45を用いて行ってもよい。つまり、この粒子径変更手段45は第2タンク42内に設置され、この第2タンク42内に貯溜された第1薬剤に対して気体曝露(曝気)または加熱等の処理を行なうことで、第1薬剤の薬剤粒子1から分散剤2を離脱させる。これにより、第1薬剤の薬剤粒子1同士が互いに結合して薬剤粒子1の粒子径が大きくなり、第2薬剤が生成されて第2タンク42内に貯溜される。 Further, the particle size of each of the first agent and the second agent may be adjusted by using the particle size changing means 45 shown in FIG. That is, the particle size changing means 45 is installed in the second tank 42, and the first drug stored in the second tank 42 is subjected to a treatment such as gas exposure (aeration) or heating. The dispersant 2 is separated from the drug particles 1 of the drug. As a result, the drug particles 1 of the first drug are bound to each other to increase the particle size of the drug particles 1, and the second drug is generated and stored in the second tank 42.

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)及び(2)を奏する。
(1)原子炉内構造物や原子炉一次系配管などの構造材の表面に接して流れる流速分布を有する冷却水の流れ中に、注入ポンプ44からイオンまたは粒子径10nm以下の粒子を含有する第1薬剤と、粒子径100nm以上の第2薬剤とが注入されることで、高速流の冷却水が接する構造材の表面には第1薬剤が付着し、低流速の冷却水が接する構造材の表面には第2薬剤が付着する。この結果、冷却水が接して流れる構造材の表面に、冷却水中に注入された薬剤を、冷却水の流速に拘わらず好適に付着させることができる。
Since it is configured as described above, according to the first embodiment, the following effects (1) and (2) are obtained.
(1) Ions or particles with a particle diameter of 10 nm or less are contained from the injection pump 44 in the flow of cooling water having a flow velocity distribution that flows in contact with the surface of structural materials such as reactor internal structures and reactor primary system piping. By injecting the first agent and the second agent having a particle size of 100 nm or more, the first agent adheres to the surface of the structural material in contact with the high-speed flow cooling water, and the structural material comes into contact with the low-velocity cooling water. The second drug adheres to the surface of the. As a result, the chemical injected into the cooling water can be suitably adhered to the surface of the structural material in which the cooling water flows in contact with the cooling water regardless of the flow velocity of the cooling water.

(2)注入ポンプ44による第1薬剤と第2薬剤の注入前に、混合タンク43により第1タンク41内の第1薬剤と第2タンク42内の第2薬剤とが混合されるので、注入ポンプ44は、第1薬剤と第2薬剤のそれぞれに専用の複数のポンプを用意するがない。この結果、注入ポンプ44が1台で足りるためコストを低減できると共に、メンテナンス費用も低減できる。 (2) Before injecting the first drug and the second drug by the injection pump 44, the first drug in the first tank 41 and the second drug in the second tank 42 are mixed by the mixing tank 43, so that the injection is performed. The pump 44 does not have to prepare a plurality of dedicated pumps for each of the first agent and the second agent. As a result, since one injection pump 44 is sufficient, the cost can be reduced and the maintenance cost can be reduced.

[B]第2実施形態(図2)
この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の薬剤施工装置50は、流速分布を有する流体が接して流れる構造材の表面が、放射線または紫外線が照射される環境であり、更にこの環境が、流体の流速が低流速(例えば0.1m/s以下)となって第1薬剤が上記表面に付着し難いまたは付着しない環境である場合には、注入手段としての注入ポンプ51が、第1薬剤の注入割合を第2薬剤よりも高く設定するよう構成されている。 The chemical application device 50 of the second embodiment is an environment in which the surface of the structural material in which the fluid having the flow velocity distribution flows in contact with the flow is irradiated with radiation or ultraviolet rays, and further, in this environment, the flow velocity of the fluid is low (the flow velocity of the fluid is low (). For example, 0.1 m / s or less), and in an environment where the first drug is difficult or does not adhere to the surface, the injection pump 51 as an injection means sets the injection rate of the first drug to the second drug. It is configured to be set higher than.

放射線や紫外線の照射を受ける環境(例えば、放射線の照射を受ける図1の原子力発電プラント10)では、流体としての水への放射線または紫外線の照射によって酸化性物質が生成され、この酸化性物質により構造材の表面に腐食の影響が懸念される。この腐食の傾向は、放射線または紫外線の照射を長時間受けることになる水の流れが低流速(例えば0.1m/s以下)の環境において著しい。 In an environment exposed to radiation or ultraviolet rays (for example, the nuclear power plant 10 in FIG. 1 to be irradiated with radiation), an oxidizing substance is generated by irradiation of water as a fluid with radiation or ultraviolet rays, and the oxidizing substance produces an oxidizing substance. There is concern about the effects of corrosion on the surface of structural materials. This tendency of corrosion is remarkable in an environment where the flow of water, which is exposed to radiation or ultraviolet rays for a long time, is low flow velocity (for example, 0.1 m / s or less).

従って、本第2実施形態の薬剤施工装置50では、流体としての水の流れが低流速(例えば0.1m/s以下)の環境である構造材の表面においても付着性の良好な第2薬剤の混合割合を第1薬剤よりも高めて、混合タンク52により第1薬剤と第2薬剤を混合させ、この混合した薬剤を注入ポンプ51より流体(水)の流れ中に注入して、第2薬剤の注入割合を第1薬剤よりも高くしている。 Therefore, in the chemical construction apparatus 50 of the second embodiment, the second chemical having good adhesion even on the surface of the structural material in which the flow of water as a fluid is a low flow velocity (for example, 0.1 m / s or less). The mixing ratio of the first drug is higher than that of the first drug, the first drug and the second drug are mixed by the mixing tank 52, and the mixed drug is injected into the flow of the fluid (water) from the injection pump 51 to obtain the second drug. The injection rate of the drug is higher than that of the first drug.

以上のように構成されたことから、本第2実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(3)を奏する。 Based on the above configuration, according to the second embodiment, in addition to the same effects as those of the first embodiment (1) and (2), the following effect (3) is obtained.

(3)流速分布を有する流体が接して流れる構造材の表面が、放射線または紫外線が照射される環境にあり、更にこの環境が、流体の流速が低流速(例えば0.1m/s以下)となって第1薬剤が上記表面に付着し難いまたは付着しない環境である場合に、注入ポンプ51が第2薬剤の注入割合を第1薬剤よりも高く設定している。これにより、流体(例えば水)の流れが低流速な環境にあって、放射線または紫外線の照射を長時間受けることになる構造材の表面に、第2薬剤を十分に付着させることができる。この結果、高流速の流体に接する構造材の表面、及び低流速の流体に接する構造材の表面を共に、酸化性物質による腐食から確実に防止することができる。 (3) The surface of the structural material to which the fluid having the flow velocity distribution flows in contact is in an environment where radiation or ultraviolet rays are irradiated, and in this environment, the flow velocity of the fluid is low (for example, 0.1 m / s or less). Therefore, when the environment is such that the first drug is difficult to adhere to or does not adhere to the surface, the injection pump 51 sets the injection rate of the second drug to be higher than that of the first drug. As a result, the second agent can be sufficiently adhered to the surface of the structural material which is exposed to radiation or ultraviolet rays for a long time in an environment where the flow of the fluid (for example, water) is low. As a result, both the surface of the structural material in contact with the fluid having a high flow velocity and the surface of the structural material in contact with the fluid having a low flow velocity can be reliably prevented from being corroded by the oxidizing substance.

[C]第3実施形態(図5)
図5は、第3実施形態に係る薬剤施工方法を説明する薬剤施工装置及び構造材の概略図である。この第3実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (Fig. 5)
FIG. 5 is a schematic view of a chemical construction apparatus and a structural material for explaining the chemical construction method according to the third embodiment. In this third embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第3実施形態の薬剤施工方法に用いられる薬剤施工装置60は、イオンまたは粒子径10nm以下の粒子を含有する薬剤を貯溜する薬剤タンク61と、構造材の表面に接して流れる流速分布を有する流体の流れ中に薬剤タンク61内の薬剤を注入する1台の注入ポンプ62と、を有して構成される。 The chemical application device 60 used in the chemical application method of the third embodiment has a chemical tank 61 for storing chemicals containing ions or particles having a particle diameter of 10 nm or less, and a flow velocity distribution that flows in contact with the surface of the structural material. It is configured to include one injection pump 62 for injecting the drug in the drug tank 61 into the flow of fluid.

この第3実施形態の薬剤施工方法は、構造材の表面に接して流れる流速分布を有する流体の流れ中に注入ポンプ62から薬剤タンク61内の薬剤を注入して、この薬剤を流体の高速流に接する構造材の表面に付着させる一方、流体の流れの停止時に、流体に接する構造材の表面のうちで流体の流れが低流速(例えば0.1m/s以下)になって、流体中の薬剤が付着し難いまたは付着しない表面に、薬剤を塗布施工する。 In the chemical application method of the third embodiment, the chemical in the chemical tank 61 is injected from the injection pump 62 into the flow of the fluid having a flow velocity distribution flowing in contact with the surface of the structural material, and the chemical is flowed at a high speed of the fluid. While adhering to the surface of the structural material in contact with the fluid, when the flow of the fluid is stopped, the flow of the fluid becomes low flow velocity (for example, 0.1 m / s or less) on the surface of the structural material in contact with the fluid, and the flow of the fluid becomes low. Apply the chemical to the surface where the chemical is hard to adhere or does not adhere.

高速流で流れる流体に接する構造材の表面に対しては、流体の流れ中に注入ポンプ62から薬剤タンク61内の薬剤を注入することで、この薬剤を十分に付着させることができる。これに対して、低流速(例えば0.1m/s以下)に流れる流体に接する構造材の表面には、流体の流れ中に注入された薬剤が付着し難いまたは付着しないことが多い。 This drug can be sufficiently adhered to the surface of the structural material in contact with the fluid flowing at high speed by injecting the drug in the drug tank 61 from the injection pump 62 during the flow of the fluid. On the other hand, on the surface of the structural material in contact with the fluid flowing at a low flow velocity (for example, 0.1 m / s or less), the chemicals injected during the flow of the fluid are often difficult or non-adherent.

ここで、流体の流れが低流速になる条件は、例えば構造材が配管の場合、流路面積の狭い小口径部位63に対して流路面積の広い大口径部位64が想定される。この大口径部位64のうちでも隅部65は特に流速の流れが遅い部位である。大口径部位64は、薬剤の例えば塗布などの処理が比較的容易であることから、この大口径部位64に流体の流れの停止時に薬剤を塗布することとした。 Here, as a condition for the fluid flow to have a low flow velocity, for example, when the structural material is a pipe, a large-diameter portion 64 having a large flow path area is assumed with respect to a small-diameter portion 63 having a narrow flow path area. Among the large-diameter portions 64, the corner portion 65 is a portion where the flow velocity is particularly slow. Since it is relatively easy to apply the drug to the large-diameter portion 64, for example, the drug is applied to the large-diameter portion 64 when the flow of the fluid is stopped.

以上のように構成されたことから、本第3実施形態によれば、次の効果(4)を奏する。
(4)流路面積が狭く流体が高速流で流れる例えば小口径部位63に対しては、薬剤タンク61内の薬剤を注入ポンプ62により流体の流れ中に注入することで、この薬剤を付着させ、また、流路面積が広く流体が低流速で流れる例えば大口径部位64に対しては、薬剤を塗布する。これにより、構造材の表面の全領域に薬剤を好適に付着させることができる。
Since it is configured as described above, according to the third embodiment, the following effect (4) is obtained.
(4) For example, for a small-diameter portion 63 where the flow path area is narrow and the fluid flows at a high speed, the drug in the drug tank 61 is injected into the fluid flow by the injection pump 62 to adhere the drug. Further, the chemical is applied to, for example, a large-diameter portion 64 in which the flow path area is wide and the fluid flows at a low flow velocity. As a result, the drug can be suitably attached to the entire surface area of the structural material.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and the equivalent scope thereof.

1…薬剤粒子、2…分散剤、40…薬剤施工装置、41…第1タンク、42…第2タンク、43…混合タンク、44…注入ポンプ(注入手段)、50…薬剤施工装置、51…注入ポンプ(注入手段)、63…小口径部位、64…大口径部位 1 ... Chemical particles, 2 ... Dispersant, 40 ... Chemical construction equipment, 41 ... 1st tank, 42 ... 2nd tank, 43 ... Mixing tank, 44 ... Injection pump (injection means), 50 ... Chemical construction equipment, 51 ... Injection pump (injection means), 63 ... small diameter part, 64 ... large diameter part

Claims (9)

流速分布を有する流体が接して流れる構造材の表面に、前記流体中に注入された薬剤を付着させる薬剤施工装置であって、
イオンまたは粒子径10nm以下の粒子を含有する薬剤としての第1薬剤を貯溜する第1タンクと、
粒子径100nm以上の前記薬剤としての第2薬剤を貯溜する第2タンクと、
前記第1タンク内の前記第1薬剤と前記第2タンク内の前記第2薬剤とを前記流体の流れ中に注入させる注入手段と、を有して構成されたことを特徴とする薬剤施工装置。
A chemical construction device that attaches a chemical injected into the fluid to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid.
A first tank for storing a first drug as a drug containing ions or particles having a particle size of 10 nm or less, and a first tank.
A second tank for storing the second drug as the drug having a particle size of 100 nm or more, and a second tank.
A chemical construction apparatus comprising: an injection means for injecting the first drug in the first tank and the second drug in the second tank into the flow of the fluid. ..
前記第1及び第2薬剤が、水素またはヒドラジンを含む脱酸素剤であることを特徴とする請求項1に記載の薬剤施工装置。 The chemical construction apparatus according to claim 1, wherein the first and second chemicals are oxygen scavengers containing hydrogen or hydrazine. 前記第1薬剤と前記第2薬剤のそれぞれの粒子径は、これらの薬剤中に存在する分散剤の濃度を変更することにより制御されるよう構成されたことを特徴とする請求項1または2に記載の薬剤施工装置。 According to claim 1 or 2, the particle size of each of the first agent and the second agent is controlled by changing the concentration of the dispersant present in these agents. The drug construction equipment described. 前記構造材の表面が、流体の流れが低流速となって第1薬剤が付着しない環境にある場合には、注入手段は、第2薬剤の注入割合を前記第1薬剤よりも高く設定するよう構成されたことを特徴とする請求項1乃至3のいずれか1項に記載の薬剤施工装置。 When the surface of the structural material is in an environment where the flow velocity of the fluid is low and the first drug does not adhere, the injection means sets the injection ratio of the second drug to be higher than that of the first drug. The chemical application apparatus according to any one of claims 1 to 3, characterized in that it is configured. 前記流体の流れが低流速となって第1薬剤が付着しない環境は、放射線または紫外線が照射される環境であることを特徴とする請求項4に記載の薬剤施工装置。 The chemical application apparatus according to claim 4, wherein the environment in which the flow of the fluid becomes low and the first chemical does not adhere is an environment in which radiation or ultraviolet rays are irradiated. 前記注入手段は、第1薬剤と第2薬剤とが混合された薬剤を流体の流れ中に注入する1台の注入ポンプであることを特徴とする請求項1乃至5のいずれか1項に記載の薬剤施工装置。 The injection means according to any one of claims 1 to 5, wherein the injection means is one injection pump that injects a drug in which a first drug and a second drug are mixed into a flow of a fluid. Chemical construction equipment. 前記第1薬剤と前記第2薬剤のそれぞれは、それぞれの前記薬剤の粒子径の範囲内で粒子径が異なる2種以上の薬剤であることを特徴とする請求項1乃至6のいずれか1項に記載の薬剤施工装置。 Any one of claims 1 to 6, wherein each of the first drug and the second drug is two or more kinds of drugs having different particle sizes within the range of the particle size of the respective drugs. The chemical construction equipment described in. 流速分布を有する流体が接して流れる構造材の表面に、前記流体中に注入された薬剤を付着させる薬剤施工方法であって、
イオンまたは粒子径10nm以下の粒子を含有する前記薬剤としての第1薬剤と、粒子径100nm以上の前記薬剤としての第2薬剤とを、前記流体の流れ中に注入することを特徴とする薬剤施工方法。
This is a chemical application method in which a chemical injected into the fluid is attached to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid.
Chemical construction characterized by injecting a first drug as the drug containing ions or particles having a particle size of 10 nm or less and a second drug as the drug having a particle size of 100 nm or more into the flow of the fluid. Method.
流速分布を有する流体が接して流れる構造材の表面に、前記流体中に注入された薬剤を付着させる薬剤施工方法であって、
イオンまたは粒子径10nm以下の粒子を含有する前記薬剤を前記流体の流れ中に注入する一方、
前記流体の流れの停止時に、前記構造材の表面のうちで前記流体の流れが低流速になって前記薬剤が付着しない表面に、前記薬剤を塗布することを特徴とする薬剤施工方法。
This is a chemical application method in which a chemical injected into the fluid is attached to the surface of a structural material in which a fluid having a flow velocity distribution flows in contact with the fluid.
While injecting the drug containing ions or particles having a particle size of 10 nm or less into the flow of the fluid,
A chemical application method, characterized in that, when the flow of the fluid is stopped, the chemical is applied to a surface of the surface of the structural material where the flow of the fluid becomes low and the chemical does not adhere.
JP2019190195A 2019-10-17 2019-10-17 Chemical agent application apparatus and chemical agent application method Pending JP2021063282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190195A JP2021063282A (en) 2019-10-17 2019-10-17 Chemical agent application apparatus and chemical agent application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190195A JP2021063282A (en) 2019-10-17 2019-10-17 Chemical agent application apparatus and chemical agent application method

Publications (1)

Publication Number Publication Date
JP2021063282A true JP2021063282A (en) 2021-04-22

Family

ID=75487621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190195A Pending JP2021063282A (en) 2019-10-17 2019-10-17 Chemical agent application apparatus and chemical agent application method

Country Status (1)

Country Link
JP (1) JP2021063282A (en)

Similar Documents

Publication Publication Date Title
TWI355003B (en)
JP2000509149A (en) In-situ palladium doping or coating on stainless steel surfaces
JPS61111500A (en) Method of reducing radioactivity of nuclear power plant
JP2001074887A (en) Chemical decontamination method
JPH08327786A (en) Method for reduction of crack growth speed of underwater metal component
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
CN1293571C (en) Nuclear power electricity generating device
JP2021063282A (en) Chemical agent application apparatus and chemical agent application method
Ramminger et al. The application of film-forming amines in secondary side chemistry treatment of NPPs
EP2180483B1 (en) Method of inhibiting adhesion of radioactive substance
US20080137796A1 (en) Method for reducing carbon steel corrosion in high temperature, high pressure water
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JPH09502533A (en) Adjustment of oxide film conductivity to maintain low corrosion potential in high temperature water
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
EP3438990B1 (en) Method of repairing fuel assembly, method of producing fuel assembly, and fuel assembly
JP2007232432A (en) Chimney of natural circulation type boiling water reactor
JP2015110818A (en) Surface treatment method and surface treatment system of heat transfer pipe of steam generator
KR102309765B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JP5591454B2 (en) Reactor water radioactivity reduction method and nuclear power plant
JP4349956B2 (en) Operation method of residual heat removal system
JP6640758B2 (en) Drug injection device and drug injection method in nuclear power plant
JP4722026B2 (en) Hydrogen injection method for nuclear power plant
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JP2008045924A (en) Device for restraining chrome from adhering in nuclear power plant and method employed by such device
JP2003035798A (en) Method for preventing corrosion of reactor